
How Should We Read and Analyze Bug Reports: An
Interactive Visualization using Extractive Summaries and

Topic Evolution

Shamima Yeasmin Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

shy942@mail.usask.ca, {chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT
Software projects evolve over time as bugs are addressed and
new functionalities are added. Managing bugs can be a sig-
nificant challenge for a project manager especially when the
number of reported bugs is large, and the manager needs
to consult with them. It is also preferable that developers
new to a project first familiarize themselves with the project
and the reported bugs before actually working on them. In
order to reduce developers’ time and efforts for reading a
bug report, in this paper, we propose a visualization tech-
nique that provides an extractive summary visualization for
a given bug report. In addition, our proposed technique
assists the developers or managers in reviewing a project’s
bug reports by interactively visualizing insightful informa-
tion using topic analysis on the bug reports. In order to
validate the effectiveness of our proposed visualization tech-
nique, we conducted a task-oriented user study involving six
participants and a case study using 3914 bug reports. The
findings from both studies show that our visualization tech-
nique is promising, and it can assist the comprehension and
analysis of bug reports. The results from the user study
indicate that visualized summary is relatively preferred to
the non-visualized summary for quick comprehension of bug
reports.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Techniques—visualization,
topic modeling

Keywords
Bug Report, Topic Evolution, Summary, Visualization

1. INTRODUCTION
Software bugs are the issues that hinder the work of the

users of a software system, and they are reported in the
form of software bug reports. A typical bug report contains

Copyright c© 2015 Shamima Yeasmin, Chanchal K. Roy and Kevin A.
Schneider. Permission to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.
CASCON ’2015, Markham, Canada
.

several pieces of information such as problem description of
a software bug, steps to reproduce the bug, relevant source
code, and data dumps (i.e., content of the memory at the
time of the failure). During the maintenance and evolu-
tion of a software system, a project manager often needs to
consult with a number of previously filed bug reports. The
goal is to determine which parts of a given project are more
vulnerable (i.e., affected by bugs) and thus deserve more at-
tention. The task is trivial when there are only a few bugs
reported. However, the number of bugs of a software project
generally increases over time, and it poses a great challenge
for a project manager to analyze such a huge collection of
bug reports [26]. On the reporting of a new bug, a triager
(i.e., the manager) attempts to classify the bug into existing
categories and looks for the duplicate bugs [26]. The goal
is to identify not only the similar bugs reported earlier but
also the developers who worked on those bugs so that ex-
isting knowledge and expertise can be applied when fixing
or resolving the new bug. However, both tasks require the
manager to read a number of bug reports from the reposi-
tory [20] [26]. When developers start working on an existing
project, it is also preferable that they first familiarize them-
selves with the project and its reported bugs, which is likely
to help them avoid or resolve the similar reported issues.

Given the sheer numbers and size of the bug reports, an-
alyzing a large collection of reports manually is highly un-
productive [26], and the managers, the triagers, and the de-
velopers spend a significant amount of time and efforts in
consulting with the reports [20]. One way to support them
in this regard is to offer useful summaries containing less in-
formation instead of the original bug reports having lots of
text and comments [20] [26]. The summary of a bug report
is a condensed form of important information extracted from
the report, and it could be a useful mean for the readers to
comprehend the reported bug using less amount of time and
cognitive effort. There exist several approaches that pro-
pose summarization of the bug reports [20] [26] [19]. Most
of these techniques generate extractive summaries, where
the summary statements are extracted out of their contexts
from the bug reports. However, it is not well understood
whether those extractive summaries are useful in practice
or not, especially for the developers who do not have prior
knowledge about the reported bugs. Project managers gen-
erally use traditional bug tracking systems (e.g., BugZilla
[1], JIRA [6]) during the maintenance and evolution of a
software product. These tracking systems facilitate different
basic features such as search, addition, deletion or archiving
of a bug report. However, they often fail to deliver use-



ful insights on the bug reports required for the work of the
managers.

In this paper, we propose two major visualizations on
software bug reports. First, we replicate the hurried bug
summarization technique of Lotufo et al. [19], and visualize
the extractive summaries for a given bug report for easier
comprehension. This visualization highlights the summary
statements within their contexts in the original bug report,
and helps a reader comprehend the reported bug with less
time and effort.

In our second visualization, we apply topic modeling on a
collection of bug reports and visualize the bug topic evolu-
tion (i.e., evolution of discussed technical topics) over time.
Topic modeling is a statistical probabilistic model that dis-
covers the hidden document structures such as topics from a
collection of documents by employing machine learning tech-
niques [21] [25]. This visualization provides an important in-
sight on the different parts of a software system containing
bugs, and such information can aid in different project man-
agement activities. By inspecting topic evolution over time
in a time-windowed manner, developers can make them-
selves aware of frequently occurring types of bugs in the
earlier versions of the project and can take necessary pre-
cautions.

In order to explore the capabilities and limitations of our
visualization for extractive summaries, we conduct a task-
oriented user study. The study shows that the participants
found the visualized summary relatively preferable to non-
visualized summary for quick comprehension of bug reports.
In order to validate the applicability of our topic evolu-
tion visualization, we conduct a case study, where we ex-
perimented with 3914 bug reports of Eclipse-Ant software
system. Several insightful pieces of information about the
project were found from the topic evolution visualization.
For example, the topic ”Tool Launch and Configuration”
was found as one of the most frequently occurring topics
(i.e., more in Table 1) in the bug reports. Such information
assists a developer or a manager in paying more attention
on particular parts of the project.

This paper is an extended version of our previous Early
Research Achievements paper [29], where we just outlined
the idea with limited evaluation. In this work, we improve
and explain the techniques in details and conduct extensive
experiments.

This paper makes the following contributions:

• An interactive visualization of a bug report summary
that conveniently links summary sentences to their
context.

• A visualization that shows the topic evolution of bug
reports over time.

• A detailed drill-down from a topic’s time-segments to
its related bug reports.

• A search feature that helps developers explore related
issues regarding a given topic-keyword.

