
Mining API Usage Scenarios from Stack Overflow

Gias Uddin, Foutse Khomh, and Chanchal K Roy

McGill University, Polytechnique Montreal, and Unversity of Saskatchewan, Canada.

Abstract

Context: APIs play a central role in software development. The seminal

research of Carroll et al. [11] on minimal manual and subsequent studies by
Shull et al. [57] showed that developers prefer task-based API documentation
instead of traditional hierarchical official documentation (e.g., Javadoc). The
Q&A format in Stack Overflow offers developers an interface to ask and
answer questions related to their development tasks.

Objective: With a view to produce API documentation, we study auto-
mated techniques to mine API usage scenarios from Stack Overflow.

Method: We propose a framework to mine API usage scenarios from Stack
Overflow. Each task consists of a code example, the task description, and
the reactions of developers towards the code example. First, we present an
algorithm to automatically link a code example in a forum post to an API
mentioned in the textual contents of the forum post. Second, we generate
a natural language description of the task by summarizing the discussions
around the code example. Third, we automatically associate developers re-
actions (i.e., positive and negative opinions) towards the code example to
offer information about code quality.

Results: We evaluate the algorithms using three benchmarks. We compared
the algorithms against eight state of the art techniques. Our algorithms
outperformed each baseline. We developed an online tool by automatically
mining API usage scenarios from Stack Overflow. A user study of 31 software
developers shows that the participants preferred the mined usage scenarios
in Opiner over API official documentation. The tool is available online at:
http://opiner.polymtl.ca/.

Conclusion: With a view to produce API documentation, we propose a
framework to automatically mine API usage scenarios from Stack Overflow,
supported by three novel algorithms. We evaluated the algorithms against

Preprint submitted to Journal IST December 2, 2019

a total of eight state of the art baselines. We implement and deploy the
framework in our proof-of-concept online tool, Opiner.

Keywords: API, Mining, Usage, Documentation.

1. Introduction1

In 1987, the seminal research of Carroll et al. [11] introduced ‘minimal2

manual’ by advocating the redesigning of traditional documentation around3

tasks, i.e., describe the software components within the contexts of devel-4

opment tasks. They observed that developers are more productive while5

using those manuals. Since then this format is proven to work better than6

the traditional API documentation [5, 56, 36]. APIs (Application Program-7

ming Interfaces) offer interfaces to reusable software components. In 2000,8

Shull et al. [57] compared traditional hierarchical API documentation (e.g.,9

Javadocs) against example-based documentation, each example correspond-10

ing to a development task. They observed that the participants quickly11

moved to task-based documentation to complete their development tasks.12

However, task-based documentation format is still not adopted in API offi-13

cial documentation (e.g., Javadocs).14

Indeed, despite developers’ reliance on API official documentation as a15

major resource for learning and using APIs [52], the documentation can often16

be incomplete, incorrect, and not usable [71]. This observation leads to the17

question of how we can improve API documentation if the only people who18

can accomplish this task are unavailable to do it. One potential way is to19

produce API documentation by leveraging the crowd [62], such as mining20

API usage scenarios from online Q&A forums where developers discuss how21

they can complete development tasks using APIs. Although these kinds22

of solutions do not have the benefit of authoritativeness, recent research23

shows that developers leverage the reviews about APIs to determine how and24

whether an API can be selected and used, as well as whether a provided code25

example is good enough for the task for which it was given [68, 67, 34]. Thus,26

the combination of API reviews and code examples posted in the forum posts27

may constitute an acceptable expedient in cases of rapid evolution or depleted28

development resources, offering ingredients to on-demand task-centric API29

documentation [55].30

In this paper, with a view to assist in the automatic generation of task-31

based API documentation, we propose to automatically mine code examples32

2

Stack Overflow
Posts

Link Code Examples to
API Mentions

Generate Usage Scenario
Summary Description

Algorithm 1

Algorithm 2

Associate Reactions to
Code Examples

Algorithm 3

To properly connect a code example to an API
name mentioned in the post text, i.e., about which
the code example is discussed

To generate a natural language description of the
task, i.e., the problem and the solution addressed
by the code example by analyzing the post texts

To inform developers of the quality and specific
potential usage constraints of the code example
associated to an API based on the expert
comments of other developers

Mined API Usage Scenarios

Figure 1: Our API usage scenario mining framework from Stack Overflow with three
proposed algorithms

associated to different APIs and their relevant task-based usage discussions33

from Stack Overflow. We propose an automated mining framework that can34

be leveraged to automatically mine API usage scenarios from Stack Over-35

flow. To effectively mine API usage scenarios from Stack Overflow with high36

performance, we have designed and developed three algorithms within our37

proposed framework. In Figure 1, we offer an overview of the three algo-38

rithms and show how they are used in sequence to automatically mine API39

usage scenarios from Stack Overflow.40

• Algorithm 1. Associate Code Examples to API Mentions. A code41

snippet is provided in a forum post to complete a development task. Given a42

code snippet found in a forum post, we first need to link the snippet to an API43

about which the snippet is provided. Consider the two snippets presented44

in Figure 2. Both of the snippets use multiple types and methods from the45

java.util API. In addition, the first snippet uses the java.lang API. However,46

both snippets are related to the conversion of JSON data to JSON object.47

As such, the two snippets introduce two open source Java APIs to complete48

the task (Google GSON in snippet 1 and org.json in snippet 2). The state of49

art traceability techniques to link code examples in forum posts [62, 14, 51]50

3

will link the scenarios to both the utility (i.e., java.util, java.lang) and the51

open source APIs. For example, the techniques will link the first scenario to52

all the three APIs (java.util, java.lang, and GSON APIs), even though the53

scenario is actually provided to discuss the usage of GSON API. This focus54

is easier to understand when we look at the textual contents that describe55

the usage scenario.56

Our algorithm links a code example to an API mentioned in the textual57

contents of forum post. For example, we link the fist snippet in Figure 2 to58

the API GSON and the second to the API org.json. We do this by observing59

that both GSON and org.json are mentioned in the textual contents of the60

post, as well as the code examples consist of class and methods from the two61

APIs, respectively. We adopt the definition of an API as originally proposed62

by Martin Fowler, i.e., a “set of rules and specifications that a software63

program can follow to access and make use of the services and resources64

provided by its one or more modules” [76]. This definition allows us to65

consider a Java package as an API. For example, in Figure 2, we consider66

the followings as APIs: 1. Google GSON, 2. Jackson, 3. org.json, 4. java.util,67

and 5. java.lang. Each API package thus can contain a number of modules68

and elements (e.g., class, methods, etc.). This abstraction is also consistent69

with the Java official documentation. For example, the java.time packages70

are denoted as the Java date APIs in the new JavaSE official tutorial [42]).71

As we observe in Figure 2, this is also how APIs can be mentioned in online72

forum posts.73

• Algorithm 2. Generate Textual Task Description. Given that each74

code snippet is provided to complete a development task, a textual descrip-75

tion of the task as provided in forum posts is necessary to learn about the76

task as well as the underlying contexts (e.g., specific API version). To offer a77

task-based documentation for a given code snippet that is linked to an API,78

we made two design decisions: 1. Title. We associate each code example79

with the title of the question, e.g., the title of a thread in Stack Overflow.80

2. Description. We associate relevant texts from both answer (where the81

code example is found) and question posts. For example, in Figure 2, the82

first sentence (“check website . . . ”) is not important to learn about the tasks83

(i.e., JSON parsing). However, for the first snippet, all the other sentences84

before snippet 1 are necessary to learn about the solution (because they are85

all related to the API GSON that is linked to snippet 1). In addition, the86

problem description as addressed by the task can be found in the question87

4

How to convert JSON data to JSON object

C1. The code is buggy. In the new version of GSON, TypeToken
is not public, hence you will get constructor error.

C2. Using actual version of GSON (2.2.4) it works perfectly!

C3. I found org.json a bit buggy when converting a Json Array

C4. The code using org.json worked for me flawlessly!

C5. I would recommend using the Jackson API.

C6. Thank you!

Check Java JSON website for competing APIs, such as
Jackson, Gson, org.json. Google Gson supports generics and
nested beans that should map to a Java collection such as
List. It’s pretty simple! You have a JSON object with several
properties of which groups property represents an array of
nested objects of the very same type. This can be parsed
with Gson the following way:

Import java.util.*;

import java.lang.reflect.Type;

import com.google.gson.Gson;

Import com.google.gson.reflect.TypeToken;

Class Data {

 private String title;

 private long id;

 private List<Data> groups;

}

Type listType = new TypeToken<ArrayList<Data>>(){}.getType();

List<Data> dataList = new Gson().fromJson(jsonArray, listType);

If you don’t need object de-serialization but to simply get an
attribute, you can try org.json.

import java.util.*;

JSONObject obj = new JSONObject(jsonString);

System.out.println(obj.toString());

C
o

d
e

Ex
a

m
p

le
 1

Question

A
n

sw
e

r
C

o
m

m
e

n
ts

C
o

d
e

Ex
a

m
p

le
 2

Figure 2: How API usage scenarios are discussed in Stack Overflow.

