
A Survey on the Evaluation of Clone Detection
Performance and Benchmarking

Jeffrey Svajlenko and Chanchal K. Roy
Department of Computer Science

University of Saskatchewan, Canada

June 28, 2020

1

ar
X

iv
:s

ub
m

it/
32

48
49

1
 [

cs
.S

E
]

 2
8

Ju
n

20
20

Contents

1 Introduction 6

2 Cloning Theory 7
2.1 Code Clones . 7
2.2 Clone Types . 7

2.2.1 Type-1 Clones . 8
2.2.2 Type-2 Clones . 8
2.2.3 Type-3 Clones . 9
2.2.4 Type-4 Clones . 9

2.3 Syntactic and Semantic Clones . 10
2.4 Clone Granularity, Boundaries . 10

2.4.1 Arbitrary Statement Clone Boundaries 11
2.5 Clone Size . 11
2.6 Clone Detection Tools . 12

3 Benchmarking Theory 13
3.1 Recall and Precision . 13

3.1.1 Measuring Recall and Precision with an Oracle 13
3.1.2 Challenges in building an Oracle . 15
3.1.3 Measuring Recall and Precision with a Reference Corpus 15
3.1.4 Clone Matching Algorithm/Metric 16

3.2 Methods for building a Reference Corpus . 17
3.3 Measuring Precision without a Reference Corpus 19
3.4 Execution Time and Scalability . 19

4 A Survey of Clone Benchmarks 20
4.1 Survey Procedure . 20
4.2 Overview of Results . 21
4.3 Detailed Results . 21

4.3.1 Bellon’s Benchmark . 21
4.3.2 Lavoie and Merlo . 23
4.3.3 Mutation and Injection Framework 24
4.3.4 ForkSim . 25
4.3.5 BigCloneBench . 25
4.3.6 Yuki et al. 26
4.3.7 Krutz and Le . 28

4.4 Evaluating the Benchmarks . 29
4.4.1 General Requirements . 29
4.4.2 Subject System Requirements . 35
4.4.3 Reference Corpus Requirements . 37
4.4.4 Measuring Recall Requirements . 41
4.4.5 Other Metrics Requirements . 42
4.4.6 Summary . 44

2

4.5 Threats to Validity . 44

5 A Survey of Clone Detector Evaluations by Authors 44
5.1 Survey Procedure . 45
5.2 Evaluation Criteria . 46
5.3 Results . 47

5.3.1 Results Ranked by their Measurement of Recall 49
5.3.2 Results Ranked by their Measurement of Precision 52
5.3.3 Results Ranked by their Measurement of Execution Time 54
5.3.4 Results Ranked by their Measurement of Scalability 54
5.3.5 Exemplars in Tool Evaluation . 58
5.3.6 How Tool Authors Measure Recall 58

5.4 Standards of Evaluation by Authors . 61
5.4.1 Frequency of Metric Evaluations by Authors 61
5.4.2 Frequency of Evaluation Scopes . 63
5.4.3 Correlation Between Evaluations . 64

5.5 Threats to Validity of this Survey . 65

6 A Survey of Tool Comparison Studies 66
6.1 Survey Procedure . 66
6.2 Results . 66
6.3 Qualitative Studies . 67
6.4 Quantitative Studies . 69
6.5 Threats to Validity . 74
6.6 Conclusions . 74

7 Conclusion 74

A Oversized Tables 78

3

List of Figures

1 Measuring Recall and Precision with an Oracle 14

4

List of Tables

1 A Survey of Clone Detection Benchmarks . 22
2 Four-Point Scale for Evaluating Benchmarks 29
3 Clone Detection Benchmarks Requirements 30
4 Benchmark Requirement Results . 31
5 Survey Databases and Search Criteria . 46
6 Survey of Clone Detection Tools/Techniques and their Evaluation by their

Authors . 48
7 Measurement of Recall Ranks . 49
8 Clone Detection Tools/Techniques Ranked by their Recall Measurement . . . 50
9 Measurement of Precision Ranking . 52
10 Clone Detection Tools/Techniques Ranked by their Precision Measurement . 53
11 Measurement of Execution Time Ranks . 55
12 Clone Detection Tools/Techniques Ranked by their Execution Time Measure-

ment . 56
13 Measurement of Scalability Ranks . 57
14 Clone Detection Tools/Techniques Ranked by their Scalability Measurement 57
15 Methods and Benchmarks used by Tool Authors to Measure Recall 59
16 Frequency of Evaluations of Clone Detection Tools by Authors 62
17 Standards of Clone Detection Tool Evaluation by Authors 64
18 Correlation Between Evaluation Criteria . 65
19 Survey of Qualitative Tool Comparison Studies 76
20 Survey of Quantitative Tool Comparison Studies 77
21 Clone Detection Tool and Techniques and their Evaluations by their Authors 78

5

1 Introduction

Code clones are pairs of code fragments, within or between software systems, that are similar.
Software developers create clones when they re-use code using copy and paste, although clones
can arise for a number of different reasons [1]. Clones can have a negative impact on software
development. They needlessly increase the size of a software system, increasing the costs of
software maintenance and re-engineering. When buggy code is cloned, the bug is duplicated
throughout the system, complicating debugging and bug fixing. Clones can even lead to new
bugs when the evolution of a code fragment is not appropriately propagated to its clones.
Cloning can also have benefits, such as accelerated software development and increasing
decoupling [1]. However, it is important that developers keep track of their clones in order
to manage their negative effects. Datasets of clones have been shown to have applications in
code search, mining for new APIs, bug detection, security vulnerability detection, malware
detection, and so on.

The importance and application of code clones has motivated the creation of many clone
detection tools and techniques. We have found at least 184 clone detection tools/techniques
in the literature. However, despite this this interest in clone detection, there has been a lack
evaluation of clone detection performance. In particular, clone detection benchmarks and
clone detection tool comparison studies. Partly, this has been due to difficulty in creating
clone benchmarks and standardizing clone detection evaluation. Specifically, clone detection
tools and techniques should be evaluated for their clone detection performance, in terms
of recall and precision, and their execution performance, in terms of execution time and
scalability.

In this paper, we investigate the state of clone detection tool evaluation. We begin by
surveying the clone detection benchmarks, and performing a multi-faceted evaluation and
comparison of their features and capabilities. We then survey the existing clone detection
tool and technique publications, and evaluate how the authors of these works evaluate their
own tools/techniques. We rank the individual works by how well they measure recall, preci-
sion, execution time and scalability. We select the works the best evaluate all four metrics
as exemplars that should be considered by future researchers publishing clone detection
tools/techniques when designing the empirical evaluation of their tool/technique. We mea-
sure statistics on tool evaluation by the authors, and find that evaluation is poor amongst
the authors. We finish our investigation into clone detection evaluation by surveying the
existing tool comparison studies, including both the qualitative and quantitative studies.

We find that there have historically been very few clone benchmarks, but a few new
benchmarks are of high quality. We find that clone detection tool and technique authors often
do not evaluate their tools, and very rarely do they thoroughly evaluate their tools across
all four performance metrics. This may be due to the historical lack of clone benchmarks,
meaning that clone detection research has often been accepted on the merits/novelty of its
algorithms, and not on empirical evidence of its performance. We find a few works that
have thorough evaluations, that can serve as exemplars for researchers publishing new clone
detection papers and for the peer reviewers judging these works. We hope our evaluation
ranking and exemplars will encourage better experimental evaluations by the tool/technique
authors. We find that there is very few tool comparison studies, but a few are high quality
works. This study considers publications and benchmarks until 2017.

6

This survey paper is organized as follows. In Section 2 we discuss essential code clone and
clone detection theory. Then in Section 3 we discuss clone benchmarking theory. Section 4
contains our survey on the existing clone detection benchmarks, and our evaluation and
comparison of their features. Section 5 contains our survey on how authors of clone detection
tool and technique authors evaluate their works. We rank these works, and discuss statistics
on the standard of tool evaluation by the authors. Section 6 contains our survey on the tool
comparison studies, both qualitative and quantitative. We discuss and critique each work.
We conclude our work in Section 7.

2 Cloning Theory

In this section we provide some background on code clones and their detection. In this survey
paper, we focus on the evaluation of clone detection tools. We provide just a summary of the
important clone definitions and background for this purpose. For general clone knowledge,
an excellent survey is provided by Roy et al. [1]. For an extensive survey on clone detection
algorithms and techniques, excellent surveys by Roy et al. [2] and Rattan et al. [3] are
available. Zibran et al. [4] provide a survey on clone management research.

2.1 Code Clones

Code clones are instances of similar code fragments. Similarity can take many forms, al-
though typically syntactic and semantic/functional similarity are considered. Code clones
are typically reported as clone pairs or clone classes. The following are standard definitions
for these terms [1]:

Code Fragment A contiguous region of source code within a source file. Specified by
the triple (f, s, e), including the source file f , the line the code fragment starts on s,
and the line it ends on e.

Clone Pair A pair of code fragments that are similar, for some definition of similarity.
Specified by the tuple (f1, f2, τ), including the similar code fragments f1 and f2 and
their type of similarity τ .

Clone Class A set of code fragments that are similar. Specified by the tuple (f1, f2, ..., fn, τ),
including the n similar code fragments and their type of similarity.

Clone pairs may be reported with or without the type of similarity, τ , explicitly indicated.
Additionally, some clone detectors mix clones of various types within the same clone class.
The base requirement of a clone class is that every pair of code fragments within the class
form a valid clone pair.

2.2 Clone Types

Researchers agree upon four primary clone types, which are mutually exclusive, and defined
with respect to the detection capabilities needed to detect them [1]:

7

Type-1 Identical code fragments, ignoring differences in white-space, code formatting/style
and comments.

Type-2 Structurally/syntactically identical code fragments, ignoring differences in identi-
fier names and literal values, as well as differences in white-space, code formatting/style
and comments.

Type-3 Syntactically similar code fragments, with differences at the statement level. The
code fragments have statements added, removed or modifiers with respect to each other.

Type-4 Syntactically dissimilar code fragments that implement the same or similar func-
tionality.

The Type-1 and Type-2 clones are well defined, while the Type-3 and Type-4 clones are
fuzzy. While researchers agree upon these definitions, they may disagree upon what is the
minimum syntactical similarity of a Type-3 clone, or the minimum functional similarity of a
Type-4 clone. We discuss these primary clone types in more detail in the following.

2.2.1 Type-1 Clones

Type-1 clones are pairs of identical code fragments, when we ignore trivial differences such
as extraneous white-space, code formatting/style and commenting. Type-1 clones can occur
when a code fragment is copy and pasted, with only trivial modifications to match the
destination’s formatting and code style, perhaps with the addition, removal or modification
of comments.

Clone detectors detect Type-1 clones by parsing the source-code in a way that removes
or normalizes the allowed differences, and detects those code fragments that are textu-
ally/syntactically identical. For example, a clone detector can tokenize the source code,
and search for the identical token sequences to detect Type-1 clones. Tokenization retains
only the language tokens, and drops the commenting, white-space and formatting. Note
in some languages, such as Python, some white-space are tokens as they have syntactical
meaning beyond token separation

2.2.2 Type-2 Clones

Type-2 clones are structural clones: pairs of code fragments that are syntactically identical
when we ignore differences in identifier names and literal values, in addition to white-space,
layout/style and comments. Type-2 clones can occur when a developer has reused a code
fragment by copy and paste, and has renamed one or more variables to better match the
destination. In addition to renamed variables, Type-2 clones can have renamed/changed
constants, classes, method names, and so on, as well as changes in literal values and types.
Type-2 clones can be detected by normalizing identifier names and literal values, in addition
to the Type-1 normalizations, and detecting syntactically/structurally identical code frag-
ments. For example, a clone detector could tokenize the code, and replace each identifier
token with a common token (e.g., ‘identifier’) and similar for each literal token (e.g., ‘literal’),
and detect the token sequences that are identical as Type-2 clones.

8

This is a broad definition of a Type-2 clones, and there are many kinds of Type-2 clones.
For example, a Type-2 clone may be syntactically and semantically identical code fragments
except for the systematic renaming of a single variable. Another valid Type-2 clone is a pair of
code fragments that are structurally identical, but have completely different identifier names,
including different class types and method names. In this case, the two code fragments could
be semantically different, but structurally the same after normalization.

2.2.3 Type-3 Clones

Type-3 clones are those that contain statement-level differences, with the code fragments
containing statements added/removed or modified with respect to each other. Type-3 clones
can occur when a code fragment has been duplicated and then modified at the statement-
level to satisfy new requirements. The duplicated code fragment could be extended with
new statements to add a new feature, statements could be removed to remove an unneeded
feature, or statements could be modified to adjust an existing feature for the new use-case.
The Type-3 clone definition also allows for Type-1 and Type-2 differences to occur between
the code fragments. Significant Type-2 differences means a Type-3 clone could be a pair of
structurally similar code fragments, that contain significant differences in identifier names
and literal values.

Clone detectors can detect Type-3 clones by using clone similarity metrics that mea-
sure the syntactical or structural similarity of two code fragments, perhaps after Type-1
and Type-2 normalizations, then reporting those that satisfy a given minimum similarity
threshold. Another method is to detect nearby Type-1/Type-2 clones that are separated by
a dissimilar gap, and merge these to form Type-3 clones. Researchers do not agree on how
much modification can be performed on the copied code fragment before it is no longer a
clone of its original. Since clones can arise for reasons other than copy and paste, for example
programming language limitations and repeated coding styles [1], researchers are concerned
with what is the minimum syntactical similarity of a valid Type-3 clone.

2.2.4 Type-4 Clones

Type-4 clones can occur when the same functionality has been implemented multiple times
using different syntactical variants. Most programming languages allow the same functional-
ity to be specified using different syntax. For example, a switch statement could be replaced
with an if-else chain, or a for-loop could be replaced by a while loop. Often the statements of
a code fragment can be re-ordered without changing functionality but significantly varying
the code fragment’s syntax and structure. As a more extreme example, two implementations
of merge-sort, one recursive and one iterative, could be considered as a Type-4 clone.

Type-4 clones are a relatively unexplored clone type, with very few tools targeting their
detection. It is also difficult to separate the Type-3 and Type-4 clones as many Type-3
clones have the same or share functionality, while Type-4 clones will often share some degree
of syntactical similarity. There is also the question of how similar must the functionality of
two code fragments be for them to be a Type-4 clone, or if implementations of the same
functionality (e.g., stable sort) using different algorithms (e.g., bubble sort and merge sort)
is a Type-4 clone.

9

2.3 Syntactic and Semantic Clones

A code clone is a pair of code fragments that are similar, for some definition of similarity.
Generally, we are interested in code fragments that are similar by their syntax and/or se-
mantics. The clone types reflect this, with Type-1, Type-2 and Type-3 being concerned with
syntactical similarity and Type-4 being concerned with semantical similarity. While clones
of the first three types are defined with respect to syntactical similarity, it is often also the
case that syntactic clones share semantics. In contrast, Type-4 clones are those that are
specifically syntactically dissimilar but semantically similar. A syntactic clone is therefore
any clone of the first three types, while a semantic clone is a pair of code fragments that im-
plement similar functionality, but can be any of the four primary clone types. Both semantic
and syntactic clones are of interest to software developers and clone researchers.

Syntactic clones often indicate the incidence of copy and paste source-code reuse. When
source code is re-used by copy and paste, this duplicates any existing bugs, decreasing the
quality of the software system and increasing the costs of bug-fixing and other maintenance
tasks. Duplicate code can also lead to new bugs when one code fragment is evolved with-
out appropriately duplicating that evolution to the code fragment’s clones. Many syntactic
clones are also semantically similar. However, there are also syntactic clones that share no
semantics. In particular, the cases of significant or total differences in identifier names and
literal values of Type-2 and Type-3 clones. These structurally similar clones can be cases of
coincidental similarity, but many may still be interesting when they indicate reuse of program
and algorithmic structuring which may still be prone to reuse bugs.

Semantic clones indicate duplicate functionality that should ideally be re-factored into
common code. Otherwise bugs in the semantics need to be addressed in multiple locations,
and changes or evolution to semantic requirements need to be implemented in multiple lo-
cations. Both cases leads to redundant maintenance and evolution efforts, and can cause
new bugs when not done properly. As clones are not typically documented [1], this is real
concern.

