
CCAligner: a token based large-gap clone detector
Pengcheng Wang

∗

University of Science and Technology

of China

School of Computer Science

wpc520@mail.ustc.edu.cn

Jeffrey Svajlenko

University of Saskatchewan

Department of Computer Science

Canada

jeff.svajlenko@gmail.com

Yanzhao Wu

University of Science and Technology

of China

School of Computer Science

wuyanzha@mail.ustc.edu.cn

Yun Xu
†‡

University of Science and Technology

of China

School of Computer Science

xuyun@ustc.edu.cn

Chanchal K. Roy

University of Saskatchewan

Department of Computer Science

Canada

croy@cs.usask.ca

ABSTRACT
Copying code and then pasting with large number of edits is a

common activity in software development, and the pasted code is

a kind of complicated Type-3 clone. Due to large number of edits,

we consider the clone as a large-gap clone. Large-gap clone can

reflect the extension of code, such as change and improvement.

The existing state-of-the-art clone detectors suffer from several

limitations in detecting large-gap clones. In this paper, we propose

a tool, CCAligner, using code window that considers e edit dis-
tance for matching to detect large-gap clones. In our approach, a

novel e-mismatch index is designed and the asymmetric similarity

coefficient is used for similarity measure. We thoroughly evalu-

ate CCAligner both for large-gap clone detection, and for general

Type-1, Type-2 and Type-3 clone detection. The results show that

CCAligner performs better than other competing tools in large-gap

clone detection, and has the best execution time for 10MLOC input

with good precision and recall in general Type-1 to Type-3 clone

detection. Compared with existing state-of-the-art tools, CCAligner

is the best performing large-gap clone detection tool, and remains

competitive with the best clone detectors in general Type-1, Type-2

and Type-3 clone detection.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
Clone Detection, Large-gap Clone, Evaluation

∗
Also with Key Laboratory on High Performance Computing, Anhui Province.

†
Yun Xu is the corresponding author.

‡
Also with Key Laboratory on High Performance Computing, Anhui Province.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00

https://doi.org/10.1145/3180155.3180179

ACM Reference Format:
Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal

K. Roy. 2018. CCAligner: a token based large-gap clone detector. In ICSE
’18: ICSE ’18: 40th International Conference on Software Engineering , May
27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3180155.3180179

1 INTRODUCTION
Reusing code via copying and pasting is a frequent activity in

software development. The copied code is known as a code clone.
Code clones may lead to software maintenance problems [29, 32,

51] and bug propagation [21, 37, 57]. Therefore, clone detection is

useful for a variety of tasks (e.g., refactoring [31, 52], debugging

[17, 19], software evolution study [5, 22], and software management

[34, 44]). Copied code with further modifications like statements

insertion/deletion in addition to changes in identifiers is called

Type-3 clone. Ueda et al. [54] call such clones as gapped code clones,
and thus we further call Type-3 clones with a large number of edits

(i.e., statements insertion/deletion) as large-gap clones. We focus

on the study of large-gap clones detection as well as all Type-1 to

Type-3 clones detection in large code bases.

Large-gap clones can reflect difference between two similar code,

corresponding to the extension (e.g., change or improvement) of

code. Copying code with many statements insertion/deletion is a

common behavior in software development. Fig. 1 shows an ex-

ample of large-gap clones found in project Ant 1.10.1. Nearly the

same size of the original statements are inserted (10/12), and lines

4-13 in Fig. 1b are large gaps which reflect the extension from the

previous run program to the new run program. In addition to intra-

project clones, inter-project clones may contain large-gap clones,

like clones in different versions of the software or different software

developed for similar applications. Hence, it is important to find

the large-gap clones.

Numerous tools have been developed for clone detection [38].

According to different source representations, most clone detectors

can be classified into six classes: text based [18, 40], token based

[8, 27], tree based [16, 56], PDG based [24, 26], metrics based [30, 36],

and hybrid approaches [11, 15]. However, majority of text and token

based detectors cannot detect Type-3 clones. Although tree and

PDG based techniques can support the detection of Type-3 clones,

tools based on these approaches suffer from large execution times.

https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1145/3180155.3180179

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

 1 private int run (Commandline cmd) {

 2 try {

 3 Execute exe = new Execute (new LogStreamHandler (this,

 Project.MSG_INFO, Project.MSG_WARN));

 4 + if (serverPath != null) {

 5 + String [] env = exe.getEnvironment ();

 6 + if (env == null) {

 7 + env = new String [0];

 8 + }

 9 + String [] newEnv = new String [env.length + 1];

10 + System.arraycopy (env, 0, newEnv, 0, env.length);

11 + newEnv [env.length] = "SSDIR=" + serverPath;

12 + exe.setEnvironment (newEnv);

13 + }

14 exe.setAntRun (getProject ());

15 exe.setWorkingDirectory (getProject ().getBaseDir ());

16 exe.setCommandline (cmd.getCommandline ());

17 exe.setVMLauncher (false);

18 return exe.execute ();

19 } catch (IOException e) {

20 throw new BuildException (e, getLocation ());

21 }

22 }

(b) Clone with many statements insertion

 1 protected int run (Commandline cmd) {

 2 try {

 3 Execute exe = new Execute (new LogStreamHandler (this,

 Project.MSG_INFO, Project.MSG_WARN));

 4 exe.setAntRun (getProject ());

 5 exe.setWorkingDirectory (getProject ().getBaseDir ());

 6 exe.setCommandline (cmd.getCommandline ());

 7 exe.setVMLauncher (false);

 8 return exe.execute ();

 9 } catch (java.io.IOException e) {

10 throw new BuildException (e, getLocation ());

11 }

12 }

(a) Original code

Figure 1: Example of Large-gap Clone in Project Ant 1.10.1.

Existing studies have shown that there are more Type-3 clones

in the software systems than other types [42, 46]. Therefore, Type-3

clones can be the most needed in code clone detection. Moreover,

large-gap clones are complicated Type-3 clones, and the state-of-the-

art tools suffer from several limitations. For example, CCFinderX

[20] has good scalability and execution time, but it only supports

Type 1-2 clone detection. iClones [14] can only detect Type-3 clones

with small gaps and the method is not very scalable. Although

Deckard [16] can detect Type-3 clones, its precision and recall are

poor [45]. NiCad [40] can detect Type-3 clones effectively, but it

is limited by large execution times and fails to detect when scales

to large code bases. SourcererCC [45] measures overlap similarity

of pairs of code blocks at token-level granularity to detect Type-

3 clones, but the similarity of large-gap clones that have large

difference in token is low. Therefore, SourcererCC needs to set a

very low similarity threshold for large-gap clone detection, which

could extremely hurt precision.

In order to support fast and accurate detection of Type-3 clones,

especially the large-gap clones, we propose a technique and im-

plement it as a tool, named CCAligner. Token based detection

techniques have good scalability and execution time, and thus

CCAligner uses tokenization to normalize for Type-1/Type-2 vari-

ations. In particular, CCAligner considers sliding code windows

(i.e., continuous code fragments), instead of tokens, as basic unit

for matching. Compared to a single token, code window captures

the local sequence characteristics of source code (i.e., localness of

software [53]) and can improve matching accuracy. To further en-

hance the detection capability of clone gaps, we consider pairs of

code windows match with e-mismatch, instead of exactly match-

ing. Furthermore, CCAligner uses asymmetric similarity coefficient

as similarity function, which is more suitable for measuring the

clone with large gaps, since this similarity measure is robust even

if two code blocks have large difference in size. Our tool is needed

to detect/evaluate the large-gap clones previously missed in clone

studies. Without such tools, developers cannot mitigate the risks

caused by them.