5

title and post. Therefore, our algorithm takes as input all the texts from88

answer and question posts and outputs a summary of those textual contents89

based on an adaptation of the popular TextRank [38] algorithm. As ex-90

plained in Section 2, the TextRank algorithm is based on an adaptation of91

Google PageRank algorithm, which creates a graph of nodes and edges in92

a graph and ranks the nodes in the graph based on their association with93

other nodes. In our algorithm, we first heuristically find sentences relevant94

to an API in the textual contents. We then further refine their relevance by95

creating a graph of the sentences where each sentence is a node. We com-96

pute association between sentences in the graph using cosine similarity. This97

two-stage sentence selection process based on TextRank is useful to identify98

sentences relevant to the API task description. Indeed, TextRank is proven99

to generate high quality and relevant textual summary [38].100

• Algorithm 3. Associate Reactions to a Code Example. As noted101

before reviews about APIs can be useful to learn about specific nuances and102

usage of the provided code examples [68, 67]. Consider the reactions in the103

comments in Figure 2. Out of the six comments, two (C1, C2) are associated104

with the first scenario and two others (C3, C4) with the second scenario. The105

first comment (C1) complains that the provided scenario is not buggy in the106

newer version of the GSON API. The second comment (C2) confirms that107

the usage scenario is only valid for GSON version 2.2.4. The third comment108

(C3) complains that the conversion of JsonArray using org.json API is a109

bit buggy, but the next comment (C4) confirms that scenario 2 (i.e., the110

one related to org.json API) works flawlessly. Given a code example, our111

proposed algorithm associates relevant reactions based on heuristics, such as112

mentions of the linked API in a reaction (e.g., In Figure 2, C1 mentions the113

API GSON, which is linked to code snippet 1).114

We evaluated the algorithms using three benchmarks that we created115

based on inputs from a total of six different human coders. The first bench-116

mark consists of 730 code examples from Stack Overflow forum posts, each117

manually associated with an API mentioned in the post where the code ex-118

ample was found. We use the first benchmark to evaluate our Algorithm 1,119

i.e., associate code examples to API mentions. A total of three coders par-120

ticipated in the benchmark creation process. We use the second benchmark121

to evaluate our proposed Algorithm 2, i.e., generate textual task description122

addressed by a code example in Stack Overflow. The second benchmark con-123

sists of 216 code examples out of the 730 code examples that we used for the124

6

Preprocess
Post Contents

Stack Overflow

Posts

Link Code Examples
to API Mentions

Generate Usage Scenario
Summary Description

Parser Linker

Generator
Associate Reactions
to Code Examples

Associator

API
Database

Figure 3: The major components of our API usage scenario mining framework

first benchmark. The 216 code examples were found in answer posts in Stack125

Overflow. The natural language summary of each of the 216 code examples126

was manually created based on consultations from two human coders. We127

use the third benchmark to evaluate our Algorithm 3, i.e, associate positive128

and negative reactions to a code example. The third algorithm was created129

by manually associated all the reactions to each of the 216 code examples130

that we use for the second benchmark. A total of three human coders par-131

ticipated in the benchmark creation process. The first author was the first132

coder in all the three benchmarks.133

We observed precisions of 0.96, 0.96, and 0.89 and recalls of 1.0, 0.98, and134

0.94 with the linking of a code example to an API mention, the produced135

summaries, and the association of reactions to the code examples. We com-136

pared the algorithms against eight state of the art baselines. Our algorithms137

outperformed all the baselines. We deployed the algorithms in our online138

tool to mine task-based documentation from Stack Overflow. We evaluated139

the effectiveness of the tool by conducting a user study of 31 developers,140

each completed four coding tasks using our tool, API official documentation,141

Stack Overflow, and search engine. The developers wrote more correct code142

in less time and less effort using our tool.143

2. The Mining Framework144

We designed our framework to mine task-based API documentation by145

analyzing Stack Overflow, a popular forum to discuss API usage. The frame-146

work takes as input a forum post and outputs the usage scenarios found in147

the post. For example, given as input the forum post in Figure 2, the frame-148

work returns two task-based API usage scenarios: (1) The code example 1 by149

7

associating it to the API Google GSON, the two comments (C1, C2) as reac-150

tions, and a description of the code example in natural language to inform of151

the specific development task addressed by the code example. (2) The code152

example 2 by associating it to the API org.json, the two comments (C3, C4)153

as reactions, and a summary description.154

Our framework consists of five major components (Figure 3):155

1. An API database to identify the API mentions.156

2. A suite of Parsers to preprocess the forum post contents.157

3. A Linker to associate a code example to an API mention.158

4. A Generator to produce a textual task description.159

5. An Associator to find reactions towards code examples.160

2.1. API Database161

An API database is required to infer the association between a code162

example and an API mentioned in forum post text. Our database consists163

of open source and official Java APIs. An open-source API is identified by a164

name. An API consists of one or more modules. Each module can have one165

or more packages. Each package contains code elements (class, method). As166

noted in Section 1, we consider an official Java package as an API. For each167

API, we record the following meta-information: (1) the name of the API,168

(2) the dependency of the API on other APIs, (3) the names of the modules169

of the API, (4) the package names under each module, (5) the type names170

under each package, and (6) the method names under each type. The last171

three items (package, type, and method names) can be collected from either172

the binary file of an API (e.g., a jar) or the Javadoc of the API. We obtained173

the first three items from the pom.xml files of the open-source APIs hosted174

in online Maven Central repository. Maven Central is the primary source for175

hosting and searching for Java APIs with over 70 million downloads every176

week [18].177

2.2. Preprocessing of Forum Posts178

Given as input a forum post, we preprocess its content as follows: (1) We179

categorize the post content into two types: (a) code snippets ; 1 and (b) sen-180

1We detect code snippets as the tokens wrapped with the <code> tag.

8

Figure 4: A popular scenario with a syntax error (Line 1) [43]

tences in the natural language text. (2) Following Dagenais and Robillard [14],181

we discard the following invalid code examples based on Language-specific182

naming conventions: (a) Non-code snippets (e.g., XML), (b) Non-Java snip-183

pets (e.g., JavaScript). We consider the rest of the code examples as valid.184

• Hybrid Code Parser. We parse each valid code snippet using a hybrid185

parser combining ANTLR [50] and Island Parser [39]. We observed that code186

examples in the forum posts can contain syntax errors which an ANTLR187

parser is not designed to parse. However, such errors can be minor and the188

code example can still be useful. Consider the code example in Figure 4. An189

ANTLR Java parser fails at line 1 and stops there. However, the post was190

still considered as helpful by others (upvoted 11 times). Our hybrid parser191

works as follows: 1. We split the code example into individual lines. For this192

paper, we focused only on Java code examples. Therefore, we use semi-colon193

as the line separator indicator. 2. We parse each line using the ANTLR194

parser by feeding it the Java grammar provided by the ANTLR package.195

If the ANTLR parser throws an exception citing parsing error, we use our196

Island Parser.197

• Parsing Code Examples. We identify API elements (types and methods)198

in a code example in three steps.199

1. Detect API Elements: We detect API elements using Java nam-200

ing conventions, similar to previous approaches (e.g., camel case for Class201

names) [14, 53]. We collect types that are not declared by the user. Consider202

the first code example in Figure 2. We add Type, Gson and TypeToken, but not203

Data, because it was declared in the same post: Class Data.204

2. Infer Code Types From Variables: An object instance of a code205

type declared in another post can be used without any explicit mention of the206

code type. For example, consider the example: Wrapper = mapper.readValue(jsonStr,207

Wrapper.class). We associate the mapper object to the ObjectMapper type,208

because it was defined in another post of the same thread as: ObjectMapper209

mapper = new ObjectMapper().210

3. Generate Fully Qualified Names (FQNs): For each valid211

9

Detect API Mentions

Associate API Mentions
to Code Examples

Proximity-
Based Learning

Probabilistic
Learning

Stack Overflow

Post

API
Database 1

2

Type Filter

Method Filter

Dependency Filter2a

2b

Figure 5: The components to link a scenario to API mention

GSON

com.google.code.gson
gson

org.immutables
gson

org.easygson
easy-gson
org.nd4j

nd4j-gson

ex
ac

t

fu
zz

y

… 5 more... 120 more

Figure 6: Partial Mention Candidate List of GSON in Figure 2

type detected in the parsing, we attempt to get its fully qualified name by212

associating it to an import type in the same code example. Consider the213

following example:214

import com.restfb.json.JsonObject;215

JsonObject json = new JsonObject(jsonString);216

We associate JsonObject to com.restfb.json.JsonObject. We leverage217

both the fully and the partially qualified names in our algorithm to asso-218

ciate code examples to API mentions.219

2.3. Associating Code Examples to API Mentions220

Given as input a code example in a forum post, we associate it to an API221

mentioned in the post in two steps (Figure 5):222

Step 1. Detect API Mentions223

We detect API mentions in the textual contents of forum posts following224

Uddin and Robillard [72]. Therefore, each API mention in our case is a token225

10

(or a series of tokens) if it matches at least one API or module name. Similar226

to [72], we apply both exact and fuzzy matching. For example, for API227

mention ‘Gson’ in Figure 2, an exact match would be the ‘gson’ module in the228

API ‘com.google.code.gson’ and a fuzzy match would be the ‘org.easygson’229

API. For each such API mention, we produce a Mention Candidate List230

(MCL), by creating a list of all exact and fuzzy matches. For example, in231

Figure 6, we show a partial Mention Candidate List for the mention ‘gson’.232

Each rectangle denotes an API candidate with its name at the top and one233

or more module names at the bottom (if module names matched).234

For each code example, we create three buckets of API mentions: (1) Same235

Post Before Bb: each mention found in the same post, but before the code236

snippet. (2) Same post After Ba: each mention found in the same post,237

but after the code snippet. (3) Same thread Bt: all the mentions found in238

the title and in the question. Each mention is accompanied by a Mention239

Candidate List, i.e., a list of APIs from our database.240

Step 2. Associate Code Examples to API Mentions241

We associate a code example in a forum post to an API mention by242

learning how API elements in the code example may be connected to a can-243

didate API in the mention candidate lists of the API mentions. We call this244

proximity-based learning, because we start to match with the API mentions245

that are more closer to the code example in the forum before considering246

the API mentions that are further away. For well-known APIs, we observed247

that developers sometimes do not mention any API name in the forum texts.248

In such cases, we apply probabilistic learning, by assigning the code snippet249

to an API that could most likely be discussed in the snippet based on the250

observations in other posts.251

• Proximity-Based Learning uses Algorithm 1 to associate a code ex-252

ample to an API mention. The algorithm takes as input two items: 1. The253

code example C, and 2. The API mentions in the three buckets: before the254

code example in the post Bb, after the code example in the post Ba, and in255

the question post of the same thread Bt. The output from the algorithm is256

an association decision as a tuple (dmention, dapi), where dmention is the API257

mention as found in the forum text (e.g., GSON for the first code example in258

Figure 2) and dapi is the name of the API in the mention candidate list of the259

API mention that is used in the code example (e.g., com.google.code.gson260

for the first code example in Figure 2).261

The algorithm uses three filters (L1, discussed below). Each filter takes262

11

input : (1) Code Example C = (T,E), (2) API Mentions in
buckets B = (Bb, Ba, Bt)

output: Association decision, D = {dmention, dapi}
1 Proximity Filters F = [Ftype, Fmethod, Fdep];
2 D = ∅, N = length(B), K = length(F);
3 for i← 1 to N do
4 Bi = B[i], H = getMentionApiTuples (Bi);
5 for k ← 1 to K do
6 Filter Fk = F [k], H = getHits (Fk, C, H, Li);
7 if |H| = 1 then D = H[1]; break;

8 procedure getMentionApiTuples(B)
9 List< MentionAPI > M = ∅;

10 foreach Mention m ∈ B do
11 MCL = {a1, a2, . . . an} . MCL of m;
12 foreach API ai ∈ MCL do
13 MentionAPI ma = {m, ai}; M .add (ma)

14 return M ;