The rest of the paper is organized as follows. Section 2 de-
scribes an example use case scenario, Section 3 discusses the
schematic diagrams of our proposed visualization approach,
Section 3.1 discusses bug report extractive summarization
technique, Section 3.2 presents visualization based on topic
modeling, Section 4.1 discusses the conducted user study
and its results. Then Section 4.2 discusses the case study,

Table 1: Example Topics with Keywords
No. Topic Label Keywords

1 Plugin Support
require user issu possible feature
support realli gener plugin plan

2 Editor Outline
editor xml view outlin content
action elem open docum associ

3 Tool Launch and Configuration
launch tool dialog configur view
extern config select menu button

4 Version log
reproduce memori version view instal
window attach open log time

5 Page Preference
tab page prefer buttoon classpath
dialog home runti default pref

Section 5 identifies the possible threats to validity, Section
6 discusses the existing studies related to our research, and
finally Section 7 concludes the paper with future plan.

2. AN EXAMPLE USE CASE SCENARIO
Let us consider a software maintenance scenario, where a

triager assigns software bugs to the developers for fixation.
Prior to the assignment of a newly reported bug, the triager
attempts to categorize it into an existing category, and then
looks for duplicates. She uses an existing bug tracking sys-
tem such as Bugzilla [1], and the system generally returns a
number of bug reports based on their severity and recency.
She then applies an existing summarization technique (e.g.,
using [19], [26] or [20]) on those reports for comprehending
and analyzing them. However, she notes that the state-
ments of the summary are taken out of context, and they do
not express a clear and consistent view about the reported
bug. The triager might also be interested in collecting cer-
tain other information for her work such as– (1) Did the
reported bugs exist in earlier versions?, (2) Are there other
bugs related to the reported critical bugs?, (3) When did
they first appear?, and (4) What are the technical issues as-
sociated with these bugs? However, neither the bug tracking
systems nor the existing approaches in the literature answer
these questions satisfactorily. In this paper, we thus attempt
to solve these two research problems by–(1) analyzing the
effectiveness of extractive summaries for bug reports, and
(2) mining and visualizing the useful information from bug
reports. We decompose the two research problems into the
following research questions:

• RQ1: Does the visualization of summary statements
in their contexts help a reader comprehend the re-
ported bug effectively?

• RQ2: Does a newly reported bug associate with a
technical issue that is the most frequently reported?

• RQ3: Which bug reports in the repository do discuss
a frequent technical issue?

Our technique helps the triager in the above scenario to
conveniently dig deeper into a large collection of bug reports
containing reports from the previous versions. For example,
now, she is able to read the summaries of the bug reports as
shown in Fig. 3, which is colour coded and relatively short
than the original report. From our technique, she is also able
to know that the top most occurring topics are ‘Plugin’,
‘Tools’, ‘Page’ and so on as shown in Table 1. From the
visualization of a topic such as in Figure 4, she can explore
when a topic peaked. For further information, she can drill-
down into the bug reports containing that topic as in Fig. 5.
In order to answer our RQ1, we conduct a task-oriented



Figure 1: Schematic Diagram of Bug Report Summarizer

Figure 2: Schematic Digram of Topic Evolution Visualizer

user study described in Section 4.1. We also conduct a case
study for validating the effectiveness of topic evolution of
bug reports, which answers our RQ2 and RQ3.

3. PROPOSED APPROACH
We divide our proposed tool in two different parts: Part

I creates extractive summaries of bug reports and visualizes
them, and Part II is related to the features that are based on
topic modeling. The schematic diagram for extractive sum-
mary visualization is shown in Fig. 1. We create extractive
summaries of bug reports by applying methods described in
Lotufo et al. [19], where we use twitter API for sentiment
analysis [9]. The goal is to determine the sentiment of each
of the sentences. Then, we visualize the summaries following
the methodologies as discussed in Section 3.1. Part II con-
sists of two individual phases- analytics and visualization as
shown in the schematic diagram of Fig. 2. In the analytics
phase, we collect bug reports from a popular bug tracking
system BugZilla, apply LDA (Latent Dirichlet Allocation)
topic modeling on the reports to extract topics as described
in Section 3.2. For LDA, we use a Java implementation of
LDA called JGibbLDA [5]. In the visualization phase, we vi-
sualize topic evolution with the help of a popular Java chart
library called JFreeChart [4].

3.1 Part I: Visualization of Bug Report Ex-
tractive Summaries

One of the primary objectives of our proposed tool is to
provide meaningful information to developers through anal-
ysis and visualization of bug reports. Thus, we design our
tool to provide a comfortable reading experience with bug
reports. In the following, we discuss the detailed design and
methodologies for summary visualization of bug reports

3.1.1 Visual Design: Extractive Summary Visualiza-
tion

The visualized bug report summary is presented in Fig. 3.
During designing the visual summary of a bug report, we

Figure 3: Bug Report Summary Visualization

kept two things in mind: first, the length of the summary
should be significantly smaller than the original bug report
so that the developer will have fewer sentences to read; and
second, the visualization must be done in a way that can ful-
fill a developer’s intention for reading it effectively. There-
fore, to create a good summary we follow the approach pro-
posed by Lotufo et al. [19] which is automatic and extractive.
We also restrict the number of sentences of our summary to
ten.

In our tool, the visualized summary is represented along
with the visualized original bug report to the developer.
Each sentence in the summary is coloured with a unique
colour and the same sentence in the original bug report is
also coloured by the same colour. This kind of visualization
can help the developer to understand the summary from the
context. As our created summary is extractive, sometimes
it might be difficult for the developer to gather the desired
idea from it. That’s why, when the summary sentences are
also highlighted in the original bug report using the same
colours, the developer is able to study the sentences that
precede and follow the summary sentences in original bug



report, which can aid her in understanding summary sen-
tences in the context.

3.1.2 Methodologies: Creation of Bug Report Ex-
tractive Summaries

In order to create extractive summary of a bug report, we
first apply the hurried bug summarization technique pro-
posed by Lotufo et al., and visualize the summary using our
tool as described in Section 3.1.1. We chose to apply this
summarization technique as it is automatic, light-weight and
it shows 12% improvement over previous approach [19]. We
utilize the following two important hypothesis from Lotufo
et al. for creating extractive summary of each bug report.

Measuring Topic Similarity: The first hypothesis of
Lotufo et al. states that in a bug report, the relevance of a
sentence is higher if it shares more topics with other sen-
tences. Like Lotufo et al., we use a cosine similarity metric
to measure the similarity of the sentences.