Our experiments show that CCAligner performs best in the de-

tection of large-gap clones, and has a good performance in detection

of all Type-1, Type-2 and Type-3 clones. To evaluate the ability of

large-gap clone detection, we conduct an empirical study with eight

subject systems and also compare with NiCad and SourcererCC,

the best performing gapped clone detectors from the literature

[45]. Furthermore, to see the extent of large-gap clone detection

performance of CCAligner, we make use of the mutation-injection

based approach, where we adapt an established benchmark (Roy

and Cordy [41], and Svajlenko et al [50]) for syntactically creating

gapped clone of different sizes, to evaluate and compare CCAligner

with state-of-the-art gapped clone detection tools including NiCad

[40], SourcererCC [45], iClones [14] and Deckard [16] for recall.

Our study shows that CCAligner is the best performing large-gap

clone detection tool to date. Moreover, we compare CCAligner with

different state-of-the-art tools for Type-1, Type-2 and Type-3 clone

detection, and the results show that CCAligner is fast and can scale

to 10MLOC inputs with good precision and recall.

The major contributions of this paper include:

(1) We show that using code windows that consider e edit dis-
tance for matching is effective to detect large-gap clones.

We design a novel e-mismatch index and use asymmetric

similarity function in implementation. We experimentally

demonstrate the best parameterization to detect clones.

(2) We implement the proposed techniques as a tool, CCAligner.

We show the effectiveness of the proposed techniques by

comprehensively evaluating CCAligner.

(3) The evaluations demonstrate that CCAligner is the best per-

forming large-gap clone detection tool, and remains compet-

itive with the best clone detectors in general Type-1, Type-2

and Type-3 clone detection.

The remainder of this paper is structured as follows. Section 2

describes some concepts about code clone, and gives definition of

large-gap clones. Section 3 presents the detailed process of clone

detection. Section 4 evaluates our tool both for detection of clones

with large gaps, and for general clone detection. Section 5 surveys

related work and Section 6 discusses our limitations. The paper

concludes with discussion and future work in Section 7.

CCAligner: a token based large-gap clone detector ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

2 PRELIMINARY DEFINITION
In this section, we first introduce concepts and definition regarding

code clones. We then propose the definition of Type-3 clones with

edit distance measure. Furthermore, we present a formal definition

of large-gap clones.

Code fragment is a continuous segment of source code, and code
block can be a function or a sequence of statements within braces.

Clones are code pairs or groups that have the same or similar frag-

ment. Let uki = (i, sk , ek) be a code fragment, where i is the file id,
sk and ek representing the start and end line of the kth fragment

in this file, respectively. To define more precisely, a clone pair is a
triple (uki ,u

l
j , t) where code fragments uki and ulj are two similar

code fragments and t is the clone type (Type-1, 2, 3 or 4). A clone
group (or clone class) is a set of similar fragments, defined as the

tuple (uki ,u
l
j , ...,u

д
h , t) where each pair of code fragments is a clone

pair. In addition, Min clone size is the minimum lines or tokens in

length that could be seen as clone. Generally, 6 lines and 50 tokens

in length or greater are the standard size for detecting [7, 39].

Roy et al. [39] and Bellon et al. [7] classify clones into four types:

Type-1 clones are identical code fragments except for variations in

white space, comments and layout. Type-2 clones are identical code
fragments except for variations in identifiers, literals, and variable

types, in addition to Type-1 clone variations. Type-3 clones are

copied fragments with further modifications such as added, deleted

or changed statements, in addition to Type-2 clone variations. Type-
4 clones are code fragments that perform similar functionality but

are implemented by different syntactic variants.

While Type-1 and Type-2 clones are precisely defined and form

an equivalence relationship, there is no consensus on a suitable

similarity measure for Type-3 clones. Type-3 clones are typically

defined with respect to line/statement-level edits, and thus we

apply widely-adopted edit distance [33] measure to Type-3 clone

definition.

Definition 2.1. Edit Distance: The edit distance between two

code fragments uki and ulj , denoted by dist(uki ,u
l
j), is the minimum

number of single-line insertion, deletion, and substitution that are

needed to transform uki to ulj .

As an example, two code blocks in Fig. 1 are Type-3 clones with

e = 10, corresponding to 10 lines insertion (lines 4-13 in Fig. 1b).

Unmapped statements within the clone fragments are known as

clone gaps (e.g., lines 4-13 in Fig. 1b). When the proportion of clone

gaps is large, we consider such clones as large-gap clones. In other

words, pairs of code fragments are large-gap clones if satisfy: (1)

they are Type-3 clones and (2) they have large difference in size.

The quantitative definition of large-gap clones are as follows.

Definition 2.2. Large-gap clones: Given two code blocks uki and

ulj , assume their number of pretty-printed lines are Li and Lj (as-

sume Li ≤ Lj), respectively. Let λ = Li/Lj , where λ is the ratio

of code length, in terms of pretty-printed lines. If uki and ulj are

Type-3 clones and λ ≤ 0.7, then they are large-gap clones.

We identify large-gap clones via a scale-difference value λ, and
we next explain why selecting the lower bound as 0.7 for quantita-

tive definition.

Let B1 be the original code block whose code length is α and B2
be the large-gap clone of B1 with α/2 lines insertion (i.e., the code

length of B2 is 3α/2). It means when clone gaps are half size of the

original code, λ = 2/3 ≈ 0.7, according to our definition. Therefore,

we identify large-gap clones if the clone gaps are nearly half the

size of the original code (λ = 0.7) or larger (λ < 0.7). According to

Definition 2.2, two code blocks in Fig. 1 are large-gap clones since

(1) they are Type-3 clones and (2) λ = 12/22 ≈ 0.55 falls in the

range of 0-0.7.

3 APPROACH
The entire process of our approach is summarized in Fig. 2. It can

be considered in two phases: lexical analysis and clone detection.

The following subsections describe the design of each phase.

3.1 Lexical Analysis
In the lexical analysis phase, code blocks are first extracted from

the source files. Pretty-printing is used to layout the tokens for one

statement per line. Tokenization is used to normalize for Type-1

and Type-2 variations.

In order to reduce the redundancy of code and constitute the

object of clone detection, code blocks are first extracted from source

files and then pretty-printed using TXL [10], as of many state-of-

the-art approaches (e.g., SourcererCC [45]). After this step, a set of

pretty-printed code blocks is produced. We then tokenize each code

block by converting each item (such as keywords, operators, etc)

in the code block to the corresponding token. In order to tolerate

identifier renaming (i.e., Type-2), identifiers (e.g., variables and

functions) are mapped into the same token id. Our lexical analyzer
is mainly based on a scanner generated by Flex [35]. This scanner

can parse a single code block to ordered elements. The original

code blocks are transformed into normalized and tokenized code

blocks, as the input of following clone detection.

3.2 Clone Detection
Given a set of tokenized code blocks, where Type-1/Type-2 varia-

tions have been eliminated, we then implement sliding windows

which tolerate e edit distance across these blocks. We evaluate pairs

of code blocks are clones by measuring their ratio of matched win-

dows (considering edit distance e), and report those satisfying the

similarity threshold.

Algorithm 1 describes the steps in detail. It works in two stages:

(1) Matching via index and generating candidate set (lines 1-30);

and (2) Verifying the candidate and reporting clone pairs (lines

32-40). Each step is described as follows.

3.2.1 Index and Match. Compared to a single token, code win-

dow can capture the local sequence characteristics of source code.

Hence, CCAligner considers code windows (i.e., continuous code

fragments) as basic unit for matching. It uses sliding windows to

break the blocks. Since the windows are overlapping, all code frag-

ments of the window size must be located in a window.