15 procedure getHits (Fk, C, H)
16 S = ∅;
17 for i← 1 to length (H) do
18 S[i] = compute score of H[i] for C using Fk;
19 if max (S) = 0 then return H;
20 else
21 Hnew = ∅;
22 for i← 1 to length (H) do
23 if S[i] = max (S) then Hnew.add (H[i]);
24 return Hnew

25 return D
Algorithm 1: Associate a code example to an API mention

12

as input a list of tuples in the form (mention, candidate API). The output263

from the filter is a set of tuples, where each tuple in the set is ranked the264

highest based on the filter. The higher the ranking of a tuple, the more likely265

it is associated to the code example based on the filter. For each mention266

bucket (starting with Bb, then Ba, followed by Bt), we first create a list of267

tuples H using getMentionApiTuples (L4, L8-14). Each tuple is a pair of268

API mention and a candidate API. We apply the three filters on this list269

of tuples. Each filter produces a list of hits (L6) using getHits procedure270

(L15-24). The output from a filter is passed as an input to the next filter,271

following the principle of deductive learning [62]. If the list of hits has only272

one tuple, the algorithm stops and the tuple is returned as an association273

decision (L7).274

F1. Type Filter. For each code type (e.g., a class) in the code example,275

we search for its occurrence in the candidate APIs from Mention Candidate276

List. We compute type similarity between a snippet si and a candidate ci as277

follows.278

Type Similarity =
|Types(si)

⋂
Types(ci)|

|Types(si)|
(1)

Types(si) is the list of types for si in bucket. Types(ci) is the list of the279

types in Types(si) that were found in the types of the API. We associate the280

snippet to the API with the maximum type similarity. In case of more than281

one such API, we create a hit list by putting all those APIs in the list. Each282

entry is considered as a potential hit.283

F2. Method Filter. For each of candidate APIs returned in the list284

of hits from type filter, we compute method similarity between a snippet si285

and a candidate ci:286

Method Similarity =
|Methods(si)

⋂
Methods(ci)|

|Methods(si)|
(2)

We associate the snippet to the API with the maximum similarity. In case287

of more than one such API, we create a hit list of all such APIs and pass it288

to the next filter.289

F3. Dependency Filter. We create a dependency graph by consulting290

the dependencies of APIs in the hit list. Each node corresponds to an API291

from the hit list. An edge is established, if one API depends on another API.292

From this graph, we find the API with the maximum number of incoming293

13

C1

C2

C3

C4

C5

org.easygson

com.google.code.gson

org.immutables

org.nd4j

Figure 7: Dependency graph given a hit list

edges, i.e., the API on which most of the other APIs depend on. If there is294

just one such API, we assign the snippet to the API. This filter is developed295

based on the observation that developers mention a popular API (e.g., one296

on which most other APIs depend on) more frequently in the forum post297

than its dependents.298

In Figure 7, we show an example dependency graph (left) and a partial299

dependency graph for the four candidate APIs from Figure 6 (right). In the300

left, both C2 and C5 have incoming edges, but C2 has maximum number301

of incoming edges. In addition, C5 depends on C2. Therefore, C2 is most302

likely the core and most popular API among the five APIs. The dependency303

filter is useful when a code example is short, with generic type and method304

names. In such cases, the code example can potentially match with many305

APIs. Consider a shortened version of the first code example in Figure 2:306

import com.google.code.Gson;307

Data json = new Gson().fromJson(string, Data.class);308

Both the type (com.google.code.Gson) and methods (Gson() and fromJ-309

son(. . .)) can be found in the two APIs in Figure 6: org.immutables and310

com.google.code.gson. However, as we see in Figure 7 (right), all the APIs311

depend on com.google.code.gson. Therefore, we assign the snippet to the312

mention Gson and the API com.google.code.gson.313

• Probabilistic Learning is used when an API mention is not found in314

post texts, i.e., we cannot link a code example to an API using proximity315

learning. In such cases, we associate a code example to an API that was316

most frequently associated in other code examples. We do this by computing317

the coverage of an API across those code examples linked by the proximity318

learning. A coverage is the total number of times the types of an API is319

found in those snippets. Suppose, for four code examples C1-C4, C1 and C2320

14

Associate
Relevant Texts

Code
Example

Associated
API Mention

Stack Overflow

Post & Title Develop Undirected
Weighted Graph

Detect Important
Nodes in Graph

Produce Summary
Using Important Nodes

Summary Description1

2

3

4

Figure 8: Steps to produce summary description of a scenario

are already linked to API A1, and C3 to API A2, but no API is mentioned in321

the post where C4 is found. In such cases, we compute the coverage of types322

in C4 (say T1, T2) in the linked snippets. If T1 is present in C1 and C2, and323

T2 in C3, we have coverage of 2 for API A1, and coverage of 1 for API A2.324

Thus, we link C4 to API A1. This learning is based on two observations:325

(1) developers tend to refer to the same API types in many different forum326

posts, and (2) when an API type is well-known, developers tend to refer to327

it in the code examples without mentioning the API (see for example [44]).328

2.4. Generating Natural Language Task Description329

We produce textual description for code examples that are found in the330

answer posts, because such a code example is in need to be understood for331

a development task [62]. Our algorithm is based on the TextRank algo-332

rithm [38]. Our algorithm operates in four steps (Figure 8):333

1. Associate Relevant Texts. We produce an input as a list of sen-334

tences from the forum post where the code example is found. Each sentence335

is selected by considering its proximity from the API mention linked to the336

code example. For example, for the first code example in Figure 2 linked337

to the API Gson, we pick all the sentences before the code example except338

the first one. To pick the sentences, we apply beam-search. We start with339

the first sentence in the forum post where API is mentioned. We then pick340

next possible sentence by looking for two types of signals: (a) it refers to the341

API (e.g., using a pronoun), and (b) it refers to an API feature. To identify342

features, we use noun phrases based on shallow parsing [31]. By adhering to343

the principle of task-oriented documentation, we organize the relevant texts344

into three parts: (a) Task Title. The one line description of the task, as345

15

found in the title of the question. (b) Problem. The relevant texts ob-346

tained from the question that describe the specific problem related to the347

task. (c) Solution. The relevant texts obtained from the answer where the348

code example is found. We produce a summarized description by applying349

Steps 2 and 3 once for ‘Problem’ texts and another for the ‘Solution’ texts.350

2. Develop Undirected Weighted Text Graph. We remove stop351

words from each input sentence and then vectorize the sentence into textual352

units (e.g., ngram). We compute the distance between two sentences. A353

distance is defined as (1 - similarity). Similarity can be detected using stan-354

dard metrics, such as cosine similarity. An edge is established between two355

sentences, if they show some similarity between them. The weight of each356

edge is the computed distance.357

3. Detect Important Nodes in Graph. We traverse the text graph358

using the PageRank algorithm to find optimal weight for each node in the359

graph by repeatedly iterating over the following equation (until no further360

optimization is possible):361

WS(Vi) = (1− d) ∗
∑

Vj∈(Vi)

wji∑
vk∈Out(Vj)

wjk

WS(Vj) (3)

Here d is the damping factor, V are nodes, WS are the weights. ∈ (Vi) are362

the incoming edges to node Vi.363

4. Produce Summary Using Important Nodes. In order to produce364

the summary using important nodes, we first pick the top N nodes with365

the most weights among all the nodes. We then rank the nodes based on366

their appearance in the original post (i.e., problem or solution). Each node367

essentially corresponds to a sentence in the post. We then combine all the368

ranked sentences to produce the summary.369

Finally, we produce a description by combining the three items in order,370

i.e., Title, Problem and Solution summaries.371

2.5. Associating Reactions to Usage Scenarios372

The final part of our proposed framework is to associate reactions to the373

usage scenarios. In order to do this, we first gather all the comments of374

the post where the code example is found. We then use the principles of375

discourage learning [35] to associate the reactions in the comments (i.e., neg-376

ative and positive opinions) towards the code examples. The inputs to the377

algorithm are all the comments towards the post where the code example378

16

is found. Our algorithm works as follows. 1. We sort the comments in the379

time of posting. The earliest comment is placed at the top. We identify380

opinionated sentences in each comment. 2. We identify the API mentions in381

each comment. 3. We label an opinionated comment as relevant to an API382

mention if it refers to the API mention by name or by pronoun. To deter-383

mine whether a pronoun refers to an API mention, we determine the distance384

between the API mention and the pronoun and whether another API was385

mentioned in between. If the opinionated comment is related to the API386

mention associated to the code example, we associate the comment to the387

code example. For example, in Figure 2, the comment C4 is not considered388

as relevant to the code example 1, because the closest and most recent API389

name to the comment is the org.json API in comment C3. 4. For opinion-390

ated comments that do not directly/indirectly refer to an API mention (e.g.,391

using pronoun), we associate those to the code example based on a notion392

called implicit reference. We consider a comment as implicitly related to the393

code example, if no other APIs are mentioned at least two comments above394

it. To analyze the opinionated sentences, our algorithm can use the output395

of any sentiment detection tools. The current framework uses an adapta-396

tion of the Domain Sentiment Orientation algorithm as originally proposed397

by Hu et al. [25]. The algorithm was previously adopted by Google to an-398

alyze local service reviews [4]. The algorithm showed more precision than399

other sentiment detection tools to detect the opinionated sentences in Stack400

Overflow [70].401

3. Evaluation402

We extensively evaluated the feasibility of our mining framework by in-403

vestigating the accuracy of the three proposed algorithms. In particular, we404

answer the following three research questions:405

1. What is the performance of the algorithm to link code examples to406

APIs mentioned in forum texts?407

2. What is the performance of generating the natural language summary408

for a scenario?409

3. What is the performance of linking the reactions (the positive and410

negative opinions) to a scenario?411

17

Both high precision and recall are required in the mining of scenarios. A412

precision in the linking of a scenario to an API mention ensures we do not413

link a code example to a wrong API, a high recall ensures that we do not414

miss many usage scenarios relevant to an API. Similarly, a high precision and415

a high recall are required to associate reactions to a code example. For the416

summary description of a code example, a high precision is more important417

because otherwise we associate a wrong description to a code example.418

Given that all our three proposed algorithms are information retrieval in419

nature, we report four standard evaluation metrics (Precision P , Recall R,420

F1-score F1, and Accuracy A) as follows:421

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 ∗ P ∗R

P +R
,A =

TP + TN

TP + FP + TN + FN

TP = Nb. of true positives, and FN = Nb. false negatives.422

Evaluation Corpus. We analyze the Stack Overflow threads tagged as423

‘Java+JSON’, i.e., the threads contained discussions related to the JSON-424

based software development tasks using Java APIs. We selected the Java425

JSON-based APIs because JSON-based techniques support diverse develop-426

ment scenarios, such as, both specialized (e.g., serialization) as well as utility-427

based (e.g., lightweight communication), etc. We used the ‘Java+JSON’428

threads from Stack Overflow dump of 2014 for the following reasons:429

1. It offers a rich set of competing APIs with diverse usage discussions, as430

reported by other authors previously [68].431

2. It allowed us to also check whether the API official documentation were432

updated with scenarios from the dataset (see Section 4). Intuitively,433

our mining framework is more useful when the framework can be used434

to update API official documentation by automatically mining the API435

usage scenarios, such as when the official documentation is found to be436

not updated with the API usage scenarios discussed in Stack Overflow437

even when sufficient time is spent between when such as scenario is438

discussed in Stack Overflow and when an API official documentation439

is last updated.440

In Table 1 we show descriptive statistics of the dataset. There were 22,733441

posts from 3,048 threads with scores greater than zero. Even though ques-442

tions were introduced during or before 2014, each question is still active in443

18

Table 1: Descriptive statistics of the dataset (Valid Snippets)