Syntactic clones are often also semantic clones. Most clone detectors measure syntactical
similarity to detect both syntactic and semantic clones. Very few clone detectors target
semantic clones that are not syntactically similar, and those that do are not very proficient.
As such, Type-4 clones are still an open area in clone detection research.

2.4 Clone Granularity, Boundaries

The general clone definition does not place any constraints on the boundaries of a code
fragment except that it is a contiguous sequence of lines. Therefore clones can exist at
various granularities in source code [1, 4]. The most common granularities studied include:

File Clone A pair of similar source files.

Class Clone A pair of similar class definitions (in object-oriented code).

Function Clone A pair of similar functions (or class methods, constructors or destruc-
tors).

10

Block Clone A pair of similar code blocks (indicated by a matching pair of opening and
closing braces, or sequence of statements at the same indentation indentation, and so
on depending on the programming language).

Arbitrary Statement Clone A pair of similar code-statement sequences.

File, class, function and block clones have precise boundaries. The code fragments start
and end on the boundaries of the respective granularity. For example, a code fragment of a
function clone starts on the line the function definition begins on and ends on the line the
function definition ends on.

2.4.1 Arbitrary Statement Clone Boundaries

The code fragments of an arbitrary statement clone do not have precise boundaries. They
start on the line containing the first statement in the sequence and end on the line containing
the last statement in the sequence. However, a number of rules for high-quality arbitrary
statement clone reporting are followed by most tools.

The code fragments of arbitrary statement clones should not overlap. The start and
end lines of the code fragments should be within the same scope. For example, the code
fragments should not start within an if-statement and end outside of the if-statement. In
other words, the code fragments of arbitrary statement clones should not split higher-order
code statements (e.g., if statements, loop statements, switch statements, code blocks, and
so on); they must include the entire higher-order code statement or not at all. The code
fragments should not start in one function and end within another, or subsume multiple
functions. Functions are complete and independent logical units, and their position/order
within a source file is not generally relevant, so it does not make sense for a code fragment
to encompass multiple functions (except for the case of class and file clones).

These are general rules for high-quality arbitrary statement clone reporting for human in-
spection and software maintenance tasks. Not all clone detection tools follow these guidelines,
often because they can be difficult or computationally expensive to enforce. Additionally,
there may be domain-specific applications of clones that violate these rules. For example,
clone detection for code compaction.

2.5 Clone Size

The clone definitions do not put any constraints on the size of clones. Clone size is typically
measured as the maximum (or average) length of its code fragments measured in original
source lines, pretty-printed source-clones and/or by token. While there is no minimum size
of a clone, very small clones are often spurious. For example, a pair of identical tokens are
not considered a clone, neither is pair of statements that are the same after normalization.
Clone detection tools typically require a minimum clone size configuration in order to filter
those smaller identical/similar code fragments that are likely to be spurious or uninteresting.
Typical minimum clone sizes are 6-15 original source lines [5,6,7,8], and 30-100 tokens [9,10].

11

2.6 Clone Detection Tools

Clone detection tools are used to detect clones within a collection of source code. Clone
detection can be defined as shown in Eq. 1. The clone detector, T , takes a collection of
source code S, and a configuration of its detection algorithms, C, and outputs a set of
detected clones, D.

T (S,C)→ D (1)

The collection of source code can be a single software system, a collection of software
systems, or just a collection of source files. The tool configuration can include the language(s)
of the source files to process, the granularity(ies) to report clones at (e.g., arbitrary statement,
block, function or file), the minimum and maximum sizes of clones to report, the source
normalizations to apply during parsing, the similarity threshold or maximum gap size for
reporting Type-3 clones, or any other configuration specific to the tool’s detection algorithms
and implementation. The tool outputs the detected clones as a collection of clone pairs or
clone classes in a clone detection report. There is no universal standard for clone detection
report format or style, so a key aspect of tool evaluation is to convert the clone detection
reports into a common format.

All clone detection tools implement the following abstract procedure. The source code files
are parsed, and all of the code fragments are identified, subject to a minimum and maximum
code fragment size (by line or token), granularity, boundary constraints, file filters, sliding
windows, and so on. Let F = {f1, f2, ..., fn} be the n code fragments found in the source
code, after filtering.

This implies a set of potential clone pairs, F × F , that the tool should investigate. The
tool may reject some potential clone pairs, such as pairs of the same code fragment, pairs of
overlapping code fragments, pairs of code fragments that vary too significantly in size, and so
on. The remaining potential clones pairs are investigated by the tool’s detection algorithms
and similarity metrics to decide if it is a clone or not. The tool outputs its detected clones (as
clone pairs or summarized in clone classes) – the candidate clone pairs its algorithms have
judged to be clones. This is summarized in Eq. 2, where judge() either accepts a potential
clone pair as a true clone, or reject its as a false clone, as per the tool’s judgment.

D = {(fi, fj) ∈ F × F | i 6= j ∧ judge(fi, fj)} (2)

The tools generally do not implement this abstract procedure explicitly, but their algo-
rithms efficiently implement this procedure implicitly. Surveys by Roy et al. [2] and Rattan
et al. [3] found at least 70 clone detection algorithms and tools in the literature. These have
been classified into various categories based on their detection algorithms [2], including: text,
token, tree, metric, hash, program dependency graph (PDG), hybrid, and so on. The large
number and variety of detection techniques motivates the need for clone benchmarks.

Clone detection tools are not perfect, and their detection reports can contain both true
positives and false positives. Additionally, its reporting of a clone’s boundaries may not be
precise. It may include additional code not part of the clone, or miss some code that is part
of the clone.

12

3 Benchmarking Theory

Clone detection tools are typically evaluated for their clone detection performance and their
execution performance. Clone detection performance is measured using information retrieval
metrics including recall and precision. Recall measures the proficiency of the clone detector,
while precision measures its accuracy. Execution time and scalability measure the execution
performance of a clone detector.

Measuring recall requires an oracle or reference corpora, a set of known true and false
clones, which is challenging to build. Precision can be measured without an oracle, but
requires extensive clone validation efforts. Execution time can be measured by executing the
clone detectors for a standard subject system or set of subject systems on standard hardware.

These evaluation metrics are defined as follows:

Recall The ratio of the true clone pairs within a software system that a clone detector is
able to detect.

Precision The ratio of the clones detected by a clone detector that are true clones not
false positives.

Execution Time Given a limited set of computation resources, the length of time a clone
detector required to complete its detection of clones within a given subject system or
collection of source code.

Scalability How large of a subject system or collection of source code a clone detector
can be executed for given a limited set of computation resources without crashing due
to exceeding the available resources and without requiring unreasonable execution time.

3.1 Recall and Precision

We now describe how the recall and precision of a clone detection tool can be measured.

3.1.1 Measuring Recall and Precision with an Oracle

Recall and precision can be measured for a specified subject software system as shown in
Figure 1. Here we have the universe, U, of all potential clone pairs (every possible pair
of code fragments) within the subject software system. On the left is the set of all true
clone pairs, T, in the subject software system. This set is determined by a clone oracle, a
hypothetical entity that is perfectly able to judge if a pair of code fragments is a clone (in
reality, no such entity exists). The remaining pairs of code fragments, F = U−T, is the set
of false clone pairs – the code fragment pairs the oracle decided are not clones. On the right
there is the set of detected clone pairs, D, reported by the clone detector when executed for
the subject software system. From the perspective of clone detection, this splits the universe
into four regions:

True Positives The true clones successfully detected by the subject clone detection tool.
(Desirable, improves recall.)

13

Subject Software System

Clone Oracle Clone Detector

True
Positives

False
Positives

False
Negatives

True
Negatives

T True Clone Pairs D Detected Clone Pairs

U Universe of Code Fragment Pairs

Figure 1: Measuring Recall and Precision with an Oracle

False Positives The false clone pairs incorrectly identified as true clone pairs by the
subject clone detector. (Undesirable, harms precision.)

True Negatives The false clone pairs that are (correctly) not reported by the subject
clone detection tool. (Desirable, improves precision.)

False Negatives The true clone pairs that are not detected (missed) by the subject clone
detection tool. (Undesirable, harms recall).

Recall, as shown in Eq. 3, is the ratio of the true clone pairs that are detected by the
subject clone detection tool, i.e., the ratio of T that is intersected by D. This is also the
ratio of the subject tool’s true positives to the union of its true positives and false negatives.
Therefore, to improve recall, a clone detection tool wants to maximize its true positives and
minimize its false negatives.

recall =
|D ∩T|
|T|

=
|true positives|

|true positives ∪ false negatives| (3)

Precision, as shown in Eq. 4, is the ratio of the detected clone pairs that are true clone
pairs, not false clone pairs, i.e., the ratio of D that is intersected by T. This is also the
ratio of the subject tool’s true positives to the union of its true positives and false positives.
Therefore, to improve precision, a clone detection tool wants to maximize is true positives
and minimize its false positives.

14

precision =
|D ∩T|
|D|

=
|true positives|

|true positives ∪ false positives| (4)

3.1.2 Challenges in building an Oracle

The measurement of recall and precision depends on the identification, or “oracling”, of all
the true clone pairs within a subject system. This process is extremely effort intensive, as
it requires the manual examination of every possible pair of code fragments in a subject
system. Even a small system such as cook (51KLOC, 1244 functions) contains on the order
of one million code fragment pairs at the function granularity alone [11]. Not only is this too
many potential clones to be examined, the cook subject system does not contain a sufficient
number and variety of true clone pairs on its own to properly evaluate clone detection recall.
Additional subject systems are required, which adds to the workload issue.

Additionally, the classification of a potential clone as true or false clone is a subjective
process. Previous studies [12] have demonstrated that even amongst clone experts there is
disagreement on what constitutes a true or false clone. A clone expert may even give a
different opinion on the same clone when shown it at different times. There is no universal
definition of a true clone, and responses might depend on the current task and goals of the
clone-detection user [11]. As such, it is not only a question of if a potential clone is a true
clone, but if it is useful or relevant clone for some clone-related maintenance or development
task.

As such, no clone oracle exists, as it is too effort intensive to create. Likely no true oracle
can exist, due to the subjectivity in what constitutes a true clone. Instead, clone detection
researchers must come up with innovative ways to create corpora of validated reference clones
that can accurately estimate the recall and precision of clone detection tools without the
need to fully oracle multiple subject systems. To overcome subjectivity, benchmarks must
be created with a well-defined perspective and scope such that the results can be properly
interpreted.

3.1.3 Measuring Recall and Precision with a Reference Corpus

Recall and precision can instead be estimated using a reference corpus, a set R of the known
true and false clone pairs within a subject system, set of subject systems, or some other
collection of source code. The reference corpus can be separated into its set of known true
clones, Rt, and set known false clones, Rf. Recall and precision are measured with respect
to the know true and false clones. In most cases, the reference corpus is not complete – it
does not contain every true and false clone within the subject system. In other words, the
reference corpus is a proper subset of an oracle. Specifically, Rt ⊂ T and Rf ⊂ U−T. The
goal in creating a reference corpus (i.e., a clone benchmark) is to efficiently build a large and
varied reference corpus for accurate estimation of recall and precision with a minimum of
bias in the validation of the clones.

Recall is measured as the ratio of the true clone pairs in the reference corpus that a clone
detection tool is able to detect. This is shown in Eq. 5, where D is the set of detected clone
pairs detected by a tool, Rt is the known true clone pairs in the reference corpus, and T is

15

the set of all true clones in the subject system(s). Given a sufficiently large and sufficiently
varied reference corpus, we can assume that RT approximates T for the purpose of measuring
recall, even if |Rt| << |T|.

recall =
|D ∩T|
|T|

≈ |D ∩Rt|
|Rt|

Rt ⊂ T (5)

The reference corpus can be used to measure a lower and upper bound on a subject clone
detection tool’s precision. The lower bound is measured as in Eq. 6, as the ratio of the tool’s
detection report that intersect the known true clones in the reference corpus. The known
true clones are used to validate part of the tool’s detection report, while the other clones are
assumed to be false positives (they either match the known false clones or are unknown to
the reference corpus). The tool’s precision cannot be lower than this.

bprecisionc =
|D ∩RT|
|D|

(6)

The upper bound on precision is measured as in Eq. 7, as the ratio of the tool’s detection
report that are not known false clones. The known false clones are used to validate part
of the tool’s detection report as false clones, while the other clones are assumed to be true
positives (either match the known true clones or are unknown to the reference corpus).

dprecisione =
|D| − |D ∩RF|

|D|
(7)

However, it is challenging to measure precision with a reference corpus without a signif-
icant difference between the lower and upper bound. In most benchmarks, |Rt| << |T|, so
the lower bound on precision is likely to be very low. The number of false clones in a subject
system(s) vastly outnumbers the number of clones. Unless the creator of the reference corpus
is very clever and able to mine those false clones that the tool is most likely to mistakenly
detect as clones, the detected false positives is unlikely to significantly intersect with the
known false clones. The upper bound is therefore likely to be very high (near-100%) even for
subject tools with poorer precision. However, it is possible to estimate precision without a
reference corpus by manually validating some of the detected clones, which we discuss further
in Section 3.3.

For this reason, reference corpora typically include only true clones for measuring recall,
and leave precision to be measured by manual validation by the tool author. So we will use
reference corpus to mean a collection of known true clones, and treat those also including
known false clones as a special case. We discuss general methods of creating reference corpora
in Section 3.2, and specific methods, including full benchmarks with standard evaluation
procedures and utilities, in Section 4.

3.1.4 Clone Matching Algorithm/Metric

The measurement of recall and precision with a reference corpus requires computing the
intersection of the detected clones with the true and false clones in the reference corpus.
This requires determining which of the reference clones in the reference corpus are matched
by detected clones in the subject tool’s clone detection report.

16

However, clone detection tools do not always report clones perfectly, and may have some
some errors in the clone line boundaries. In particular, off-by-one line errors are common.
So it is not as simple as searching the detected clones for an exact match of a reference
clone. Additional sources of differences in clone boundedness is differing clone reporting
styles between the reference corpus and clone detection tool, or even subjectivity in the
precise boundaries of the reference clones themselves.

So accommodate these potential discrepancies, a clone matching metric is used to evaluate
if a given detected clone is a sufficient match of a specific reference clone for the reference
clone to be considered as detected by the subject clone detector. This matching metric is
evaluated for every detected clone until a sufficient match is found, or all detected clones
are checked. This can computed efficiently if the detection report is inserted into an indexed
database table and the algorithm is implemented as a database query.

Various clone detection algorithms have been used, that require the detected clone to:
exactly match the reference clone (with or without an allowed error), subsume the reference
clone, intersect a specified ratio of the reference clone, and so on. The chosen matching
metric usually depends on the way the reference corpus was constructed.

3.2 Methods for building a Reference Corpus

Many methods for building a reference corpus have been proposed or attempted, all with
different trade-offs and challenges.

Manual Inspection One method is an exhaustive manual search of a subject system.
Every pair of code fragments can be checked to see if they are a true or false clone, and
added to the reference corpus. This is a reasonable approach for very small subject systems.
However, even a small system such as cook (51KLOC, 1244 functions) contains nearly one
million pairs of code fragments at the function granularity alone [11], which is far too many
candidate clones to check. A solution is to investigate only a statistically significant random
sample of the code-fragment pairs [13]. However, since the chance that two randomly selected
code fragments being a true clone is low, this is an inefficient way to build reference corpus.

Using Clone Detectors A common method is to build the reference corpus using the
clone detection tools themselves.

The union method [5] builds a reference corpus as the union of the clones detected by a
set of diverse clone detection tools. The flaw in this approach is it assumes the tools have
perfect precision, which is not a reasonable assumption. The false positives added to the
corpus will harm the measure of recall. Additionally, the true clones not found by any of the
tools are missing from the corpus. The code fragment pairs not found in the union cannot
be assumed to be false clones, as it is not reasonable to assume the union of the tools has
perfect recall for the subject system. An additional challenge is the handling of clones that
are detected by multiple tools but are reported differently, including different reporting styles
and precise line boundaries.

The intersection method [5] builds a reference corpus as the intersection of the clones
reported by a set of diverse clone detection tools. The flaw in this method is it will trivially
measure perfect recall for the tools used to build it. It cannot be assumed that the clones

17

not found by all of the tools are false clones, so it can’t be used to measure the precision of
the tools either. It could possibly be used to measure the recall of non-participant tools, but
the corpus will likely only contain the clones that are easy to detect (and thus detected by
all the tools).