Measuring Evaluation Relations: The second hypoth-
esis of Lotufo et al. states that the relevance of a sentence is
higher the more it is evaluated by other sentences and the
more relevant are the sentences that evaluate it. To identify
evaluation relations between sentences in a bug report, po-
larity detection is performed. Sentiment analysis has been
used in the polarity detection of movie reviews [10], political
reviews [27] and so on. Polarity detection first filters eval-
uation sentences and then finds out whether the sentence
is positive or negative. In order to avoid manual classifi-
cation of polarity of sentences Go et al. [15] use a training
set containing 800,000 positive and 800,000 negative Twitter
messages which were automatically annotated as negative or
positive based on emoticons presented in the comments. We
use the same approach for measuring the evaluation relation
between two sentences. We compute an overall score for
each sentence by combining topic similarity and evaluation
relation measures as described above. We rank all sentences
of a bug report based on their overall score and finally choose
the top ten sentences as an extractive summary as of Lotufo
et al..

3.2 Part II: Topic Evolution of a collection of
Bug Reports

In Part II, our second visualization technique, (i) gener-
ates as well as shows topic evolution of each topic automati-
cally, (ii) then for further inspection it retrieves all software
bug reports associated with a given topic along with their
Bug Report IDs and titles, and (iii) provides a searching
option so that one can search bug reports by keywords as-
sociated with a topic. In this subsection we will describe
the visual design and methodologies used in Part II of our
proposed approach.

3.2.1 Visual Design: Topic Evolution of a collection
of Bug Reports

Topic Evolution Visualization for Each Topic: Once
a developer selects a dataset (i.e., a collection of bug reports)
the system automatically applies topic modeling [5] to it. Af-
ter performing some analytics as described in Section 3.2.2
on the produced topic model, the tool depicts the topic evo-
lution of several topics derived from the dataset. From this
visualized output, both experienced and novice developers
can analyze which type of topics are evolved most of the
time and associated with most of the bugs. By analyzing

Figure 4: Topic Evolution Example (Topic 3: Tool
Launch and Configuration)

Figure 5: Topic Drill-Down in the Context

bug report topic evolution, a manager can check the year in
which a given project contains the highest number of bugs,
and which of the topics occur more frequently. Thus, the
manager can identify the parts of the project which are af-
fected by the highest number of bugs, and such information
can aid the manager in different decisions making activities
associated with that software project. We use an area-graph
based visual layout to represent topic evolution (i.e., content
changes over time as in Fig. 4). Our tool generates the vi-
sual summary of each topic individually. However, this area
layout is depicted by a set of keyword clouds in order to
show the content evolution over time. The height of the
area graph at each time-segment (here, a year) encodes the
strength of the topic for that point (Fig. 4). Strength is cal-
culated by the number of software bug reports containing
that topic at the certain point.

Topic Drill-Down in the Context: If a developer
requests for more information regarding a topic, then all
bug report IDs and titles associated with that topic will be
shown, as is shown in left part of the Fig. 5. In this way, the
context of the bug reports will aid the developer in gathering
enough knowledge to identify that topic precisely. During re-
solving a new bug, a developer might be interested to gather
knowledge from existing similar bugs so that she can apply
existing expertise in order to fix that bug. She can collect
important keywords from the provided new bug as well as
can check which topic contains those keywords. From topic
drill-down feature, she can investigate all bug reports under



Figure 6: Search by Keywords

a topic of interest in order to enrich her knowledge and thus,
can apply existing expertise on the newly reported bug.

Searching by Keywords: The search feature is pre-
sented in Fig. 6. A topic is associated with several key-
words. A developer may be interested in inspecting any of
them. Consider a scenario where a developer finds a topic
described by keywords such as ‘launch’, ‘tool’, ‘view’ and so
on as in Fig. 6. She might be curious to know which type
of ‘tool’ related bugs are mentioned by this topic. To help
her we provide a search option, where the developer is able
to perform a search on the entire bug report collection for a
keyword. In Fig. 6, search results are shown containing bug
report IDs and titles for the keyword ‘tool’.

3.2.2 Methodologies: Topic Evolution of a collec-
tion of Bug Reports

In the following subsections, we will discuss all analyt-
ics we have performed for visualizing topic evolution of bug
reports over time.

Pre-processing: Our preprocessor unit performs stem-
ming on each token of the corpus. Here, token means a
single word. Stemming is required to keep the root words,
which ensures that only the unique root words appear in
the extracted topics. We also remove stop words from our
dataset. For removing stop words from our corpus we use
an existing stop-word list, which is available online [8].

Time-Windowed Data Creation: To visualize the evo-
lution of a topic over time, we split the dataset in a time-
windowed manner. We divide the bug report dataset under
several years and months according to their reported dates.
The reported date of a bug report is collected from the orig-
inal bug report.

Topic Analysis: A topic implies the thematic content
common to a set of text documents. After preprocessing,
the collection of bug reports are considered as a collection of
text documents. Each document is composed of a sequence
of words. Each topic is referred to by a set of keywords that
form a topic-keywords distribution and this distribution is
independent within all text documents. Each keyword in a
topic has a probability that represents its likelihood of ap-
pearing in that topic. To retrieve time-sensitive keywords for
each topic, our topic model uses two matrices: a document-
topic distribution matrix and a topic-word distribution ma-
trix. From the document-topic distribution matrix, we see
that each document may be associated with all topics with
some probability. Therefore, we use a threshold-based tech-
nique to assign a topic to a document. After considering

different values we use a threshold of 0.01 (i.e., document-
topic distribution probability) in our experiment as using
this threshold results reasonable number of topics can be
assigned to each document. We also restrict a document
from having no more than five topics to ensure that each
bug report should be associated with some dominated top-
ics, not all. During topic modeling we restrict the number
of iterations to 3000 and generate 20 topics, as we observed
too many common keywords among topics can be associated
if we consider more than 20 topics for the dataset we have
used.

