
Crowd-Sourced API Documentation
Gias Uddin
SWAT Lab

Polytechnique Montréal, QC, Canada
gias.uddin@mail.mcgill.ca

Foutse Khomh
SWAT Lab

Polytechnique Montréal, QC, Canada
foutse.khomh@polymtl.ca

Chanchal K Roy
Department of Computer Science

University of Saskatchewan, SK, Canada
croy@cs.usask.ca

Abstract—The learnability of an API suffers when the official
documentation of the API can be incomplete. Developers discuss
usage scenarios of APIs in the online developer forums. As
such, by automatically mining such crowd-sourced documenta-
tion of APIs, we can address the shortcomings of API official
documentation. We present a framework to automatically mine
usage scenarios about APIs from online developer forums. Each
usage scenario of an API consists a code example, a summary
description, and the reactions (i.e., positive and negative opinions)
of other developers towards the code example. We evaluate our
API usage mining framework by producing a benchmark dataset.
We observed a precision of 0.957 and a recall of 1.0 with the
linking of a code example to an API mention in the forum.

Index Terms—API, Mining, Usage, Documentation.

I. INTRODUCTION

APIs (Application Programming Interfaces) offer interfaces
to reusable software components. The learnability of an API
depends on the availability and usefulness of learning re-
sources of the API [1]. Unfortunately, despite developers’
reliance on API official documentation as a major resource
for learning and using APIs, the documentation can often be
incomplete, incorrect, obsolete, and not usable [2].

The shortcomings in the official documentation led to the
creation and popularity of online developer forums (e.g., Stack
Overflow), where developers can ask and answer questions on
how to address diverse development tasks that may involve
APIs. A number of research efforts have focused on integrating
information from the forum posts into API official documen-
tation, such as the linking of API types in Javadocs to code
examples in forum posts [3], the presentation of interesting
textual contents from Stack Overflow about an API type in
Javadocs [4] and so on. Unfortunately, the approaches can have
the following shortcomings: 1) The traceability techniques
cannot link a code example to an API mentioned in the post
and about which code example is actually provided, 2) The
techniques do not provide a textual description of what the
code example does, and 3) The techniques do not offer any
insights into the quality of the mined code examples.

We present a framework to automatically mine API usage
scenarios from developer forum posts. Each scenario consists
of four items: (1) A code example as discussed in a forum
post, (2) An API about which the code example is provided to
address a development task, (3) A natural language description
of the code example to summarize what the code does, and
(4) A list of reactions as positive or negative opinions from
other developers towards the code example.

Our proposed API usage scenario mining framework works
as follows. First, given as input a forum post that consists
of a code example, we automatically link the code example
to an API mentioned in the textual contents of the forum
post (i.e., the code example is provided to discuss a use case
of the API). Second, given as input a code example in a
forum post that is linked to an API mention, we associate a
summary description of the textual contents of the post where
the code example is found. Third, we associate the positive
and negative opinionated sentences as reactions towards the
code example. In a benchmark-based study of 730 randomly
sampled code examples from Stack Overflow, we observed
that our algorithm to link a code example to an API mention
in forum post showed a precision of 0.957 and a recall of
1.0. We compared the algorithm against two state of the art
baselines. Our algorithms outperformed all the baselines.

II. RELATED WORK

The focus of this paper is to establish a framework to
automatically mine usage scenarios about APIs from developer
forums that can facilitate task-orientation documentation for
APIs. We follow the concept of “minimal manual” which
promotes task-centric documentation of manual. The format
is proven to work better than the traditional API documen-
tation [5]. We differ from the above work as follows: 1) We
include comments as posted in a forum post as reactions to
a code example in our usage scenarios. 2) We automatically
mine such usage scenarios from online forum posts, thereby
greatly reducing the time and complexity that may be required
to produce those manually. Our algorithm to mine usage
scenarios differ from the state of the art techniques to link code
examples to APIs in forum posts [3], [6], because we detect an
API as an API name as mentioned in the textual contents in the
forum posts. Unlike the above work that consider each class
of a software library as an API, we consider the entire library
as an API. This design decision is based on our observation of
how API names are actually mentioned and discussed in the
forum posts. In contrast to [3] that needs the construction of
an offline API database, our technique can rely on online API
databases. Unlike [6], we do not rely on the analysis of client
software code to infer usage patterns of an API. While such
analysis can offer better accuracy than technique [3] using
API databases, the approach is not feasible when such client
software code may not be available (e.g., for a new API).