To further enhance the detection capability of clone gaps, we

consider pairs of code windows match with e-mismatch, instead of

exactly matching. For example, assume the window size is 6 and

e = 1, given two code windowsWa = w(3, 8) andWb = w
′(13, 18)

in Fig. 1, wherew(3, 8)means the code window containing lines 3-8

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

Source code Code blocks
Tokenized

code blocks

Extract

Tokenize

&

Pretty-print
Clone

candidates
Clone pairs

Index

&

Match
Verify

Lexical analysis Clone detection

Figure 2: The Overview of Our Approach.

Algorithm 1: Clone detection
Input: F is set of tokenized code blocks {f1, f2, ..., fn }, q is the window size, e is edit

distance threshold, and θ is the similarity threshold; q , e and θ are specified by the

user

Output: All clone pairs
1 candMap = ϕ ;
2 hashSet = ϕ ;
3 for each block f in F do
4 L=Num of lines in block f ;
5 numW inid =L-q+1;
6 for i = 1 → L-q+1 do
7 Ti = token statement of i th line;

8 for j = 1 → Ceq do
9 h = dif f Combination(Ti , Ti+1, ..., Ti+q−1);//h is different

(q-e)-grams;

10 k = Hash(h);
11 v = fid ;
12 hashSubSet .inser t (k, i);
13 if candMap .f ind (k) then
14 candMap(k).value = candMap(k).value ∪ v ;
15 else
16 candMap .inser t (k, v);
17 end
18 end
19 end
20 hashSet (fid).inser t (hashSubSet);
21 hashSubSet = ϕ ;
22 end
23 candPair = ϕ ;
24 for each map in candMap do
25 if NumOfValue >= 2 then
26 candMap .value = sor t (candMap .value, fid);
27 candPair = candPair ∪ each pair in candMap .value ;
28 end
29 end
30 Remove duplicate element in candPair ;
31
32 for each pair (fm, fn) in candPair do
33 setIntersection(hashSet (fm), hashSet (fn));
34 numMatch1 = matched num of windows in fm ;

35 numMatch2 = matched num of windows in fn ;
36 if numMatch1 >= θ · numW inm or numMatch2 >= θ · numW inn then
37 clonePair = clonePair ∪ (fm, fn);
38 end
39 end
40 return clonePair ;

code in Fig. 1a andw ′(13, 18) means the code window containing

lines 13-18 code in Fig. 1b, we considerWa andWb are matched

with 1-mismatch.

Assume q is the window size (i.e., there are q lines code in a

window) and e is edit distance threshold. We further use an ef-

fective method to guarantee that each window just needs to be

processed once by designing the e-mismatch index, which avoids

using time-consuming dynamic programming to verify the edit

distance between each pair of windows. When CCAligner scans

a window, it generates all (q-e)-grams
1
of this window and builds

1
Assume code windowW1 = (a, b, c, d), where q = 4. When we set e = 1, its all

3-grams are bcd , acd , abd and abc .

an index mapping each (q-e)-gram to corresponding code block

and window. Next, for each sliding window, its (q-e)-grams are

generated and the index is updated dynamically.

Detailed steps are shown in Algorithm 1. Assume the number

of lines in block f is L, then there will be L-q+1 code windows

(line 5), where q is the window size. Each code window is a set of q
lines token statements {Ti ,Ti+1, ...,Ti+q−1}, where Ti is the token
statement of ith line. Define each code window as a q-gram, then

CCAligner builds e-mismatch index and finishes matching (lines

8-18). When two code windows (q-grams) can be matched under

e edit-distance, their (q-e)-grams should be matched in the index.

Formally, it can be stated in the form of the following theorem (Its

proof is available online
2
, due to limited space):

Theorem 3.1. Given code windows A and B consisting of q token
statements (the length of A and B is q), if A and B can be matched
with maximum edit distance of e, then A and B must have at least
one matching subsequence with minimum length of q-e.

To understand this theorem,we give an example in Fig. 3. Assume

the window size is 6 (q = 6), and let edit distance be specified as

e = 1, then two code windowsW1 andW2 could be seen as two

6-grams. After theW1 is processed, all its 5-grams are updated to

the index.W2 is the code window (д,b, c,d, e, f), and when its all

5-grams are updated to the index, we can find a match withW1 by

bcdef.

Code window W1=(a,b,c,d,e,f) W2=(g,b,c,d,e,f)

Index (e=1) bcdef bcdef (matched)

acdef gcdef

abdef gbdef

abcef gbcef

abcdf gbcdf

abcde gbcde

Figure 3: Example for Theorem 3.1.

According to the Theorem, in order to find out if code windowsA
and B are matched, we only need to check if their (q-e)-grams have

at least one match. Therefore, for each sliding window, CCAligner

extracts all the different (q-e)-grams of the q-grams, and it builds

an inverted index (k,v) mapping (q-e)-grams to the code blocks

containing them (lines 13-17). Then the code blocks containing

similar code windows will be grouped (line 14).

To improve efficiency, a hash value is computed on (q-e)-grams

sequence using the MurmurHash hash function[2], chosen for its

low collision rate. Besides, CCAligner saves a set of tuples ⟨hashVal,
winId⟩ for each code block (line 20), which is used for the next

2
https://goo.gl/qDduYQ

CCAligner: a token based large-gap clone detector ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

step to verify the candidates. Overall, when the cutting window is

sliding, CCAligner builds the index along with matching. The whole

process finishes when the sliding window scans all code blocks.

Since the code blocks containing similar code windows have been

merged in the value of candMap(k), each pair in candMap(k).value
is a clone candidate (lines 24-30 in Algorithm1).

3.2.2 Verify. This step is to verify whether the candidates are

clones. For each pair ⟨fn , fm⟩ in candPair, code blocks fn and fm
contain at least one matched code window with e edit distance.
In order to further measure the similarity of two code blocks, we

use asymmetric Dice similarity coefficient [3] as similarity function,

defined as follows:

Definition 3.2. Asymmetric Dice similarity coefficient:

sim(fm , fn) =
|Wfm ∩Wfn |

min(|Wfm |, |Wfn |)
,

whereWfm is the set of code windows contained in the code block

fm ,Wfn is the set of code windows contained in the code block fn
and the min function normalizes the similarity score with respect

to the number of windows contained in the smaller code block.

By calculating an intersection between hashSet(fn) and hash-
Set(fm), then the number of matched code windows (considering e
edit distance) is obtained. If the sim(fm , fn) satisfies θ specified by

user, then CCAligner reports ⟨fn , fm⟩ as a clone pair (lines 32-40).

We use the asymmetric Dice coefficient instead of other similarity

measures (e.g., the Jaccard coefficient) because large-gap clones

have a large difference in size. Therefore, considering the minimum

cardinality of the sets of code windows at the denominator of the

formula allows to weigh the similarity between code blocks better.

Consider the code in Fig. 1 as an example to show howCCAligner

enables large-gap clone detection. These two code blocks have been

pretty printed, and we could directly take a look at the source code,

since their corresponding tokens are the same if the code blocks are

the same. In clone detection phase, assume the window size is 6 and

each window tolerates 1 mismatch (i.e., q = 6 and e = 1), then for

eachwindow it will produce six 5-grams for matching. If there exists

one 5-grams match between two windows, these two windows are

considered as a match. Code block in Fig. 1a will produce 7 sliding

code windows each containing 6 lines of code, and code block in Fig.

1b will produce 17 sliding code windows. ConsiderWinSet(fa) =
{w(1, 6),w(2, 7), ...w(7, 12)} for code block in Fig. 1a, wherew(1, 6)

means the the first code window containing first 6 lines of code, and

WinSet(fb) = {w ′(1, 6),w ′(2, 7), ...w ′(17, 22)} for code block in

Fig. 1b. Finally, 5 windows inWinSet(fa) match with the windows

inWinSet(fb). Note that w(3, 8) can match with w ′(13, 18), due

to our 1-mismatch strategy. According to our similarity measure,

sim(fa , fb) = 5/7 ≈ 0.71, so this pair of large-gap clones can be

detected setting similarity threshold as 70%.

