Towards Convenient Management of Software Clone
Codes in Practice: An Integrated Approach

Md Sharif Uddin

Chanchal K. Roy

Kevin A. Schneider

Dept. of Computer Science
University of Saskatchewan
. Saskatoon, Canada
{s.uddin, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT

Software code cloning is inevitable during software develop-
ment and unmanaged cloning practice can create substantial
problems for software maintenance and evolution. Current
research in the area software clones includes, but is not lim-
ited to: finding ways to manage clones; gaining more control
over clone generation; and, studying clone evolution and its
effects on the evolution of software. In this study, we in-
vestigate tools and techniques for detecting, managing, and
understanding the evolution of clones, as well as design a
convenient tool to make those techniques available to a de-
veloper’s software development environment. Towards the
goal of promoting the practical use of code clone research
and to provide better support for managing clones in soft-
ware systems, we first developed SimFEclipse: a clone-aware
software development platform, and then, using the tool, we
performed a study to investigate the usefulness of using a
number clone based technologies in an integrated platform
rather than using those discretely. Finally, a small scale
user study is performed to evaluate SimFEclipse’s effective-
ness, usability and information management with respect to
some pre-defined clone management activities. We believe
that both researchers and developers would enjoy and uti-
lize the benefits of using SimFEclipse for different aspects of
code clone research as well as for managing cloned code in
software systems.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environmen-
ts—integrated environments; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—restru-
cturing, and reverse engineering

General Terms

Design, Management

Copyright (©) 2015 Md Sharif Uddin, Chanchal K. Roy, Kevin A. Schnei-
der. Permission to copy is hereby granted provided the original copyright
notice is reproduced in copies made.

CASCON 2015, Markham, Canada.

Keywords
Software Clone, Integrated Clone Management, IDE Plugin

1. INTRODUCTION

Investigating and understanding a software system’s code
clones is important to manage clones easily and efficiently.
Gode [7] found that most of the clones detected by state-
of-the-art clone detectors need not be removed. His study
has significant implications from the point of view of soft-
ware maintenance. No matter what the cause, in most cases
it is the developer’s activity that directly (e.g., by copy-
ing, pasting or modifying code) or indirectly (e.g., by using
code generation programs or tools) introduces cloned code
in a system. It is very hard to manually track, especially in
large systems, whether those activities unknowingly intro-
duce clones. Without efficient access to clone information
it is hard for a developer to efficiently manage clones in the
system (e.g., refactoring/removing cloned code) or to reduce
the negative effects of clones during software evolution. Even
if information about the clones in a system is available (e.g.,
using a standalone clone detection tool), in most cases a de-
veloper needs to supplement that knowledge with manual
investigation and identification on the working codebase to
locate and process the clones. In addition, it is problematic
to identify consistently changing clones over time [11].

In support of code clone management, a number of stan-
dalone tools are proposed in the literature and are available
for use in clone detection, visualization, analysis, and so
on [16, 17] . However, using these standalone tools for man-
aging clones in evolving software might not always be useful
in practice as opposed to having similar facilities directly
available from within an IDE (Integrated Development En-
vironment) as added features. Therefore, from a developer’s
perspective, there is a gap between state-of-the-art software
clone management support tools and software development
environments. Thus a clone tracking and awareness tool is
essential for assisting the software developers to efficiently
maintain software. A growing need for further research to-
wards an integrated clone management system was also ad-
dressed in a recent study by Roy et al. [17].

Our overall idea for supporting clone management is to
see if it is beneficial to integrate some key clone manage-
ment primitives into a software development environment.
That is, we are interested in addressing the following re-
search question: “Does integration of clone based technolo-
gies into developers working environment (IDE) make clone
management activities more convenient and efficient (as op-
posed to using the those discretely, outside of IDE)?”.

In order to answer this research question, we conducted a
user study' based on a prototype IDE plugin SimFEclipse®
- an Eclipse® IDE plugin to help the developers for detect-
ing, visualizing and tracking clones in projects from within
IDE.In support of understanding the evolution of both clone
and non-clone source code in a multi-version software sys-
tem, SimEclipse also provides a source code evolution his-
tory viewer and clone genealogy viewer. We show how SimFE-
clipse can support a software developer in dealing with clones
and can seamlessly aligned with development workflow.

Overview: The rest of this paper is organized as follows.
Section 2 covers some basics of clone management. Section
3 presents the features of SimEclipse plug-in. Section 4 and
5 provides the user study in detail based on SimEclipse.
Section 6 covers some related work and Section 7 answers the
research question. Finally, Section 8 concludes the paper.

2. CLONE MANAGEMENT

Clone management is a cross cutting topic concerning dif-
ferent domains of software clones. As an umbrella activity it
covers various aspects of clones including but not limited to
clone detection, classification, visualization, evolution anal-
ysis, tracking, refactoring, and so on. Current studies show
various benefits of clone management, including improved
customer satisfaction and improved system quality with a
positive impact on software maintainability [15, 13]. In the
remainder of this section we discuss some basic clone man-
agement features and clone management strategies.

2.1 Clone Management Features

e Detection: Clone detection is a fundamental require-
ment of a clone management strategy. If this feature is
not present natively, detection results from third-party
standalone clone detectors are used. Such feature de-
pendency, or stated another way, lack of native detec-
tion support, would make a clone management system
less interactive for the developers and also might be
incapable of supporting other features like focused/on-
demand clone searching, clone tracking, and so on.

e Representation/Documentation: This feature captures
and stores the result of clone detection as a form of
clone documentation that records the location of code
segments and their clone relationships. Once created,
it can be re-used as many times as needed to view the
clone information for the system without re-invoking
the detection process. Clone documentation may be
analyzed to justify the use of clones or to find potential
clones for removal.

e Visualization: Visualization is a powerful technique
that can aid understanding and analysis of clones after
detection. This feature may offer various types of clone
visualization with (e.g., tree-view) or without (e.g.,
scatter-plot, tree-map) using internal features of the
IDE. In most of the visualization approaches, the de-
velopers can navigate to the actual cloned code in the
system and possibly compare the clones in the same
group to view differences.