Another method is to combine these approaches [5], by taking the union, but removing
those clones that are not detected by at least n tools, where n > 1. The idea is that those
clones detected by more than one tools are less likely to be false positives. However, there
is no clear choice of an appropriate value of n. Additionally, it can be the case that n tools
report the same false positive, or that n−1 tools detect a true clone. So the resulting corpus
may still be of low quality.

A popular approach is to combine the union method with statistical sampling and manual
clone validation [5]. A random sample is selected from the clones reported by each clone
detector and manually validated to identify the true and false clones. The sample size and
distribution must be justified to be statistically significant and fair amongst the tools. The
resulting corpora can be used to estimate recall, while the validation efforts can be used to
measure the precision of the participating tools.

Search Heuristics An alternative to using the clone detectors themselves is to use search
heuristics that are distinct from the clone detectors. Ideally, the search heuristic would be
designed to have high recall but poorer precision, with the true clones identified by manual
inspection before inclusion in the reference corpus. This is similar to the manual inspection
approach, except the search heuristic is used to greatly reduce the manual search space for
better efficiency. However, heuristics could also cause some true clones to be missed and not
included in the reference corpus. The heuristics may be designed to build a corpus with a
particular context.

Our implementation of this approach used keywords and source-code patterns to identify
code fragments implementing specific functionalities, which revealed large semantic clone
classes after manual inspection [14]. Another implementation used Levenshtein distance to
identify true clones as those meeting a specified threshold [15], without the need for manual
inspection.

Clone Injection A reference corpus can be built by injecting known clones into a subject
system, or authoring new clones within that software system. This is an alternative to mining
for clones that already exist within the subject system. The advantage of this approach is it
gives the benchmark creator total control over the clones in their reference corpus. However,
manually creating interesting clones and injecting them into a software system is very effort
intensive [5]. Perhaps only a small reference corpus can be built. However, the benchmark
creator could carefully introduce interesting features into each clone and evaluate how this
affects their detection by the subject clone detectors. Injection could also be automated to
study the detection of the clone by the subject tools for different locations of the clone within
the source files.

Artificial Clone Synthesis A reference corpus can be automatically synthesized by pro-
grammatically mimicking the creation of a clone by a software developer. This has been

18

done using source-code mutation operators that mimic the types of edits developers make on
copy and pasted code [16,17,18]. This is similar to manual clone injection, except the clones
are constructed automatically. The advantage of this technique is a large corpus can be
constructed, with custom distribution of clone types. However, it is difficult to automatically
synthesize complex and realistic clones, which is the advantage of the manual clone injection
method.

3.3 Measuring Precision without a Reference Corpus

As mentioned in Section 3.1.3, a reference corpus can only measure a lower and upper bound
on precision. However, since it is very unlikely the reference corpus will contain a significant
sample of the possible false positive clones the subject tools will report, it is likely there is a
significant spread between the lower and upper bound. Most reference corpora in fact do not
include any known false clones, but rather focus on accurate measurement of recall. This is
not a problem because precision can be estimated without a reference corpus.

The precision of a clone detection tool (for a given subject software system) can be esti-
mated by manually validating a statistically significant sample of its detected clones. Preci-
sion is then the ratio of the validated clones that are judged as true clones not false positives.
The precision of a clone detection tool can vary between software systems, so typically this is
repeated for a collection of diverse software systems from a variety of programming domains,
and the precision measurement is averaged.

While this procedure is rather simple, there are still some challenges. Clone validation is
a very effort intensive process, and validating detected clones in a variety of software systems
can take a significant amount of time. Svajlenko et al. [19] propose the use of clone clustering
to reduce the efforts needed to measure a more generalized precision. Clone validation is also
subjective [12], so precision measured by different individuals could vary significantly.

3.4 Execution Time and Scalability

The execution performance of a clone detector, including execution time and scalability, are
also very important. Execution time is the length of time a clone detector needs to complete
its analysis of a subject software system. Scalability is how large of a subject system the
clone detector can be executed for without crashing due to exceeding the available computing
resources (e.g., memory and disk-space) and without requiring an unreasonable execution
time. Scalability is also how execution time increases with increases in the size and/or
complexity of the subject system.

Execution time is important as users prefer not to wait for analysis results. When clone
detection is integrated into a tool-chain, execution time must be fast enough not to bottleneck
the process. For example, clone detection may be integrated into the analysis step of a build
system. The clone detector must be fast enough not to significantly delay completion of the
build, especially in comparison to the development velocity (commit frequency).

As the size of software systems continues to grow, the scalability of clone detectors is
becoming a primary concern. There is also interest in the detection of clones between software
systems, between forks, and within an organization’s entire portfolio of source code. Emerging
applications of clone detection include the analysis of clones in large inter-project source

19

repositories on the scale of millions or even billions of lines of code or greater. It is important
to see how existing and new clone detectors can handle these scenarios.

Execution time and scalability depend greatly on the target subject system and the
hardware the clone detector is being executed on. Therefore, to compare the execution
performance of clone detectors, they must be executed for a standard set of subject software
systems on the same hardware. An experiment will execute a number of clone detectors
for a collection of systems on the same hardware configuration. Of interest is execution
performance on standard hardware (e.g., a typical development workstation) as well as on
extraordinary hardware (e.g., server computer with many cores and an abundance of memory,
or even a computer cluster).

4 A Survey of Clone Benchmarks

In this section, we survey and evaluate the existing clone benchmarks. A clone benchmark
is a reference corpus, or a framework for generating reference corpora, for measuring clone
detection recall. While precision, execution time and scalability are also important metrics,
they can be measured without reference data. Researchers have therefore focused on building
benchmarks for measuring recall, although the benchmarks often provide some support in
measuring or estimating the other metrics as well.

For this survey, we focus only on the works published as standard benchmarks, or which
have been adopted by the community as standard benchmarks.

Tool authors have built impromptu reference corpora for evaluating the recall of their
tools (see Section 5.3.6). However, these corpora are often not publicly released, are small,
are poorly described, or are built to highlight the capabilities of the featured clone detector.
So we do not consider these to be standard benchmarks.

Similarly, tool evaluation studies (see Section 6) may build a reference corpus to compare
the recall of the participating tools. These may not be publicly released, or not well described,
or are built specifically for the participating tools not as general benchmarks. So we do not
consider these to be standard benchmarks.

We consider only the works whose authors have intended to deliver a general and standard
benchmark, irrespective of any particular clone detector(s). The exception is we consider
those benchmarks published in tool comparison studies which have been strongly adopted by
the community (specifically, Bellon’s Benchmark [5]).

This section is organized as follows. We begin by describing our survey procedure in
Section 4.1, and overview the results in Section 4.2. Then in Section 4.3 we summarize each
benchmark in detail, including our own discussion and critique on these works. In Section 4.4
we formally evaluate and compare the benchmarks. We propose a set of evaluation criteria,
and evaluate each benchmark for them. We close this section by discussing threats to the
survey in Section 4.5.

4.1 Survey Procedure

To identify the clone benchmarks, we examined the clone research literature. We began
by examining the clone research surveys [1, 3], which summarize the literature up to at

20

least 2011. As part of our survey of the clone detection tools (Section 5), we searched the
leading academic databases for clone detection publications for a period of January 2011 to
March 2017. During this search we also identified the clone benchmark publications. We are
confident we have found all or most of the clone benchmark publications.

4.2 Overview of Results

We found a total of eight clone benchmarks in the literature, which are summarized in Table 1.
We order the benchmarks by their publication year, and provide a short description of each
benchmark. We indicate which of the four primary clone detection performance metrics the
benchmark is able to measure, and whether the authors provide an evaluation procedure or
utility for the measurement. We also indicate whether the benchmark is publicly available.

4.3 Detailed Results

In this section, we describe each of the benchmark in detail, and provide some discussion and
critique on their attributes.

4.3.1 Bellon’s Benchmark

Bellon’s Benchmark. [5,20] is the product of a clone detection tool evaluation study performed
by Bellon et al. [5] in 2002. The benchmark was built by manually validating 2% of the
325,935 clone pairs detected by six contemporary clone detection tools in four C and four Java
software systems, and adding those found to be true positives (possibly with modifications)
to the reference corpus as true clones. In total, 77 hours were spent validating 6,528 detected
clone pairs to build a reference corpus containing 4,319 known true clones. Bellon et al. [5]
propose two clone matching metrics, one strict and one lenient, for measuring recall and
precision (lower bound only).

Tools using a variety of detection techniques were used to build the benchmark, includ-
ing: Dup [21, 22, 23] (token-based), Duplix [24] (PDG-based), Duploc [25, 26] (text-based),
CCFinder [10] (token-based), CLAN [5,27] (metric-based), and CloneDr [28,29] (AST-based).

The utility used to build the benchmark and evaluate the tools was released, and can
be used to evaluate the recall of new clone detection tools. Precision can only be measured
for the original tools used to build the benchmark, unless the user extends the benchmark
with new clones (although this has some complications). While Bellon’s benchmark does not
measure the execution performance of clone detection tools, its collection of subject software
systems (of various sizes) can be used as a standard set for performance benchmarking.

Bellon’s Benchmark has been a very popular benchmark in the clone community, and
multiple extensions have been proposed (e.g, [7,30]). However, the benchmark has also been
the subject of criticism. Baker [21] found inconsistencies in the clone types and validation
procedure used by Bellon. Svajlenko et al. [7] found significant anomalies in the recall mea-
surements by Bellon’s Benchmark for modern clone detectors, and suggests that an update
of its corpus is warranted. Charpentier et al. [12] performed an empirical assessment of the
reference clones in Bellon’s Benchmark, and found disagreement when these clone sare re-
validated by multiple judges. In another work, Chapentier et al. [31] show that non-experts

21

Table 1: A Survey of Clone Detection Benchmarks

Benchmark Year Description R
ec

a
ll

P
re

ci
si

o
n

S
ca

la
b

il
it

y

E
x
ec

u
ti

o
n

T
im

e

P
u

b
li

c
D

a
ta

Bellon’s
Benchmark [5, 20]

2007
Reference corpus of manually validated clones detected by clone
detectors.

D: D: D !

Mutation and Injection
Framework [16,17,18]

2008
Evaluates using synthetic clones in a mutation-analysis
procedure.

D: D: !

Lavoie and Merlo [15] 2011
Automatically validates all pairs of code fragments in a software
system using the Levenshtein metric.

D D

ForkSim [32] 2013
Creates synthetic forks of an existing software system with
known similarities and differences. Can evaluate clone detection
performance across software variants.

!< !

BigCloneBench [8, 14,33] 2014
Manually validated reference clones mined by their functionality
in a large inter-project source-code repository.

D: D< D< !

Kurtz and Le [13] 2014
Manually validated function pairs within and between randomly
selected source files to build a reference corpus.

D !

Yuki et el. [34] 2016
Automatically validated merged clones mined from development
history

D

D= Can measure, < = Includes documented evaluation procedure, : = Includes an utility implementing the evaluation procedure.

22

in a particular software system can be unreliable in validating the clones in that software
system. In general, it has been shown that manual clone validation to build benchmarks can
be unreliable [11,12,31].

4.3.2 Lavoie and Merlo

Lavoie and Merlo use the Levenshtein distance metric to automatically build Type-3 clone
benchmarks. They use the Levenstein metric as the definitive oracle for differentiating true
and false clones, and implement an algorithm for computing a clone benchmark given a
configuration of the metric. They introduce this methodology as a way of avoiding the
extensive efforts and subjectivity of building a clone benchmark by manual validation. Their
methodology can build a comprehensive benchmark for systems up to even millions of lines
of code without human efforts. Since their methodology can investigate all potential clones
of a given granularity within a software system, it can measure both recall and precision.

Levenstein distance is the minimal number of edits to transform one string into another.
To measure this for code fragments, the authors transform the code fragments into strings of
their token types, which also removes any Type-1 and Type-2 differences between the code
fragments. Edit distance is measured at the token level, and then normalized by the length
of the larger code fragment, resulting in a difference ratio between 0.0 (exact match) and 1.0
(total mismatch). A threshold is used to judge if the pair of code fragments is a true clone
or a false clone. For example, the authors accept pairs of code fragments with a normalized
Levenstein distance less than 0.3 to be true clones. The authors use an algorithm based on
metric trees to efficiently identify all pairs of code fragments in a software system that satisfy
the chosen threshold.

The authors used their technique to build a benchmark of clones in the TomCat (130KLOC)
and Eclipse (1.3MLOC) software systems They consider only the code fragments that are
70 tokens or larger, and correspond to the block, method or class granularity. They do not
consider the statement-granularity code fragments, although though their technique would
support them, likely due to performance constraints. They accepted as clones the pairs of
code fragments with a normalized Levenstein distance lower than 0.30. For TomCat, they
processed 5084 code fragments (13 million pairs) and found 6534 true clones. For Eclipse,
they processed 129 thousand code fragments (8.4 billion pairs) and found 115 thousand true
clones. The Eclipse experiment requires 6.2 days of execution time on a cluster with 32
Operton CPU cores at 2.0GHz and 5GB of memory. In comparison, Bellon [5] required 3.2
days (or 10.3 normal workdays) to build a benchmark of just 4,319 clones. There is definitely
an advantage of building benchmarks in an automated way.

The advantage of this approach is a complete and objective benchmark can be built
without manual efforts. The primary threat to this benchmarking strategy is it accepts the
Levenshtein metric and chosen threshold as the definition of a true Type-3 clone. Essen-
tially, the benchmark is built using a clone detection tool based on the Levenshtein distance,
meaning the benchmark could itself contain false clones incorrectly identified as true clones
(false positives) and vice-versa (false negatives). While a human constructed benchmark can
also contain errors (human judges can be subjective, they make inconsistent judgments, and
make errors), the authors do not compare the accuracy of the Levenshtein to human judges.
The Levenshtein metric also cannot recognize false clones that are only coincidentally sim-

23

ilar. Researchers do not agree if a purely syntactically similar Type-3 clone (no functional
similarity) is a true or false clone.

However, despite these threats, the benchmark is still useful to measure the recall and
precision of a clone detector relative to this Levenshtein approach. The methodology appears
to be designed under the premise that the Levenshtein metric is an accurate but expensive
way to detect clones, and that clone detectors typically use less accurate but more efficient
metrics and algorithms to detect clones. This benchmark creation approach is too expensive
to be used for general clone detection, but the performance of the faster but less accurate
clone detectors can be evaluated with respect to it. However, the authors do not specifically
demonstrate this. At the very least, if this benchmark creation approach is implemented in a
rigorous way, it could be used to detect potential bugs or flaws in new clone detection tools.

While the algorithms of this approach have been published [15], it does not appear that
the authors have released the implementation of the algorithms, or the TomCat and Eclipse
benchmark. Therefore usage of this benchmark is difficult as it requires re-implementation
of the authors efforts.

4.3.3 Mutation and Injection Framework

The Mutation and Injection Framework [7,16,17,18] is a fully automatic synthetic benchmark
for evaluating the recall of clone detection tools. It synthesizes realistic copy and paste clones
in a mutation-analysis procedure, and automates the evaluation of the subject clone detection
tools for the synthetic clones. The idea was originally presented by Roy et al. [16] including a
proof of concept implementation and demonstrating experiment [17] with their clone detector,
NiCad [6]. The framework was then generalized and refined by Svajlenko et al. [18] who have
used it in a number of tool evaluation studies [7, 8, 35].

The Mutation and Injection Framework was created in response to difficulties in using
benchmarks or benchmarking methodologies, such as Bellon’s benchmark [5], that rely on
manual clone validation. Manual clone validation requires significant time investment [5],
is error-prone [12, 21, 31] and subjective [12, 31], so a clone benchmark that can avoid these
efforts is highly valuable. The framework was designed to support multiple programming
languages and granularities, and measure recall more precisely and at a finer granularity
than previously possible.

The framework evaluates tools for all the different kinds of edits developers make on copy
and pasted code. The framework takes particular efforts to eliminate or reduce biases in the
reference corpus and tool evaluation [18] that exist in other benchmarks. The framework has
two distinct phases: the generation phase and the evaluation phase. During the generation
phase, a reference corpus of synthetic true clones is constructed, and those clones are hidden in
copies of a subject software system. During the evaluation phase, the subject clone detection
tools are executed for the reference corpus, and their recall and precision measured specifically
for the reference clones.