However, some existing state-of-the-art tools suffer from sev-

eral limitations in detection of the large-gap clone in Fig. 1. For

example, NiCad [40] will miss this clone since it uses LCS similar-

ity for Type-3 and the LCS similarity of these two blocks is very

low. SourcererCC [45] will miss such clone unless a low similarity

threshold (50%) is set, which could extremely hurt the performance.

Besides, we run line-based detector iClones [14], and it even fails

to report the similar regions before and after the gap.

Table 1: Recall per Clone Type and Precision Measured for
BigCloneBench with Different Parameterization

q e

Recall

Precision

T1 T2 VST3 ST3 MT3

6

0 100 99 89 31 1 93

1 100 99 97 70 10 80

2 100 99 99 80 24 61

7

0 100 99 82 15 1 94

1 100 99 97 59 6 82

2 100 99 98 77 16 77

8

0 100 99 78 9 1 96

1 100 99 97 51 4 83

2 100 99 98 71 11 82

4 EVALUATION
In this section we thoroughly evaluate CCAligner both for large-

gap clone detection, and for general Type-1, Type-2 and Type-3

clone detection. We begin by demonstrating experimentally that

q = 6 and e = 1 work best for clone detection which balance recall

with precision and performance.

4.1 Parameter Setting
CCAligner implements sliding windows which tolerate e edit dis-
tance across code blocks, and evaluates pairs of code blocks are

clones by measuring their ratio of matched windows (consider-

ing edit distance e). Hence, the choice of window size q and edit

distance threshold e will affect the performance of clone detection.

To find the most suitable parameterization for detecting, we

try various combinations of q, e to evaluate CCAligner with Big-

CloneBench [46, 48] using the BigCloneEval [49] framework for

minimum clone size of 6 lines, and a similarity threshold of 60%.

BigCloneBench is a large benchmark of manually validated clones

in a large inter-project Java repository. BigCloneEval allows the

user to conduct custom recall measurement experiments on top

of BigCloneBench, and automatically handles aspects such as tool

execution and recall analysis [49].

Since 6 lines in length or greater are the standard size for detect-

ing [7, 39], and when e is large, the accuracy of the match would

be low. Hence, we select q ≥ 6 and e as a small number. In our ex-

periments, we try various combinations of q = 6, 7, 8 and e = 0, 1, 2.

When e = 0, pairs of code windows are exactly matched. Recall

is summarized per clone type, as per the BigCloneBench defini-

tions [48]. Specifically, BigCloneBench splits the Type-3 clones into

multiple categorizes by their syntactical similarity. Very-Strongly

Type-3 (VST3) clones are those that are 90-100% similar by syntax,

Strongly Type-3 (ST3) clones are 70-90% similar, and Moderately

Type-3 (MT3) clones are 50-70% similar. We measure precision by

manually validating a random sample of the clones detected by

CCAligner during the BigCloneBench experiments. We randomly

select 200 clones for each parameterization to validate (1,800 clone

pairs in total). The recall is reported by the BigCloneEval frame-

work.

Detailed results are summarized in Table 1. We can see that

CCAligner has perfect or near-perfect Type-1 and Type-2 recall

even e = 0, since the Type-1/Type-2 variations has been normalized

in tokenization. For the same q, when e is larger, the recall of Type-3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

(i.e., VST3, ST3, and MT3) gets better but the precision gets worse,

because allowing more mismatch in windows will enhance the

detection capability of clone gaps but cause more false positive.

Although the recall is the best when q = 6 and e = 2, the precision

is rather poor. We can see that ⟨q = 6, e = 1⟩, ⟨q = 7, e = 2⟩, and

⟨q = 8, e = 2⟩ work better for clone detection which balance recall

with precision.

Table 2: Execution Time and Memory Space with Different
Parameterization for Linux 4.8.12

Configuration q,e 6,1 7,2 8,2

Performance

Time 13m 2s 32m 37s 28m 16s

Space 3.4 GB 12.2 GB 11.5 GB

We next evaluate the execution time of CCAligner with these

three configurations to justify the best choice for detection. To ob-

viously show the difference of performance, we use large codebase,

Linux kernel 4.8.12, as our target. The source code contains 23424

code files with 11,505,767LOC (i.e., line of code), measured by tool

cloc [9]. The results are in Table 2. We can see that CCAligner needs

less time and memory space for detection when q = 6 and e = 1.

Therefore, q = 6 and e = 1 are the most suitable configurations for

detecting which balance recall with precision and performance. We

thus set q = 6 and e = 1 for the next clone detection evaluation.

4.2 Large-gap Clone Detection
After experimentally determining the parameters (i.e., q and e)
used for clone detection, we now demonstrate the ability of our

CCAligner for large-gap clone detection. We first conduct an em-

pirical study with eight subject systems and compare with state-

of-the-art gapped clone detectors in terms of precision, recall and

F1-score. Furthermore, to see the extent of large-gap clone detection

performance of CCAligner, we develop a variant of an established

syntactic benchmarking framework, the Mutation-Injection based

framework [41, 50], to evaluate and compare the recall of CCAligner

for different gap sizes.

4.2.1 Empirical Study. We select a total of eight C and Java

open source projects as our dataset for evaluation. The size of

the source code of the projects varies from 43KLOC to 138KLOC.

The detailed statistics of subject systems can be seen in Table 3,

measured by tool cloc [9].

Table 3: Subject System’s Statistics

System Language Files LOC

Cook 2.34 C 296 43,900

Redis 4.0.0 C 213 85,664

PostgreSQL 6.0 C 339 94,087

Linux 1.0 C 282 103,677

JDK 1.2.2 Java 115 17,140

OpenNLP 1.8.1 Java 903 66,291

Maven 3.5.0 Java 952 79,840

Ant 1.10.1 Java 1223 138,505

From the literature [45], NiCad and SourcererCC are the best

performing gapped clone detectors. Hence, we compare CCAligner

against high-recall tools NiCad and SourcererCC to demonstrate

that CCAligner can detect large-gap clones that the best of the

competing tools are missing.

We first detect code clones in these projects using CCAligner,

NiCad and SourcererCC, all with the configurations of min length

10 lines, min similarity 70%. We define

Recall =
LG − FP

Union of TP
,

where LG-FP is the true positive large-gap clones reported by one

tool, and denominator is the union of true positive large-gap clones

(removing duplicate elements) reported by different tools. We also

define

F1-score =
2 · Precision · Recall

Precision + Recall
.

After the clone results are obtained, we measure precision by

manually validating a random sample of the clones detected by

different tools (100 for each). To measure the recall of large-gap

detection, we choose the union of true positive large-gap clones

reported by different tools as the reference corpus. To create the

large-gap recall benchmark, we select the clones satisfying our Def-

inition 2.2 (i.e., large-gap clones) by calculating the scale-difference

value λ. If λ ≤ 0.7, we consider this clone pair as a large-gap clone.

Furthermore, we manually validate all detected large-gap clones,

and remove the false positive clones.

Table 4 shows the detailed values of precision, recall, and F1-

score for each tool in detection of C projects. LG in Table 4 is

the number of detected large-gap clones, and FP is the number of

false positive clones among these large-gap clones. Compared to

NiCad and SourcererCC, our CCAligner has the best recall and

F1-score in each project. SourcererCC and NiCad miss many large-

gap clones that CCAligner detects, reflected as much lower recall.

The total recall and F1-score of CCAligner in C projects are the

best, whereas the other tools are much lower. Finally, a manual

validation identifies 377 true positive large-gap clones in these C

projects.