!Study Material: http://homepage.usask.ca/ mdu535/tools
/simeclipse/study

2Prototype: http://homepage.usask.ca/ mdu535/tools.html
http://www.eclipse.org

e Analysis: This module analyzes the clones in the sys-
tem and provides various insights about the cloning
status of the system. Such analysis may include but
is not limited to various statistical analysis featuring
types of clones, clone density in various regions in the
system and historical analysis. In addition, analysis
could be performed to determine clone candidates for
refactoring with the purpose of removing duplication.

e Tracking: This module provides clone awareness func-
tionality in a clone management system. An evolving
software system goes through frequent changes (add /
edit / delete) in the code base. Such changes may
introduce new code segments that might form new
clones (e.g., copy-paste code) or invalidate some exist-
ing clones in the system. Both situations require cor-
responding updates to the clone documentation, which
can be supported with this feature. This feature tracks
existing clones in the system and follows their evolu-
tion throughout the life of the software. In addition, it
looks for source code changes and notifies the develop-
ers if new clones are introduced in the system because
of the changes made.

e Refactor/Removal: This module allows the developers
to delegate the code structure changes to the refac-
toring engine of the IDE and reduces errors that may
occur if changing the code was done manually. This
feature may provide guidance for refactoring, however,
integrating this component into an IDE may still re-
quire that the clone information is provided manually
to the refactoring engine.

2.2 Clone Management Strategies

Clone management summarizes all process activities which
are targeted at detecting, avoiding and/or removing clones [6].
There are essentially two main strategies for managing clones:

1. Preventive Clone Management avoids introducing clones
and may also maintain awareness of existing unavoid-
able clones to better understand their evolution in or-
der to eliminate harmful effects. In practice, clones
are unavoidable and thus the expectation of having a
clone-free system is unrealistic. Therefore, preventive
clone management might also be termed as proactive
clone management [9] that aims to deal with the clones
during their creation or soon after they are introduced.

2. Corrective Clone Management features refactoring/re-
moving clones after they are detected. While it might
not be possible to refactor /remove all of the clones in a
system (e.g., Type-2* and Type-3° near-miss clones),
exact clones (Type-1°) are typically good candidates
for refactoring.
Next we present SimFEclipse as a versatile IDE plug-in
that covers a rich set of features in support of better clone
management in software development and evolution.

4Code fragments which are structurally/syntactically simi-
lar but may contain variations in identifiers, literals, types,
layouts and comments.

®Code fragments with modifications in addition to those de-
fined for Type-2 clones, such as: insertion, deletion or up-
date of a statement.

5Code fragments which are identical without considering the
variations in white space and comments.

‘OB | Pl E N EE e

*/

public FigureMover(IFigure figure) {
this.figure = figure;
figure. addMouselistener(this);
figure. addMouseMotionListener(this);

Border.java

}

s

5 ‘E SimEclipse Navigator ﬁ- FIE SimEclipse Projects e SimEclipse Clor
¥ = listener
¥ = FigureMover java

publlc FigureMover (IFigure figure) [22:26]
public void mouseDoubleClick (MouseEvent event) [65:86)
publi(void mouseDragged (MouseEvent event) [42:63]
public void mouseReleased (MouseEvent event) [92:97 |

P (= misc

Figure 1: Source navigation in SimFEclipse Navigator View

3. SIMECLIPSE: A CLONE-AWARE PLUG-
IN FOR ECLIPSE IDE

Over the past decade, a number of state-of-the-art tools
have emerged from software clone research that address clone
detection, visualization, analysis and management. From
the software development perspective, the question is, are
those tools really useful in a practical context? That is, how
conveniently can the software developers make use of these
tools in their development activities. In most cases, the ex-
isting approaches partially cover the scope of clone manage-
ment or do not integrate well in a software developer’s devel-
opment workflow. In this section, we present SimFEclipse -
an Eclipse plugin featuring the preventive clone management
strategy by providing a developer options for detecting, visu-
alizing, analyzing and tracking clones in projects. The goal
of SimEclipse is to make state-of-the-art clone management
technologies available in the IDE so that clones in software
can be managed in a convenient way at the place where they
are mostly introduced and evolved. Brief descriptions of the
various SimFEclipse features follow.

3.1 Just-in-time Clone Detection

Clone detection can be performed on a SimFEclipse enabled
project using various views, e.g., ‘Eclipse Project/Package
Explorer View’, ‘SimEclipse Projects View’, ‘SimEclipse Nav-
igator View,” and so on. The ‘SimEclipse Navigator View’
(Fig. 1) also allows the developers to explore the codebase
of a SimEclipse enabled project using a tree based hierar-
chical view. The developers can see the directory, files and
fragments in the code base for which clone detection can
be invoked for any item as per choice. Clicking on any file
or fragment entry here will display the actual source file in
the workbench using the integrated source editor associated
with the file. For code fragments, the entire fragment will
be highlighted in the editor (Fig. 1). In addition, a user
can perform clone detection from the editor by defining an
arbitrary portion of the code.

3.2 Clone Visualization

Detected clones are visualized through the ‘SimEclipse
Clones View’ (Fig. 2) where clone groups are displayed based
on the detection settings for the project. Clones are shown
in different colors based on their types. Users can click on
any clone to see it highlighted in the editor (Fig. 2). From

this view, the user can also compare any two clones in a
clone group to see the actual similarities and dissimilarities.

3.3 Clone Tracking

3.3.1 Clone Annotation (Existence Tracking)

The developers can have their editor marked for a file that
contains clones by choosing the corresponding option in the
context menu available by right-clicking on the source file in
the editor. Each yellow flag mark shown in the left vertical
bar of the editor (Fig. 3) represents the location of a clone
fragment in the subject file. Location information of other
clone fragments related to this clone group can be seen by
double clicking the flag. This will open a pop-up window
(Fig. 4) from which the developers can explore and see the
actual source of those fragments in the editor.