Topic Ranking: LDA topic modeling outputs 20 topics,
which are randomly ordered. One of the reasons to apply
topic modeling is to discover the topics that appear in most
of the bug reports. Therefore, we rank the topics so that the
most important topics appear first in the topic list. To rank
topics, we consider generic topics that occur in all docu-
ments. So, the rank of a topic is measured by a combination
of both topic content coverage and topic variance (i.e., how
far a topic is spread out). For bug report topic ranking
we adapted the topic ranking algorithm of Wei et al., who
used a topic ranking algorithm to rank topics in an email-
summarizer. We calculate mean, variance, and then rank
them as follows:

mean,µt =

∑N
i=1(θti ×Ni)∑N

i=1Ni

(1)

variance,σ2
t =

∑N
i=1((θti − µt)

2 ×Ni)∑N
i=1Ni

(2)

rankt = µtσt (3)

Given a document-topic distribution θ, the rank of a topic
t is computed and N is the total number of documents and
θti is the probability distribution of topic t in document i.

Filtering Keywords for Topics: In LDA topic model-
ing, some extracted keywords of a given topic may not be
ideal for understanding the theme (i.e., name or label or def-
inition) of the topic. There are some keywords that appear
in all documents, which are too generic to express any topic
definition. Therefore, we summarize each topic by filtering
these type of keywords from that topic. The strategy is, a
keyword is important for a topic - if it appears frequently in
that topic and does not occur frequently in any other top-
ics. This actually measures the TF-IDF (Term Frequency
and Inverse Document Frequency) score of each keyword in
a bug reports collection. Here, the occurrence of a keyword
is calculated by the probability measure of that keyword in
a topic. We adapted the approach of Wei et al. to topic
analysis on a bug reports collection. Given topic-word dis-
tribution λ, we compute the weight of each keyword kwm

derived from the original LDA model and then sort them
in ascending order to select the top n keywords per topic.
we calculate the weight of each keyword using the following
equation:

weight(kwm) = λtm × log
λtm

(
∏T

j=1 λjm)1/T
(4)

Where T is the total number of topics and λtm, is the prob-
ability of keyword kwm in topic t.

Time-sensitive Keyword Extraction: In our tool, we
visualize topic evolution over time, where the most frequently



Table 2: Difficulty and Frequency Scales
Difficulty Levels Scales Frequency Levels Scales
Very hard 5 Very often 5
Hard 4 Often 4
Not hard nor easy 3 Sometimes 3
Easy 2 Hardly 2
Very Easy 1 Never 1

occurring keywords are selected and presented in each time-
segment of a topic. At the beginning, we divided the collec-
tion of bug reports into subsections, each of them is associ-
ated with a particular time such as a month and a year. For
each time-segment of a topic, we extract keywords, which
appear frequently both in that topic and time-segment. We
also consider the highest peak from different values within
a time interval. For example, assuming that in 2003 all bug
reports from Eclipse-Ant were reported in January, March,
June, and December. Also assuming that a given topic is
contained in 60, 47, 89 and 56 bug reports respectively dur-
ing these four months. Then our system will consider the
value 89 as the number of bug reports associated with that
topic, against the year of 2003. To extract time-sensitive
keywords, we adapted the procedure of Wei et al.. We col-
lect each word dwm of sub collection s, compute its weight,
and select the top n keywords as time-sensitive keywords for
each topic-segment after sorting them in ascending order.
Given topic t, term frequency of word dwm is denoted as
TFtsm, and so word-weight is calculated using the following
equation:

weight(dwm) =
TFtsm∑S
s TFtsm

+λtm× log λtm

(
∏T

j=1 λjm)1/T
(5)

4. EXPERIMENT AND DISCUSSION
In Part I of this research, we apply visualization to the

extractive summaries of bug reports to address a practical
problem associated with such summaries. We employ topic
modeling on a collection of bug reports to show topic evolu-
tion of bug reports over time in Part II. In order to validate
the applicability of our bug report summary visualization,
we conduct a user study with six participants where we col-
lect feedback from the participants. We also conduct a case
study for validating the effectiveness of topic evolution of
bug reports. In the following two subsections we discuss
conducted user study as well as case study in detail.

4.1 Evaluation of Bug Report Visualization:
A Task-Oriented User Study

In this subsection, we discuss different parts of the con-
ducted study such as task design, study participants, ques-
tionnaire for data collection, sessions of user study, result
collection and data analysis.

4.1.1 Design of User Study
Task Design In order to evaluate the effectiveness of vi-

sualized bug report summaries, we design two tasks that
involve the identification of duplicate bugs from a collec-
tion for a newly reported bug. Each of the tasks is simple
enough to be accomplished by any participant, and at the
same time sufficient enough for exploring the potential of
any of the summary representation techniques.

T1: Identify duplicate bugs from a collection of eight bug
reports for a given bug report by consulting plaintext or
non-visualized extractive summaries of the bug reports.

Target usage: Evaluation of non-visualized summary.
T2: Identify duplicate bugs from a collection of eight bug

reports for a given bug report by consulting visualized ex-
tractive summaries of the bug reports.

Target usage: Evaluation of visualized summary.
We choose two Eclipse bugs from Bugzilla [1] having IDs

62468 [3] and 14890 [2] for the study. We denote them as
Bug Report1 and Bug Report2 respectively in the remaining
of the chapter.

Study Participants We choose six graduate research
students from Software Research Lab, University of Saska-
tchewan, as the participants for the study. However, we only
select those who have substantial amount of programming
experience that includes bug fixation or resolution, and some
of them have professional software development experience.
Due to the nature and expertise of the participants, we in-
tentionally limit the number of participants to six.

Questionnaire We use a questionnaire to collect feed-
back from each of the participants during the study sessions,
and the questionnaire contains the following questions:

Questionnaire for Non-Visualized summaries:

(1) Consult with plaintext or non-visualized summaries of
bug reports, and label each of the eight candidate bug
reports for duplicity. Use these labels for labeling:
Duplicate (D), Near Duplicate (NRD), Not Duplicate
(ND), Related (R) and Not Related (NR).

(2) In extractive summary, sentences are often extracted
out of their contexts in the bug report, which might
need to be consulted for easier comprehension. How
much difficulty did you face in locating the contexts of
the summary sentences in the original bug report?

(3) How often did you switch between the summary and
the original bug report for context analysis?

(4) Rate the usefulness/effectiveness of a plaintext or non-
visualized bug report summary in bug comprehension
on the scale from 1 (least useful) to 10 (most useful).

(5) Rate the overall look and feel of the non-visualized
summary on the scale from 1 (least helpful) to 10 (most
helpful).