Table 4: Large-gap Clone Evaluation Results for C.

System Tool LG FP Precision Recall F1-Score

Cook 2.34

NiCad 0 0 84 0 0

SourcererCC 14 0 89 19 31

CCAligner 63 2 86 81 83

Redis 4.0.0

NiCad 1 0 87 4 8

SourcererCC 7 0 90 27 42

CCAligner 22 2 88 77 82

PostgreSQL 6.0

NiCad 0 0 82 0 0

SourcererCC 38 0 84 16 27

CCAligner 219 13 83 85 84

Linux 1.0

NiCad 1 0 82 3 6

SourcererCC 12 1 87 32 47

CCAligner 27 1 85 76 80

Total

NiCad 2 0 84 0.5 1

SourcererCC 71 1 88 19 31

CCAligner 331 18 86 83 84

Table 5 shows the detailed results for Java projects. Compared

to NiCad and SourcererCC, CCAligner also has the best recall and

F1-score in all projects. For example, CCAligner gets the best recall

CCAligner: a token based large-gap clone detector ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

of 93% and best F1-score of 87% among all the tools in Maven 3.5.0

project. NiCad fails to detect large-gap clone in these projects, and

SourcererCC still has much lower recall and F1-score although

its precision is a little better than CCAligner. Finally, a manual

validation identifies 525 true positive large-gap clones in these Java

projects.

Table 5: Large-gap Clone Evaluation Results for Java.

System Tool LG FP Precision Recall F1-Score

JDK 1.2.2

NiCad 0 0 87 0 0

SourcererCC 4 0 88 24 38

CCAligner 15 1 86 78 82

OpenNLP 1.8.1

NiCad 0 0 81 0 0

SourcererCC 5 0 85 2 4

CCAligner 221 7 83 99 90

Maven 3.5.0

NiCad 0 0 80 0 0

SourcererCC 38 1 83 18 30

CCAligner 217 30 82 93 87

Ant 1.10.1

NiCad 0 0 80 0 0

SourcererCC 13 0 84 15 25

CCAligner 87 10 83 88 85

Total

NiCad 0 0 82 0 0

SourcererCC 60 1 85 11 19

CCAligner 540 48 84 94 89

Since SourcererCC and NiCad only detect a few large-gap clones

in our reference corpus containing 377 C and 525 Java true posi-

tive large-gap clones. We further run NiCad and SourcererCC with

allowing more similarity thresholds to see how the precision and

recall vary. We run NiCad and SourcererCC all with min similarity

threshold as 60% and 50%. We measure precision by manually vali-

dating a random sample of the clones reported by SourcererCC and

NiCad (400 for each language, same as CCAligner), and the recall

reflects howmany large-gap clones can be detected in our reference

corpus. The detailed results for NiCad are in Fig. 4, and the detailed

results for SourcererCC are in Fig. 5. The precision, recall and F1-

score of CCAligner for the reference corpus are summarized in the

total item in Table 4 and Table 5. The results show that the recall

of the tools in both C and Java projects only increases a bit, but

the precision becomes worse. For example, even setting similarity

as 50%, SourcererCC only detects 135 large-gap clones out of 377

large-gap clones (36%) contained in the C reference corpus with

62% precision, whereas CCAligner can detect 313 large-gap clones

(83%) with 86% precision. Hence, the experiments demonstrate that

CCAligner is able to detect large-gap clones that the best of the

competing tools are missing without harming the precision.

To further show empirically the large-gap clones we detect, we

summarize the number of different types of clones detected by

CCAligner in these C and Java projects in Table 6. Since λ is the

ratio of code length in terms of pretty-printed lines, given pairs of

clones, we approximately consider them as Type-1 or Type-2 clones

if λ = 1, and when λ is not equal to 1, we approximately consider

them as Type-3 clones. We also summarize the proportion of large-

gap clones in Type-3 clones and all clones. We can see that there

are more Type-3 clones than other types in most projects, which is

consistent with existing studies [42, 46]. Among Type-3 clones, the

proportion of large-gap clones varies from 11% to 37%, and among

all clones, the proportion of large-gap clones varies from 3% to

Precision Recall F1-Score Precision Recall F1-Score
C Java

NiCad 0.7 84 0.5 1 82 0 0
NiCad 0.6 76 1.3 3 75 5 9
NiCad 0.5 70 8 14 67 19 30

0
20
40
60
80

100

C Java

Precision Recall F1-Score Precision Recall F1-Score

NiCad 0.7 NiCad 0.6 NiCad 0.5

Figure 4: Performance of NiCad with Different Similarity
Thresholds.

Precision Recall F1-Score Precision Recall F1-Score

C Java
SourcererCC 0.7 88 19 31 85 11 19
SourcererCC 0.6 76 24 36 71 22 34
SourcererCC 0.5 62 36 46 56 41 47

0
20
40
60
80

100

C Java

Precision Recall F1-Score Precision Recall F1-Score

SourcererCC 0.7 SourcererCC 0.6 SourcererCC 0.5

Figure 5: Performance of SourcererCC with Different Simi-
larity Thresholds.

22%. For example, there are 22% of clones (37% of Type-3 clones) in

PostgreSQL 6.0 are large-gap clones. It shows that large-gap clones

are common and exist in real software systems.

Table 6: Proportion of Large-gap Clones Detected by
CCAligner

System Type-1&2 Type-3 All LG/Type-3 LG/All

Cook 2.34 551 413 964 15% 7%

Redis 4.0.0 107 118 225 19% 10%

PostgreSQL 6.0 395 593 988 37% 22%

Linux 1.0 217 253 470 11% 6%

JDK 1.2.2 89 43 132 35% 11%

OpenNLP 1.8.1 661 723 1384 31% 16%

Maven 3.5.0 5432 917 6349 24% 3%

Ant 1.10.1 309 375 684 23% 13%

Our comparison (Section 4.3) with the state-of-the-art tools will

also show that CCAligner is also competitive with SourcererCC

and NiCad in Type 1-3 clone detection in terms of execution time,

precision and recall.

4.2.2 Gapped Clone Evaluation. Since precision could be

approximated with randomly validating a significant samples of

the detected clones, our way of reporting the precision above is

aligned with the state of the art [7, 41, 43, 45, 47]. However, for

measuring recall, one needs to have an oracle [43, 50]. We have built

the oracle by unioning the gapped clones detected by the subject

tools from our subject systems and then manually validating from

them. While this gives an approximate and relative comparison of

recall among the competing tools, it does not guarantee [4, 41, 47]

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

the recall values we reported above. We thus wanted to examine

the extent of large-gap clone detection performance of CCAligner

for different gap sizes using an established procedure borrowed

from Mutation [1] analysis community. In particular, we adapt

an established mutation-injection based benchmarking framework

[41, 50] for syntactically creating gapped clones of different sizes,

and evaluate and compare CCAligner with the state of the art

gapped clone detection tools including NiCad [40], SourcererCC

[45], iClones [14] and Deckard [16] for recall.

Mutation-based approach can automatically and efficiently mea-

sure (and compare) the recall of clone detection tools for different

types of clones. By using code mutation operators to generate and

track a large number of artificial clones, we can then automati-

cally measure how efficiently (i.e., recall) these known clones are

detected by group of tools for comparing different tools.

We designed a clone-producing mutation operator that copies a

code fragment and inserts a single gap of a certain length into the

copied version. We used the framework with our mutation operator

to generate 200 synthetic gapped clones per gap length ranging

from one source line to 20 source lines. In total, our reference

corpus contains 2,000 synthetic gapped clones. We constrained

the clone synthesis to clones that are 15 source lines or greater

before insertion of the gaps. We selected the code fragments from

a large repository of Java source code (JDK and various Apache

commons libraries), and injected the gapped synthetic clones one

at a time into the subject system. We use the same 200 original

code fragments and injection locations for each gap length, so we

can compare recall across the gap lengths without bias due to the

original source code used and injection locations.