No manual clone validation efforts are required during the process, and the framework’s
implementation fully automates the evaluation through an easy to use menu-based interface.
The framework has been publicly released [36], along with the reference corpora the authors
have generated for their evaluation studies [7, 8, 35].

The advantage of this benchmark is it measures a precise fine-grained recall for the dif-

24

ferent kinds of clones that are possible. Since it generates clones, it can test the tools against
a significant variety of clones. However, to ensure the artificial clones are true clones, it is
conservative in the amount of differences introduced to the cloned code. Also, the clones may
not reflect real clones in practice. However, the Mutation Framework can perform a much
more controlled experiment than possible with a real-world benchmark. The authors suggest
combining the Mutation Framework with a real-world benchmark like BigCloneBench to get
the best of both synthetic and real-world clone benchmarking.

4.3.4 ForkSim

ForkSim is a framework for generating sets of artificial forked software systems with known
similarities and differences. It can be used to measure the effectiveness of clone detection
tools for migrating software variants towards a software product line. The framework takes
a software system as input, and produces a number of forks by simulating forked software
development. The authors proposed a taxonomy of six forked development activities, which
are implemented in the framework, including both independent and shared development
activities between the artificial forks. For simulating differences, the authors use a taxonomy
of the types of edits developers make on cloned code. The development history of the artificial
forks is logged such that recall can be measured. The authors have publicly released the
framework, and have demonstrated its use by evaluating NiCad for software variant analysis.

The advantage of this benchmark is it can evaluate tools for a specific use-case of clone
detection: analysis of software variants and their migration towards a software product line,
which is an important application in industry. Since the forks are artificially constructed,
the generated forks have known similarities and differences, needed for benchmarking. How-
ever, as a synthetic technique, there are a few disadvantages. The generated forks may not
accurately model how real forks are produced. Additionally, synthetic development is con-
servatively applied to ensure that the reference data is correct. Of course, the advantage
is a gold standard is produced without human efforts. While ForkSim creates benchmarks
with known similarities and differences, it is not a perfect oracle, so it cannot measure true
precision.

4.3.5 BigCloneBench

BigCloneBench is a very large benchmark of manually validated clones in the inter-project
Java source repository IJaDataset-2.0 (25 thousand systems encompassing 250MLOC). Big-
CloneBench was built by mining IJaDataset for function clones implementing commonly
needed functionalities. The clones were mined using a novel and efficient approach designed
to minimize subjectivity in the manual clone validation. The benchmark contains intra-
project and inter-project semantic clones (share functionality) spanning the four primary
clone types and the entire spectrum of syntactical similarity. It was designed to evaluate
tools for syntactic, semantic, intra and inter-project and large-scale/big-data clone detec-
tion.

BigCloneBench was released as a live benchmark, meaning it is under continuous expan-
sion and improvement. As of this writing, the benchmark is on its second release version,
which includes 8 million clones across 43 distinct functionalities. The benchmark has been

25

used in a number of tool evaluation studies [8, 35, 37], including evaluations on large-scale
clone detection [35, 37]. The authors have released an evaluation framework, BigCloneE-
val [33], which automates the evaluation of clone detection tool recall with BigCloneBench.
They have also released experiment artifacts that enable the comparison of execution time
and scalability [35, 37,38].

The authors built BigCloneBench by mining IJaDataset for functions implementing com-
mon functionalities. Automatic search heuristics are used to identify candidate functions
implementing a functionality, with manual validation to remove the false positives. This
identifies a large clone class of functions similar by their functionality, which captures a poly-
nomial number of reference clone pairs. Automatic processing is used to typify these clone
pairs as one of the four primary clone types, label them as intra or inter-project clones, and
measure their syntactical similarity. This process is repeated across a number of diverse func-
tionalities to build a large reference corpus of intra-project and inter-project clones of the four
primary clone types and spanning the entire spectrum of syntactical similarity. Their process
also identifies reference false clones – functions that implement different functionalities – that
can be used in a limited measurement of precision with respect to semantic similarity.

The advantage of this benchmark is its breadth, including all four clone types, syntac-
tic and semantic clones, intra-project and inter-project, and clones across 25,000 software
systems. Its validation process is indirect and guided by strict specifications, reducing sub-
jectivity in the benchmark’s clones. A possible disadvantage is the clones are validated only
by functionality. The authors identify large clone classes of code fragments implementing a
functionality, but do not inspect each clone pair individually.

4.3.6 Yuki et al.

Yuki et al. [34] in their paper, “Generating Clone References with Less Human Subjectivity”,
propose to build a reference corpus with less subjectivity by automatically mining reference
clones from the revision history of a software system. Specifically, they target cloned meth-
ods that have been removed by the software developers by a method merging pattern. The
authors suggest that these are real code clones, since they have been identified and refac-
tored by the authors to remove the duplicate code. At the very least, this process builds a
benchmark of clones that are demonstrably important to the software developers.

Yuki et al. [34] introduced this benchmark creation strategy in response to the difficulty
in creating reference corpora due to the subjectivity of clone validation. Subjectivity in clone
validation has been a significant challenge in benchmark creation [12, 21], particularly when
the judges are not an expert of the chosen subject systems [31]. Yuki et al. claim that by
automatically mining for cloned methods that have been refactored into a single method,
they are able to objectively build a reference corpora without human subjectivity or biases
due to a particular researcher’s preferred clone definitions.

The authors propose two heuristics for detecting candidate instances of method merging
in the development history, which can indicate the removal of a clone by refactoring. The
first pattern is when two methods that exist in one revision are removed in the next while
simultaneously a new method is created. The second pattern is when two methods exist in
one revision, one is removed in the next revision while the other is changed. These heuristics
detect cloned method merging instances, but also many false positives. The false positives

26

are filtered by removing those instances where the merged method is not at least 70% similar
to the methods before merging, and those where method calls to the original methods are
not replaced by method calls to the merged method.

The authors tested their procedure for three Java systems stored in subversion software
repositories, including: Ant (6022 revision), ArgoUML (3925 revisions) and jEdit (5168 re-
visions). In total, they identified 19 clones: seven from Ant, ten from ArgoUML and two
from jEdit. The authors manually checked these clones and found that all were true positive
methods clones that were refactored into a common method.

The strength of this approach is that the reference clones have been indirectly validated
by the software developers themselves. Clone validation has been identified as one of the
significant challenges in building clone benchmarks [1, 11, 12, 21] as it can be subjective,
as evidenced by disagreement amongst experts [11]. One suggestion has been that only
developers of the software system can reliable judge the clones [12,31], however the developers
are often not available or busy. Yuki et al.’s approach captures the opinion of the software
developer without requiring their time or presence.

A problem with this technique is that it builds a very small benchmark. Even after
analyzing 15,000 revisions across three software systems the authors are only able to identify
nineteen true clones, which is too few to build a reliable clone benchmark. Possibly a large
benchmark could be built by executing this process across the revisions of many software
systems. However, there might be challenges in doing so. The authors do not comment on
the difficulty of finding subject system repositories that are compatible with their process,
the execution time and resources required to execute the process, and if they need to tune
the process for each subject system individually. If this process could be executed for public
GitHub repositories automatically and without human intervention, the opportunity for a
large and diverse benchmark is possible. Since the authors chose to target only three subject
systems, likely there is challenges in the process to solve before it can be scaled to public
collections of software repositories.

Another problem is the benchmark has limited scope. Specifically, it only contains method
clones that have been refactored by method merging by the developers. These systems
likely contain many method clones that the developers simply haven’t refactored by merging,
including clones the developers are not aware of. The developers may even know of some
clones but choose not to refactor them either because the costs outweigh the risks of keeping
them, or because they are intentional clones. A problem with considering only the clones the
developers have refactored, is this either captures only those clones that developers already
knew about (and didn’t need a clone detector to detect), or it is capturing the clones that the
developers found using clone detectors (undesirable when building a benchmark). Refactoring
is not the only solution to clone management, and clone detectors are needed to track clones
that are undesirable to remove but need to be maintained appropriately.

A threat to the benchmark is the procedure validates the detected candidate merged
clone instances using a similarity metric with a threshold of 70%. This is itself a sort of
clone detection amongst the mined candidates. Therefore there is a risk of what is the recall
and precision of this automatic validation process. While they found it had 100% precision
in their experiment, this measurement relied on subjective validation by non-developers of
the subject system. The recall of this validation process is not reported, so possibly some
true clones are lost from the benchmark. The authors chose a similarity threshold of 70%

27

because it is the most common used by clone detectors, which may further bias the benchmark
towards the clone detectors.

4.3.7 Krutz and Le

In their paper, “A Code Clone Oracle”, Krutz and Le [13] created a small reference corpora
of function clones with high confidence using rigorous validation. The authors manually
validating randomly selected function pairs from three open-source C software systems –
including Apache, Python and PostgreSQL. In total, 1536 function pairs were validated
yielding 66 reference true clones, including 43 Type-2 clones, 14 Type-3 and 9 Type-4, but
no Type-1.

To select their function pairs (candidate clones) for manual inspection, the authors se-
lected 3-6 files per subject system, and enumerated all possible function pairs, yielding a
total of 45,109 functions. From these functions, they randomly sampled 1536 function pairs
to examine if they are clones (a statistically significant sample with 99% confidence level and
a confidence interval of 5). This includes 357 from Apache, 545 from Python and 634 from
PostgreSQL.

Each function pair was examined by three expert judges, who had experience in clone
detection. The three judges were allowed to discuss their results, and the final validation
results considered the consensus of the judges. The judges were also given the detection
results of four clone detection tools – including SimCad [39], NiCad [6], MeCC and CCCD –
to help them make their decision. The authors also validated the clones using four student
judges, and compared these results against the expert consensus. They choose to use only
the expert validation results for the final reference corpus.

The authors use a procedure that can build a high quality reference corpus. By selecting
candidate clones at random from the system, they can build a benchmark that exceeds the
capabilities of existing clone detection tools, which is good to motivate further development
in detection techniques. By validating the candidate clones by the consensus of three expert
judges, they lower the subjectivity in the results, and build high confidence in the reference
clones. However, their benchmark is extremely small – just 66 clone pairs. The benchmark
lacks variety in the clones, and does not even represent all of the clone types. While they
could increase the size and variety of the reference clones with further validation efforts, their
procedure has a number of limitations.

An issue with their approach is scalability. They investigated 1536 function pairs to
identify just 66 true clones for the benchmark (4.2% efficiency). In comparison, Bellon [5]
investigated 6,528 candidate clone pairs to identify 4,319 true positive clones (66% efficiency),
which required 66 hours of effort. Krutz and Le propose an approach that is much less
efficient, while requiring significantly more validation efforts by requiring consensus amongst
multiple judges. Achieving a large benchmark using this technique is infeasible.

Another concern is the authors involved clone detectors as part of their validation process.
While the clone detectors were not used to make the decision, the authors used the results
of the clone detectors to help them make their decision. This adds a bias to the benchmark
due to the influence of the clone detectors themselves. Ideally, the validation results should
be completely independent of any clone detector.

28

Table 2: Four-Point Scale for Evaluating Benchmarks

Numerical Rank Symbol Meaning

0 - - Does not satisfy the requirement at all.
1 - Minimally satisfies the requirement.
2 + Satisfies the requirement.
3 ++ Excellently satisfies the requirement.

- x No rank (not applicable to the benchmark).
- ? Unknown rank (information unavailable).

4.4 Evaluating the Benchmarks

In this section we evaluate the quality of the benchmarks. To do this, we propose a set of
requirements for clone benchmarks, and rank how well each benchmark satisfies them on
a four point scale. We propose desirable benchmark properties across a number of facets,
including: general properties, subject systems, reference corpus, measuring recall, and other
metrics.

The requirements are summarized per facet in Table 3. We rank the benchmarks for
the requirements on a four point scale, as shown in Table 2. This is the general guideline
of the four point scale, and for each requirement we provide details on how we ranked the
benchmarks specifically for that requirement. We also define two additional symbols to
denote when a requirement is not applicable to a given benchmark, and when it is unknown
if a requirement is satisfied due to lack of details provided by the benchmark authors.

In the remainder of this section, we describe each of the requirements in detail, and how
we evaluated the benchmarks. The final results are summarized in Table 4.

4.4.1 General Requirements

The general requirements are summarized in Table 3. We discuss each in detail below, and
their evaluation guidelines. The evaluation results for the tools are shown in Table 4, and we
discuss below how we assigned the evaluation scores.

GE1 - Availability The benchmark should be free and publicly available. This is im-
portant for adoption of the benchmark, and the repeatability and extension of evaluation
experiments. Benchmarks either include reference corpora, and/or procedures that generate
reference corpora. Raw reference data should be made publicly available for download. Gen-
eration procedures should at least be published as algorithms, although ideally a reference
implementation is also provided. At the very least, all benchmark publications should at
least describe the strategy used to produce the benchmark so that others could re-use that
strategy to produce similar (if not the same) benchmarks. If the benchmark is not available,
then it cannot be used and examined/evaluated by the community.

For availability, we use the following four-point evaluation:

- - The benchmark is not released.

29

Table 3: Clone Detection Benchmarks Requirements

Category Label Name Requirement

General

GE1 Availability The benchmark should be free and publicly available.
GE2 Ease of Use The benchmark should be easy to use.
GE3 Extensibility The benchmark should be open for extension.
GE4 Demonstrated The use of the benchmark should be demonstrated by the authors.
GE5 Evaluated The accuracy of the benchmark should be evaluated by the authors.
GE6 Community Usage The benchmark has been used by the community.
GE6 Maturity The benchmark is ready for use and can produce reliable results.

Subject Systems

SS1 Multiple Systems The benchmark should consider multiple subject systems.
SS2 Multiple Languages The benchmark should consider subject systems of multiple languages.
SS3 Varying System Sizes The benchmark should consider subject systems of varying sizes.

SS4 Varying Application Domains
The benchmark should consider subject systems from multiple
domains.

Reference Corpus

RC1 Range of Clone Types The reference corpus should contain clones of each clone type.
RC2 Validated Clones The reference corpus should be convincingly validated.

RC3 Clone Detector Independence
The reference corpus should be independent of the clone detection tools
themselves.

RC4 Strong Context The reference corpus should be built with respect to a context.
RC5 Variety of Clones The reference corpus should significant variety of clones.
RC6 Size of Corpus The reference corpus should be large.
RC7 Real Clones The reference corpus should contain real clones.

Measuring Recall

RE1 Procedure
The benchmark should recommend a procedure for measuring recall
with its data/framework.

RE2 Clone-Matching Algorithms The benchmark should propose clone-matching algorithms.

RE3 Tool Supported
The benchmark should provide a tool that assists with or automates
the measure of recall.

RE4 Repeatable
The benchmark should allow recall measurements to be repeatable by
different experimenters.

Other Metrics

OM1 Measures Precision
The benchmark should provide or support the measurement of
precision.

OM2 Measures Execution Time
The benchmark should provide or support the measurement of
execution time.

OM3 Measures Scalability
The benchmark should provide or support the measurement of
scalability.

30

Table 4: Benchmark Requirement Results

Requirements

B
e
ll
o
n
’s

B
e
n
ch

m
a
rk

M
u
ta

ti
o
n

F
ra

m
e
w
o
rk

L
a
v
o
ie

a
n
d

M
e
rl
o

F
o
rk

S
im

B
ig
C
lo
n
e
B
e
n
ch

K
u
rt
z
a
n
d

L
e

Y
u
k
i
e
t
a
l.

GE1 - Availability + + + + + + + + + + + +
GE2 - Ease of Use + + + + - - + + + - - -
GE3 - Extensibility - + + + + + + + + - + +
GE4 - Demonstrated + + + + - - - + + - - -
GE5 - Evaluated - + + - - - - + + - - - -
GE6 - Community Usage + + + + - - - + + + - -
GE7 - Maturity + + + + ++ + + + + + -

SS1 - Multiple Systems + + + ? + + + + + ?
SS2 - Multiple Languages - + ? + - - - ?
SS3 - Various Sizes - + + ? + + + + ? ?
SS4 - Various Application Domains + + + + ? + + + + + ?