Threads Posts Sentences Words Snippet Lines Users

3048 22.7K 87K 1.08M 8596 68.2K 7.5K

Average 7.5 28.6 353.3 2.8 7.9 3.9

Stack Overflow, i.e., the underlying tasks addressed by the questions are still444

relevant. There were 8,596 valid code snippets and 4,826 invalid code snip-445

pets. On average each valid snippet contained at least 7.9 lines. The last446

column “Users” show the total number of distinct users that posted at least447

one answer/comment/question in those threads.448

We evaluated our proposed three algorithms by creating three bench-449

marks out of our evaluation corpus. In our previous research of two surveys450

of 178 software developers, we found that developers consider the combina-451

tion of code examples and reviews from other developers towards the code452

examples in online developer forums (e.g., Stack Overflow) as a form of API453

documentation. We also found that developers use such documentation to454

support diverse development tasks (e.g., bug fixing, API selection, feature455

usage, etc.) [66]. Therefore, it is necessary that our mining framework is456

capable of supporting any development scenario. This can be done by link-457

ing any code example to an API mention, and by producing a task-based458

documentation of an API to support any development task. Therefore, to459

create the benchmarks from the evaluation corpus, we pick code examples460

using random sampling that offers representation of the diverse development461

scenarios in online developer forums in general without focusing on a specific462

development scenario (e.g., How-to, bug-fixing) [27, 80].463

3.1. RQ1 Performance of Linking Code Example to API Mention464

3.1.1. Approach465

We assess the performance of our algorithm to link code examples to API466

mentions using a benchmark that consists of randomly selected 730 code ex-467

amples from our entire corpus. 375 code examples were sampled from the468

8589 valid code snippets and 355 from the 4826 code examples that were469

labeled as invalid by the invalid code detection component of our framework.470

The size of each subset (i.e., valid and invalid samples) is determined to cap-471

ture a statistically significant snapshot of our entire dataset (95% confidence472

interval). The evaluation corpus was manually validated by three coders:473

19

Table 2: Analysis of agreement among the coders to validate the association of APIs to
code examples (Using Recal3 [20])

Kappa (Pairwise) Fleiss Percent Krippen α

Overall 0.97 0.97 99.4% 0.97
Valid 0.93 0.93 98.7% 0.93
Discarded 1.0 1.0 100% 1.0

The first two coders are the first two authors of this paper. The third coder474

is a graduate student and is not a co-author. The benchmark creation process475

involved three steps: (1) The three coders independently judged randomly476

selected 80 code examples out of the 730 code examples: 50 from the valid477

code examples and 30 from the invalid code examples. (2) The agreement478

among the coders was calculated, which was near perfect (Table 2): pair-479

wise Cohen κ was 0.97 and the percent agreement was 99.4%. To resolve480

disagreements on a given code example, we took the majority vote. (3) Since481

the agreement level was near perfect, we considered that any of the coders482

could complete the rest of the coding without introducing any subjective483

bias. The first coder then labeled the rest of the code examples. The manual484

assessment found nine code examples as invalid. We labeled our algorithm485

as wrong for those, i.e., false positives. In the end, the benchmark consisted486

of 367 valid and 363 invalid code examples.487

• Baselines. We compare our algorithm against two baselines: (B1) Baker [62],488

and (B2) Google search. We describe the baselines below.489

B1. Baker: As noted in Section 1, related techniques [62, 51, 14] find490

fully qualified names of the API elements in the code examples. Therefore,491

if a code example contains code elements from multiple APIs, the techniques492

link the code example to all APIs. We compare our algorithm against Baker,493

because it is the state of the art technique to leverage an API database in the494

linking process (unlike API usage patterns [51]). Given that Baker was not495

specifically designed to address the type of problem we attempt to address496

in this paper, we analyze both the originally proposed algorithm of Baker as497

well as an enhanced version of the algorithm to ensure fair comparison.498

Baker (Original). We apply the original version of the Baker algorithm [62]499

on our benchmark dataset as follows.500

1. Code example consisting of code elements (type, method) only from501

one API: We attempt to link it using the technique proposed in Baker [62].502

20

2. Code example consisting of code elements from more than one API:503

if the code example is associated to one of the API mentioned in the504

post, we leave it as ‘undecided’ by Baker.505

Baker (Major API). For the ‘undecided’ API mentions by Baker (Origi-506

nal), we further attempt to link an API as follows. For a code example507

where Baker (original) could not decide to link it to an API mention,508

we link it to an API that was used the most frequently in the code509

example. We do this by computing the call frequency of each API in510

the code example. Suppose, we model a code example as an API call511

matrix A × T , where A stands for an API and T stands for a type512

(class, method) of the API that is reused in the code example. The513

cell (Ai, Tj) has a value 1 if type Tj from API Ai is called in the code514

example. We compute the reuse frequent of each API Ai using the515

matrix by summing the number of distinct calls (to different types) is516

made in the code example. Thus Si =
∑m

j=1 Tj. We assign the code517

example to the API Ai with the maximum Si among all APIs reused.518

B2. Search: In our previous study of two surveys involving 178 software519

developers [67], we found that developers frequently use Google search engine520

to find for solutions in Stack Overflow. This finding is not surprising, because521

the use of search engines to find solutions for development tasks as well API522

coverage is well-documented in software engineering literature [49, 47]. In-523

deed, search engines are extensively used in development activities involving524

API usage [16]. Therefore, we search each valid code example in Google. We525

check the first three hits (without advertisement) per result. If at least one526

hit contains a reference to the associated API, we label the result as correct.527

We do not consider a result relevant if it points to the same Stack Overflow528

post where the code example is found.529

In the Google search engine, we do not preprocess a code example. Our530

decision to use a code example as is was motivated by previous findings that531

developers use Google to support diverse development tasks in their everyday532

tasks and that they do not have access to a specialized engine to meet their533

diverse search needs [67]. Therefore, in the absence of any other tool that534

could be available to software developers to refine/preprocess a code example535

before using Google for code search, it is safe to assume that developers would536

most likely use a code example as it is. Therefore, this setting could give us537

the most unbiased insight of the current state of code to API linking search538

in daily development activities.539

21

Table 3: Performance of linking code examples to API Mentions

Proposed Algorithm Precision Recall F1 Score Acc

Detect Invalid - - - 0.97
Link Valid w/Partial info 0.94 1.0 0.97 0.94
Link Valid w/Full info 0.96 1.0 0.98 0.96
Overall w/Partial Info 0.94 0.97 0.95 0.95
Overall w/Full Info 0.96 1.0 0.98 0.96

Baselines (applied to valid code examples)

B1a. Baker (Original) 0.97 0.49 0.65 0.48
B1b. Baker (Major API) 0.88 0.66 0.76 0.61
B2. Search (Google) 0.39 0.88 0.54 0.37

3.1.2. Results540

We achieved a precision of 0.96 and a recall of 1.0 using our algorithm541

(Table 3). A recall of 1.0 was achieved due to the greedy approach of our542

algorithm which attempts to find an association for each code example. The543

Google search shows the lowest precision (0.39), confirming the assumption544

that Google is primarily a generally purpose search engine. The baseline545

Baker (Original) shows the best precision among all (0.97), but with the546

lowest recall (0.49). This level of precision corroborates with the precision547

reported by Baker on Android SDKs [62]. The low recall is due to the548

inability of Baker to link a code example to an API mention, when more549

than one API is used in the code example. For those code examples where550

Baker (Original) was undecided, we further attempted to improve Baker to551

find an API that is the most frequently used in the code example. The Baker552

(Major API) baseline improves the recall of Baker (Original) from 0.49 to553

0.66. However, the precision of Baker (Major API) drops to 0.88 from 0.97.554

The drop in precision is due to the fact the major API is not the API for555

which the code example is provided. This happened due to the extensive556

usage of Java official APIs (e.g., java.util) in the code example, while the557

mentioned API in the textual content referred to an open-source API (e.g.,558

for Jackson/org.json for JSON parsing). In some cases the major API could559

not be determined due to multiple API having the maximum occurrence560

frequency as well as the presence of ambiguous types in the code example.561

An API type is ambiguous in our case if more than API can have a type562

22

with the same name. For example, JSONObject is a popular class name563

among more than 900 APIs in Maven central only. Even the combination of564

type and method could be ambiguous. For example, the method getValue565

is common for a given type, such as JSONObject.getValue(...). In such566

cases, the usage of API mentions in the textual contents offered our proposed567

algorithm an improvement in precision and recall over Baker.568

We report the performance of our algorithm under different settings:569

1. Detect Invalid. We observed an accuracy of 0.97 to detect invalid code570

examples. 2. Link to valid with Partial Info. We are able to link a valid571

code to an API mention with a precision of 0.94 using only the type-based572

filter from the proximity learning and probabilistic learning. This exper-573

imentation was conducted to demonstrate how much performance we can574

achieve with minimal information about the candidate APIs. Recall that575

the type-based filter only leverages API type names, unlike a combination576

of API type and method names (as used by API fully qualified name infer-577

ence techniques [62, 14, 51]. Out of the two learning rules in our algorithm,578

Proximity learning shows better precision than Probabilistic learning (2 vs579

14 wrong associations). 3. Link to valid with Full Info. When we used all580

the filters under proximity learning, the precision level was increased to 0.96581

to link a valid code example to an API mention. The slight improvement in582

precision confirms previous findings that API types (and not methods) are583

the major indicators for such linking [62, 14]. 4. Overall. We achieved an584

overall precision of 0.94 and a recall of 0.97 while using partial information.585