Questionnaire for Visualized summaries:

(6) Consult with visualized summaries of bug reports, and
label each of the eight candidate bug reports for du-
plicity. Use these labels for labeling: Duplicate (D),
Near Duplicate (NRD), Not Duplicate (ND), Related
(R) and Not Related (NR).

(7) Rate the usefulness/effectiveness of visualized bug re-
port summary in bug comprehension on the scale from
1 (least useful) to 10 (most useful)

(8) Rate the overall look and feel of visualized summary
on the scale from 1 (least helpful) to 10 (most helpful).

(9) Do you think that the visualized bug report summary
is more effective than plaintext or non-visualized bug
report summary for quick comprehension of the re-
ported bug?

(10) How to improve the visualized summary for more eas-
ier comprehension of bug reports? Please provide your
suggestions.



Table 3: Problems of Non-visualized Summary
Motivating Factors P1 P2 P3 P4 P5 P6 Avg. Comment
Difficulty- Finding summary sentences in original bug report 5 3 5 5 5 4 4.5 Very hard
Frequency- Context switching between summary and bug report 3 2 3 3 4 4 3.17 Sometimes

Table 4: Rating of Efficiency and Look & Feel by Participants
Features Approach P1 P2 P3 P4 P5 P6 U-value p-value RD

Efficiency
Non-Visualized Summary 5 6 3 5 6 6

0 0.00512 S
Visualized Summary 7 10 8 8 9 7

Look & Feel
Non-Visualized Summary 5 7 4 3 6 6

1.5 0.01046 S
Visualized Summary 7 10 8 7 9 7

4.1.2 Study Session Coordination
We run our user study in two sessions- execution phase

and evaluation phase as follows:
Execution Phase At the beginning of the user study, we

brief the participants about the tasks to be completed. It
usually takes 3-5 minutes. We divide the six participants
into two groups- Group A (P1, P3, P5) and Group B (P2,
P4, P6). Participants in Group A perform tasks where they
identify duplicate bug reports for BugReport1 using non-
visualized summaries and also do the same for BugReport2
using visualized summaries. On the other hand, partici-
pants from Group B identify duplicate bugs for BugReport2
using plaintext or non-visualized summaries and for BugRe-
port1 using visualized summaries. At first, the participants
analyze the summaries as well as the bug reports of the can-
didate bugs for a given bug report, and then, fill up the first
and sixth questions of the questionnaire (Section 4.1.1). The
session lasts about 15-20 minutes on average.

Evaluation Phase In this phase, participants answer
the rest of the questions from questionnaire (Section 4.1.1),
where they compare the effectiveness of visualized bug re-
port summaries with non-visualized bug report summaries
in identifying duplicate bugs for a given bug report from a
list of candidate bugs. We also collect qualitative sugges-
tions from the participants on how to further improve the
interactive visualization. This phase takes about 5-10 min-
utes on average.

4.1.3 Result Analysis and Discussion
We analyze the feedback collected from participants dur-

ing evaluation phase, and contrast our visualized summaries
with non-visualized summaries for determining effectiveness
in the identification of duplicate bug reports. We apply two
metrics- Average Rating and Mann-Whitney U-Test [7] for
evaluation. The first metric shows whether two lists of mea-
sures are equal or not in terms of their central values, and
the second one determines if the lists are significantly dif-
ferent from each other. Here, Average Rating averages a
list of ratings, where each rating is associated with a cer-
tain interval. In our user study, we consider ”1” as lowest
rating and ”10” as the highest rating. We compute average
for the ratings on certain features of the bug report sum-
maries such as Convenience for context analysis, Difficulty
in context analysis, Efficiency in bug comprehension and so
on. Mann-Whitney U-Test is a non-parametric statisti-
cal test that compares between two sets of ordinal measures.
In our user study, this test is used to determine whether
the ratings provided by the participants for the visualized
summaries are significantly differ from that of non-visualized
summaries. This test outputs two measures- U and p-values.

Figure 7: Rating for Summary Visualization

We consider a significance level of 0.05 i.e., if p-value is less
than 0.05 for a pair of rating lists, then they are significantly
different from each other and vice versa.

Motivating Factors of Visualization to Bug Report
Summaries We apply visualization to the extractive sum-
maries of bug reports to aid developers in comprehending
bugs conveniently. In order to identify the motivating fac-
tors behind our visualization, we collect responses from the
participants where we set appropriate scales to certain fac-
tors such as Difficulty (i.e., finding summary sentences in
original bug report) and frequency (i.e., context switching
between summary and bug report) in (Table 2). We trans-
form the participants’ feedback into numerical scales. Table
3 shows individual responses on the motivating factors and
their average measures. From Table 3, we note that locating
sentences of a non-visualized summary in original bug report
is very hard for the participants. It is required when the de-
veloper cannot comprehend the summary sentences because
of their inconsistencies and moves to the original bug report
for contextual help. From Table 3, we note that although
the participants attempt to focus on the summary for bug
comprehension, sometimes still they need to switch between
bug report and its summary. Thus, the responses from the
participants indicate that the support for context analysis
for the summary sentences of the bug report should be made
more accessible and user-friendly to the developers, and we
apply interactive visualization for that purpose.

Comparison between Visualized and Non visual-
ized Bug Report Extractive Summaries We identify
two features- Efficiency and Look and Feel to compare the
performance between our visualized summaries and the tra-
ditional non-visualized summaries. Fig. 7 shows the average
ratings for both features, where we note that visualized bug
report summaries are highly rated compared to the non-



visualized for each feature by the participants. In order to
determine whether the ratings for visualized summaries are
significantly higher than that of non-visualized ones, we con-
duct Mann-Whitney U-test. We apply this test on both sets
of ratings from the same participants. Table 4 shows that
the ratings are significantly different for both features- Effi-
ciency and look and feel of the bug report summaries.

In our user study, all (i.e., six ) participants select the
option Agree with the fact that visualized bug report sum-
mary is more effective than non-visualized summary for com-
prehending the reported bug quickly. Three out of them
(i.e., 50%) report that they Strongly Agree with this. Thus,
most of the participants in our study highly agreed on the
effectiveness of visualized bug report summary over non-
visualized summary, which answers our RQ1.