RC1 - Range of Clone Types + + + + + + + + ?
RC2 - Validated Clones - + + - - + + + + +
RC3 - Clone Detector Independence - - + + - + + + + + -
RC4 - Strong Context - + + + + + + + - - + +
RC5 - Variety of Clones + + + + + + - - - -
RC6 - Size of Corpus - + + + + + + - - - -
RC7 - Real Clones + - + - + + + +

RE1 - Procedure + + + + - - + + + - - - -
RE2 - Clone-Matching Algorithms + + + + - - - + + - - - -
RE3 - Tool Supported + + + - - - - + + - - - -
RE4 - Repeatable + + + - - + - - -

OM1 - Measures Precision - + + + - - - - - - -
OM2 - Measures Execution Time + - - - - - - + + + - -
OM3 - Measures Scalability + - - - - - - + + - - - -

31

- The benchmark is not released, but the benchmark creation strategy is sufficiently
described to be reused to produce a similar benchmark.

+ The benchmark is available, but requires implementation or other additional efforts
from the user to access it.

++ The benchmark is fully available, and ready for immediate use. Any data is released,
and any procedures are implemented as public tools or frameworks.

Almost all of the benchmarks are fully released (++). While Lavoie & Merlo and Yuki
et al. fully describe their benchmark generation procedures, they do not provide an imple-
mentation, so they receive only a (+) rank.

GE2 - Ease of Use The benchmark should be easy to use. Any reference data should be
in an accessible format, and the evaluation procedure should at least be documented or ide-
ally implemented as a tool. The less burden placed on the user to measure the performance
metrics, the more likely the benchmark will be used. By providing (and ideally implement-
ing) a standard procedure for tool evaluation, evaluations performed by different users are
comparable, which is important in benchmarking.

For ease of use, we use the following four-point evaluation:

- - The reference data is not available.

- The reference data is available, but the user is given no guidance on how to use it to
evaluate their tool.

+ The reference data is accessible, and the evaluation procedure is well-documented, but
not implemented for the user.

++ The reference data or procedure is easily accessible, and a tool is provided that imple-
ments the evaluation procedure for the user.

A number of the benchmarks are easy to use, with both the reference data released as well
as frameworks for evaluating tools using default procedures. Both Bellon’s Benchmark and
BigCloneBench have their refrence data and evaluation frameworks/tools publicly released,
(+ +). Lavoie & Merlo and Yuki et al. are generative benchmarks, but neither example
reference data is released, nor are the generation algorithms implemented as tools. This
requires significant effort on the user to use these benchmarks in their current state, so
we assign (- -). In contrast, the Mutation Framework includes an easy to use framework
implementing its generation technique, and distributes example datasets, so we assign (+
+). While data from Krutz and Le is available, the authors provide no guidance on how
to evaluate tools with their data. ForkSim provides an evaluation strategy, but it is not
implemented as a tool.

32

GE3 - Extensibility The benchmark should be extensible by the community. While
ideally the benchmark creators will continue to maintain and improve their benchmark,
realistically the authors often move on to new projects. It is therefore important that the
clone community be able to maintain and improve its benchmarks. For the community to
be able to extend a benchmark, the original authors must have sufficiently explained how
they built the benchmark. A major threat to extensibility is if the clone validation process
is sufficiently rigorous and documented such that the community can extend the benchmark
in a consistent manor, without weakening the integrity of the reference data.

For extensibility, we use the following four-point evaluation:

- - The benchmark is closed for extension. The creation process is not sufficiently docu-
mented for repeatability, or the original data is unavailable.

- The benchmark creation process is sufficiently described to be repeated, but not detailed
enough for newly created reference data to be compatible with the original data.

+ The benchmark is open for extension, and the process is sufficiently described for the
new data to be mixed with the original reference data, but there are some limitations
in validating new reference data in a consistent way.

++ The benchmark is open for extension, and the process and validation procedure is
sufficiently described for new reference data to be kept consistent with the original
data.

The generative benchmarks (Mutation Framework, ForkSim, Lavoie and Merlo, and Yuki
et al.) are very extensible, as users can use these procedures to generate new reference
corpora for any subject systems, so we rank these as (+ +). The remaining benchmarks rely
on manual clone validation. While extension can be done by validating additional clones, it
can be difficult to do this in a consistent way without the original authors. We rank Bellon’s
Benchmark and Krutz and Le as (-) as their creation strategy is well-documented, but they
suffer form the consistent validation issue. In contrast, we give BigCloneBench a (+ +)
rank. BigCloneBench validates clones indirectly with a strictly defined specification. While
BigCloneBench validation can still contain subjectivity, it is much more controlled compared
to the other benchmarks relying on manual validation.

GE4 - Demonstration The use of the benchmark should be demonstrated by its creators.
At the very least, a case study evaluating a single tool, which demonstrates the evaluation
procedure. Ideally, a multi-tool case study, as this demonstrates the benchmark is compatible
with multiple clone detection tools. The best benchmarks are demonstrated in formal tool
evaluation studies, which demonstrate how to resolve common benchmarking issues such as
appropriate tool configuration, and normalizing for differences in how clone detectors choose
to report clones. The authors of the benchmarks are experts in demonstrating its usage.

For demonstration, we use the following four-point evaluation:

- - The benchmark authors have not used their benchmark to evaluate any tools.

- The benchmark authors have conducted a case study considering a single tool.

33

+ The benchmark authors have conducted a case study considering multiple tools.

++ The benchmark authors have conducted a formal tool evaluation study considering
multiple tools, and demonstrating how to resolve issues in tool configuration and nor-
malizing for tool reporting differences.

Ranking in this case was rather straight-forward. We investigated the benchmark publi-
cations and the papers that cite them to evaluate how the authors have demonstrated their
benchmarks in their works.

GE5 - Evaluated Benchmarks should themselves be evaluated to build confidence their
accuracy. At minimum, the properties of the benchmark should be measured to demonstrate
that it is comprehensive. Benchmarks can be evaluated by comparing their measurement of
performance against reasoned expectations for the tools. Confidence in accuracy can be built
by demonstrating that there is no unexplained anomalies in the benchmarking results. In
the best case, multiple benchmarks can be compared, and their similarities and differences
considered. Similarities build confidence in both benchmarks, while differences should be
explainable by the differences in the benchmarking methodologies.

For evaluated, we use the following four-point evaluation:

- - The benchmark has not been evaluated.

- The benchmark is evaluated by studying its properties.

+ The benchmark is evaluated by conducting a tool evaluation experiment, and comparing
the results against the expectations for the tools to check for anomalies.

+ + The benchmark is evaluated by conducting a tool evaluation experiment, and comparing
the results against results from other benchmarks, with agreement and disagreement
analyzed.

The Mutation Framework [7] and BigCloneBench [8] were compared against other bench-
marks for evaluation, and any anomalies examined and explained, (++). Bellon’s Bench-
mark’s properties were extensively evaluated, and the authors performed tool evaluations
with the full benchmark and the mid-point of its creation to show that performance evalua-
tions were stable for the reference data [5], (-). The other benchmarks do not try to evaluate
the accuracy of their evaluations, or haven’t been used in any tool evaluations, (- -).

GE6 - Community Usage Benchmarks are valuable when they are accepted by the
community. Benchmarks are accepted when evaluation studies using them are accepted into
the literature. In the best case, benchmarks are adopted by other researchers and used in
their studies.

For community usage , we use the following four-point evaluation:

- - The benchmark has not been used.

34

- The benchmark has only been used by its authors in a case study with the benchmark
publication.

+ The benchmark has been used in studies published by its authors.

++ The benchmark has been used in studies published by authors other than the bench-
mark’s creators.

The evaluation results are shown in Table 4. To evaluate community usage we looked
at the citations for the benchmarks. Bellon’s Benchmark has been significantly adopted
by the community. While newer, Mutation Framework and BigCloneBench have been used
in numerous studies both by the benchmark authors and by other researchers. The other
benchmarks have either not been used or by only their authors.

GE7 - Maturity Important is the maturity of the benchmark. New benchmark publica-
tions may only present a creation strategy with no reference data or just a small prototype.
It can take time for benchmark reference data to grow as more validation efforts are applied.
Ideally, a benchmark is feature complete and contains a large number of reference clones, at
least on the order of one thousand clones.

For maturity, we use the following four-point evaluation:

- - The benchmark has only been proposed.

- A benchmark prototype has been produced, but it is incomplete and not yet usable
and/or reliable.

+ The benchmark is usable, but lacks features or the reference data is still small.

++ The benchmark is feature-complete, and the reference data is of significant size (on
order of one thousand reference clones or larger).

BigCloneBench, The Mutation Framework, Lavoie and Merlo, ForkSim and BigCloneBench
are mature benchmarks that are ready for general use. The Kurtz and Le benchmark is us-
able, but the reference corpus is rather small. Yuki et al. is in the prototype phase, with its
publication focusing on demonstrating its benchmark creation technique.

4.4.2 Subject System Requirements

The performance of a clone detector can vary depending on the subject software system be-
ing searched for clones. Different subject systems may contain different number and different
types of clones, or have a different clone density, all of which can affect recall, precision, scal-
ability and execution time. It is therefore important that benchmarks consider multiple sub-
ject systems, and particularly subject systems with different properties. Most importantly,
the benchmark should consider multiple subject systems that vary by: (1) programming
language, (2) size in lines of code, and (3) application domain.

To capture the important of subject system variance, we specify four requirements, which
are summarized below with their four-point rankings. Evaluating the benchmarks featuring

35

a reference corpus was straightforward. Evaluating the generative benchmarks, which trake a
subject system as input and produce a clone benchmark, was more challenging. This includes
the Mutation Framework, Lavoie and Merlo, and Yuki et al. The Mutation Framework is a
mature benchmark that is publicly released, so we rate it on the kinds of subject systems
it can be executed for. Lavoie & Merlo and Yuki et al. could theoretically be executed for
various subject systems, but they have no public implementation, so we cannot judge the
extent of their subject system support. The results are found in Table 4.

For the subject system requirements, we use the following four-point evaluations:

SS1 - Multiple Systems:

- - The benchmark uses only a single subject system.

- The benchmark uses only a small number of subject systems (2-5).

+ The benchmark uses a large number of subject systems (2-10).

++ The benchmark considers a lot of subject systems (>10).

SS2 - Multiple Languages:

- - The benchmark considers a single programming language.

- The benchmark considers two programming languages.

+ The benchmark considers three programming languages.

++ The benchmark considers four or more programming languages.

SS3 - Various System Sizes:

- - The subject systems are of the same order of magnitude.

- The subject systems are of two different orders of magnitude.

+ The subject systems are of three different orders of magnitude.

++ The subject systems are of four or more different orders of magnitude.

SS4 - Various Application Domains:

- - The subject systems are of a single application domain.

- The subject systems are of two different application domains.

+ The subject systems are of three different application domains.

++ The subject systems are of four or more different application domains.

36

4.4.3 Reference Corpus Requirements

Perhaps the most important aspect of a benchmark is the quality of its reference corpus (or
the reference corpora it can generate). The quality and accuracy of the recall measurement
is dependent on the reference corpus. Here we evaluate the benchmarks for the requirements
of a good reference corpus.

RC1 - Range of Clone Types A good reference corpus contains clones of multiple clone
types. Most important are the Type-3 and Type-4 clones, which are difficult to detect with
high accuracy. We evaluate the benchmarks for the highest clone type they contain.

For clone types, we use the following four-point evaluation:

- - Contains only Type-1 clones.

- Contains clones up to Type-2.

+ Contains clones up to Type-3.

++ Contains clones up to Type-4.

Only BigCloneBench and Krutz and Le include Type-4 clones, although Krutz and Le
is a very small benchmark. The remaining include or support up to Type-3 clones, with
exception of Yuki et al. which does not document their clone types.

RC2 - Validated Clones Very important is how well the the reference data of a clone
benchmark is validated. Poorly validated reference clones are untrustworthy, and weaken the
measure of recall. We rank the benchmarks on a four-point scale of our confidence in their
validation from low confidence to very high confidence.

We use the following four-point scale, and justify our decisions below:

- - The clones are validated with low confidence.

- The clones are validated with medium confidence.

+ The clones are validated with high confidence.

++ The clones are validated with very high confidence.

We rank Lavoie and Merlo as low confidence, as the benchmark is automatically con-
structed using a clone similarity metric (Levenstein distance) and a minimum threshold.
This is essentially building the benchmark using a clone detector, with no validation.

We rank Bellon’s Benchmark, where the reference clones were manually validated by a
single expert judge, with medium confidence. Various studies have shown that manual clone
validation is very subjective [11, 31], so the reference clones are somewhat suspect. Indeed,
various studies have shown this to be the case with Bellon’s Benchmark [7, 12,21].

While Kurtz and Le is also built with manual validation by experts, each reference clone
was considered by multiple judges and discussed before the final decision, so we rank it with
high confidence.

37

BigCloneBench avoids direct manual validation of the reference clones. Instead, judges
validate if code fragments implement specific functionalities, given a clear specification of
that functionality. The reference clone pairs are pairs of code fragments that implement
the same functionality. In this way, subjectivity in the decision is greatly reduced, and we
therefore rank this benchmark to have high confidence in clone validation.

We rank the Mutation Framework and ForkSim as building reference corpora with very
high validation confidence. These benchmarks produce benchmarks of artificial clones that
are carefully constructed. They focus on building simple clones with well-defined differences
to ensure all generated clones are true clones.

RC3 - Clone Detector Independence A good reference corpus is built independent of
the clone detectors themselves. Using clone detectors to build the reference corpus creates one
that is biased to kind of clones the clone detectors are good at detecting, and fails to evaluate
for the clones the clone detectors are missing. Some benchmarks may not use existing clone
detectors, but similarity metrics that are essentially clone detection, or mining techniques
that are tangential to clone detection. We rank the benchmarks here by how rooted in clone
detection their reference corpora are:

- - The benchmark was built using clone detectors.

- The benchmark was built using clone similarity metrics.

+ The benchmark was built using mining approaches tangential to clone detection.

++ The benchmark was built independently of any clone detection technology or similar.

Bellon’s Benchmark was built using clone detectors (filtered by manual validation), and
suffers from becoming out of date as clone detectors have evolved. Lavoie and Merlo relies
upon the Levenstein metric, which has been used for clone detection, but the authors do not
rely on a specific clone detector. While Yuki et al. find clones by mining the revision history
of a software system for refactored clones, they remove false positives using a clone similarity
metric. BigCloneBench uses regular expressions to mine for code fragments implementing
specific functionalities, with false positives removed by manual inspection, to find large clone
classes. This is a code search technique, which is tangential to clone detection. The Mu-
tation Framework and ForkSim synthesizes clones, and are completely independent of clone
detectors. Krutz and Le manually search for clones, which is independent of clone detection
tools. While they do consider clone detection output to help them validate the clones, they
claim to make their decisions independent of the clone detectors’ response, so we give them
the benefit of the doubt here.

RC4 - Strong Context It is important that the reference corpus be built with respect
to a context, so that the measure of recall can be appropriately interpreted. Specifically,
the reference clones should be selected, validated or constructed with some goal in mind.
For example, reference clones relevant to software maintenance, reference clones that are
refactoring candidates, and so on.

We rank the benchmarks by how strong their context is, using the following four-point
evaluation:

38

- - The benchmark lacks a context.

- The benchmark has a poor context.

+ The benchmark has a context.

++ The benchmark has a strong context.

We find only Krutz and Le lacks a context, which consists of clones manually identified
between a few randomly selected source files in three subject systems. Bellon’s Benchmark
consists of clones detectable by the contemporary tools used in its experiment, which is a
poor context. Lavoie and Merlo builds a complete corpus using similarity metric, which we
consider to be a context, but not a strong one. The remainder of the benchmarks have a strong
context. The Mutation Framework constructs clones based on an editing taxonomy, while
ForkSim constructs clones based on a forking taxonomy. BigCloneBench satisfies multiple
contexts, including: clones with functional similarity, intra-project vs inter-project clones
and large-scale clone detection. Yuki et al. build a reference corpus of clones that should be
refactored, as evidenced by their development history.

RC5 - Variety of Clones It is important for the reference corpus to contain a variety
of clones, so that the recall measurement is generalized. Otherwise, the measurement will
be specific to the benchmark. The aim of a benchmark is to measure recall in a way that
estimates performance for any generic subject system. We rank the benchmarks based on the
variety of clones they capture. We consider variety within the contexts of the benchmarks.
We use the four-point system:

- - The benchmark has a low variety of clones.

- The benchmark has a medium variety of clones.

+ The benchmark has a high variety of clones.

++ The benchmark has a significant variety of clones.