3.3.2 Clone Change Tracking

Clone change tracking is an automated service provided by
SimEclipse to track the generation and evolution of clones
in the project. The service provides real-time notifications
when any new clone has been evolved in the system due to
the changes made in source code. If the changed code is orig-
inally a clone but the recent changes made on it is not quite
enough (so that it will no longer be considered as clone under
the defined detection setting), it will also be reported. Both
the new and old (but changed) clone fragment entries will
be highlighted in red text in the SimEclipse Clones View,
while the others will remain in the default color scheme for
the particular type of clone (Fig. 5). As a background ser-
vice, it senses changes made on the codebase after every save
operation made on the project source files from within the
IDE and reports any cloning activity as happened. Using
this feature, the developers can avoid accidental generation
of clones, for example, because of not knowing the existence
of similar code elsewhere in the project. If source code gets
changed outside the IDE that affects the cloning state of
the system, manual update of the clone index (a user op-
eration in the plug-in) for that project would cover those
changes in the clone tracking process. The current SimE-
clipse prototype does not provide any automatic refactoring
or clone removal feature. Instead, it lets the developers do
this based on their own rationale using a manual approach
or using the code refactoring features available in the IDE.
SitmEclipse however does check whether changes made to
any clone fragments made these disappear or not.

™ 9o v 5le Gon o
| NoteBorder.java ‘ m MNoteAdapter.java 8 \ﬂ MarriageAdapter.java | [
) private TinaL Note note;
L6
17 public NoteAdapter(Note note) {
18 super(note, new NoteFigure(note.getText())});
19 this.note = note;
20 note.addNotelistener(this);
21 1
238 public NoteFigure getFigure() {
P a v) . . = e . N N
M% SimEclipse Navigator | ligs SimEclipse Proje
7-:-Clone Group-12 (Type-2, Size : 2)
@ /src/com/qualityeclipse/genealogy/view/NoteAdapter_java [Line: 17-21]
e}srcy‘com,‘quaIlweclupse/genealcgwwewﬁMarnageAdapter.Java [Line: 23-
wa% Clans Crann-12 (Tuna-2 Siza - 2

Figure 2: Inspect Clone Code in SimEclipse Clones View

124 */

U LLSL UI SUPPUILEU SULILE §LLES, RULL UN EFTUL.

125 Clone Fragment: CoreFileUtils.java (line: 125 - 154] Click the marker to explore related clonesime)
126 {

127 if (log.isTraceEnabled())

128 log.trace("getSupportedFilesInProject() - projectName: " + praje
129 assert (projectName |- null);

130

131 IProject project - ResourcesPlugin.getWorkspace().getRoot().getPraje
132 if (project —= null || lproject.exists())

133

134 log.error("getSupportedFilesInProject() - project doesn't exist
135 new Throwable());

136 return null;

137 }

Figure 3: Marked location of clones in editor

124 */

125 public static List<IFile> getSupportedFilesInProject(String p
SIS 6 /src/org/electrocodeogram jcpcfcore / utils/CoreFileUtils. java (162,193)
127 @ {srcforg/electrocodeogram/cpefcore/utils/CoreFileLtils java (201,232)

128 | aChange modifiers to final where possible ctName
129
130
131 etRoot
13z

Figure 4: Marked Location shows other clones
3.4 Clone Analysis
3.4.1 Clone Genealogy Viewer

An implementation of the genealogy extractor proposed
by Saha et al. [18] is integrated into the plug-in. For a
multi-version project, SimFEclipse is able to extract and dis-
play clone genealogies. From the SimFEclipse settings option,
users can add multiple versions of the project source if avail-
able (form the file system) and then invoke the extract/view
clone gemealogy operation for the lifecycle of the project as
represented by the versions added. From the ‘SimEclipse
Clone Genealogy View’ (Figure 6) users can explore the ge-
nealogies by versions and study their evolution.

3.4.2 Code History Exploration

Similar to the ‘Clone Genealogy View’, for a multi-version
project, SimFEclipse allows the developers to inspect the
source modification history for both clone and non-clone
source fragments (Figure 7). If the original project source
code comes with source code repository information along
with it, SimFEclipse displays the developer/author informa-
tion as well (using SVN/Git blame command internally) so
that the developer who is currently working on the code
would be able to know which other developers worked on
this code in the past. This feature would help the develop-
ers to understand the changes in source code throughout the
lifecycle of the project.

4. IDENTIFYING THE EFFECTIVENESS OF
INTEGRATED CLONE TECHNOLOGIES:

A SCENARIO BASED STUDY

The motivation of this study is to capture the user expe-
rience in dealing with software clones in two different work-
ing scenarios: the Discrete Approach and the Integrated Ap-
proach. For the Discrete Approach, the study participants

15ks '.,.:". SimEclipse Clones ‘537 % SimEclipse Navigaturl T{é] SimEclig

; com.qualityeclipse.genealogy(Clone Groups: 1, Clone Fragments: 3)
'C:CCIcme Group-1 (Type-3, Size : 3)
a [srcjcom/qualityeclipse/genealogy/model/Person. java [Line: 53~
0 fsrc/com/qualityeclipse /genealogy/model /Person.java [Line: 42-
e Jsrc/com/qualityeclipse/genealogy/model/Note.java [Line: 24-3:

Figure 5: Notification of newly introduced clone

7 Tasks [SimEclipse Projects (£ Simélipse Genealogy, &3

> Genealogy 1 [Type : Inconsistent]

¥“3 Genealogy 2 [Type : Static]
» @ Cenealogy Element [Project Version : dnsjava-2-0-3, Source Change : no_change_true, Fragment Change : n/a, Genealogy Type : Type-3]
» @ Genealogy Element [Project Version no_change_true, Fragment Change : n/a, Genealogy Type : Type-3]
» @ Genealogy Element [Project Version no_change_true, Fragment Change : n/a, Genealogy Type : Type-3]
» @ Cenealogy Element [Project Version -6, Source Change : null, Fragment Change : null, Genealogy Type : Type-3]

1 Genealogy 3 [Type : Inconsistent]
3 Genealogy 4 [Type : Static]

>

1 Tasks (i SimEclipse Projects &3, # SimEclipse Genealogy

| >3 Genealogy 5 [Type : Static]
1| >3 Genealogy 6 [Type : Static] “Name Automaticindex
© Genealogy 7 [Type : Static] =ant Disable
3 Genealogy 8 [Type : Static] = com.qualityeclipse.genealogy Enable
o3 i = dnsjava-2-0-6 Disable
Genealogy 9 [Type : Static] X Settings

2 Genealogy 10 [Type : Static]
2 Genealogy 11 [Type : Static]
“2 Genealogy 12 [Type : Static] ® View Clone

3 Genealogy 13 [Type : Static] #+ Detect Clone

3 Genealogy 14 [Type : Static] # Update Clone Index
“2 Genealogy 15 [Type : Static] & Export Clone

“2 Genealogy 16 [Type : Static])

“2 Genealogy 17 [Type : Static] O Disable SimEclipse
“2 Genealogy 18 [Type : Static]

Figure 6: Clone Genealogy Viewer in SimFclipse

were told to perform some pre-defined code clone related
tasks on a subject system using a set of standalone tools.
For the Integrated Approach, they were told to perform the
same tasks using SimFEclipse as a tool with integrated clone
management features. The idea is to capture whether they
feel any necessity of having a platform with an integrated
clone management system rather than discretely using some
standalone tools to accomplish the tasks. The user experi-
ence captured in both approaches is contrasted to measure
the effectiveness of using integrated clone technologies when
working with software clones.