We measured CCAligner’s recall for the clones per inserted gap

length. We configured NiCad for a 70% threshold, with identifier

and literal value normalizations enabled. We configured CCAligner,

Deckard and SourcererCC also with a 70% threshold. We executed

iClones for a minimum clone length of 50 tokens and a minimum

block length of 20 tokens.

Gap CCAligner NiCad iClones SourcererCC Deckard
1 93 100 30 99 7
2 66 99 25 87 2
3 71 95 13 55 0
4 77 90 5 33 0
5 68 74 0 10 0
6 76 52 0 5 0
7 73 36 0 3 0
8 68 27 0 1 0
9 69 24 0 0 0
10 65 15 0 0 0
11 76 7 0 0 0
12 71 3 0 0 0
13 69 2 0 0 0
14 71 2 0 0 0
15 73 2 0 0 0
16 74 0 0 0 0
17 76 0 0 0 0
18 72 0 0 0 0
19 70 0 0 0 0
20 69 2 0 0 0

CCAligner

SourcercerCC

iClones

NiCad
Deckard

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ec

al
l(

%
)

Gap size (lines)

Figure 6: Recall For Gapped Clones by Gap Length

We show the recall of CCAligner and the competing tools across

the gap lengths in Figure 6. As can be seen, while all the tools can

detect clones with small gaps, CCAligner is the only tool that can

detect clones with larger gaps. SourcererCC has good recall for gaps

of one of two source lines, but recall quickly diminishes after three

source lines. NiCad, due to powerful normalization, maintains high

recall until gaps of length five, where its recall begins to diminish.

We see that iClones and Deckard performmuchworse in the gapped

clone detection.

CCAligner has similar recall to NiCad and SourcererCC for single

line gaps. Due to more conservative configuration, CCAligner has

lower recall for clones with the smaller gaps. However, it is able to

maintain this recall even for the clones with large gaps. The recall of

the other tools drops off because with larger gaps it becomes more

likely the clones can be classified as large-gap clones, and cannot

be detected with a standard threshold (70%) by the other tools.

While NiCad and SourcererCC could detect these large-gap clones

by lowering their threshold, this would result in poor precision.

In contrast, CCAligner can detect these large-gap clones while

maintaining precision.

4.3 General Clone Detection
To evaluate the ability of CCAligner to detect general-purpose

clones (i.e., Type-1, Type-2 and Type-3 clones), we extend the tool

evaluation experiment in the SourcererCC publication by Sajnani

et al. [45]. We execute these evaluations for our CCAligner, under

the same conditions used by them, and directly compare against

the previous results in the literature [45, 47, 48]. For experiments

on execution time, recall and precision, we execute CCAligner for

minimum clone size of 6 lines, window size q = 6, an edit distance

e = 1, and a similarity threshold of 60%. The configurations of the

competing tools from the experiment we extend can be found in

Sajnani et al.’s work [45].

4.3.1 ExecutionPerformance. Weuse the same input as used

by Sajnani et al. [45] in their experiment with SourcererCC. We exe-

cute on a comparable machine with a quad-core CPU, 12GB of mem-

ory and a solid state drive. Execution performance for CCAligner

and the competing tools is shown in Table 7.

We find that CCAligner has fast execution performance with

scalability up to ten million lines of code. CCAligner fails for the

100MLOC input with an out of memory error. Specifically the e-
mismatch index, which is kept in memory to enable fast detection,

exceeds the available memory (12GB). Still, this is very good scala-

bility, and most software systems do not reach even 10MLOC.

Compared to the state of the art, CCAligner shares the best

execution time, while achieving the second best scalability. Execu-

tion time is very similar to CCFinderX and SourcererCC. However,

CCFinderX only detects Type-1 and Type-2 clones, and Sourcer-

erCC misses many large-gap clones which can be detected by

CCAligner, as we showed previously. CCAligner’s scalability falls

behind CCFinderX and SourcererCC. However, both of these tools

still require days of execution time to scale to 100MLOC. Sourcer-

erCC specifically was designed to enable large-scale clone detection,

while we focus on the detection of large-gap clones with CCAligner.

While CCFinderX scales well, its clone detection is much simpler,

focusing only on Type-1 and Type-2 clones.

4.3.2 Recall. We measure clone detection recall using Sva-

jlenko et al.’s two proven benchmarks: (1) The Mutation and Injec-

tion Framework [41, 50] and (2) BigCloneBench [46, 48, 49].

CCAligner: a token based large-gap clone detector ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 7: Execution Time for Varying Input Sizes

LOC CCAligner CCFinderX Deckard iClones NiCad SourcererCC

1K 1s 3s 2s 1s 1s 3s

10K 1s 4s 9s 1s 4s 6s

100K 7s 21s 1m 34s 2s 21s 15s

1M 1m 13s 2m 18s 1hr 12m 3s — 4m 1s 1m 30s

10M 24m 56s 28m 51s — — 11hr 42m 47s 32m 11s

100M — 3d 5hr 49m — — — 1d 12h 54m

Table 8: Recall Measured by The Mutation Framework

Language Clone Type CCAligner CCFinderX Deckard iClones NiCad SourcererCC

Java

1 100 99 39 100 100 100

2 100 70 39 92 100 100

3 99 0 37 96 100 100

C

1 100 100 73 99 99 100

2 100 77 72 96 99 100

3 100 0 69 99 99 100

C#

1 100 100 - - 98 100

2 100 78 - - 98 100

3 98 0 - - 98 100

Table 9: Recall Per Clone Type and Precision Measured for BigCloneBench

Tool CCAligner CCFinderX Deckard iClones NiCad SourcererCC

Type-1 100 100 60 100 100 100

Type-2 99 93 58 82 100 98

Very Strongly Type-3 97 62 62 82 100 93

Strongly Type-3 70 15 31 24 95 61

Moderately Type-3 10 1 12 0 1 5

Precision 80 72 28 91 56 83

Precision (10LOC) 83 79 30 93 80 86

For the Mutation and Injection Framework, recall is summarized

per clone type in Table 8. We also include the results of the com-

peting tools as measured in the previous work [45]. CCAligner

has perfect or near-perfect recall for clones of the first three types

in all three of the tested languages. NiCad and SourcererCC per-

form similarly. CCAligner performs better than iClones for Type-2

clones, and performs much better than CCFinderX and Deckard.

CCAligner recall is significantly better than that of CCFinderX and

Deckard.

For BigCloneBench, recall is summarized in Table 9. We also

show the recall of the competing tools as measured in the previous

work [45]. Recall is summarized per clone type, as we described

in Section 4.1. CCAligner and most of the competing tools have

prefect or near-perfect Type-1 and Type-2 recall. More interesting

is the comparison of Type-3 recall. CCAligner has near-perfect

recall for the very-strongly Type-3 clones, falling between NiCad

and SourcererCC. CCAligner has the second best strongly Type-3

recall, falling behind NiCad but ahead of SourcererCC. CCAligner

also has the second best moderately Type-3 recall, although none

of the tools have a significant recall for this category. These results

show that CCAligner is a strong Type-3 clone detector. Overall it

has the second best recall, second only to that of NiCad.

4.3.3 Precision. We measured precision by manually validat-

ing a random and statistically significant sample of the clones de-

tected by CCAligner during the BigCloneBench experiment. We

randomly selected 400 clones to validate, a statistically significant

sample. Precision is summarized in Table 9. The results for the

other tools were taken from the previous work [45]. CCAligner

has the 3rd best precision at 80%, just slightly behind SourcererCC.