We also observe the completion time that participants
take for both tasks with non-visualized and visualized sum-
maries. According to our experiments, the participants took
10.5 minutes on average in order to complete their tasks with
non-visualized summaries, whereas they took 8.8 minutes
on average for the same purpose with visualized summaries.
Although the timing difference is small, this might be sig-
nificant when large number of bug reports are handled by
the developers. Thus in terms of task completion time, visu-
alized summaries are found more effective than traditional
plaintext or non-visualized summaries of bug reports for the
comprehension of the bugs

Qualitative Suggestions from Participants Partici-
pants pinpoint some useful suggestions that can improve the
visualization of the extractive summaries of bug reports, and
they are listed as follows:

Keyword highlighting: Important keywords from the given
bug report should be highlighted both in the summary and
the original bug report of the candidate bugs.

Hyper linking: Summary sentences should be hyper linked
to the corresponding in the original bug report.

Mouse hover capabilities: When a developer hovers the
mouse on a summary sentence, the same sentence in the
original bug report should be highlighted or blinked.

Look and feel: One of the participants suggest lighter col-
ors for highlighting a sentence or keyword.

Text wrapping: The text should be wrapped in order to
avoid scrolling for the summaries of the bug reports.

4.2 Evolution: An example case study
In software bug management, an existing bug repository

always works as a good source of information. Sometimes
a bug which is already fixed can be reopened. Search on
existing bug repository is generally performed for finding
similar or duplicate bugs. Thus, studying an existing bug
database is beneficial even if the bugs are fixed. However, to
examine the effectiveness of topic evolution, let us assume
a scenario where a novice developer will soon start work-
ing on Eclipse-Ant, and at the beginning she wants to give a
quick look at its bugs. At present, Eclipse-Ant contains 3914
bug reports and definitely studying all of them would take
a long time. Therefore, in this situation, we are providing
our tool that can aid her to more conveniently and quickly
dig deeper into a large collection of bug reports including
the bug reports from the previous versions. From our tool
we can see 20 topics as output, each of which have 10 key-
words. To keep this discussion simple, an example of the
top most 5 topics together with their associated keywords

Table 5: Search Results in Terms of Bug Reports
Retrieved

Keyword Bugzilla Proposed Tool
plugin 58 577
editor 371 702
tool 469 860
log 191 518
tab 130 533

Table 6: # of Bug Reports in Eclipse-Ant from 2001
to 2014

Year # Bug Reports Year # Bug Reports
2001 17 2008 114
2002 484 2009 510
2003 776 2010 90
2004 728 2011 128
2005 479 2012 71
2006 256 2013 91
2007 155 2014 15

are provided in Table 1. We see that the 1st, 2nd and 3rd
topics are about ‘Plug in’, ‘Editor’ and ‘Tool’ respectively.
During searching these keywords are both in Bugzilla and
our tool; a different number of bug reports result as shown in
Table 5. Our tool retrieves more bug reports than Bugzilla
for each keyword (Table 5). To investigate the reason be-
hind this, we randomly as well as manually check results
both from our proposed tool and Bugzilla. In Bugzilla, al-
most all retrieved bug reports contain searching keyword in
their titles, because Bugzilla produces search results based
on bug report titles only, where we consider the contents of
the bug report in addition to the title during searching. In
our scenario, from Table 1, the novice developer can gather
an idea regarding the most occurring problems (i.e., bugs)
in Eclipse-Ant, which are related to ‘plug-in’, ‘editor’, ‘tool’,
‘log’ and so on. To dig deeper she can also search by those
keywords as in Fig. 6, and can have a clear idea about how
many bug reports are associated with each top topic. Below
are some questions we can use our tool to address for the
above scenario.

• Which month/year was the most crucial period for
Eclipse-Ant bugs?

• What was the most active topic in a given year such
as 2003 or 2009?

• What was discussed in the most active topic?

• Which bugs are associated with the most active topic?

The developers as well as managers might ask these ques-
tions for several reasons. For example, during resource allo-
cation the manager of a software project tries to determine
which part of a given project is more problematic and thus
needs more attention. By investigating the most active top-
ics and their associated bug reports, the manager can iden-
tify the components or parts of a software project, which
are largely affected by those bugs. The idea is to pay more
attention on those components and allocate more time and
effort for them while working with the next version of the
project.

To answer the first question we need to investigate the top
most topics, where they are in their peak. We can see that
the year 2009 is the most active year for Eclipse-Ant bug
reports for the top most five topics, two of them, topic-3 and



Figure 8: Topic-4 (Version Log)

topic-4, are depicted in Fig. 4 and Fig. 8 respectively. Then
2003 is the second most active year for this bug dataset. We
also can relate it to the number of bug reports of Eclipse-
Ant in each year from 2001 to 2014 as presented in Table 6.
Here, although years 2003 and 2004 have the highest number
of bug reports, the top-most 5 topics are not that active in
these two year, compared with year 2009.

To address the second question, we notice that in 2003
the top 5 topics (Table 1) have the following number of bug
reports, respectively: 63, 11, 88, 26, and 25. That means
topic-3, “Tool Launch and Configuration”, is the most active
topic during 2003. However, in 2009 the number of bug
reports for the top 5 topics were 173, 28, 189, 75 and 65, i.e.
topic-3 is associated with the most bug reports in 2009 also.
Now, in order to investigate the relevant bug reports under
the most active topic (i.e., Tool Launch and Configuration),
our detail drilldown feature can aid developers by showing
all bug report IDs and titles associated with that topic as
depicted in Fig. 5. This also answers our RQ3.

It is also observed from Table 1 that the most crucial topic,
i.e., topic-3 contains keywords such as ‘launch, ‘tool’, ‘dia-
log’, ‘configur’, ‘view’ and so on. We verify it with search re-
sults presented in Table 5, where we can see that the highest
number of bug reports are retrieved against keyword ‘tool’
both from Bugzilla and our proposed tool. If a newly re-
ported bug contains keywords from the most crucial topic,
i.e., topic-3, the developer will pay more attention address-
ing that issue. This also answers RQ2.

5. THREATS TO VALIDITY
We identify a few potential threats to the validity of our

findings. One of them is the lack of professional experience of
the participants in bug report management. In practice, the
task of identifying duplicate bugs from a bug report collec-
tion is performed by a triager who generally has some prior
knowledge on the reported bugs. In order to mitigate the
threat, we thus choose two frequent issues related to mem-
ory leak and build dependency which are often faced by the
developers (i.e., participants). These issues also suit for our
user study since we intended to evaluate our visualized bug
report summary involving average developers rather than
experts.