4.1 Experimental Setup

The study required a set of participants, a set of tasks,
a questionnaire, methods of evaluation, and result analysis.
The following steps constitute the setup for our experiment.

4.1.1 Test Design

In this experiment, the participants perform a set of six
tasks in two different working scenarios/environments as
stated earlier. The tasks were designed from easy to fairly
complex covering different needs in clone management. Each
task is associated with a question and the participants are
expected to find some answers by performing the task. All
the required input information to perform a task are also
provided. The tasks designed for the study are as follows:

T1: Given three functions/methods (in the source code),
identify if they are clones or not in the given system.
Target Usage: Clone Detection

T2: On-demand/Focused clone search, identify number of
Type-1 clones in three source packages/folders.
Target Usage: Clone Detection/Visualization

) Locationjava [1] FileScanner.java |1 Mainjava 53

3
project. setInputhandler handler);

i Tasks i SimEclipse Projects |42 SimEclipse Code Histor
“ode Fragment in Version (ant] | File: /_researchitest_s (952,963))

952/coner "] private void addinputhandler(Project project) throws BuildException {
1953 bodewig| InputHandler handler = null;
954 bodewig| if inputHandierClassname == nul) {

} Hardler -
956, bodewig | Jelse (thor name)
W9s7Likt | handiec = (nputhandier) ClaspathUtismeiinstance(
inputhandierCiassnare, Main.class.gerClassLoader,
Inputhandie.class):
projectsetProjectReferencelhandier)
i

i project.setinputHandlerthandiery R —
gl) < navigate to old versions >
nts in older version -~ - I
] Code Fragment i Version [ANT_1921{ File research/iest_syst 2
~ = Source Lines
952 conor private void adelinputHandier(Project project) throws BuldException (
12953. bodewig InputHandler handler = null;
12954. bodewig if (inputHandlerClassname == null) {

055, bodewia handler = new DefaultinputHandler(;

956, bodewig Jelse {

957, jit handler = (nputHandler) ClasspathUtls mewinstance(
958, jkf inputHandlerClassname, Main.class.getClassLoader,
959, jkf InputHandler class)

W60, jkf project setProjectReference(handier):

w961 bodewig

962 bodewia projectsetinputhandierthander;

1963, bodewig]
[+ Similar fraaments in older version

Figure 7: SimFEclipse Code History Explorer

T3: Apply given source modification to three existing func-
tions, if they are clones; apply the modification to all
the associated clone fragments as well.

Target Usage: Clone Detection/Visualization/Tracking

T4: Add three functions on a specified source file (both
code to write and source location are provided), de-
termine which of the functions newly added fall into
existing clones in the system, if so, identify the loca-
tion and type of the clones.

Target Usage: Clone Detection/Visualization/Tracking

T5: Identify clone genealogy of two given functions (the
function being a member of an existing clone class).
Target Usage: Clone Analysis/Understanding

T6: The clone genealogy of one of the above two functions
is inconsistent. Identify that inconsistent genealogy
and locate the change that makes the clone class incon-
sistent. Locate the developer who made the change.
Target Usage: Clone Analysis/Understanding

Finally, a questionnaire was designed to evaluate the tasks
performed by the participants in terms of Completion Status,
Completion Time, Correctness and Ezxecution Difficulty.

4.1.2 Running Study Session

This part of our experiment modeling initiates the user
participation in a one-on-one session with each participant.
At the very beginning, the participants were given an intro-
duction to the nature and purpose of the study followed by
a small orientation on software clones if the term is new to
the participant. After that, a short survey was performed
to capture their familiarity with software development and
various aspects of clones in software. The next part allows
the participants to do specific tasks using some code clone
related software tools and answer the related questions. This
part of the study session had the following three phases:

Phase 1 (Discrete Approach):

1. A candidate Java project with multiple versions (at
the release level) is identified. Each version is checked
out from the SVN source repository to separate folders
with its version name.

2. The latest version of the candidate project is imported
into the Eclipse IDE as a Java project.

3. Standalone clone detection, visualization, analysis tools
are provided (we used SimCad, VisCad, gCad) as well
as the SVN command-line client to explore the author
information from the source code repository.

Study Session: The study participants are shown the
use of the supporting standalone tools (using video
demonstration) and then asked to perform the tasks
mentioned earlier in this section. At the end of each
task, the participant fills out the 'Task Based Ques-
tionnaires’ for this task on the Discrete Approach, which
records his/her experience and any outcome of the task
in this scenario.

Phase 2 (Integrated Approach):

1. A candidate Java project with multiple versions (at
the release level) is identified. Each version is checked
out from the SVN source repository to separate folders
with its version name.

2. The latest version of the candidate project is imported
into the Eclipse IDE as a Java project

3. The SimFEclipse plugin is installed and enabled for the
candidate project that was imported into Eclipse.

Study Session: The study participants (the same group
in the previous study) are shown the features of SimFE-
clipse (using video demonstration) and then they are
asked to perform the same tasks (with a different input
set) again using the various features of SimFEclipse. At
the end of each task, the participant fills out the "Task
Based Questionnaires’ for this task on the Integrated
Approach, which records his/her experience and any
outcome of the task in this scenario.

Phase 3:

The participants fill out the answers to the questions
for the “Overall User Experience” in performing the
tasks in two different environments.