BigCloneBench considers clones of almost 50 distinct functionalities, and captures millions
of clones across these functionalities, so we consider it to have significant variety. Bellon’s
Benchmark contains clones from a variety of systems and across the three primary clone
types, but it is limited to the clones that contemporary detectors could detect, so we reduce
its ranking to high variety. The Mutation Framework and ForkSim synthesize large volumes
of artificial clones using a comprehensive taxonomy of clone types, however they generate
only simple clones to ensure high confidence, so we reduce ranking to high variety. Lavoie
and Merlo automatically identify all Type-3 clones within a subject system, but are limited
by the Levenstein metric, so we reduced to high variety. Krutz and Le contain only a small
number of clones found between a small (3 to 6) random select of source files in three subject
systems, so we rank low variety. Similarly, Yuki et al. find very few clones, so has low variety.

39

RC6 - Size of Corpus It is important that a reference corpus contain a large number
of clones in order to build confidence in the measured recall. A small corpus contains too
few data points, which can easily cause recall to swing high or low based on a small number
of successes/failures. Ideally, a reference corpus should contain at least 1000 reference clone
pairs. Each order of magnitude increase builds significant confidence in the results.

For corpus size, we use the following four-point evaluation:

- - The corpus contains less than 1000 reference clone pairs.

- The corpus contains 1000-9999 reference clone pairs.

+ The corpus contains 10,000-99,999 reference clone pairs

++ The corpus contains 100,000+ reference clone pairs.

We rank the benchmarks as per the size of their published reference corpora. For the
benchmarks that generate corpora (Lavoie and Merlo, Mutation Framework and ForkSim),
we evaluate them on the size of the example corpora built by the authors.

RC7 - Real Clones It is important that a benchmark contain real clones. If the benchmark
synthesizes clones, it is important that they should be realistic. If the benchmark was built
by mining software systems, it is important that it contain clones that are relevant to the
developers, and not cases of coincidental similarity. Obviously, in terms of realism, synthetic
clone benchmarks are at a disadvantage.

For real clones, we use the following four-point evaluation:

- - The clones are completely artificial and arbitrary.

- The clones are artificial, but convincingly created.

+ The clones were created by real developers.

++ The clones were created by real developers, and are validated as useful to developers.

The Mutation Framework and ForkSim are synthetic benchmarks, but they build their
clones based on clone taxonomies for realism. Bellon’s Benchmark, Lavoie and Merlo, and
Kurtz and Le identify clones produced by real developers, but do not necessarily verify these
are useful clones to the developers. BigCloneBench identifies real clones that share function-
ality, meaning they are not instances of coincidental syntactical similarity, and therefore more
likely useful to the developers. Yuki et al. mine for real clones that have been refactored by
the developers, demonstrating that they are useful clones.

40

4.4.4 Measuring Recall Requirements

Beyond providing reference data, it is important that a benchmark assist in the measurement
of recall. The authors should suggest a procedure for measuring recall appropriate for their
benchmark, as well as optimal clone-matching algorithms. Ideally, the author should provide
a tool or customizable framework for conducting recall experiments with their benchmark.
At the very least, the procedure should be repeatable, so that tool evaluation results can
be verified by multiple researchers, and so that measurements by different researchers are
comparable.

RE1 - Procedure For procedure, we use the following four-point evaluation:

- - The authors provide no guidance on how to measure recall with their benchmark.

- The authors provide a partial procedure for measuring recall with their benchmark.

+ The authors provide a full procedure for measuring recall with their benchmark.

+ + The authors provide procedures for measuring recall with their benchmark from multiple
perspectives.

Bellon’s Benchmark, the Mutation Framework, and BigCloneBench have multiple proce-
dures proposed by their authors, and demonstrated in published works. ForkSim describes
an example procedure for evaluating a clone detector with its data. The other benchmarks
provide no suggestions on how to conduct recall experiments with their data.

RE2 - Clone-Matching Algorithms For clone-matching algorithms, we use the following
four-point evaluation:

- - The authors do not suggest any clone-matching algorithms.

- The authors partially suggest a clone-matching algorithm (not well explained/justified).

+ The authors propose and justify a clone-matching algorithm to be used with their
benchmark.

+ + The authors propose and justify multiple clone-matching algorithms to be used with
their benchmark.

Bellon’s Benchmark, the Mutation Framework and BigCloneBench suggest multiple and
customizable clone-matching algorithms that are appropriate for their data. ForkSim suggests
only an exact-match algorithm, which may not be appropriate for all tools. The other
benchmarks provide no clone-matching algorithms appropriate for their data.

41

RE3 - Tool Support For tool support, we use the following four-point evaluation:

- - The benchmark lacks tool support for measuring recall.

- The benchmark has a tool which partially supports the measurement of recall.

+ The benchmark has a tool which measures recall.

++ The benchmark has a flexible framework for custom recall measurement experiments.

Bellon’s Benchmark has a tool for measuring recall, after importing the tools’ results. The
Mutation Framework and BigCloneBench have flexible evaluation frameworks, that allow
significant customizations on the experiment, and can automate the execution of the tools
for the benchmark as well. The other benchmarks do not provide tool support.

RE4 - Repeatable For repeatable, we use the following four-point evaluation:

- - Recall experiments are not repeatable.

- Recall experiments are repeatable, but requires efforts to be fully re-produced by others.

+ The benchmark enables researchers to repeat/verify recall experiments.

++ The benchmark allows recall experiments to be exported and reviewed by others.

Researchers can easily repeat experiments with Bellon’s Benchmark and BigCloneBench
by sharing the clone detector output files. The Mutation Framework is unique in that it allows
recall experiments to be exported and shared, allowing other researchers to view, modify and
extend the experiments. Lavoie and Merlo, ForkSim and Krutz and Le are repeatable, so
long as researchers share their procedure. Yuki et al. is not repeatable as the authors neither
release their data nor fully document their approach.

4.4.5 Other Metrics Requirements

The goal of a clone benchmark is to provide reference data for measuring recall. However, it
is also valuable if the benchmark supports the measurement of the other performance metrics:
precision, execution time and scalability. While these metrics can be measured without a
benchmark, the benchmarks can standardize these measurements (for comparability) and
reduce evaluation efforts.

OM2 - Measures Precision It is valuable if the benchmark can also measure precision.
A complete oracle is required to measure precision, which is rare in a benchmark. Incomplete
reference corpora can measure a lower and upper bound on precision, which can be useful
for comparative analysis. Measuring precision using reference data is limited by the data’s
original validation, and by the clone-matching algorithm used, so it is still best to compliment
the measurement with manual validation of the tool’s output. Some of the novel clone
benchmarks measure precision in a unique way, which provides an alternate perspective from
the standard measurement.

For measuring precision, we use the following four-point evaluation:

42

- - Does not measure precision.

- Measures a lower/upper bound on precision using a reference corpus.

+ Estimates precision using reference corpus and/or automated validation.

++ Measures full precision using an oracle.

Only Lavoie and Merlo provide a full oracle, which can measure true precision, but this is
limited by the validation quality of the benchmark (which was not high confidence). Bellon’s
Benchmark’s and BigCloneBench’s incomplete reference corpora enable the measurement
of a lower and upper bound on precision. While FokrSim, Krutz and Le, and Yuki et al.
provide reference data, their publications do not comment on the measurement of precision.
Krutz and Le’s and Yuki et al.’s reference corpora are perhaps too small for reliable measure
of upper/lower-bound precision. The Mutation Framework provides a unique measure of
precision, by automatically validating clones tangential to the reference clones, which is
meant to compliment, not replace, a manual measure of precision.

OM2 - Measures Execution Time It is desirable for a benchmark to feature a set of
subject systems appropriate for measuring execution time. While it is not challenging for a
researcher to collect open-source subject systems from the web, benchmarks can encourage
standard sets of subject systems for comparability.

For measuring execution time, we use the following four-point evaluation:

- - Does not measure execution time.

- Provides a subject system to measure execution time against.

+ Provides a variety of subject systems to measure execution time against.

++ Provides a systematic collection of subject systems to measure execution time against.

Bellon’s Benchmark provides a variety of subject systems to measure execution time
against, and these systems have been adopted as a standard by the community. Big-
CloneBench provides thousands of subject systems, as well artificially constructed subject
systems that systematically increase in difficulty. Krutz and Le uses three subject systems
as part of their benchmark. The other benchmarks either don’t provide a subject system, or
are not publicly released.

OM2 - Measures Scalability It is also desirable for the benchmark to provide a set of
subject systems with increasing difficulty, so the scalability of the tools can be evaluated.

For measuring scalability, we use the following four-point evaluation:

- - Does not measure scalability.

- Provides a large subject system to test scalability against.

+ Provides a set of subject systems of increasing size to test scalability against.

43

++ Provides a collection of subject systems with systematically increasing difficulty to test
scalability against.

Bellon’s Benchmark provides a set of systems of different sizes, enabling a measure of
scalability. BigCloneBench provides a set of subject systems with systematically increasing
difficult in terms of lines of code, while normalizing for other factors that affect scalability.
BigCloneBench also provides IJaDataset, an example target for big data clone detection.
The other benchmarks do not enable the measurement of scalability.

4.4.6 Summary

Our multi-faceted evaluation of the benchmarks is summarized in Table 4. As can be seen,
no benchmark is able to satisfy all of the requirements of a good benchmark. This does
not mean they are bad benchmarks, but rather it shows how difficult it is to build a good
clone benchmark. To overcome limitations in the benchmarks, it is best if researchers and
tool developers use multiple benchmarks. From the evaluation, we see that there are some
strong benchmarks. The benchmarks that best satisfy the requirements are the Mutation
and Injection Framework and BigCloneBench. What is great about this pair of benchmarks
is that they cover the weakness of the other. Some of the benchmarks, such as Krutz and Le
and Yuki et al. have poorer evaluations because they are still in the early phases, and require
significant expansion. In particular, Yuki et al. has only been published as a benchmarking
concept. This evaluation shows how these benchmarks need to evolve to become high-quality
benchmarks.

4.5 Threats to Validity

There are a few threats to the validity of this survey. While we thoroughly examined the
literature to find the benchmarks, we may have missed some publications. For our evaluation
of the benchmarks, some of the requirements have some subjectivity. In most cases we were
able to create a clear and objective ranking, but some of the requirements are more broad
concepts that required comparative ranking of the existing works.

5 A Survey of Clone Detector Evaluations by Authors

In this section, we survey the existing clone detection tools and techniques, and examine how
their authors have evaluated the performance of their tools and techniques. We search the
literature for the clone detection tool and technique/algorithm publications, and examine
the evaluations performed by their authors. In particular, we examine if the authors have
done a case study, if they compare their tool/technique to others, if they measure the clone
detection performance metrics including recall and precision, and if they measure execution
performance metrics such as execution time and scalability. We then rank the works by
how well they measured each of the performance metrics, and highlight the tools with the
best overall evaluation strategies. When the authors measure recall, we examine if they do
so using an existing clone benchmark, or if they built a reference corpus themselves. We

44

then measure the overall statistics of how tool/technique authors typically perform their
evaluation experiments.

For this survey, we considered only the tool and technique publications. We did not
consider tool evaluation studies, where the authors evaluate and compare multiple tools
in an experiment designed to be unbiased. We examine the tool evaluation papers in a
separate survey in Section 6. While it is common for tool authors to compare their tools
against the competition, these are not the same as tool evaluation papers. Evaluation by the
authors are meant to highlight the performance of their tool, so they may not be completely
unbiased. Tool authors are also experts in their techniques, and best able to demonstrate its
performance. Tool comparison studies typically consider only the most popular and publicly
available tools, and the authors of these studies may not be experts in the tools themselves.
It is therefore very important that tool/technique authors evaluate their work.

This section is organized as follows. In Section 5.1 we overview our survey procedure,
and in Section 5.2 we describe our evaluation criteria. We present the results of our survey
in Section 5.3, including the ranking of the works by the quality of their evaluation, and
an investigation into how the authors measure recall. Then in Section 5.4 we examine the
standards for tool evaluation by the tool/technique authors by computing various statistics
about their evaluation, including: how frequently a metric is measured by the tool/technique
authors, how frequently sets of metrics are measured, and correlations on which metrics are
measured together. We then discuss the threats to our survey in Section 5.5.

5.1 Survey Procedure

To examine how clone detection tool and technique authors evaluate their tools/techniques,
we needed to identify the relevant published works in the literature. We performed our search
by examining the papers in the existing clone detection surveys [1,2,3], and by searching the
leading academic publication databases, including: IEEE, ACM, Springer and Wiley.

There are three excellent clone detection tool surveys in the literature, including: “A
Survey on Software Clone Detection Research” by Roy and Cordy [1] published in 2007,
“Comparison and Evaluation of Code Clone Detection Techniques and Tools: A Qualitative
Approach” by Roy et al. [2] published in 2009, and “Software clone detection: A systematic
review” by Rattan et al. [3] published in 2013. These works summarize the clone detection
tool and technique publications up to at least 2011.

We trust that the existing surveys are comprehensive up to 2011, so we focused our search
of the academic databases for publications in the period of January 2011 to March 2017. The
databases searched, and our search criteria, are summarized in Table 5. We determined the
relevancy of the papers by first examining their title, then their abstract, and then their
complete texts.

Where possible, we clustered papers regarding the same clone detection tool or technique
together, as these should be considered as a single tool/technique. It is not uncommon for
a research group to publish their algorithm in one paper and their tool version in another.
We tried to cluster the papers by considering paper authors. We then examined the papers
to determine if there was a link between them, such as the same algorithm or tool name, or
citations to each other. However, it was not always clear if two papers were about the same
tool or technique, or distinct works. We erred on the side of caution, and only grouped works

45

Table 5: Survey Databases and Search Criteria

Database Search Criteria #Papers

ACM Year: 2011-2016, Abstract Contains: clone 367

IEEExplore Years: 2011-2017, Index Term: Cloning, Refine: code clone 411

IEEExplore Years: 2011-2017, Index Term: Cloning, Refine: clone detec-
tion

388

ScienceDirect Years: 2011-2017, Abstract: clone, Sources: Computer Sci-
ence

177

Springer-Link Years: 2011-2017, Title Contains: clone, Text Contains:
(code OR software).

206

Wiley Years: 2011-2017, Title Contains: clone, Text Contains: clone
detector

348

that were definitely about same technique/tool. However, we may have failed to cluster some
works that are the same tool/technique.

For the reasons stated previously, we only considered papers which present a clone de-
tection tool or technique, or where the authors evaluate their own tool/technique. We do
not include the tool comparison studies, as these are different kinds of evaluations. It is
important that tool/technique authors provide their own evaluations, as they are the experts
in their clone detection works, so we are interested in how they conduct these evaluations.

5.2 Evaluation Criteria

For each examined paper, we determined how the author(s) evaluated their clone detection
tool or technique. We determined whether a case study was performed, if the tool was
compared to other competing tools in a meaningful way beyond a simple summary of the
related work, if recall and precision were measured, and if execution time and scalability
were recorded. If recall was measured, we determined which standard benchmark was used,
or what technique the authors used to build a reference corpus for the measurement. Using
this collected data, we can measure the trends of tool/technique evaluation strategies by the
authors.

When judging if an author evaluated their tool or technique in a particular way (e.g.,
scalability), we were generous, as there is no standard procedure for evaluating clone detection
tools/techniques. We consider the authors to have ran a case study if they demonstrated
the execution of their clone detection tool or technique for at least one subject system. We
consider the authors to have compared their tool or technique against others if they include a
quantitative comparison study, at minimum comparing the detection results of the competing
tools to their own. We did not consider a related work section to be a tool comparison study.

We consider the authors to have measured recall if they evaluate their detection per-
formance for some set of reference clones. If the reference corpora is very small, such as
only tens of clones, we consider this a measurement of recall only if the selected clones are

46

systematically chosen in some way, such as based on taxonomy of clone types or cloning
scenarios. We consider precision to have been measured if the authors have manually or
automatically validated some proportion of the output of their tool/technique. We consider
execution time to have been measured if it is reported for at least one subject system. We
consider scalability to be measured if execution time is reported for a collection of software
systems of different sizes (lines of code) or complexities, or if the complexity of the algorithm
is sufficiently explored and demonstrated.

When documenting the evaluation of a particular tool or technique, we considered only
evaluations performed by the tool/technique authors themselves for this survey. In Sec-
tion 5 we survey comparison studies performed by both authors and non-authors of the
tools/techniques.