Second, the participants are chosen from among the peers
for our user study, and some of them are from Software
Research lab. Thus one can argue about the potential bias
in the ratings by the participants for our system. While

we cannot rule out the possibility of such bias, we adopted
a careful technique in order to mitigate such bias in the
evaluation. The study sessions with each of the participants
were conducted in isolation and the evaluation was based
on their instant working experience as well as their best
judgment.

Third, the number of participants involved in our con-
ducted user study is not enough. In order to mitigate this
threat, we involve such graduate students who have sub-
stantial amount of programming experience that involves
problem solving and bug fixation. Some of them also have
professional software development experience.

Forth, the number of sample bug reports for the study is
also limited. However, since our focus is on interactive sum-
mary visualization of an individual bug report, the volume
of bug reports does not actually affect the studies much.

Fifth, in this paper, we experimented and reported results
only for Eclipse bug reports, and the results may vary for bug
reports from other application domains. However, Eclipse
bug repository is a widely used dataset that has been used
in several other research studies. Thus, the findings with
this dataset are reliable and possibly comparable with other
systems.

6. RELATED WORK
Analysis and visualization of bug reports are not new,

and there have been a great many studies. To represent the
evolution of bugs, D’Ambros et al. [13] propose a visualiza-
tion technique called System Radiography that indicates
which parts are the most problematic parts in a system.
They also provide useful insight on the life cycle of a bug
by another visualization technique- Bug Watch. Another
technique is proposed by Dal Sassc & Lanza [11] for repre-
senting a fine-grained view of a bug report. To analyze bug
tracking system, they also propose a visual analytic platform
called in*Bug. Hora et al. [17] present a tool, BugMaps,
to map the reported bugs to the defects in object oriented
systems, and provide several interactive visualizations for
decision support. To uncover the relationship of how an
evolving software is affected by software bugs, D’Ambros &
Lanza [12] propose a visual approach that shows the evo-
lution of software entities at different levels of granularity.
The main differences between those work and our technique
are that (i) for visualization of bugs, we use topic evolution
over time, but D’Ambros et al. use a matrix-based repre-
sentation, Dal Sassc & Lanza provide a web-based visual
analytics platform, and Hora et al. utilize Distribution Map
and (ii) none of these existing studies visualizes the extrac-
tive summary of a bug report which we do.

PageRank algorithm [18] models the probability of reach-
ing a web page from another page by estimating the rele-
vance of both pages. Lotufo et al. [19] first use PageRank for
unsupervised bug report summarization to develop a deeper
understanding of the information exchanged in a bug report.
Rastkar et al. [26] investigate the possibility of summarizing
a bug report automatically and effectively so that the user
can benefit from the smaller version of the entire artifact.
In our research, besides showing topic evolution of bug re-
ports, we also apply hurried bug summarization by Lotufo
et al. [19] to create summaries and then visualize them in a
convenient way which improves their understandability for
the developer.

In software bug management, topic modeling has been



used to classify bug reports from non-bugs [24], detect du-
plicate bug reports [23], recommend buggy source code [22],
and so on. Martie et al. [21] apply LDA topic modeling on
a large collection of documents containing discussion data
from Android developers. A limitation of their work is that
although they consider discussion trends over time, they
use the same associated keywords throughout the discussion
trends. Topic evolution seems to be meaningless to develop-
ers if a topic’s associated keywords do not change over time.
To mitigate this problem, in our work, we extract frequently
used keywords associated with each topic for each time win-
dow as a topic summary, and refer them as time-sensitives
keywords. Thus, our approach is more time specific than
theirs. To investigate the impact of changes of technologies
on Software Engineering research field, Demeyer et al. [14]
apply N-gram analysis on the complete corpus of ten years
of MSR (Mining Software Repositories) papers, and com-
pute the normalized frequency of keywords for measuring
their occurrence over time. Their work inspired us to apply
a mining technique on large dataset of bug reports. How-
ever, none of the previous work interactively visualizes topic
evolution over time, which we do.

In information visualization, researchers have deployed
two types of visualization techniques: one is metadata based
and the other is content-based. Havre et al. [16] use a sym-
metric river metaphor to represent the thematic variations
over time in the context of a time-line and corresponding
external events. TIARA [28] conveys far more complex text
analysis results than Havre et al. by showing detailed the-
matic content in keywords. Wei et al.extract topics from
email data and patient records, and generate time-sensitive
keywords to represent topic evolution. A part of our work is
similar to them [28] in the sense that we adapted their topic
evolution approach in this work. However, we have applied
this in a new domain, the software bug reports whereas they
applied in email datda. Furthermore, our primary focus was
visualizing the extractive summaries interactively within the
context of the original bug reports, which they did not do.

7. CONCLUSION AND FUTURE WORK
In this paper, we not only visualize the extractive sum-

maries of bug reports but also show the evolution of techni-
cal topics over time discussed in those reports. In summary
visualization, we apply different colour coding and link the
summary sentences to their contexts in the original bug re-
ports interactively so that one can easily analyze the con-
texts of those statements while reading the summaries. In
the visualization of topic evolution for bug reports, we apply
LDA, a topic modeling tool, and adapt an existing approach
associated with the topic evolution in email documents. In
order to evaluate our topic evolution technique, we apply
topic modeling on 3914 bug reports collected from Eclipse-
Ant, and visualize the evolution of several important topics
such as plugin support, editor outline, tool launch and con-
figuration, version log, page reference and so on. In order to
determine how well the visualized extractive summaries of
the bug reports can aid developers in comprehending bug
reports, we conduct a task-oriented user study. Accord-
ing to the findings from the study, participants rated rel-
atively higher for visualized summaries than plaintext or
non-visualized summaries of bug reports. In future, in order
to improve the visualization of bug report summary we plan
to add some of the features suggested by the participants

such as important keyword highlighting, tool tip option on
summary sentences, and so on. Currently, we are working
on only software bug reports, but in future we have a plan
to visualize not only information extracted from bug reports
but also from source code of a software system.