4.2 Summary of Findings

There were 12 participants in the study. All of them with
some software development experience throughout their aca-
demic curriculum, while five of them with at least one year
of experience in software industry. Among the participants,
eight were found having at least basic knowledge of software
clones prior to the introductory session of the study. Since,
in our study, a participant gets to perform similar tasks in
two test scenarios (with different input though, clone set of
similar size in different project), the order of the test sce-
nario might introduce some bias in test results. To avoid
this, we had 50% of the participants to try the Discrete Ap-
proach first and then the Integrated Approach, and in the
reverse order for the remaining 50%. User feedback from
the participants upon performing the given tasks in the two
different working scenarios has been analyzed. The result is
presented as follows in the form of contrasting their task per-
formance based on four criteria: completeness, time taken,
correctness and difficulty.

Task Completeness Analysis: We compare how many tasks
the participants in the two different study environments
completed successfully. Figure 8 shows, in the Discrete Ap-
proach, three and seven participants were not able to com-
plete the task T4 and T'6 respectively in the given timeframe
(15 minutes/task). On the other hand, all the participants
in the Integrated Approach were able to complete all the
tasks successfully by the given time.

Task Completion Time Analysis: In the task completion
time analysis, we analyze and compare the time taken by
the participants in completing the tasks in the different en-
vironments. For the ease of time performance comparison,
the given timeframe (15 minutes/task) is divided into three
equal time slots labeled as Fast, Medium and Slow. The
recorded time slot data in the study are normalized into
Time Points according to the Table 1. The normalization

Table 1: Point scale for task completion time analysis

Completion Time Slot | Time Point
0-5 minutes / Fast 3
5-10 minutes / Medium 2
10+ minutes / Slow 1

Performance in completion of task
L B Discrete Ontegrated
g 14
£ 12
£
T 10
2
L 8
£
g 6
o 4
=
2 2
g o
) T1 T2 T3 T4 TS5 T6
I*

Tasks *Higher bar is better

Figure 8: User performance in completing tasks in the two
different environments

Table 2: Point scale for task correctness analysis

Performance in task
Correctness (total)

M Discrete " Integrated
30

25
20
15
10

Total correctness points *

TL T2 T3 T4 TS5 Té6
Tasks
*Higher bar is better

Performance in task
Correctness (average)

® Discrete " Integrated

T1 T2 T5

Tasks

I I
tn o~

o
«n

Average correctness points *
= =

* Higher bar is better

Figure 10: Comparison of task correctness in the two differ-

ent environments

Task Execution Difficulty
(total)

Task Execution Difficulty
(average)

Task Based Question Answered

Correctness Point

Wrong/Incomplete
Partially correct
Fully correct

0
1
2

scheme assigns higher points to the task completed in less
time. For each task, the total and average Time Points are
calculated for all the participants. Figure 9 shows the com-
parison of the total and average Time Points of the tasks in
the two different environments. From the figure it is clear
that all the tasks being performed in the Integrated Approach
associated with higher total and average Time Points than
in the Discrete Approach, which means the participants were
able to complete the tasks faster in the Integrated Approach
compared to the Discrete Approach.

Task Correctness Analysis: Each task has a question as-
sociated with it, and by performing the task, a participant
is lead towards an answer. This analysis covers user per-
formance in finding the correct answer to the question as-
sociated with the tasks. Based on the participant’s answer,
a Correctness Point is assigned according to Table 2. Note
that the participant’s answer to some tasks might be con-
sidered as partially correct when there are multiple compo-
nents in the answer. For example, correctly identifying some
of the clones of a given code fragment, but not all. For each
task, total and average Correctness Points are calculated
for all the participants. Figure 10 shows the comparison of
total and average Correctness Points for the tasks in the
two different setups, which clearly indicates that the partic-
ipants did well in the Integrated Approach compared with

Performance in task Performance in task
completion time(total) completion time (average)
®Discrete " Integrated . ® Discrete Integrated
® 40 w35
'E 35 — 85 & & g 3
g 1 azs
o2 — — | g7
] E 2
E 20 — | §
B s — | et
%1
£ 10 - | B
= 5 — gOAS
0 < 0
TL T2 T3 T4 T5 Té T1L T2 T3 T4
Tasks Tasks
* Higher bar is better * Higher bar is better

Figure 9: Comparison on completion time of tasks taken by
users in different scenario

" Discrete " Integrated

60

50

30

20

0 | 1l vl |
T2 T3 T4 T5

Tasks Tasks

* Smaller bar is better

® Discrete © Integrated

Total difficulty points *
>
(=]
Average difficulty points *
Sk N oW s ow O

*Smaller bar is better

Figure 11: Comparison on difficulty of performing the tasks
by the users in different scenario

the Discrete Approach when finding correct answers to the
questions.

Task Difficulty Analysis: This part of the analysis inves-
tigated how difficult it was to perform the given tasks using
the resources provided in each scenario. The participants
reported their opinions in a six level difficulty scale, where
each level is assigned a Difficulty Point according to Ta-
ble 3. For each task, total and average Difficulty Points are
calculated for all the participants. Figure 11 shows the com-
parison of total and average Difficulty Points for the tasks
performed by the participants in the two different environ-
ments, which again shows that the participants performing
the tasks in the Integrated Approach felt that the tasks were
less difficult to complete than in the Discrete Approach.

Finally, from the feedback received on Owverall user expe-
rience question, 100% of the participants felt more comfort-
able and confident in performing the given tasks in the Inte-
grated Approach than in Discrete Approach. Moreover, eight
(66%) participants mentioned ‘IDE’ as a preferred platform
over a ‘Standalone Application Suite’ for providing tool sup-
port for clone management. Some major reasons in support
to their opinion were: avoidance of context switching be-
tween IDE and some external tool to transfer clone knowl-

Table 3: Point scale for task difficulty analysis

Task Difficulty Level | Difficulty Point

Very easy

Easy
Somewhat easy
Somewhat hard
Hard

Very Hard

UL W N

Feedback on Detection features

100.0%

80.0%
B Strongly Agree
60.0%
W Agree
9
40.0% Neutral
20.0% B Disagree
W Strongly Disagree