Additionally, we categorized the works into tools and techniques. We consider a clone
detection technique that is given a name by its authors to be a clone detection tool. We
then consider those not given a name to be clone detection techniques. In both cases, it
is expected that the author evaluate the performance of their tool/technique, in particular
recall and precision. However, there is a greater expectation on the evaluation of execution
time and scalability for tools. Authors may not be expected to report execution time and
scalability for clone detection techniques, as they may be only partially prototyped and
unoptimized.

It is reasonable to assume that if an author gives a name to their clone detection work
that they intend to present it as a clone detection tool. Those that do not name their
technique are communicating that they are presenting an algorithm. This is not a formal
distinction or necessarily a very accurate way to differentiate the works. Most clone detection
tools/prototypes are not released publicly, and those that are can be difficult to find or
eventually lost. Still, we see some interesting statistics when we differentiate the named tools
and unnamed techniques.

5.3 Results

The results of our survey are shown in Appendix A in Table 21. The works are separated into
clone detection tools (named) and clone detection techniques (unnamed), and are otherwise
presented in alphabetical order. For each tool/technique, we indicate their publications, and
their dimensions of evaluation. An ‘x’ denotes that a particular evaluation was performed
in one of the publications for that tool/technique. If recall was measured, we indicate the
benchmark used, or the method used to build a reference corpus. In total we found 198
works, including 90 (45%) named tools, and 108 (55%) unnamed techniques. Most of the
works have a single publication, although some have two or more publications.

Our primary interest in this survey is to examine how the authors evaluate the perfor-
mance of their clone detection tools and techniques. In Table 6 we organize the tools and
techniques by how they are evaluated. Specifically, we group the works by which combination
of performance metrics (recall, precision, execution time and scalability) the authors evalu-
ated. For the works where none of the metrics were evaluated, we show which at least had
a case-study performed, and those which have no meaningful demonstration or evaluation of
their approach. As can be seen, very few authors evaluate all four of performance metrics for
their tool/technique, and nearly a quarter of the publications have no evaluation whatsoever.

47

Table 6: Survey of Clone Detection Tools/Techniques and their Evaluation by their Authors

R
ec

a
ll

P
re

ci
si

o
n

E
x
ec

u
ti

o
n

T
im

e

S
ca

la
b

il
it

y

N
u

m
b

er
o
f

W
o
rk

s

Tools and Techniques

x x x x 18 BinClone [40], CBCD [41], CD-Form [42,43], CloneWorks [37], CMGA [44], DuDe [45], DupLoc [25,
26], MeCC [46], NiCad [47, 48, 49, 50, 51], ScalClone [52], SeByte [53, 54, 55, 56], SimCad [57, 58],
SourcererCC [59,60,61,62,63], Corazza et al. [64], Falke et al. [65], Kam1n0 [66], Karus and Kilgi [67],
Qu et al. [68]

x x x 13 BAT [69], CDSW [70], clones/cscope [71], CodeBlast [72], cpdetector [71, 73], Dup [21, 22, 23],
JPlag [74], MQlone [75], SHINOBI [76, 77], Simon [78], Abdelkader and Mimoun [79], Lavoie and
Merlo [80], Störrle [81]

x x x 2 Clonewise [82], Zibran and Roy [83, 84]
x x x 5 Asta [85, 86], HeapAbsCC [87], LLVM-Based Framework [88, 89], Shuffling Framework [90, 91, 92],

sif [93]
x x x 12 Boreas [94, 95], CP-Miner [96, 97], Duplix [24], FCFinder [98], HitoshiIO [99], ModelCD [100],

SaCD [101], XIAO [102, 103], Ishihara et al. [104], Koschke [105], Koschke [106], Saebjornsen et
al. [107]

x x 23 AuDeNTES [108], CCCD [109,110], CLCMiner [111], CPDP [112], DroidClone [113], DuplicationDe-
tector [114], eMetrics [115,116], FRISC [117], JSCD [118], Abd-El-Hafiz [119], Al-Omari et al. [120],
Bansal and Tekchandani [121], Bauer et al. [122], DL-Clone [123], Ekanayake et al. [124], Iwamoto et
al. [125], Iwamoto et al. [126], Keivanloo et al. [127], Li and Sun [128], Lucia et al. [129], Sheneamer
and Kalita [130], Sheneamer and Kalita [131], Stojanovicét al [132]

x x 1 Perumal et al. [133]
x x 1 CMCD [134]

x x 8 ClemenX [135], Clone Detective (ConQat) [136,137], EqMiner [138], MiLoCo [139], RTF [140], Chen
et al. [141], Kontogiannis et al. [142], White et al. [143]

x x 0 -
x x 11 CCFinder(X) [10], CtCompare [144], Decrescendo [145], DyCLINK [146], HaRe [147], SeClone [148,

149], SSD [150], Barbour et al. [151], Chilowicz et al. [152], Hummel et al. [153], Tekin and Bu-
zluca [154]

x 4 AST-CC [155], CodeCompare [156], Scorpio [157], Kong et al. [158]
x 12 Deckard [159], Exas [160], R2D2 [161], Chen et al. [162], Dou et al. [163], Hermans et al. [164],

Jadon [165], Joshi et al. [166], Patil et al. [167], Priyambadha and Rochimah [168], Ragkhitwetsagul
and Krinke [169], Uemura et al. [170]

x 34 Agec [171], C2D2 [172], Covet/CLAN [5, 27], D-CCFinder [173], GPLAG [174], Hanni [175],
iClones [9,176], JCCD [177], LSC Miner [178], PDG-DUP [179,180], Sim [181], Simian [182], Wran-
gler [183], Ahkin and Itsykson [184], Ali et al. [185], Cordy et al. [186], Dandois and Vanhoof [187],
Di Lucca et al. [188, 189], Dumas et al. [190, 191], Grant and Cordy [192], Higo et al. [193], Huang
and Li [194], Hummel et al. [195], Johnson [196, 197, 198], Kamiya [199], Lavoie et al. [200], Lazar
and Banias [201], Li et al. [202], Pulkkinen et al. [203], Strüber [204], Udagawa [205], Udagawa [206],
Wahler et al. [207], Zhang et al. [208]

x 0 -

Case Study Only 11 K-Clone [209], Simone [210, 211, 212], Agrawal and Yadav [213], Kamalpriya and Singh [214], Kaur
and Singh [215], Keivanloo and Rilling [216], Kodhai et al. [217], Matsushita and Sasano [218],
Petrik et al. [219], Sabi et al. [220], Tekchandani et al. [221]

No Evaluation 43 Bauhaus [222,223], clone-digger [224], CloneDr [28,29], Clone Miner [225,226,227,228], Coogle [229],
CSeR [230], PC Detector [231], SimScan N/A, SMAT [232], STVsm [233], Al-Batran et al. [234],
Antony et al. [235], Ballarin et al. [236], Chodarev et al. [237], Choi et al. [238], Davey et al. [239],
Deissenboeck et al. [240], Devi and Punithavalli [241], Elva and Leavens [242], He [243], Higo and
Kusumoto [244], Ito et al. [245], Juillerat and Hirsbrunner [246], Keivanloo and Rilling [247], Ku-
mar [248], Kumar et al. [249], Lee and Doh [250], Maeda [251], Marcus and Maletic [252], Min
et al. [253], Raheja and Tekchandani [254], Rattan et al. [255], Rodrigues and Vilaãa [256], San-
tone [257], Singh and Raminder [258], Singh and Sharma [259], Sudhamani and Rangarajan [260],
Surendran et al. [261], Sutton et al. [262], Tairas and Gray [263], Tairas [264], Tekchandani et
al. [265], Tekin et al. [266]

48

Table 7: Measurement of Recall Ranks
Rank Name Description

a Multiple Benchmarks
Evaluated using multiple mature and
community-accepted benchmarks.

b Single Benchmark
Evaluated using a mature and community-accepted
benchmark.

c Quality Reference Corpus
Evaluated using a well-constructed reference corpus
built by the authors to evaluate their tool.

d Simple Reference Corpus
Evaluated using a simple reference corpus built by the
authors to evaluate their tool.

e Clones from the Literature Evaluated using example clones from the literature.

f Clone Detector Baseline
Evaluated using detection result of other tool(s) without
validation.

g Unknown Reported, but evaluation procedure is unknown.

In the remainder of this section, we rank the works by how well they measure the four
performance metrics. We then extract the works with the best ranking across all four metrics
to serve as exemplars for how authors should evaluate their tools. We conclude this section
by examining how the authors measured recall, whether by standardized benchmarks by
building new reference corpora.

5.3.1 Results Ranked by their Measurement of Recall

In this section we rank the clone detection tool and technique publications by how well the
authors measured recall. We propose a seven tier ranking, which is summarized in Table 7.
We rank highest those works that use one or more standardized clone benchmarks, and below
this those whose authors have developed new non-standard reference corpora to evaluate their
tools. We rank lowest those who evaluated against only example clones, or those who use
other tools as a baseline. The ranked works are shown in Table 8. As can be seen, most works
which measure recall either use standard benchmarks, or self-created reference corpora.

In the remainder of this section, we describe and justify the ranks in detail.

Rank A - Multiple Benchmarks: The recall of the tool/technique was evaluated
using multiple published clone benchmarks. By using multiple benchmarks, and com-
paring their results, the authors get a more complete view of their tool/technique’s
recall. Individual benchmarks contain limitations, so using multiple benchmarks built
by different means can overcome these limitations.
Rank B - A Single Benchmark: The recall of the tool/technique was evaluated
using a single benchmark. However, the benchmark may have limitations in measuring
recall, and by using only a single benchmark these limitations cannot be overcome.

49

Table 8: Clone Detection Tools/Techniques Ranked by their Recall Measurement

Rank Name Num Tools/Techniques

a Multiple Benchmarks 2 SourcererCC [59,60,61,62,63], CloneWorks [37]

b Single Benchmark 20

Asta [85,86], CCCD [109,110], clones/cscope [71],
cpdetector [71,73], DuDe [45], Dup [21,22,23],
DupLoc [25,26], FRISC [117], Scorpio [157], Abdelkader and
Mimoun [79], Bansal and Tekchandani [121], Falke et
al. [65], Sheneamer and Kalita [130], CDSW [70], Perumal et
al. [133], Keivanloo et al. [127], Sheneamer and Kalita [131],
NiCad [47,48,49,50,51], SimCad [57,58], Zibran and
Roy [83, 84], JSCD [118]

c Quality Reference Corpus 12

Al-Omari et al. [120], Qu et al. [68], Simon [78], Störrle [81],
CBCD [41], Clonewise [82], DroidClone [113],
DuplicationDetector [114], eMetrics [115,116],
SeByte [53,54,55,56], Lucia et al. [129]

d Simple Reference Corpus 20

Stojanović et al [132], BAT [69], CPDP [112], CMGA [44],
CodeBlast [72], CodeCompare [156], HeapAbsCC [87], Bauer
et al. [122], Ekanayake et al. [124], Kong et al. [158], Corazza
et al. [64], AuDeNTES [108], BinClone [40], JPlag [74],
Iwamoto et al. [125], Iwamoto et al. [126], Li and Sun [128],
ScalClone [52], MQlone [75], sif [93]

e Clones from the Literature 5 MeCC [46], AST-CC [155], CMCD [134], LLVM-Based
Framework [88,89], Karus and Kilgi [67]

f Clone Detector Baseline 7
CD-Form [42,43], Shuffling Framework [90,91,92],
Abd-El-Hafiz [119], Kam1n0 [66], Lavoie and Merlo [80],
CLCMiner [111], DL-Clone [123]

g Unknown 1 SHINOBI [76,77]

50

Rank C - Quality Reference Corpus: The recall of the tool/technique was eval-
uated using a well-constructed reference corpus built by the tool/technique authors
themselves. To achieve this rank, the authors must have taken care to build a quality
reference corpus. They may have built a large corpus, taken extra steps in clone vali-
dation, used an innovative mining process, or have a well-defined scope or context, and
so on. The work done is a good start towards building a formal benchmark.

Rank D - Simple Reference Corpus: The recall of the tool/technique was eval-
uated using a simple reference corpus built by the tool/technique authors themselves.
The reference corpus may be small, lack scope or context, have unclear validation, or
be poorly described.

Rank E - Clones from the Literature: The recall of the tool/technique was eval-
uated against clones taken from the literature. Typically, this is examples of different
types of clones from clone taxonomies, such as from Roy et al. [2]. This can show what
types of clones the tool supports, but does not show how well it works in practice for
large variety of these clone types.

Rank F - Clone Detector Baseline: The recall of the tool/technique was eval-
uated against clones detected by another clone detector(s), without validation. This
approach is often used to show a tool performs as well as an existing well-received tool,
but maybe has additional features or faster performance. This is a poor measure of
recall as it assume the baseline tool(s) have correct output. This technique can easily
under-estimate true recall (baseline tool reported false positives not found by the eval-
uated tool) or over-estimate true recall (baseline tool reported false positives also found
by the evaluated tool).

Rank G - Unknown: The recall of the tool/technique is reported, but the evaluation
procedure is not sufficiently described. The measured result is therefore sort of useless
as it can’t be understood by the reader.

With our rankings, we differentiate between standard clone benchmarks and reference
corpora built by the tool/technique authors specifically for their publication. While clone
benchmarks consist of reference corpora, the distinction is that the standard clone bench-
marks were designed, published and peer-reviewed independently of a particular clone de-
tection tool. Reference corpora introduced in tool/technique publication papers do not have
the same confidence. These corpora may be improvised, designed to highlight the benefits of
the published tool, are typically not well described in the paper, and so on. They are also
not the main contribution of the paper, so not as stringently evaluated by peer-review. We
identify the benchmarks using our survey on the clone benchmarks from Section 4.

Still, many tool/technique authors have built high quality reference corpora, and we
differentiate these papers in our ranking as quality vs simple reference corpora. These authors
have introduced techniques/methodologies that could be further explored to build standard
clone benchmarks. However, their description is still only a minor aspect of the tool/technique
paper, so are not well-understood.

51

Table 9: Measurement of Precision Ranking

Rank Name Description

a Significant Manual Validation
Precision is measured by manually
validating a significant number of clones
(300+).

b Large Manual Validation
Precision is measured by manually
validating a large number of clones
(100-300)

c Medium Manual Validation
Precision is measured by manually
validating a medium number of detected
clones (50-100).

d Small Manual Validation
Precision is measured by manually
validating a small number of detected
clones (10-50).

e Automatic Validation

Precision is measured automatically
using a incomplete or complete reference
corpus with a clone-matching algorithm,
or some automatic validation
technique/metric.

f Unknown

Precision is reported, but its
measurement is unclear. At least, the
number of clones investigated is not
reported.

The other rankings consider how recall is tangentially measured without the use of a
proper reference corpora.

5.3.2 Results Ranked by their Measurement of Precision

In this section, we rank the clone detection tool and technique publications by how well
the authors measured precision. We propose a six tier ranking, which is summarized in
Table 9. The best method of measuring precision is manual validation of the output, and we
create a number of ranks based on the size of the validation effort. Below this we consider
works that automatically measure precision using an independently built reference corpus or
validation tools, and authors who measure precision only qualitatively. The ranked works
are summarized in Table 9. As can be seen, a number of works satisfy our top tier of
evaluation. Measuring precision is not particular difficult, but requires a time investment by
the authors. A large number of works have measured precision against a reference corpus,
which is generally limited to a lower or upper bound. A few works have reported precision
without clearly stating how the measurement was made.

In the remainder of this section, we describe and justify the ranks in detail.