Almost one-third of the misclassified associations happened due to the586

code example either being written in programming languages other than Java587

or the code example being invalid. The following JavaScript code snippet was588

erroneously considered as valid. It was then assigned to a wrong API: var589

jsonData; $.ajax(type: ‘POST’)....590

Five of the misclassifications occurred due to the code examples being591

very short. Short code examples lack sufficient API types to make an in-592

formed decision. Misclassifications also occurred due to the API mention593

detector not being able to detect all the API mentions in a forum post. For594

example, the following code example [45] was erroneously assigned to the595

com.google.code.gson API. However, the correct association would be596

the com.google.gwt API. The forum post (answer id 20374750) contained597

both API mentions. However, com.google.gwt was mentioned using an598

acronym GWT and the API mention detector missed it.599

23

AutoBean<Ts> b = AutoBeanUtils.getAutoBean(ts)600

return AutoBeanCodex.encode(b).getPayload();601

3.2. RQ2 Performance of Producing Textual Task Description602

3.2.1. Approach603

The evaluation of natural language summary description can be con-604

ducted in two ways [12]: 1. User study: participants are asked to rate the605

summaries 2. Benchmark: The summaries are compared against a bench-606

mark. We follow benchmark-based settings, which compare produced sum-607

maries are compared against those in the benchmark using metrics, e.g.,608

coverage of the sentences.609

In our previous benchmark (RQ1), out of the 367 valid code example,610

216 code examples were found in the answer posts. The rest of the valid611

code examples (i.e., 151) were found in the answer posts. We assess the612

performance of our summarization algorithm for the 216 code examples that613

are found in the answer posts, because each code example is provided in an614

attempt to suggest a solution to a development task and our goal is to create615

task-based documentation support for APIs.616

We create another benchmark by manually producing summary descrip-617

tion for the 216 code examples using two types of information: 1. the descrip-618

tion of the task that is addressed by the code example, and 2. the description619

of the solution as carried out by the code example. Both of these informa-620

tion types can be obtained from forum posts, such as problem definition from621

the question post and solution description from the answer post. We picked622

sentences following principles of extractive summarization [12] and minimal623

manual [11], i.e., pick only sentences that are related to the task. Consider a624

task description, “I cannot convert JSON string into Java object using Gson.625

I have previously used Jackson for this task”. If the provided code example626

is linked to the API Gson, we pick the first sentence as relevant to describe627

the problem, but not the second sentence. A total of two human coders were628

used to produce the benchmark. The first coder is the first author of this629

paper. The second coder is a graduate student and is not a co-author of this630

paper. The two coders followed the following steps: 1. create a coding guide631

to determine how summaries can be produced and evaluated, 2. randomly632

pick n code examples out of the 216 code examples, 3. produce summary633

description of each code example by summarizing the problem text (from634

question post) and the solution text (from answer post). 4. Compute the635

24

Table 4: Agreement between the coders for RQ2 benchmark

Iteration 1 (5) Iteration 2 (15) Iteration 3 (30)

Problem 60.0% 77.8% 87.1%
Solution 60.0% 87.5% 83.3%

Overall 60.0% 82.5% 85.2%

Table 5: Algorithms to produce summary description

Techniques Precision Recall F1 Score Acc

Proposed Algorithm 0.96 0.98 0.97 0.98

B1. Luhn 0.66 0.82 0.71 0.77
B2. Textrank 0.66 0.83 0.72 0.77
B3. Lexrank 0.64 0.81 0.70 0.76
B4. LSA 0.65 0.82 0.71 0.76

agreement between the coders. Resolve disagreements by consulting with636

each other. 5. Iterate the above steps until the coders agreed on at least637

80% of the description in two consecutive iterations, i.e., after that any of638

the coders can produce the summary description of the rest of code examples639

without introducing potential individual bias. In total, the two coders iter-640

ated three times and achieved at least 82% agreement in two iterations (see641

Table 4). In Table 4, the number besides an iteration shows the number of642

code examples that were analyzed by both coders in an iteration (e.g., 30 for643

the third iteration). On average, each summary in the benchmark contains644

5.4 sentences and 155.5 words.645

• Baselines. We compare against four off-the-shelf extractive summariza-646

tion algorithms [21]: (B1) Luhn, (B2) Lexrank, (B3) TextRank, and647

(B4) Latent Semantic Analysis (LSA). The first three algorithms were pre-648

viously used to summarize API reviews [68]. The LSA algorithms are com-649

monly used in information retrieval and software engineering both for text650

summarization and query formulation [23]. Extractive summarization tech-651

niques are the most widely used automatic summarization algorithms [21].652

Our proposed algorithm utilizes the TextRank algorithm. Therefore, by ap-653

plying the TextRank algorithm without the adaption that we proposed, we654

can estimate the impact of the proposed changes.655

25

3.2.2. Results656

We achieved the best precision (0.96) and recall (0.98) using our proposed657

engine that is built on top of the TextRank algorithm. Each summarization658

algorithm takes as input the following texts: 1. the title of the question, and659

2. all the textual contents from both the question and the answer posts. By660

merely applying the TextRank algorithm on the input we achieved a precision661

0.66 and a recall of 0.83 (i.e., without the improvement of selecting sentences662

using beam search that we suggested in our algorithm). The improvement663

in our algorithm is due to the following two reasons: 1. the selection of664

a smaller subset out of the input texts based on the contexts of the code665

example and the associated API (i.e., Step 1 in our proposed algorithm),666

and 2. the separate application of our algorithm on the Problem and Solution667

text blocks. This approach was necessary, because the baselines showed lower668

recall due to their selection of un-informative texts. The TextRank algorithm669

is the best performer among the baselines.670

3.3. RQ3 Performance of Linking Reactions to Code Examples671

3.3.1. Approach672

We assess the performance of our algorithm using a benchmark that is673

produced by manually associating reactions towards the 216 code examples674

that we analyzed for RQ1 and RQ2. Our focus is to evaluate the performance675

of the algorithm to correctly associate a reaction (i.e., positive and negative676

opinionated sentence) to a code example. As such, as we noted in Section 2.5,677

our framework supports the adoption of any sentiment detection tool to de-678

tect the reactions. Given that the focus of this evaluation is on the correct679

association of reactions to code examples, we need to mitigate the threats680

in the evaluation that could arise due to the inaccuracies in the detection681

of reactions by a sentiment detection tool [41]. We thus manually label the682

polarity (positive, negative, or neutral) of each sentence in our benchmark683

following standard guidelines in the literature [6, 26].684

Out of the 216 code examples in our benchmark, 68 code examples from685

59 answers consisted of at least one comment (total 201 comments). The686

201 comments had a total of 493 sentences (190 positive, 55 negative, 248687

neutral). Four coders judged the association of each reaction (i.e., positive688

and negative sentences) towards the code examples. For each reaction, we689

label it either 1 (associated to the code example) or 0 (non-associated). The690

association of each reaction to code example was assessed by at least two691

coders. The first coder (C1) is the first author, the second (C2) is a graduate692

26

Table 6: Analysis of Agreement Between Coders To Validate the Association of Reactions
to Code Examples (Using Recal2 [19])

Total Percent Kappa (pairwise) Krippen α

C1-C2 174 83.9% 0.46 0.45
C2-C3 51 62.7% 0.12 0.05
C1-C3 103 84.5% 0.50 0.51

Table 7: Performance of associating reactions to code examples

Technique Precision Recall F1 Score Acc

Proposed Algorithm 0.89 0.94 0.91 0.89

B1. All Comments 0.45 0.84 0.55 0.45
B2. All Reactions 0.74 0.84 0.78 0.74

student, third (C3) is an undergraduate student, and fourth (C4) is the693

second author of the paper. The second and third coders are not co-authors694

of this paper. The first coder coded all the reactions. The second and third695

coders coded 174 and 103 reactions, respectively. For each reaction, we took696

the majority vote (e.g., if C2 and C3 label as 1 but C1 as 0, we took 1, i.e.,697

associated). The fourth coder (C4) was consulted when a majority was not698

possible. This happened for 22 reactions where two coders (C1 and C2/C3)699

were involved and they disagreed. The labeling was accompanied by a coding700

guide. Table 6 shows the agreement among the first three coders.701

• Baselines. We compare against two baselines: (B1) All Comments. A702

code example is linked to all the comments. (B2) All Reactions. A code703

example is linked to all the positive and negative comments. The first baseline704

offers us insights on how well a blind association technique without sentiment705

detection may work. The second baseline thus includes only the subset of706

sentences from all sentences (i.e., B1) that are either positive or negative.707

However, not all the reactions may be related to a code example. Therefore,708

the second baseline (B2) offers us insights on whether the simple reliance on709

sentiment detection would suffice or whether we need a more sophisticated710

contextual approach like our proposed algorithm that picks a subset of the711

positive and negative reactions out of all reactions.712

27

3.3.2. Results713

We observed the best precision (0.89) and recall (0.94) using our proposed714

algorithm to link reactions to code examples. The baseline ‘All Reactions’715

shows much better precision than the other baseline, but still lower than our716

algorithm. The lower precision of the ‘All Reaction’ is due to the presence717

of reactions in the comments that are not related to the code example. Such718

reactions can be of two types: 1. Developers offer their views of competing719

APIs in the comments section. Such views also generate reactions from other720

developers. However, to use the provided code example or complete the de-721

velopment task using the associated API, such discussions are not relevant.722

2. Developers can also offer views about frameworks that may be using the723

API associated to the code example. For example, some code examples as-724

sociated with Jackson API were attributed to the spring framework, because725

spring bundles the Jackson API in its framework. We observed that such dis-726

cussions were often irrelevant, because to use the Jackson API, a developer727

does not need to install the Spring framework. Therefore, from the usage728

perspective of the snippet, such reactions are irrelevant.729

4. Discussion730

We implemented our framework in an online tool, Opiner [69]. Using the731

framework deployed in Opiner, a developer can search an API by its name732

to see all the mined usage scenarios of the API from Stack Overflow. We733

previously developed Opiner to mine positive and negative opinions about734

APIs from Stack Overflow. Our proposed framework in this paper extends735

Opiner by also allowing developers to search for API usage scenarios, i.e.,736

code examples associated to an API and their relevant usage information.737

The current version shows results from our evaluation corpus. We present738

the usage scenarios by grouping code examples that use the same types (e.g.,739

class) of the API. As noted in Section 3, our evaluation corpus uses Stack740

Overflow 2014 dataset. This choice was not random. We wanted to see, given741

sufficient time, whether the usage scenarios in our corpus were included in742

the API official documentation. We found a total of 8596 valid code exam-743

ples linked to 175 distinct APIs in our corpus. The majority of those (60%)744

were associated to five APIs: java.util, org.json, Gson, Jackson, java.io. Most745