Preprocess 
Post Contents

Stack Overflow 

Posts

Link Code Examples 
to API Mentions

Generate Usage Scenario 
Summary Description

Parser Linker Generator

Associate Reactions 
to Code Examples

AssociatorAPI 
Database

Fig. 1. The major components of our API usage scenario mining framework

III. THE FRAMEWORK

Our mining framework takes as input a forum post and out-
puts all the usage scenarios found in the post. Our framework
consists of five major components (Figure 1):

C1. An API database to identify the API mentions. Our
API database consists of open source and official Java APIs.
An open-source API is identified by a name. An API consists
of one or more modules. Each module can have one or more
source code packages. Each package can have one or more
code elements, such as classes, methods, etc.

C2. A suite of Parsers to preprocess the forum post con-
tents. Given as input a forum post, we preprocess its content
as follows: (1) We categorize the post content into three types:
(a) code snippets; (b) hyperlinks; and (c) natural language text
representing the rest of the content. (2) We detect individual
sentences in the natural language text. (3) Following [7],
we discard the following invalid code examples during our
parsing: (a) Non-code snippets (e.g., XML, JSON extract),
(b) Non-Java snippets (e.g., JavaScript). The rest of the code
examples are considered as valid.

C3. A Linker to associate a code example to an API
mention. Given as input a code example in a forum post, we
associate it to an API mentioned in the post in two steps:
a) We detect API mentions in the textual contents of forum
posts following Uddin and Robillard [8]. Therefore, each API
mention is a token (or a series of tokens) if it matches at least
one API or module name. b) We associate a code example in a
forum post to an API mention by learning how API elements
in the code example may be connected to a candidate API in
the mention candidate lists of the API mentions in the same
post. We call this proximity-based learning, because we start
with the API mentions that are closer to the code example.

C4. A Generator to produce a natural language summary
description of a code example. Our algorithm to generate
natural lanugage summary description of a code example takes
as input all the textual contents of Stack Overflow thread where
the code example is found and outputs a short textual summary
description of the code example. Our algorithm works by first
finding sentences where the API associated to a code example
is mentioned both explicitly (e.g., by the API name) and
implicitly (e.g., by a reference, such as a pronoun). We produce
summary description only for code examples that are found
in the answers to questions. This is based on the observation
that such a code example is in more need to be understood
within the context of a development task [3].

C5. An Associator to find reactions towards code examples.
The inputs to the algorithm are all the comments towards the
post where the code example is found. The output is a list
of opinionated sentences that are related to the code example,
e.g., the opinion refers to the API linked to the code example.

IV. EVALUATION

The effectiveness of a crowd-sourced API documentation
technique relies on the correct linking of a code example to
an API about which the code example is provided. Therefore,
our initial investigation focused on the feasibility of our mining
framework. We report using three performance measures:
precision (P), recall(R), and F-measure (F1).

P =
T P

T P + FP
, R =

T P
T P + FN

, F1 = 2 ∗
P ∗ R
P + R

,

T P = Nb. of true positives, and FN = Nb. false negatives.
We assess the performance of our algorithm to link a

code example to an API mention using a benchmark. The
benchmark consists of randomly selected 730 code examples
from our entire dataset. We compare our algorithm against two
baselines: 1) Baker [3], and 2) Search engine. We achieved a
precision of 0.957 and a recall of 1.0 using our algorithm.
Almost one-third of the misclassified associations happened
due to the code example either being written in programming
languages other than Java or the code example being invalid.
The baseline Baker shows the best precision among all (0.973),
but with the lowest recall (0.486). The Google search results
show the lowest precision (0.389), confirming the assumption
that Google is primarily a generally purpose search engine.

V. CONCLUSIONS

Developers discuss API usage scenarios in forum posts. Due
to the plethora of APIs discussed in forum posts, it can be
challenging to get a quick and informed insights from forums
about APIs. We present a framework to automatically mine
API usage scenarios from forums. To assist developers in their
development task completion using the mined scenarios, we
developed on online search and summarization engine for API
usage scenarios. Our future work will focus on the further
utilization of the mined scenarios to research improvement
opportunities in API learning and documentation resources.

REFERENCES

[1] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[2] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Softawre, vol. 32, no. 4, pp. 76–83, 2015.

[3] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proc. 36th International Conference on Software Engineering,
2014, p. 10.

[4] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in Proc. 38th International Conference on
Software Engineering, 2016, pp. 392–403.

[5] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-Rimetz,
“The minimal manual,” Journal of Human-Computer Interaction, vol. 3,
no. 2, pp. 123–153, 1987.

[6] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen,
and T. N. Nguyen, “Statistical learning of api fully qualified names in
code snippets of online forums,” in Proceedings of 40th International
Conference on Software Engineering, 2018, pp. 632–642.

[7] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an API and its learning resources,” in Proc. 34th IEEE/ACM Intl. Conf.
on Software Engineering, 2012, pp. 45–57.

[8] G. Uddin and M. P. Robillard, “Automatic resolution of API mentions in
informal documents,” in McGill Technical Report, 2017, p. 6.