0.0%

User

Usability Operability Presentation

Evaluation Criteria

Feedback on Visualization features

70.0%

60.0%

50.0% W Strongly Agree

40.0% u Agree

User

30.0%
20.0%

10.0%
0.0% M Strongly Disagree

Neutral

B Disagree

Usability Operability ~ Presentation
Evaluation Criteria

(a) Detection Feedback

(b) Visualization Feedback

Feedback on Tracking features

80.0%

70.0%

60.0%

W Strongly Agree

_ 50.0% 1 Bly Ag
g 40.0% W Agree

30.0% 1 — Neutral

20.0% —

’ M Disagree
10.0% —
0.0% - M Strongly Disagree

Usability Operability Presentation

Evaluation Criteria

Feedback on Analysis features

70.0%

60.0%

50.0% - W Strongly Agree
40.0% - u Agree
30.0% T

Neutral
20.0%

.
10.0% Disagree
E M Strongly Disagree

0.0%

User

Usability Operability Presentation

Evaluation Criteria

(¢) Analysis Feedback

(d) Tracking Feedback

Figure 12: User opinion on Usability, Operability and Presentation for the features of SimEclipse

edge, less manual or intermediate data processing and reduc-
ing the possibility human error. Among the rest, two (17%)
participants were fine with either approaches, and the re-
maining two (17%) preferred Standalone Application Suite
over IDE with supporting reasons including: possibility of
IDE being bogged down with memory/time intensive tasks
(specially for large systems), freedom for the developers to
choose working with different IDEs, etc. Therefore, based on
the feedback from the majority of the participants, we can
recommend that an IDE integrated clone management tool
could make the clone management tasks easier, less error
prone and leads to faster processing.

The table 4 shows task-wise t-test [8] analysis to verify
whether the difference of performance of the participants
in the two test environments is significant or not. From
the table it appears that, participants would be able to do

Table 4: Significance of differences in task performance by
the study participants

Task | Completion| Completion| Correctness| Execution
Status Time Diffi-
culty
T1 O] O O
T2 O [O]
T3 O [] ([
T4] o [[
T5 O ([O [
T6 (] (] o (]

@ Significant Difference (P < 0.05)
D Insignificant Difference (P > 0.05)
O No Difference

various clone management tasks faster and easier way in an
integrated environment. It also shows, when the complexity
of the task increases, the participants tend to perform the
clone management tasks better in integrated approach.

4.3 Threats to Validity of the Experiment

e In the ‘Task Correctness’ measurement, the state of an-
swer termed as ‘partial correct’ has not been weighted
(for task correctness points) as per the number of the
correct answers. Therefore, there would be no differ-
ence whether the (multi-part) answers for a task found
by the participants were almost correct or almost in-
correct. Considering this would make the comparison
more realistic.

e The scales we used for ‘Time Point’ and ‘Difficulty
Point’ are defined arbitrarily, but with a particular or-
der and uniform difference between values. Since, we
are contrasting performance values (sum/average) for
the same task (in two different test scenario), we be-
lieve these scales would acceptably be able to reflect
the task performance difference.

e The number of participants in our study is not suffi-
cient enough to draw a general conclusion. Further-
more, the level of technical expertise of the involved
participants might also have some effects on the ex-
perimental results.

5. SCENARIO BASED FEATURE EVALUA-
TION OF SIMECLIPSE

In this section we describe how we evaluated the useful-
ness of SimEclipse in practice for clone management. This

is an extension of the previous study that covers an evalua-
tion of the outcomes of the tool by the participant develop-
ers. Since the correctness evaluation of the core technologies
behind SimEclipse (e.g., clone detector [20], genealogy de-
tector [18], etc.) have been considered in their respective
studies, we did not conduct a similar evaluation of SimE-
clipse here. Instead, we focus on investigating its usefulness
and acceptability to its target users.

5.1 Study Design

The study was based on the following criteria, measured
from the user’s task based experience of using the tool:

Usability: How effective the tool is to manage clones
in a system during software development?

Operability: How simple and easy the tool is to operate
for source code clone management?

Presentation: How presentable the information is in
the tool for the users in understanding and analyzing
clones?

A set of tasks was designed to cover all the features of
SimEclipse. After finishing the tasks, the participants were
required to answer some questions addressing Feature Fvalu-
ation, Qverall Tool Experience and Issues and Improvements
of SimEclipse as an integrated clone management tool.

5.2 Summary of Findings

5.2.1 Feature Evaluation

This section presents an analytical overview of the user
evaluation of different features of SimFEclipse in managing
clones in software. User feedback on the feature evaluation
questions are analyzed and presented in Fig. 12 with a sep-
arate component for each feature. From the feedback chart,
it is clear that the features of SimFEclipse got most of the re-
marks on the positive side of the Likert scale from the study
participants on all three evaluation criteria (Usability, Oper-
ability and Presentation). Figure 13 presents a consolidated
view of the positive feedback (‘Strongly Agree’ or ‘Agree’)
was received for all the features of SimFEclipse. The obser-
vation shows, 100% of the participants expressed their posi-
tive feedback (answering ‘Strongly Agree’ or ‘Agree’) on all
the evaluation criteria for the Detection, and for Visualiza-
tion features it was found to be 91.7%. For the remaining
two features, at least 66.7% of them were positive in the
three evaluation criteria for Analysis and Tracking features.
This indicates the Analysis and Tracking features need to
be improved to further enhance the clone management ex-
perience using SimEclipse. The study also received various
recommendations from users in improving and adding new
features to SimFEclipse, which will be discussed in the fol-
lowing section.

Feedback from the Overall Experience Questions has been
analyzed and presented in Figure 14. Among the study par-
ticipants, 83.3% of them agreed that SimEclipse would be
Helpful in Clone Management, while 66.7% of them agreed
that SimFEclipse had Owerall Good Performance, and 75%
were found to be Owverall Satisfied in using the tool.

Detection Visualization Tracking Analysis
100.0% 100.0% 83.3% 83.3%
100.0% 9L.7% 91.7% 66.7%
100.0% 91.7% 66.7% 75.0%

Figure 13: Consolidated feedback on SimEclipse’s features

5.2.2 Future Improvements

At the end of the study session, the Issues and Improve-
ments Questions enabled us to obtain advice on how to im-
prove the overall clone management experience of the devel-
opers using SimEclipse. We received valuable suggestions
on improving existing features, especially for the interactive
visualization user interface part of Clone Tracking and Clone
Analysis. Although SimEclipse is capable of performing a
focused clone search, a few users requested post-detection fil-
tering of clones when detection is done on the whole project,
and a search and filtering option in the Clone Genealogy
View. To enhance the clone visualization experience, the im-
plementation of a model /graph based visualization also was
suggested by some participants. For additional features, no-
table requests were: enhanced highlighting of differences in
clone comparisons, portable clone documentation sharable
among the developers, clone refactor scheduling, and linked-
editing of clones. We believe, these would be some great ad-
dition to our future improvement plan to enhance the overall
clone management experience using SimFEclipse.