of the mined scenarios for those APIs were absent in their official documen-746

tation, e.g., for Gson, only 25% types are used in the code examples of its747

28

official documentation, but 81.8% of the types are discussed in our mined us-748

age scenarios. Therefore, the automatic mining of the usage scenarios using749

our framework can assist the API authors who could not include those in the750

API official documentation.751

In Figure 9, we show screenshots of our tool. A user can search an API by752

name in 1 to see the mined tasks of the API 3 . An example task is shown753

in 4 . Other relevant tasks (i.e., that use the same classes and methods of754

the API) are grouped under ‘See Also’ (5). Each task under the ‘See Also’755

can be further explored (6). Each task is linked to the corresponding post756

in Stack Overflow where the code example was found (by clicking on the757

details label). The front page shows the top 10 APIs with the most mined758

tasks 2 .759

• Effectiveness of our Tool. Although we extensively evaluated the accu-760

racy of our algorithms, we also measured the effectiveness of our tool with a761

user study. Given that the focus of evaluation of this paper is to study the762

accuracy of the proposed three algorithms in our mining framework and not763

allude on the effectiveness of Opiner as a tool, we briefly describe the user764

study design and results below.765

Participants. We recruited 31 developers. Among them, 18 were re-766

cruited through the online professional developers site, Freelancer.com. The767

other participants (13) were recruited from four universities, two in Canada768

and two in Bangladesh. Each recruiter had professional software development769

experience in Java. Each freelancer was remunerated with $20.770

Tasks. The developers each completed four coding tasks involving four771

APIs (one task for each of Jackson [17], Gson [22], Spring [58] and Xstream [73]).772

The four APIs were found in the list of top 10 most discussed APIs in our773

evaluation corpus. The four tasks were picked randomly from our evaluation774

corpus of 22.7K Stack Overflow posts. Each task was observed in Stack Over-775

flow posts more than once and was asked by more than one devel- oper. Each776

task was related to the manipulation of JSON inputs using Java APIs for777

JSON parsing. For example, the task with Jackson converts a Java object to778

JSON format, the task with Gson converts a JSON string into a Java object,779

the task with Xstream converts an XML string into a JSON string, and the780

task with Spring converts an HTTP JSON response into a Java object.781

For the user study the objects were four resources (our tool, Stack Over-782

flow, Official documentation, Search Engines). The participants were divided783

into four groups. Each of first three groups (G1-3) had eight and the last784

29

1 2

4

An Example Usage Scenario for API com.google.code.gson

Front Page of Online API Usage Scenario Search & Summarizer Engine

3

Each Usage Scenario Has a See Also Section

A Scenario in See Also Section Can be Expanded Upon Click

6

5

Figure 9: Screenshots of online our task-based API documentation tool

30

group (G4) had seven participants. Each participant in a group was asked785

to complete the four coding tasks. Each participant in a group completed786

the tasks using the four resources in the following order.787

• G1: Jackson (Stack Overflow), Gson (Javadoc), Xstream (Opiner),788

Spring (Everything including Search Engine)789

• G2: Spring (Stack Overflow), Jackson (Javadoc), Gson (Opiner), Xstream790

(Everything including Search Engine)791

• G3: Xstream (Stack Overflow), Spring (Javadoc), Jackson (Opiner),792

Gson (Everything including Search Engine)793

• G4: Gson (Stack Overflow), Xstream (Javadoc), Spring (Opiner), Jack-794

son (Everything including Search Engine)795

We collected the time took to complete each task and effort spent using796

NASA TLX index [24] (nasatlx.com). We assessed the correctness of a so-797

lution by computing the coverage of correct API elements. We summarize798

major findings below. More details of the study the results are provided in799

our online appendix [1].800

While using our tool Opiner, the participants on average coded with more801

correctness, spent the least time and effort out of all resources. For example,802

using Opiner the average time developers spent to complete a coding task was803

18.6 minutes and the average effort as reported in their TLX metrics was 45.8.804

In contrast, participants spent the highest amount of time (23.7 minutes)805

and effort (63.9) per coding solution when using the official documentation.806

After completing the tasks, 29 participants completed a survey to share their807

experience.808

More than 80% of the participants considered the mined usage summaries809

as an improvement over both API official documentation and Stack Overflow,810

because our tool offered an increase in productivity, confidence in usage and811

reduction in time spent. According to one participant:“It is quicker to find812

solution in [tool] since the subject is well covered and useful information813

is collected.” The participants considered that learning an API could be814

quicker while using our tool than while using official documentation or Stack815

Overflow, because our tool synthesizes the information from Stack Overflow816

by APIs using both sentiment and source code analyses.817

Out of the participants, 87.1% wanted to use our tool either daily in818

their development tasks, or whenever they have specific needs (e.g., learning819

31

a new API). All the participants (100%) rated our tool as usable for being820

a single platform to provide insights about API usage and being focused821

towards a targeted audience. The developers praised the usability, search,822

and analytics-driven approach in the tool. According to one participant: “In823

depth knowledge plus the filtered result can easily increase the productivity of824

daily development tasks, . . . with the quick glimpse of the positive and negative825

feedback.” As a future improvement, the developers wished our tool to mine826

usage scenarios from multiple online forums.827

5. Threats to Validity828

Internal validity warrants the presence of bias in the study. We mitigated829

the bias using manual validation (e.g., our benchmark datasets were assessed830

by multiple coders). External validity concerns about the generalizability831

of the results. While our evaluation corpus consists of 22.7K posts from832

Stack Overflow, the results will not carry the automatic implication that833

the same results can be expected in general. Reliability threats concern the834

possibility of replicating this study. We provide the necessary data in an835

online appendix [1].836

6. Related Work837

We discuss works related to our proposed algorithms and the overall838

theme of our paper, i.e., crowd-sourced documentation.839

6.1. Works Related to the Three Proposed Algorithms.840

As we noted in Section 1, we are aware of no techniques that can associate841

reactions towards code examples in forums (Section 2.5).842

Our algorithm to generate summary description of tasks (Section 2.4) is843

different from the generation of natural language description of API elements844

(e.g., class [40], method [60, 61]), which takes as input source code (e.g., class845

names, variable names, etc.) to produce a description. We take as input the846

textual discussions around code examples in forum posts. Our approach is847

different from API review summaries [68], because our summary can contain848

both opinionated and neutral sentences.849

Our approach to generate task description from an answer differs from850

Xu et al. [77], who proposed AnswerBot to automatically summarize multiple851

answers relevant to a developer task. The input to AnswerBot is a natural852

32

language query describing a development task. Based on the query, Answer-853

Bot first finds all the questions in Stack Overflow whose titles closely match854

the query. AnswerBot then applies a set of heuristics based on Maximal855

Marginal Relevance (MMR) [10] to find most novel and diverse paragraphs856

in the answers. The final output is the ranked order of the paragaphs as857

a summary of the answers that could be used to complete the development858

task. Unlike Xu et al. [77] who focuses on the summarization of multiple859

answers for a given task, we focus on summarizing the contents of one an-860

swer. Unlike Xu et al. [77] who utilize only the textual contents of answers861

to produce the summary, we utilize both the contents from the question and862

answer to produce the summary. A summary of relevant textual contents863

from questions provides an overview of the problem (i.e., development task).864

Such a problem definition adds contextual information over the question title,865

which may not be enough to explain properly the development task. This866

assumption is consistent with our previous findings of surveys of software867

developers who reported the necessity of adding contextual and situationally868

relevant information into summaries produced from developer forums [67].869

Our algorithm to associate a code example to an API mention in a forum870

post (Section 2.3) differs from the existing traceability techniques for code871

examples in forum posts [62, 51, 79] as follows:872

• As we noted in Section 3.1, the most directly comparable to our technique873

is Baker [62], because both Baker and our proposed technique rely on a pre-874

defined database of APIs. Given a code example as an input, our technique875

differs from Baker by considering both code examples and textual contents876

in the forum posts to learn about which API from the API database to877

link to the code example. Baker does not consider textual contents in the878

forum posts.879

• As we noted in Section 3.1, given that our technique relies specifically880

on an API database similar to Baker [62], our algorithm is not directly881

comparable to StatType as proposed by Phan et al. [51]. StatType relies on882

API usage patterns, i.e., how frequently a method and class name is found883

to be associated with an API in the different GitHub code repositories. We884

do not rely on the analysis of client software code to infer usage patterns885

of an API.886

• Unlike Subramanian et al. [62, 14, 51], we can operate both with incomplete887

and complete API database against which API mentions can be checked888

33

for traceability. This flexibility allowed us to use an online incomplete API889

database (Maven central), instead of constructing an offline database. All890

the existing traceability techniques [62, 14] requires the generation of an891

offline complete API database to support traceability.892

• Unlike Ye et al. [79], we link a code example in a forum post to an API893

mentioned in the textual contents of the forum post. Specifically, Ye et894

al. [79] focus on finding API methods and type names in the textual con-895

tents of forum posts, e.g., identify ‘numpy’, ‘pandas’ and ‘apply’ in the text896