References
[1] Bugzilla. http://www.bugzilla.org.
[2] Eclipse Bug 14890. https://bugs.eclipse.org/bugs/show_bug.

cgi?id=14890.
[3] Eclipse Bug 62468. https://bugs.eclipse.org/bugs/show_bug.

cgi?id=62468.
[4] JFreeChart. http://www.jfree.org/jfreechart/.
[5] JGibbLDA. https://jgibblda.sourceforge.net.
[6] JIRA. https://www.atlassian.com/software/jira.
[7] Mann-Whitney U-Test. http://www.socscistatistics.com/tests/

mannwhitney/.
[8] Stop Words List. https://code.google.com/p/stop-words/.
[9] Twitter Sentiment Analysis. http://help.sentiment140.com/api.
[10] Beineke, P., Hastie, T., Manning, C., & Vaithyanathan, S. 2004.

Exploring Sentiment Summarization. In: Proc. AAAI tech report
SS-04-07.

[11] Dal Sassc, T., & Lanza, M. 2013. A Closer Look at Bugs. Pages
1–4 of: Proc. VISSOFT.

[12] D’Ambros, M., & Lanza, M. 2006. Software Bugs and Evolution:
A Visual Approach to Uncover Their Relationship. Pages 10 pp.–
238 of: Proc. CSMR.

[13] D’Ambros, M., Lanza, M., & Pinzger, M. 2007. ”A Bug’s Life”
Visualizing a Bug Database. Pages 113–120 of: Proc. VISSOFT.

[14] Demeyer, S., Murgia, A., Wyckmans, K., & Lamkanfi, A. 2013.
Happy Birthday! A Trend Analysis on Past MSR Papers. Pages
353–362 of: Proc. MSR.

[15] Go, A., Bhayani, R., & Huang, L. 2009. Twitter Sentiment
Classification using Distant Supervision. CS224N Project Report,
Stanford, 1–12.

[16] Havre, S., Hetzler, E., Whitney, P., & Nowell, L. 2002. The-
meRiver: Visualizing Thematic Changes in Large Document Col-
lections. IEEE Transactions on Visualization and Computer
Graphics, 8, 9–20.

[17] Hora, A, Anquetil, N., Ducasse, S., Bhatti, M., Couto, C., Va-
lente, M. T., & Martins, J. 2012. Bug Maps: A Tool for the Vi-
sual Exploration and Analysis of Bugs. Pages 523–526 of: Proc.
CSMR.

[18] Lawrence, P., Sergey, B., Rajeev, M., & Terry, W. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Tech-
nical Report 1999-66.

[19] Lotufo, R., Malik, Z., & Czarnecki, K. 2012. Modelling the
Hurried Bug Report Reading Process to Summarize Bug Reports.
Pages 430–439 of: Proc. ICSM.

[20] Mani, S., Catherine, R., Sinha, S. V., & Dubey, A. 2012.
AUSUM: Approach for Unsupervised Bug Report Summarization.
Pages 11:1–11:11 of: Proc. FSE.

[21] Martie, L., Palepu, V.K., Sajnani, H., & Lopes, C. 2012. Trendy
Bugs: Topic Trends in the Android Bug Reports. Pages 120–123
of: Proc. MSR.

[22] Nguyen, A. T., Nguyen, T. T., Al-Kofahi, J., Nguyen, H. V., &
Nguyen, T. N. 2011. A Topic-based Approach for Narrowing the
Search Space of Buggy Files from a Bug Report. Pages 263–272
of: Proc. ASE.

[23] Nguyen, A. T., Nguyen, T. T., Nguyen, T. N., Lo, D., & Sun,
C. 2012. Duplicate Bug Report Detection with a Combination of
Information Retrieval and Topic Modeling. Pages 70–79 of: Proc.
ASE.

[24] Pingclasai, N., Hata, H., & Matsumoto, K.-I. 2013. Classifying
Bug Reports to Bugs and Other Requests Using Topic Modeling.
Pages 13–18 of: Proc. APSEC.

[25] Rahman, M. M., & Roy, C. K. 2014. An Insight into the Pull
Requests of GitHub. Pages 364–367 of: MSR.

[26] Rastkar, S, Murphy, C. G., & Murray, G. 2010. Summarizing
Software Artifacts: a Case Study of Bug Reports. Pages 505–514
of: Proc. ICSE.

[27] Tang, H., Tan, S., & Cheng, X. 2009. A Survey on Sentiment
Detection of Reviews. Expert Systems with Applications, 36(7).

[28] Wei, F., Liu, S., Song, Y., Pan, S., Zhou, M. X., Qian, W., Shi,
L., Tan, L., & Zhang, Q. 2010. TIARA: A Visual Exploratory Text
Analytic System. Pages 153–162 of: Proc. KDD.

[29] Yeasmin, S., Roy, C.K., & Schneider, K.A. 2014 (Sept). Inter-
active Visualization of Bug Reports Using Topic Evolution and
Extractive Summaries. Pages 421–425 of: Proc. ICSME.

http://www.bugzilla.org
https://bugs.eclipse.org/bugs/show_bug.cgi?id=14890
https://bugs.eclipse.org/bugs/show_bug.cgi?id=14890
https://bugs.eclipse.org/bugs/show_bug.cgi?id=62468
https://bugs.eclipse.org/bugs/show_bug.cgi?id=62468
http://www.jfree.org/jfreechart/
https://jgibblda.sourceforge.net
https://www.atlassian.com/software/jira
http://www.socscistatistics.com/tests/mannwhitney/
http://www.socscistatistics.com/tests/mannwhitney/
https://code.google.com/p/stop-words/
http://help.sentiment140.com/api

	Introduction
	An Example Use Case Scenario
	Proposed Approach
	Part I: Visualization of Bug Report Extractive Summaries
	Visual Design: Extractive Summary Visualization
	Methodologies: Creation of Bug Report Extractive Summaries

	Part II: Topic Evolution of a collection of Bug Reports
	Visual Design: Topic Evolution of a collection of Bug Reports
	Methodologies: Topic Evolution of a collection of Bug Reports


	Experiment and Discussion
	Evaluation of Bug Report Visualization: A Task-Oriented User Study
	Design of User Study
	Study Session Coordination
	Result Analysis and Discussion

	Evolution: An example case study

	Threats to Validity
	Related Work
	Conclusion and Future Work