The previous work [45] suggests that tools that target high Type-3

recall can have low precision for small clone sizes. While 6 lines

is a common minimum clone size in benchmarking [7, 45, 47, 48],

many modern Type-3 clone detectors recommend a larger min-

imum clone size in the range 10-15 lines or equivalent [14, 40].

Therefore, as done in the experiment [45], we also measure preci-

sion for just those clones that are 10 lines in length or larger. In

this case, precision increases for CCAligner to 83%.

4.3.4 Summary. We summarize our results of the extension

of Sajnani et al.’s [45] experiment with our CCAligner in Table 10.

We show recall for all clone types and for just Type-3 clones (both

considering just the Very Strongly and Strongly Type-3 categories in

BigCloneBench). We show precision measured for a minimum clone

size of 6 lines and 10 lines of code. We also show the maximum

scalability of each tool, as well as their execution time for the

10MLOC input (the max scalability of CCAligner). Using these

results we can demonstrate the position of CCAligner amongst the

state of the art.

CCAligner has the second best recall, both overall and specifi-

cally for Type-3 clones, behind only NiCad, but ahead of tools like

SourcererCC and iClones. While NiCad has very high recall, its

execution time is much longer than CCAligner for 10MLOC in-

puts. As well, NiCad’s precision suffers for small clones (6-9 lines),

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

Table 10: Recall and Precision Summary

Tool CCAligner CCFinderX Deckard iClones NiCad SourcererCC

Recall
1

92 75 53 78 99 90

Recall (T3)
2

75 26 38 38 96 68

Precision (6LOC+) 80 72 28 91 56 83

Precision (10LOC+) 83 79 30 93 80 86

Scalability 10MLOC 100MLOC+ 1MLOC 100KLOC 10MLOC 100MLOC+

Time (10MLOC) 24m56s 28m51s - - 11hr24m 32m11s

1
Including T1, T2, VST3 and ST3 categories.

2
Including VST3 and ST3 categories.

which CCAligner can detect these small clones with good precision.

CCAligner has similar precision to SourcererCC, but better recall,

specifically for the Type-3 clones. CCAligner has the best execution

time for the 10MLOC input. CCAligner has competitive scalability

amongst the tools. Only SourcererCC (designed for scalability) and

CCFinderX (does not detect Type-3 clones) can scale to 100MLOC.

While Deckard and iClones detect Type-3 clones, their recall is

lower than CCAligner and they cannot scale to even 10MLOC on

our standard workstation.

Our CCAligner is well situated amongst the competing tools,

with excellent execution time, and good recall and precision. While

NiCad has better recall, and SourcererCC better scalability, CCAligner

is the best performing large-gap clone detection tool.

5 RELATEDWORK
There have been numerous clone detectors in the literature, and

Rattan et al. [38] summarized most of the tools in their research.

Among the text based tools [12, 18, 40], Johnson [18] applied a fin-

gerprinting technique for comparison of source code, and Ducasse

et al. [12] used dynamic pattern matching for line based comparison.

However, both techniques do not support Type-3 clones detection.

NiCad [40] is a text based hybrid tool, which used longest common

subsequence algorithm for code comparison, and can detect Type-3

clones effectively. However, this method will fail to detect large-gap

clones since the clones have large difference in LCS similarity.

Among the token based tools [14, 20, 45], SourcererCC [45] and

iClones [14] support Type-3 clone detection. Sajnani et al. [45]

measured overlap similarity of pairs of code blocks at token-level

granularity to identify clones, which will miss many large-gap

clones since the similarity measure is not robust to large gaps.

iClones [14] uses suffix tree based token by token comparison to

detect Type-1/Type-2 clones and then merges neighboring Type-1

and Type-2 clones to form Type-3 clones. However, iClones can

only detect Type-3 clones with small gaps.

Tree and Program Dependency Graph (PDG) based tools can

support the detection of Type-3 clones well, such as CloneDR [6],

Deckard [16], Duplix [26] and GPLAG [28], where CloneDR and

Deckard are tree based, and Duplix and GPLAG are PDG based.

However, large-gap clones may affect the tree and PDG structure

due to the extension of the code, and thus these tools will fail to de-

tect large-gap clones. Besides, most tools based on these approaches

are slow with poor scalability.

Among the metrics based tools [23, 25, 30], Kodhai et al. [23]

applied metrics on textual representations of source code and only

support Type-1 and Type-2 clones detection. Mayrand et al. [30]

and Kontogiannis et al. [25] detected clones using metrics extracted

from AST of source code. However, like tree based tools, they will

fail to detect large-gap clones since large gaps may affect the AST

structure and further affect the metrics.

There exists some other techniques for clone detection, such as

MeCC [21]. MeCC detects code clones by comparing programs’

abstract memory states. While they have a very good recall in Type-

3 even Type-4 clones, their methods will miss the large-gap clones

where large gaps affect the memory states. Besides, MeCC also

suffers from large execution time.

6 LIMITATIONS
One limitation of the current implementation of CCAligner is that

it cannot scale to detect clones in 100MLOC input on a standard

workstation with 12GB of memory, since CCAligner stores the

whole e-mismatch index in memory during the process of gener-

ating clone candidates. Another limitation is the evaluation work.

The configurations of the tools affect the performance of clone de-

tection [55]. To reduce this limitation, we follow the configurations

of previous literature work [45] which seemed to be standard.

7 CONCLUSION AND FUTUREWORK
In this paper, we have presented a novel clone detecting technique,

and implemented the proposed technique as a tool, CCAligner. We

have demonstrated the correctness of our technique, and showed

the effectiveness of the proposed technique by experimentally eval-

uating it. We conduct an empirical study for large-gap clones detec-

tion with eight systems to demonstrate that CCAligner can detect

large-gap clones that the best of the competing tools are missing,

shown as the best recall and F1-score in all selected open source

projects. Moreover, we develop a variant of the Mutation-Injection

framework to evaluate and compare the recall of CCAligner for dif-

ferent gap sizes. The results further show that CCAligner is the best

performing large-gap clone detection tool. We further demonstrate

that CCAligner remains competitive with the best clone detectors

in general Type-1, Type-2 and Type-3 clone detection, shown as

the best execution time for 10MLOC input with good precision and

recall. We offer CCAligner as a large-gap clone detector, and other

clone related research could benefit from the detection of large-gap

clones, such as clone refactoring [52].

In the future work, we are planning on improving the scalability

of our proposed approach. The data structure of our algorithm is

organized as ⟨key, value⟩, so it is especially suitable for distributed

computing, like Hadoop [13].

ACKNOWLEDGMENTS
This work was supported by the National Nature Science Founda-

tion of China under grant No. 61672480.

CCAligner: a token based large-gap clone detector ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an

appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. ACM, 402–411.

[2] Austin Appleby. 2016. Murmurhash hash functions. (2016). https://github.com/

aappleby/smhasher/

[3] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999.Modern information retrieval.
Vol. 463. ACM press New York.

[4] Brenda S Baker. 2007. Finding clones with dup: Analysis of an experiment. IEEE
Transactions on Software Engineering 33, 9 (2007).

[5] Tibor Bakota, Rudolf Ferenc, and Tibor Gyimothy. 2007. Clone smells in software

evolution. In IEEE International Conference on Software Maintenance. IEEE, 24–33.
[6] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine

Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of the
International Conference on Software Maintenance. IEEE, 368–377.

[7] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering, 33, 9 (2007).

[8] Xiao Cheng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun Zhao. 2016. On

the feasibility of detecting cross-platform code clones via identifier similarity. In

Proceedings of the 5th International Workshop on Software Mining. ACM, 39–42.