‘While you can also use numpy, the documentation describes support for897

Pandas apply method using the following code example’. In contrast, our898

proposed algorithm links a provided code example with an API mentioned899

in the textual contents. For example, for the above textual content where900

Ye et al. [79] link both ‘Pandas’ and ‘numpy’ APIs, our algorithm will link901

the provided code example to only the ‘Pandas’ API.902

In Section 3.1, we compared our traceability algorithm with the state of the903

art technique, Baker [62]. The recall of Baker was 0.49, i.e., using Baker904

we could not link more than 50% code examples in our evaluation - because905

those contained references to multiple API types/methods, but the textual906

contents referred to only one of those APIs. Our technique could find a907

link for all (i.e., 100% recall) with more than 96% precision. Our evaluation908

sample is statistically representative of our corpus of 8589 code examples.909

Therefore, using Baker we could have only found links for only 4100 of those,910

while our technique could link all 8589 with a very high precision. Stack911

Overflow contains millions of other code examples. Therefore, our technique912

significantly advances the state of the art of code example traceability to913

support task-based documentation.914

Kim et al. [30] proposed FaCoy a code-to-code search engine, i.e., given915

as input a code snippet, the engine finds other code snippets that are se-916

mantically similar to the input code example. While our and FaCoY’s goals917

remain the same, i.e., to help developers in their development tasks, we differ918

from each other with regards to both the outputs and the approaches. For919

example, given as input a code example in Stack Overflow post, we link it to920

an API name as mentioned in the textual contents of the post. In contrast,921

given as input a code example, FaCoY finds other similar code examples.922

Nevertheless, in the evaluation of our proposed algorithm we compared our923

algorithm against Google. We were able to compare Google, because given924

as input a code example, Google outputs links to online web sites where the925

34

API of our interest could be cited. Nevertheless, as we noted in Section 3.1,926

Google search did not perform well for our particular problem. This find-927

ing is not surprising, because Google is not designed for code search, even928

though developers use Google for diverse development tasks which motivated929

us to use Google as a baseline in the first place [67]. A thorough analysis930

of whether and how the results from Google could be significantly improved931

with code preprocessing and the usage of an intermediate engine (such as Fa-932

CoY) is an interesting research question, which warrants for an extensive and933

stand-alone research by itself. We leave it as a future work for the software934

engineering research community.935

6.2. Crowd-Sourced API Documentation.936

The automated mining of crowd-sourced knowledge from developer fo-937

rums has generated considerable attention in recent years. To offer a point of938

reference of our analysis of related work, we review the research papers listed939

in the Stack Exchange question ‘Academic Papers Using Stack Exchange940

Data’ [46] and whose titles contain the keywords (‘documentation’ and/or941

‘API’) [74, 29, 59, 63, 37, 79, 8, 9, 3, 2, 75, 13, 47, 48, 28, 7, 65, 15, 33, 32].942

Existing research has focused on the following areas:943

• Assessing the feasibility of forum contents for documentation and API944

design (e.g., usability) needs,945

• Answer question in Stack Overflow using formal documentation,946

• Recommend new documentation by complementing both official and947

developer forum contents, and948

• Categorizing forum contents (e.g., detecting issues).949

Our work differs from the above work by proposing three novel algorithms950

that can be used to automatically generate task-based API documentation951

from Stack Overflow. As we noted in Section 1, we follow the concept of952

“minimal manual” which promotes task-centric documentation of manual [11,953

5, 56, 36]. We differ from the above work as follows: 1. We include comments954

posted in the forum as reactions to a code example in our usage scenarios.955

2. We automatically mine API usage scenarios from online forum, thereby956

greatly reducing the time and complexity to produce minimal manual.957

Given the advance in techniques developed to automatically mine insights958

from crowd-sourced software forums, recent research on crowd-sourced API959

35

documentation has focused specifically on the analysis of quality in the shared960

knowledge. A number of high-impact recent research papers [81, 78, 64] warn961

against directly copying code from Stack Overflow, because such code can962

have potential bugs or misuse patterns [81] and that such code may not be963

directly usable (e.g., not compilable) [78, 64]. We observed both issues dur-964

ing the development of our proposed mining framework. We attempted to965

offer solutions to both issues within the context of our goal, i.e., producing966

task-based documentation. For example, in Section 2.2, we discussed that967

shared code examples can have minor syntax problem (e.g., missing semi-968

colon at the end of a source code line in Java), but they are still upvoted969

by Stack Overflow users, i.e., the users considered those code examples as970

useful. Therefore, to ensure such code examples can still be included in our971

task-based documentation, we developed a hybrid code parser that combines972

Island parsing with ANTLR grammar to parse code examples line by line.973

Based on the output of the parser, we thus can decide whether to include974

code example with syntax error or not. For example, if a code example has a975

minor error (e.g., missing semi-colon), we can decide to include it. We can,976

however, discard a code example that has many syntax errors (e.g., say 50%977

of the source code lines have some errors).978

While the issues with regards to code usability in crowd-sourced code979

examples [78, 64] could be addressed by converting those into compilable980

code examples, such approach requires extensive research and technological981

advancement due to the diversity of such issues and the huge number of982

available programming languages in modern programming environment. As983

a first step towards making progress in this direction, in our framework, we984

developed the algorithm to associate reactions of other developers towards a985

code example. The design and development of the algorithm was motivated986

by our findings from previous surveys of 178 software developers [67]. The987

developers reported that they consider the combination of a code example988

and reviews about those code examples in the forum posts as a form of API989

documentation and they especially leverage the reviews to understand the990

potential benefits and pitfalls of reusing the code example.991

7. Conclusions and Future Work992

APIs are central to the modern day rapid software development. However,993

APIs can be hard to use due to the shortcomings in API official documen-994

tation, such as incomplete or not usable [54]. This resulted in plethora of995

36

API discussions in forum posts. We present three algorithms to automati-996

cally mine API usage scenarios from forums that can be used to produce a997

task-based API documentation. We developed on online task-based API doc-998

umentation engine based on the three proposed algorithms. Our future work999

focuses on the utilization of our proposed framework to improve API docu-1000

mentation resources, such as the development of techniques to automatically1001

recommend fixes to common API documentation problems (e.g., ambiguity,1002

incorrectness) [71, 54], to associate the mined usage scenarios to specific API1003

versions, and to produce on-demand developer documentation [55]1004

References1005

[1] Online appendix for Mining Task-Based API Documentation. https:1006

//github.com/anonsubmissions/ist2019, 5 August 2019 (last ac-1007

cessed).1008

[2] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider. Clas-1009

sifying stack overflow posts on api issues. In Proceedings of the IEEE 25th1010

International Conference on Software Analysis, Evolution and Reengineering,1011

pages 244–254, 2018.1012

[3] S. Azad, P. C. Rigby, and L. Guerrouj. Generating api call rules from version1013

history and stack overflow posts. ACM Transactions on Software Engineering1014

and Methodology, 25(4):22, 2017.1015

[4] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G. A. Reis, and1016

J. Reyner. Building a sentiment summarizer for local search reviews. In1017

WWW Workshop on NLP in the Information Explosion Era, page 10, 2008.1018

[5] I. Cai. Framework Documentation: How to document object-oriented frame-1019

works. An Empirical Study. PhD in Computer Sscience, University of Illinois1020

at Urbana-Champaign, 2000.1021

[6] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli. Sentiment polarity1022

detection for software development. Journal Empirical Software Engineering,1023

pages 2543–2584, 2017.1024

[7] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller. Deficient docu-1025

mentation detection: A methodology to locate deficient project documenta-1026

tion using topic analysis. In Proceedings of the 10th International Working1027

Conference on Mining Software Repositories, pages 57–60, 2013.1028

37

https://github.com/anonsubmissions/ist2019
https://github.com/anonsubmissions/ist2019
https://github.com/anonsubmissions/ist2019

[8] E. Campos, L. Souza, and M. Maia. Searching crowd knowledge to recommend1029

solutions for api usage tasks. Journal of Software: Evolution and Process,1030

28(10):863–892, 2016.1031

[9] E. C. Campos, M. Monperrus, and M. A. Maia. Searching stack overflow1032

for api-usage-related bug fixes using snippet-based queries. In Proceedings of1033

the 26th Annual International Conference on Computer Science and Software1034

Engineering, pages 232–242, 2016.1035

[10] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for1036

reordering documents and producing summaries. In In Proceedings of the 21st1037

annual international ACM SIGIR conference on Research and development1038

in information retrieval, pages 335–336, 1998.1039

[11] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-Rimetz.1040

The minimal manual. Journal of Human-Computer Interaction, 3(2):123–1041

153, 1987.1042

[12] A. Cohan and N. Goharian. Revisiting summarization evaluation for scientific1043

articles. In Proc. Language Resources and Evaluation, page 8, 2016.1044

[13] B. Dagenais and M. P. Robillard. Creating and evolving developer documen-1045

tation: Understanding the decisions of open source contributors. In Proc.1046

18th Intl. Symp. Foundations of Soft. Eng., pages 127–136.1047

[14] B. Dagenais and M. P. Robillard. Recovering traceability links between an1048

API and its learning resources. In 34th IEEE/ACM International Conference1049

on Software Engineering, pages 45–57, 2012.1050

[15] F. Delfim and M. M. Klérisson Paixão, Damien Cassou. Redocumenting apis1051

with crowd knowledge: a coverage analysis based on question types. Journal1052

of the Brazilian Computer Society, 29(1), 2016.1053

[16] E. Duala-Ekoko and M. P. Robillard. Asking and answering questions about1054

unfamiliar APIs: An exploratory study. In Proc. 34th IEEE/ACM Interna-1055

tional Conference on Software Engineering, pages 266–276, 2012.1056

[17] FasterXML. Jackson. https://github.com/FasterXML/jackson,1057

2016.1058

[18] B. Fox. Now Available: Central download statistics for OSS projects, 2017.1059

[19] D. Freelon. ReCal2: Reliability for 2 coders. http://dfreelon.org/1060

utils/recalfront/recal2/, 2016.1061

38

https://github.com/FasterXML/jackson
http://dfreelon.org/utils/recalfront/recal2/
http://dfreelon.org/utils/recalfront/recal2/
http://dfreelon.org/utils/recalfront/recal2/

[20] D. Freelon. ReCal3: Reliability for 3+ coders. http://dfreelon.org/1062

utils/recalfront/recal3/, 2017.1063

[21] M. Gambhir and V. Gupta. Recent automatic text summarization techniques:1064

a survey. Artificial Intelligence Review, 47(1):166, 2017.1065

[22] Google. Gson. https://github.com/google/gson, 2016.1066

[23] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. D. Lucia, and T. Menzies.1067

Automatic query reformulations for text retrieval in software engineering. In1068

Proc. 35th IEEE/ACM International Conference on Software Engineering,1069

page 10 pages, 2013. to appear.1070

[24] S. G. Hart and L. E. Stavenland. Development of NASA-TLX (Task Load1071

Index): Results of empirical and theoretical research. pages 139–183, 1988.1072

[25] M. Hu and B. Liu. Mining and summarizing customer reviews. In ACM1073

SIGKDD International Conference on Knowledge Discovery and Data Min-1074

ing, pages 168–177, 2004.1075

[26] M. R. Islam and M. F. Zibran. Leveraging automated sentiment analysis1076

in software engineering. In Proc. 14th International Conference on Mining1077

Software Repositories, pages 203–214, 2017.1078

[27] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source code1079

using a neural attention model. In In Proceedings of the Annual Meeting of1080

the Association for Computational Linguistics, pages 2073–2083, 2016.1081

[28] H. Jiau and F.-P. Yang. Facing up to the inequality of crowdsourced api doc-1082

umentation. ACM SIGSOFT Software Engineering Notes, 37(1):1–9, 2012.1083

[29] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov. Using1084

and asking: Apis used in the android market and asked about in stackoverflow.1085