6. EXISTING WORK ON IDE BASED CLO-
NE MANAGEMENT

There are many clone detection tools; each has its own
strengths and weaknesses. However, for proactive clone man-
agement, the support for clone detection should be inte-
grated with the development process. Some of the IDE
based tools are mentioned here categorically as follows.

Tools for managing copy-paste clones: This category cov-
ers tools that only deal with clones resulting from a devel-
oper’s copy-paste operation. Hou et al. developed their
clone management tool CnP [9] so that it is tightly coupled
with a clone detection technique based on a programmer’s
copy-paste operations. Thus, the scope of clone manage-
ment is limited to copy-pasted code only, and not applicable
to clone management based on similarity based clone de-
tection. Jablonski and Hou introduced CReN [10] tool as

Bstrongly Disagree M Disagree W Neutral ®Agree M Strongly agree

Helpful in Clone Management

Overall Good Performance

Overall Satisfying

i

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%
User

Figure 14: Overall user evaluation of SimFEclipse

an Eclipse plug-in for Java programs to help programmers
avoid making copy-paste error, while renaming various in-
stances of identifiers, such as variable names. It tracks the
code clones involved when copying and pasting occurs in
the IDE and infers a set of rules based on the relationships
between the identifiers in these code fragments. So, it is
only a subset of Type-1 clones (i.e., only the clones aris-
ing from the developer’s copy-paste action in IDE) that are
being managed using this tool. The plug-in CSeR (Code
Segment Reuse) was developed by Jacob et al. [12] to check
copy-paste induced clones in an integrated development en-
vironment. The tool was designed to compute the clone
differences interactively by checking whether a piece of code
is copy-pasted while the programmer edits and/or types the
code. A similar IDE plugin is proposed by Venkatasubra-
manyam et al. [21] for proactive moderation of the genesis of
clones through copy-paste-modify operations. The approach
is guided by associating constraints formulated from prede-
fined guidelines, and checking for their satisfaction at the
time of copy and upon modifications. CloneBoard [4] and
CPC [22] are two Eclipse plugins that can detect and track
clones based on clip-board/copy-paste activities of the de-
veloper. Both CPC and CloneBoard support linked editing
of clone pairs. While the above mentioned approaches based
on a programmer’s copy-paste activities may be able to han-
dle intentional clones (i.e., a clone that someone purposely
introduced or is about to introduce in a system), they are
unable to deal with unintentional clones. Moreover, such
tools may not be suitable for distributed development, as
they may fail to combine information about clones sepa-
rately created by the developers working in a distributed
environment [23].

Tools with integrated clone detection and visualization only:

This second category of tools provides native clone detec-
tion support and offers various visualizations of clones from
within the IDE. SHINOBI [14] is an add-on to the Microsoft
Visual Studio 2005 based on client-server architecture. It
relocates the clone detection effort from the client side (lo-
cal programming environment) to a central server (source
code repository). SHINOBI does not offer that much sup-
port for clone management except that displaying clones of a
code fragment underneath the mouse-cursor. Besides, since
it internally uses CCFinderX’s preprocessor, it can detect
Type-1 and Type-2 clones only [23]. AST-based clone de-
tector CloneDR [2] is also available as an IDE plug-in that
can detect Type-1 and Type-2 clones. However, it seems to
fail in detecting Type-3 clones in many scenarios [16]. Zibran
and Roy [23] presented an IDE-integrated clone search tool
for Type-1, Type-2 and Type-3 clones. The implementation
is based on a suffix-tree based k-difference hybrid algorithm.
Bahtiyar developed JClone [1] as a plugin to the Eclipse
IDE for detecting Type-1 and Type-2 clones only from Java
projects. JClone applies an AST based technique to detect
clones. It enables the user to trigger the detection of clones
from one or more selected files or directories. It also offers
a few visualizations (i.e., TreeMap and CloneGraph views).
Plug-ins in this category may aid clone analysis to some ex-
tent, but they offer no further support for clone management
beyond the detection and visualization of clones.

Versatile clone management tools: This final category of
tools covers additional clone management services beyond
those mentioned in the previous two groups. Duala-Ekoko
et al. developed CloneTracker [5], a more versatile clone

Table 5: Comparison of SimFclipse with other tools

Features

Integrated Detection
Engine
Copy-paste
Only
Type-1 Clone Detection
Type-2 Clone Detection
Type-3 Clone Detection
On-the-fly/Focused De-
tection
Clone Visualization (ed-
itor)**
Clone Visualization
(model)
Code Change History
View
Clone Genealogy View
Clone Tracking
Clone Refactoring
® Full Support D Partial Support O No Support
* Use clone detection results from other standalone tool
** Display clone class, highlight, compare clones in editor etc.

® (| CloneBoard [4]

® O CnP [9]
QCee® O O|SHINOBI [14]
ww®® (O 0| CloneDR [2]

0O0Ce @ Ol CSer [12]

Detection

0©000® (O O Zibran and Roy [23]

wO®® O @|IClone [1]

000 O O ® Ceee® O OfCloneTracker [5]
Cee® O OfCeDAR [19]

Qewwew
Qewwew
Ce® @ O O 0000 O O SinmkEclipse

»wOO O O
000 O O
*w®0 O O
000 O O
w00 O O
000 O O
000 O e
00 O O

management system, as an Eclipse plug-in. The plug-in al-
lows tracking and simultaneous editing of clones. It relies on
the output of the SimScan [3] clone detection tool and re-
quires the programmer to manually select the clone groups
of interest to be documented. Recently, Tairas and Gray
developed CeDAR [19], a plug-in for the Eclipse IDE, where
they introduced an approach to unify the processes of clone
detection, analysis, and refactoring. They integrated a clone
detection approach in the plug-in and presented a visual-
ization technique in which one clone instance displays the
properties of all the clones in the clone group. This repre-
sentation helps in refactoring as clone group representation
displays the differences among clone instances.