[9] Cloc. 2015. Count lines of code. (2015). http://cloc.sourceforge.net/

[10] James R Cordy. 2016. The TXL Programming Language. (2016). https://www.txl.

ca/

[11] Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, and

Tao Xie. 2012. XIAO: Tuning code clones at hands of engineers in practice. In

Proceedings of the 28th Annual Computer Security Applications Conference. ACM,

369–378.

[12] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language in-

dependent approach for detecting duplicated code. In Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE, 109–118.

[13] The Apache Software Foundation. 2017. Apache Hadoop. (2017). http://hadoop.

apache.org/

[14] Nils Göde and Rainer Koschke. 2009. Incremental clone detection. In Proceedings
of the European Conference on Software Maintenance and Reengineering. IEEE,
219–228.

[15] Yue Jia, David Binkley, Mark Harman, Jens Krinke, and Makoto Matsushita.

2009. KClone: a proposed approach to fast precise code clone detection. In Third
International Workshop on Detection of Software Clones (IWSC).

[16] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.

Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering. IEEE Computer

Society, 96–105.

[17] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection of

clone-related bugs. In Proceedings of the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 55–64.

[18] J Howard Johnson. 1994. Substring Matching for Clone Detection and Change

Tracking.. In Proceedings of the International Conference on Software Maintenance,
Vol. 94. 120–126.

[19] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.

2009. Do code clones matter?. In Proceedings of the 31st International Conference
on Software Engineering. IEEE, 485–495.

[20] Toshihiro Kamiya. 2016. The official CCFinderX website. (2016). http://www.

ccfinder.net/

[21] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC:

memory comparison-based clone detector. In 2011 33rd International Conference
on Software Engineering. IEEE, 301–310.

[22] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical

study of code clone genealogies. In ACM SIGSOFT Software Engineering Notes,
Vol. 30. ACM, 187–196.

[23] E Kodhai, S Kanmani, A Kamatchi, R Radhika, and B Vijaya Saranya. 2010. Detec-

tion of type-1 and type-2 code clones using textual analysis and metrics. In Recent
Trends in Information, Telecommunication and Computing (ITC), 2010 International
Conference on. IEEE, 241–243.

[24] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-

plication in source code. In International Static Analysis Symposium. Springer,

40–56.

[25] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, andMorris

Bernstein. 1996. Pattern matching for clone and concept detection. Automated
Software Engineering 3, 1-2 (1996), 77–108.

[26] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In

Proceedings of Eighth Working Conference on Reverse Engineering. IEEE, 301–309.
[27] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:

Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on software Engineering 32, 3 (2006), 176–192.

[28] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: detection of

software plagiarism by program dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 872–881.

[29] Angela Lozano and Michel Wermelinger. 2008. Assessing the effect of clones on

changeability. In IEEE International Conference on Software Maintenance. IEEE,
227–236.

[30] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the

Automatic Detection of Function Clones in a Software System Using Metrics.. In

Proceedings of the International Conference on Software Maintenance, Vol. 96. 244.
[31] Shane McIntosh, Martin Poehlmann, Elmar Juergens, Audris Mockus, Bram

Adams, Ahmed E Hassan, Brigitte Haupt, and Christian Wagner. 2014. Collecting

and leveraging a benchmark of build system clones to aid in quality assess-

ments. In Companion Proceedings of the 36th International Conference on Software
Engineering. ACM, 145–154.

[32] Manishankar Mondal, Md Saidur Rahman, Ripon K Saha, Chanchal K Roy, Jens

Krinke, and Kevin A Schneider. 2011. An empirical study of the impacts of

clones in software maintenance. In Program Comprehension (ICPC), 2011 IEEE
19th International Conference on. IEEE, 242–245.

[33] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM
computing surveys (CSUR) 33, 1 (2001), 31–88.

[34] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H Pham, Jafar Al-Kofahi, and

Tien N Nguyen. 2012. Clone management for evolving software. IEEE transactions
on software engineering 38, 5 (2012), 1008–1026.

[35] Vern Paxson. 2016. Flex–fast lexical analyzer generator. (2016). https://github.

com/westes/flex/

[36] A Perumal, S Kanmani, and E Kodhai. 2010. Extracting the similarity in detected

software clones using metrics. In Proceedings of the International Conference on
Computer and Communication Technology. IEEE, 575–579.

[37] Foyzur Rahman, Christian Bird, and Premkumar Devanbu. 2012. Clones: What is

that smell? Empirical Software Engineering 17, 4-5 (2012), 503–530.

[38] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55, 7 (2013),

1165–1199.

[39] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone

detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[40] Chanchal K Roy and James R Cordy. 2008. NICAD: Accurate detection of near-

miss intentional clones using flexible pretty-printing and code normalization. In

Proceedings of the IEEE 16th International Conference on Program Comprehension.
IEEE, 172–181.

[41] Chanchal K Roy and James R Cordy. 2009. A mutation/injection-based automatic

framework for evaluating code clone detection tools. In Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation Workshops.
IEEE, 157–166.

[42] Chanchal K Roy and James R Cordy. 2010. Near-miss function clones in open

source software: an empirical study. Journal of Software: Evolution and Process
22, 3 (2010), 165–189.

[43] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. 2014. The vision of

software clone management: Past, present, and future (keynote paper). In Pro-
ceedings of the Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering. IEEE, 18–33.

[44] Julia Rubin and Marsha Chechik. 2013. A framework for managing cloned

product variants. In Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 1233–1236.

[45] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V

Lopes. 2016. SourcererCC: scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 1157–1168.

[46] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-

mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project

code clones. In Proceedings of the International Conference on Software Mainte-
nance and Evolution. IEEE, 476–480.

[47] Jeffrey Svajlenko and Chanchal K. Roy. 2014. Evaluating Modern Clone Detec-

tion Tools. In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME ’14). IEEE Computer Society, Washington,

DC, USA, 321–330.

[48] Jeffrey Svajlenko and Chanchal K Roy. 2015. Evaluating clone detection tools

with bigclonebench. In Proceedings of the International Conference on Software
Maintenance and Evolution. IEEE, 131–140.

[49] J. Svajlenko and C. K. Roy. 2016. BigCloneEval: A Clone Detection Tool Evalua-

tion Framework with BigCloneBench. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 596–600.

[50] Jeffrey Svajlenko, Chanchal K Roy, and James R Cordy. 2013. A mutation analysis

based benchmarking framework for clone detectors. In Proceedings of the 7th
International Workshop on Software Clones. IEEE, 8–9.

[51] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano

Di Penta. 2010. An empirical study on the maintenance of source code clones.

Empirical Software Engineering 15, 1 (2010), 1–34.

https://github.com/aappleby/smhasher/
https://github.com/aappleby/smhasher/
http://cloc.sourceforge.net/
https://www.txl.ca/
https://www.txl.ca/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.ccfinder.net/
http://www.ccfinder.net/
https://github.com/westes/flex/
https://github.com/westes/flex/

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy

[52] Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami. 2017. Clone

refactoring with lambda expressions. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 60–70.

[53] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness

of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 269–280.

[54] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. On

detection of gapped code clones using gap locations. In Software Engineering
Conference Ninth Asia-Pacific. IEEE, 327–336.

[55] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for

better configurations: a rigorous approach to clone evaluation. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 455–465.

[56] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[57] Tianyi Zhang andMiryung Kim. 2017. Automated transplantation and differential

testing for clones. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 665–676.

	Abstract
	1 Introduction
	2 Preliminary Definition
	3 Approach
	3.1 Lexical Analysis
	3.2 Clone Detection

	4 Evaluation
	4.1 Parameter Setting
	4.2 Large-gap Clone Detection
	4.3 General Clone Detection

	5 Related work
	6 Limitations
	7 Conclusion and Future Work
	Acknowledgments
	References