In In Proceedings of the INTERNATIONAL CONFERENCE ON SOCIAL1086

INFORMATICS, pages 405–418, 2013.1087

[30] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L. Traon.1088

Facoy a code-to-code search engine. In In Proceedings of the IEEE/ACM 40th1089

International Conference on Software Engineering, pages 946 – 957, 2018.1090

[31] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proc. 41st1091

Annual Meeting on Association for Computational Linguistics, pages 423–430,1092

2003.1093

39

http://dfreelon.org/utils/recalfront/recal3/
http://dfreelon.org/utils/recalfront/recal3/
http://dfreelon.org/utils/recalfront/recal3/
https://github.com/google/gson

[32] J. Li, A. Sun, and Z. Xing. Learning to answer programming questions with1094

software documentation through social context embedding. Journal of Infor-1095

mation Sciences, 448–449:46–52, 2018.1096

[33] J. Li, Z. Xing, and A. Kabir. Leveraging official content and social context to1097

recommend software documentation. IEEE Transactions on Services Com-1098

puting, page 1, 2018.1099

[34] B. Lin, F. Zampetti, G. Bavota, M. D. Penta, and M. Lanza. Pattern-based1100

mining of opinions in Q&A websites. In Proc. 41st ACM/IEEE International1101

Conference on Software Engineering, page 12, 2019.1102

[35] B. Liu. Sentiment Analysis and Subjectivity. CRC Press, Taylor and Francis1103

Group, Boca Raton, FL, 2nd edition, 2010.1104

[36] H. V. D. Maij. A critical assessment of the minimalist approach to documen-1105

tation. In Proc. 10th ACM SIGDOC International Conference on Systems1106

Documentation, pages 7–17, 1992.1107

[37] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Hauswirth, N. Nystrom, and1108

M. Lanza. Use at your own risk: The java unsafe api in the wild. In Proceedings1109

of the International Conference on Object Oriented Programming Systems1110

Languages & Applications, pages 695–710, 2015.1111

[38] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In Proceed-1112

ings of the Conference on Empirical Methods in Natural Language Processing,1113

pages 404–411, 2004.1114

[39] L. Moonen. Generating robust parsers using island grammars. In Proc. Eighth1115

Working Conference on Reverse Engineering, pages 13–22, 2001.1116

[40] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-1117

Shanker. Automatic generation of natural language summaries for Java1118

classes. In Proceedings of the 21st IEEE International Conference on Pro-1119

gram Comprehension, pages 23–32, 2013.1120

[41] N. Novielli, F. Calefato, and F. Lanubile. The challenges of sentiment detec-1121

tion in the social programmer ecosystem. In Proceedings of the 7th Interna-1122

tional Workshop on Social Software Engineering, pages 33–40, 2015.1123

[42] Oracle. The Java Date API. http://docs.oracle.com/javase/1124

tutorial/datetime/index.html, 2017.1125

40

http://docs.oracle.com/javase/tutorial/datetime/index.html
http://docs.oracle.com/javase/tutorial/datetime/index.html
http://docs.oracle.com/javase/tutorial/datetime/index.html

[43] S. Overflow. http://stackoverflow.com/questions/1688099/,1126

2010.1127

[44] S. Overflow. Name/value pair loop of JSON Object with Java & JSNI. http:1128

//stackoverflow.com/questions/7141650/, 2010.1129

[45] S. Overflow. Converting JSON to Hashmap¡String, POJO¿ using GWT.1130

https://stackoverflow.com/questions/20374351, 2017.1131

[46] S. Overflow. Academic Papers Using Stack Exchange Data.1132

https://meta.stackexchange.com/questions/134495/1133

academic-papers-using-stack-exchange-data, 2019. Last1134

accessed on 12 May 2019.1135

[47] C. Parnin and C. Treude. Measuring api documentation on the web. In1136

Proceedings of the 2nd International Workshop on Web 2.0 for Software En-1137

gineering, pages 25–30, 2011.1138

[48] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey. Crowd documentation:1139

Exploring the coverage and dynamics of api discussions on stack overflow.1140

Technical report, Technical Report GIT-CS-12-05, Georgia Tech, 2012.1141

[49] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey. Crowd documentation:1142

Exploring the coverage and the dynamics of api discussions on stack overflow.1143

Technical report, Georgia Tech, 2012.1144

[50] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-1145

guages. Pragmatic Bookshelf, 1st edition, 2007.1146

[51] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and T. N.1147

Nguyen. Statistical learning of API fully qualified names in code snippets of1148

online forums. In Proceedings of 40th International Conference on Software1149

Engineering, pages 632–642, 2018.1150

[52] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza. Prompter:1151

Turning the IDE into a self-confident programming assistant. Empirical Soft-1152

ware Engineering, 21(5):2190–2231, 2016.1153

[53] P. C. Rigby and M. P. Robillard. Dicovering essential code elements in infor-1154

mal documentation. In Proc. 35th IEEE/ACM International Conference on1155

Software Engineering, pages 832–841, 2013.1156

[54] M. P. Robillard. What makes APIs hard to learn? Answers from developers.1157

IEEE Software, 26(6):26–34, 2009.1158

41

http://stackoverflow.com/questions/1688099/
http://stackoverflow.com/questions/7141650/
http://stackoverflow.com/questions/7141650/
http://stackoverflow.com/questions/7141650/
https://stackoverflow.com/questions/20374351
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data

[55] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,1159

M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vasquez, G. C. Murphy,1160

L. M. D. Shepherd, and E. Wong. On-demand developer documentation.1161

In Proc. 33rd IEEE International Conference on Software Maintenance and1162

Evolution New Idea and Emerging Results, page 5, 2017.1163

[56] M. B. Rosson, J. M. Carrol, and R. K. Bellamy. Smalltalk scaffolding: a case1164

study of minimalist instruction. In Proc. ACM SIGCHI Conf. on Human1165

Factors in Computing Systems, pages 423–430, 1990.1166

[57] F. Shull, F. Lanubile, and V. R. Basili. Investigating reading techniques for1167

object-oriented framework learning. IEEE Transactions on Software Engi-1168

neering, 26(11):1101–1118, 2000.1169

[58] P. Software. Spring Framework. https://spring.io/, 2017.1170

[59] L. Souza, E. Campos, , and M. Maia. On the extraction of cookbooks for apis1171

from the crowd knowledge. In Proceedings of the 28th Brazilian Symposium1172

on Software Engineering, pages 21–30, 2014.1173

[60] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. To-1174

wards automatically generating summary comments for Java methods. In1175

Proc. 25th IEEE/ACM international conference on Automated software en-1176

gineering, pages 43–52, 2010.1177

[61] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically detecting and1178

describing high level actions within methods. In Proc. 33rd International1179

Conference on Software Engineering, pages 101–110, 2011.1180

[62] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API documentation. In1181

Proceedings of 36th International Conference on Software Engineering, pages1182

643–652, 2014.1183

[63] J. Sunshine, J. D. Herbsleb, , and J. Aldrich. Searching the state space: A1184

qualitative study of api protocol usability. In Proceedings of the International1185

Conference on Program Comprehension, pages 82–93, 2015.1186

[64] V. Terragni, Y. Liu, and S.-C. Cheung. Csnippex: automated synthesis of1187

compilable code snippets from qa sites. In In Proceedings of the 25th Inter-1188

national Symposium on Software Testing and Analysis, pages 118–129, 2016.1189

[65] C. Treude and M. P. Robillard. Augmenting API documentation with insights1190

from stack overflow. In Proc. 38th International Conference on Software En-1191

gineering, pages 392–403, 2016.1192

42

https://spring.io/

[66] G. Uddin, O. Baysal, and L. Guerrouj. Understanding how and why devel-1193

opers seek and analyze api-related opinions. IEEE Transactions on Software1194

Engineering, page 13, 2017.1195

[67] G. Uddin, O. Baysal, L. Guerrouj, and F. Khomh. Understanding how and1196

why developers seek and analyze API-related opinions. IEEE Transactions1197

on Software Engineering, 2019.1198

[68] G. Uddin and F. Khomh. Automatic summarization of API reviews. In Proc.1199

32nd IEEE/ACM International Conference on Automated Software Engineer-1200

ing, pages 159–170, 2017.1201

[69] G. Uddin and F. Khomh. Automatic summarization of api reviews. In Sub-1202

mitted to 32nd IEEE/ACM International Conference on Automated Software1203

Engineering, page 12, 2017.1204

[70] G. Uddin and F. Khomh. Automatic opinion mining from API reviews from1205

stack overflow. IEEE Transactions on Software Engineering (TSE), page 36,1206

2019.1207

[71] G. Uddin and M. P. Robillard. How API documentation fails. IEEE Softawre,1208

32(4):76–83, 2015.1209

[72] G. Uddin and M. P. Robillard. Automatic resolution of API mentions in1210

informal documents. In McGill Technical Report, page 6, 2017.1211

[73] J. Walnes. Xstream. http://x-stream.github.io/, 2017.1212

[74] W. Wang and M. W. Godfrey. Detecting api usage obstacles: A study of1213

ios and android developer questions. In In Proceedings of the 10th Working1214

Conference on Mining Software Repositories, pages 61–64, 2013.1215

[75] W. Wang and M. W. Godfrey. Detecting API usage obstacles: a study of iOS1216

and Android developer questions. In Proceedings of the 10th International1217

Working Conference on Mining Software Repositories, pages 61–64, 2013.1218

[76] Wikipedia. Application programming interface. http://en.wikipedia.1219

org/wiki/Application_programming_interface, 2014.1220

[77] B. Xu, Z. Xing, X. Xia, and D. Lo. Answerbot: automated generation of an-1221

swer summary to developers’ technical questions. In Proc. 32nd IEEE/ACM1222

International Conference on Automated Software Engineering, pages 706–716,1223

2017.1224

43

http://x-stream.github.io/
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface

[78] D. Yang, A. Hussain, and C. V. Lopes. From query to usable code: an analysis1225

of stack overflow code snippets. In In Proceedings of the 13th International1226

Conference on Mining Software Repositories, pages 391–402, 2016.1227

[79] D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre. Learning to extract api men-1228

tions from informal natural language discussions. In Proceedings of the 32nd1229

International Conference on Software Maintenance and Evolution, page 12,1230

2016.1231

[80] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig. Learning to mine1232

aligned code and natural language pairs from stack overflow. In In Proceedings1233

of the 15th International Conference on Mining Software Repositories, pages1234

476–486, 2018.1235

[81] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim. Are code1236

examples on an online qa forum reliable?: a study of api misuse on stack1237

overflow. In In Proceedings of the 40th International Conference on Software1238

Engineering, pages 886–896, 2018.1239

44