Our integrated clone management plug-in SimFEclipse has
been developed as a versatile approach to deal with clones
by making a number of clone based technologies readily
available to the software developers and clone researchers.
The goal is to allow the developers to detect, understand
and manage clones in software they are developing both in
time and effort efficient ways. From the feature comparison
(only covers feature availability, not its strength/weakness)
as shown in Table 5 with some of the existing clone manage-
ment tools, it is clear that SimEclipse supersedes the rest
of the tools in providing integrated features to identify and
understand software clones as well as address various clone
management needs.

7. ADDRESSING THE RESEARCH QUES-
TIONS

The research question in this study was about investigat-
ing the effectiveness of integrating clone based technologies
into a single platform. The study described in Section 4 pro-
vides some evidence for answering this question. The par-
ticipants in the study were allowed to perform some clone
based tasks using discrete clone support tools and then using
an IDE integrated clone management plugin. Based on their
feedback after performing the same tasks in the two different

environments, it is clear that having various clone manage-
ment functionalities under a single platform yields faster,
convenient and less error prone clone management. Again,
the feedback gained from the ‘Overall user experience ques-
tions’ at the end of the study described in Section 4 shows
100% of the participants felt more comfortable and confi-
dent in performing the given tasks using an integrated tool
in an IDE rather than using some discrete standalone tool.

In support of the study, we developed SimFEclipse, a clone-
aware IDE plugin to provide the software developers a plat-
form for managing clones from within an IDE. In the sec-
ond part of our study described in Section 5, we evaluated
SimEclipse based on three evaluation criteria (Usability, Op-
erability and Presentation) of its features. We found, 83.3%
of the participants considered SimFEclipse would be Help-
ful in Clone Management, while 66.7% of the participants
agreed that SimFEclipse had Overall Good Performance, and
75% were Quverall Satisfied in using the tool.

8. CONCLUSION AND FUTURE WORK

Lack of integration of clone management functionality in
a developer’s work environment makes the task of managing
clones in software a challenging and potentially error prone
task. Our study here does not focus so much on presenting a
better technique for finding clones, but on an infrastructure
which makes the application of clone detection in a software
engineering pipeline easier to use, thus more effective for its
stakeholders. In this paper, we presented an empirical study
in order to find a way to provide efficient clone management
support to the developers. Here, we presented a clone-aware
software development platform SimFclipse as a handy tool
to accomplish the task of clone detection and various clone
management activities in an easier and meaningful way. The
objective of developing such a tool was to make the clone
management activities as a part of the software development
lifecycle. As clones in software are mainly evolved from var-
ious coding activities of the developer, we have shown that
ready-made tool support for clones in a typical software de-
velopment platform (e.g., IDE) as a plugin would make a
great impact in getting efficient control of managing evo-
lution of clones in software systems. Our small scale user
study shows that SimEclipse has great potential to be used
both in research and industry in dealing with clones.

In the future, we would like to focus mainly on improv-
ing SimFEclipse by addressing the feedback and improvement
suggestions we received from our tool evaluation study, es-
pecially the integration of clone refactoring capability. The
ultimate goal will be to enhance the end-to-end clone man-
agement experience of the developers using SimEclipse and
thus promoting the practical use of code clone research.

9. REFERENCES

[1] M. Bahtiyar. JClone : Syntax tree based clone
detection for java. Master’s thesis, Linnaeus
University, 2010.

[2] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In ICSM, page 368, 1998.

[3] B. E. Bulgaria. SimScan - Similarity Scanner.
http://blue-edge.bg/download.html, last access: Aug
2011.

[4] M. de Wit. Managing Clones Using Dynamic Change
Tracking and Resolution. M.Sc. thesis, Delft

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

University of Technology, 2008.

E. Duala-Ekoko and M. Robillard. CloneTracker: tool
support for code clone management. In ICSE, pages
843-846, 2008.

S. Giesecke. Generic modelling of code clones. In
DRSS, pages 1-23, 2007.

N. Gode. Clone removal: Fact or fiction. In ITWSC;
pages 22—-40, Cape Town, SA, 2010.

F. Gravetter and L. Wallnau. Essentials of Statistics
for the Behavioral Sciences, volume 8th ed. 2013.

D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an
environment for the proactive management of
copy-and-paste programming. In ICPC, pages
238-242, 2009.

P. Jablonski and D. Hou. CReN: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the IDE. In ETX, pages 16-20, 2007.
P. Jablonski and D. Hou. Aiding software maintenance
with copy and paste clone awareness. In ICPC, pages
170-179, 2010.

F. Jacob, D. Hou, and P. Jablonski. Actively
comparing clones inside the code editor. In IWSC]
pages 9-16. ACM, 2010.

C. Kapser and M. Godfrey. Cloning considered
harmful” considered harmful. In WCRE, pages 19-28,
2006.

S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida,
Y. Kamei, M. Nagura, and H. Tida. SHINOBI: A tool
for automatic code clone detection in the IDE. In
WCRE, pages 313-314, 2009.

B. Lague, D. Proulx, J. Mayrand, E. Merlo, and

J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
ICSM, pages 314-321. IEEE Computer Society, 1997.
C. Roy, J. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program.,
74:470-495, 2009.

C. Roy, M. Zibran, and R. Koschke. The vision of
software clone management: Past, present and future.
In SEW, page 16. IEEE, 2014.

R. Saha, C. Roy, and K. Schneider. An automatic
framework for extracting and classifying near-miss
clone genealogies. In ICSM, pages 293 —302, 2011.

R. Tairas and J. Gray. Increasing clone maintenance
support by unifying clone detection and refactoring. In
IST, volume 54-12; pages 1297-1307, 2012.

M. Uddin, C. Roy, K. Schneider, and A. Hindle. On
the effectiveness of simhash for detecting near-miss
clones in large scale software systems. In WCRE,
pages 13 —22, 2011.

R. Venkatasubramanyam, H. Singh, and

K. Ravikanth. A method for proactive moderation of
code clones in ides. In IWSC, pages 62—66, 2012.

V. Weckerle. CPC: an eclipse framework for
automated clone life cycle tracking and update
anomaly detection. Master’s thesis, Freie Universitat
Berlin, Germany, 2008.

M. Zibran and C. Roy. IDE-based real-time focused
search for near-miss clones. In ACM-SAC (SE Track),
pages 1-8, 2012.