Ranks A-D The most reliable and standard procedure for measuring precision is to
manually validate the output of the clone detector, so we make this method the top

52

Table 10: Clone Detection Tools/Techniques Ranked by their Precision Measurement

Rank Name Num Tools/Techniques

a Significant Manual Validation 21

AuDeNTES [108], CLCMiner [111], clones/cscope [71],
CloneWorks [37], cpdetector [71, 73], Dup [21,22,23],
MeCC [46], ModelCD [100], NiCad [47,48,49,50,51],
SaCD [101], SeByte [53,54,55,56],
SourcererCC [59,60,61,62,63], Abd-El-Hafiz [119], Chen et
al. [162], Dou et al. [163], Falke et al. [65], Karus and
Kilgi [67], Ragkhitwetsagul and Krinke [169], Saebjornsen et
al. [107], Uemura et al. [170], White et al. [143]

b Large Manual Validation 15

Boreas [94,95], ClemenX [135], CP-Miner [96,97],
Deckard [159], eMetrics [115,116], HitoshiIO [99],
MiLoCo [139], RTF [140], SimCad [57,58], Bauer et al. [122],
Chen et al. [141], Hermans et al. [164], Ishihara et al. [104],
Priyambadha and Rochimah [168], Störrle [81]

c Medium Manual Validation 5 BAT [69] DuDe [45] XIAO [102,103] Jadon [165] Qu et
al. [68]

d Small Manual Validation 3 FCFinder [98], R2D2 [161], Kontogiannis et al. [142]

e Automatic Validation 36

BinClone [40], CBCD [41], CCCD [109,110],
CD-Form [42,43], CDSW [70], Clonewise [82], CMGA [44],
CodeBlast [72], CPDP [112], DroidClone [113],
DuplicationDetector [114], DupLoc [25,26], EqMiner [138],
Exas [160], FRISC [117], JPlag [74], JSCD [118],
MQlone [75], Simon [78], Al-Omari et al. [120], Bansal and
Tekchandani [121], Corazza et al. [64], DL-Clone [123],
Ekanayake et al. [124], Iwamoto et al. [125], Iwamoto et
al. [126], Kam1n0 [66], Koschke [105], Koschke [106], Lavoie
and Merlo [80], Li and Sun [128], Lucia et al. [129],
Sheneamer and Kalita [130], Sheneamer and Kalita [131],
Stojanovicét al [132], Zibran and Roy [83, 84]

f Unknown 8

Clone Detective (ConQat) [136,137], Duplix [24],
ScalClone [52], SHINOBI [76,77], Abdelkader and
Mimoun [79], Joshi et al. [166], Keivanloo et al. [127], Patil
et al. [167]

53

tiers of our ranking. As clone validation is very time consuming, only a random sample
is validated. The quality of the results depends on the number of clones validated, so we
split the manual validation tier into multiple levels based on the number of clones vali-
dated. For Rank A, we expect at least 300 clones to be manually validated. Regardless
of the population size, a random sample of 300-400 can give a 90-95% confidence level
with a 5% margin of level. So we consider works that validate at least 300 clones to
have measured precision with significance. We then create tiers for different common
break-points below this: Rank B requires at least 100 clones to be validated, Rank
C 50 to 100, and Rank D 10-50.

Rank E - Automatic Validation Precision can be measured by comparison to
a reference corpora. If the reference corpora is incomplete, this measures just a lower
bound on precision. If the reference corpora is complete, this measures true precision.
However, complete reference corpora are only possible for very small inputs, which
limits the relevance of the precision measure. Tools or metrics may be designed to
automatically validate clones, but these are themselves clone detectors, and will have
limits in precision as well. For these reasons, we rank automatic validation below man-
ual validation.

Rank F - Unknown Sometimes authors report precision, but do not clearly indi-
cate how it was measured, or how many clones were validated. This makes it difficult
to understand and trust the measurement, so we rank these works lowest.

5.3.3 Results Ranked by their Measurement of Execution Time

In this section, we rank the clone detection tool and technique publications by how well the
authors measured execution time. We propose a simple four tier ranking, which is summarized
in Table 11. Ideally, execution time is measured using multiple subject systems. In the best
case, execution time is also reported for different configurations of the clone detector. At the
very least execution time should be reported for a single subject system, although in some
cases we find that execution time is only partially report, such as for only a specific stage
of the clone detection algorithm. The ranked works are summarized in Table 12. As can be
seen, most of the works that measure execution time do so using multiple subject systems,
with fewer works only considering a single subject system. A good number of works go the
extra step and also report execution time for different configurations of their tools. Very few
works only report execution time partially.

5.3.4 Results Ranked by their Measurement of Scalability

We now rank the clone detection tools and techniques by how well their authors measured
scalability. We propose a five tier ranking, which is summarized in Table 13. The best evalu-
ations are those that demonstrate the scalability of their tool against a series of increasingly
difficult inputs, and we rank highest those that use a systematically chosen/created set of
inputs. We notice that often the papers will report execution time for inputs of various sizes,
but not all of them present the results clearly, so we rank higher those authors who clearly

54

Table 11: Measurement of Execution Time Ranks
Rank Name Description

a Various Configurations
Extensive evaluation of execution time,
including multiple configurations of the
tool.

b Multiple Subject Systems
Execution time reported for multiple
subject systems.

c Single Subject System
Execution time reported for a single
subject system.

d Partial Results Execution time only partially reported.

report and discuss their results. We rank lower those who demonstrate scalability using only
a large system, and those who show scalability only qualitatively. The works that measured
scalability are ranked in Table 14. As can be seen, a number of works measure scalability
using a variety of inputs, but few choose the set of input in a systematic way.

We discuss the ranks in further detail below:

Rank A - Systematic Inputs: The authors have conducted a systematic and con-
trolled experiment across inputs of increasing difficulty, namely size in lines of code.
The authors have taken care to select or create inputs that increase in size but otherwise
have similar properties, such as clone density, which could also affect scalability.

Rank B - Various Inputs with Clear Presentation: The authors have executed
their tool for various inputs of increasing difficulty, namely size in lines of code. How-
ever, the inputs are not chosen systematically, so they may not exactly create a series of
uniformly increasing execution difficulty in terms of execution time and system resource
requirements (e.g., memory). The results are clearly presented, such as in a table or
graph, and discussed.

Rank C - Various Inputs with Poor Presentation: The authors have executed
their tool for inputs of various sizes and reported their execution performance, but the
results are not clearly presented in the paper. For example, the inputs may be various
case studies and the execution performance results are scattered throughout the paper.
Meaning the reader has to piece together the scalability performance.

Rank D - Large System: The authors demonstrate scalability by executing the tool
for one or more large software systems, where large depends on the scalability targets
of the tool (but at least tens of thousands of lines of code). The authors have shown
the tool can be executed for large inputs, but does not demonstrate how execution
performance scales with increasing input size. Readers therefore can’t easily predict
how the tool will perform for even larger inputs, or smaller inputs.

55

Table 12: Clone Detection Tools/Techniques Ranked by their Execution Time Measurement

Rank Name Num Tools/Techniques

a Various Configurations 17

BinClone [40], Boreas [94, 95],
CP-Miner [96,97], Duplix [24],
DupLoc [25,26], GPLAG [174],
iClones [9, 176], NiCad [47,48,49,50,51],
ScalClone [52], Shuffling
Framework [90,91,92], SimCad [57,58],
Barbour et al. [151], Chen et al. [141], Karus
and Kilgi [67], Lavoie and Merlo [80],
Saebjornsen et al. [107], Udagawa [205]

b Multiple Subject Systems 62

Asta [85,86], BAT [69], C2D2 [172],
CBCD [41], CCFinder(X) [10],
CD-Form [42,43], CDSW [70], ClemenX [135],
clones/cscope [71], CloneWorks [37] ,
CMGA [44], CodeBlast [72],
Covet/CLAN [5,27], cpdetector [71,73],
CtCompare [144], D-CCFinder [173],
Decrescendo [145], Dup [21,22,23],
DyCLINK [146], EqMiner [138], HaRe [147],
HeapAbsCC [87], HitoshiIO [99], JCCD [177],
LLVM-Based Framework [88,89], MeCC [46],
ModelCD [100], MQlone [75],
PDG-DUP [179,180], SaCD [101],
SeByte [53,54,55,56], SeClone [148,149],
sif [93], Sim [181],
SourcererCC [59,60,61,62,63], SSD [150],
Abdelkader and Mimoun [79], Chilowicz et
al. [152], Corazza et al. [64], Cordy et
al. [186], Dandois and Vanhoof [187], Dumas
et al. [190,191], Falke et al. [65], Hummel et
al. [195], Hummel et al. [153], Ishihara et
al. [104], Johnson [196,197,198],
Kam1n0 [66], Kamiya [199], Kontogiannis et
al. [142], Koschke [105], Koschke [106],
Lavoie et al. [200], Li et al. [202], Perumal et
al. [133], Qu et al. [68], Störrle [81],
Strüber [204], Tekin and Buzluca [154],
Wahler et al. [207], White et al. [143], Zhang
et al. [208]

c Single Subject System 21

Agec [171], DuDe [45], FCFinder [98],
Hanni [175], JPlag [74], MiLoCo [139],
RTF [140], SHINOBI [76,77], Simian [182],
Simon [78], Wrangler [183], XIAO [102,103],
Ahkin and Itsykson [184], Ali et al. [185], Di
Lucca et al. [188,189], Grant and
Cordy [192], Higo et al. [193], Huang and
Li [194], Lazar and Banias [201], Pulkkinen
et al. [203], Udagawa [206]

d Partial Results 2 Clone Detective (ConQat) [136,137], LSC
Miner [178]

56

Table 13: Measurement of Scalability Ranks

Rank Name Description

a Systematic Inputs

A systematic and controlled experiment
using inputs of uniformly increasing
difficulty, with clear presentation of the
results.

b Various Inputs with Clear Presentation
Executed for inputs of various sizes, with
clear presentation of the results.

c Various Inputs with Poor Presentation
Executed for inputs of various sizes, but
the results are not clearly presented.

d Large System
Executed for a couple large systems to
demonstrate scalability, but little variety
in input sizes tested.

e Qualitative
Execution time not measured, but
scalability described qualitatively.

Table 14: Clone Detection Tools/Techniques Ranked by their Scalability Measurement

Rank Name Num Tools/Techniques

a Systematic Inputs 3 CloneWorks [37], CtCompare [144],
SourcererCC [59,60,61,62,63]

b Various Inputs with Clear Presentation 22

CD-Form [42,43], CP-Miner [96,97],
Duplix [24], DupLoc [25,26],
HeapAbsCC [87], LLVM-Based
Framework [88,89], ModelCD [100],
NiCad [47,48,49,50,51], SaCD [101],
ScalClone [52], SeClone [148,149],
SimCad [57,58], SSD [150], Barbour et
al. [151], Chilowicz et al. [152], Falke et
al. [65], HaRe [147], Hummel et al. [153],
Koschke [105], Koschke [106], Qu et al. [68],
Tekin and Buzluca [154]

c Various Inputs with Poor Presentation 5
Asta [85,86], BinClone [40],
CCFinder(X) [10], sif [93], Karus and
Kilgi [67]

d Large Systems 17

Boreas [94,95] CBCD [41], Clonewise [82],
CMCD [134], CMGA [44], DuDe [45],
DyCLINK [146], FCFinder [98],
HitoshiIO [99], MeCC [46],
SeByte [53,54,55,56], Shuffling
Framework [90,91,92], XIAO [102,103],
Corazza et al. [64], Ishihara et al. [104],
Kam1n0 [66], Saebjornsen et al. [107]

e Qualitative 2 Decrescendo [145], Zibran and Roy [83, 84]

57

Rank E - Qualitative: The authors discuss scalability in a meaningful way, but only
qualitatively. For example they may just discuss algorithmic complexity, but do not
demonstrate the scalability for real inputs on an example hardware.

5.3.5 Exemplars in Tool Evaluation

We have ranked the clone detection tools and techniques on how the authors have measured
the four primarily performance metrics. These rankings can be used by the community to
find examples on the best way to evaluate the performance of their clone detection tools and
techniques. We extract from these rankings the works which rank within the top one or two
tiers for each of the four metrics. We propose these works as exemplar works for how authors
should evaluate their clone detection tools and techniques. These publications should be
used by authors of new tools/techniques as inspiration for their evaluation experiments, and
by peer reviewers to judge new publications in clone detection research. As we have shown,
evaluation by the authors is lacking in the literature. It is very important that future works
are well evaluated.

We propose the following exemplars for how authors should be expected to evaluate their
clone detection tools/techniques:

• CloneWorks [37]

• Falke et al. [65]

• NiCad [47,48,49,50,51]

• SimCad [57,58]

• SourcererCC [35]

5.3.6 How Tool Authors Measure Recall

Only 67 of the 198 tools and techniques have their authors measuring their recall. We are
interested in how the authors measured recall, specifically how they obtained or created
reference clone corpora. We find that the authors either use one of the standard clone
benchmarks (Section 4), or create a new reference data for their evaluation using one of the
common methodologies (Section 3.2).

In Table 15, we summarize how the tool authors have evaluated recall. We split the
table into two halves, in the first half we list the standard benchmarks that authors have
used to measure the recall of their clone detection tool/technique. In the second half, we list
the methodologies the authors have used when they created their own reference corpora to
measure recall. The frequencies add up to greater than 67, as a number of authors have used
multiple benchmarks.

Standard Benchmarks Tool and technique authors have measured recall using various
standard benchmarks, including: Bellon’s Benchmark, Krutz’s Benchmark, the Mutation

58

Table 15: Methods and Benchmarks used by Tool Authors to Measure Recall

Method Frequency Ratio Method Description

Using Standard Benchmarks

Bellon’s Benchmark 14 21% Bellon’s Benchmark’s reference cor-
pus (or extension).

Krutz’s Benchmark 1 1% Krutz’s manually validated clone
corpus.

Mutation Framework 5 6% Mutation and Injection Framework
(or procedure).

BigCloneBench 4 5% BigCloneBench’s cross-project big
data clone corpora.

Using Self-Built Reference Corpora

Manual Inspection 17 22% Manual inspection of a system for
clones.

Clone Injection 12 15% Software system manually seeded
with known clones, or software sys-
tem with known clones manually
constructed.

Clone Detector(s) 7 9% Output of one or more clone detec-
tors used as an oracle.

Literature 7 9% Tested against clones and clone sce-
narios from academic literature.

Artificial Clones 4 5% Reference clones or software system
with known clones automatically or
semi-automatically synthesized.

Clone Detector(s) with
Validation

4 5% Output of one or more clone detec-
tors used as an oracle after manual
removing of false positives.

Unknown 2 3% Recall reported without sufficient
description of how.

59

Framework, and BigCloneBench. The most popular benchmark has been Bellon’s Bench-
mark, which is also the benchmark that has been available for the longest.

While the easiest way to measure recall is to use an existing reference corpus, most the
authors that measured recall crated new reference data. With the exception of Bellon’s
Benchmark, most of these benchmarks have only been recently published and released. We
expect that adoption of standard benchmarks by clone detection tool and technique authors
will improve with time.

Self-Built Most of the works that measure recall have done so by the authors creating their
own reference corpora. This has been because standard benchmarks have been historically
unavailable or difficult to use. Sometimes clone detection tools are not compatible with
existing benchmarks, especially in the case of emerging detection techniques that require data
not captured by the benchmarks (e.g., compiled code, commit logs), or where the detection
tool targets particular use-cases that are not represented by the existing benchmarks (e.g.,
student plagiarism detection). It is interesting to see how tool/technique authors have coped
with this by building their own reference data.

The most popular technique has been manual inspection, where a subject system is
manually searched for the clones it contains. This technique is only possible for very small
systems, where a manual inspection is feasible. Even small subject systems can contain far
too many pairs of code fragments to inspect manually. Unless a systematic manual search
process is used, it may not be reliable to find all clones. This technique produces a reference
corpus that lacks variety, as a single or small group of very-small systems is unlikely to
contain many kinds of clones. Therefore, measuring recall in this way can lack generality.

The second most popular approach has been clone injection, where an existing or new
subject system is manually seeded with known clones. This technique gives the author more
control over the kinds of clones in the subject system, potentially allowing a more general
measure of recall. However, the reference corpus is still typically small as manually adding
clones to a software system is time consuming [5]. Another concern is the source of the
clones to be injected, whether they have been extracted from a real software system, or hand
crafted.

Another approach used by authors is to use an existing clone detector(s) to build a
reference corpus. This is a poor approach, as there is no guarantee the existing tool(s)
have good recall and precision themselves. The reference corpus may be incomplete, or may
contain false positives. Typically, this approach has been used when the authors want to show
that their tool is as-good as the well-accepted and popular existing tools. The authors then
show that their tool is superior in some other capacity, such as execution time or usability.

A good approach has been to evaluate the clone detector against clones documented in
the academic literature. Most commonly, this has been done using the cloning scenarios
proposed by Roy et al. [2, 267]. This approach is the basis of the Mutation and Injection
Framework, which automates synthesis of many clones using these scenarios. The advantage
of this technique is it can show that the tool handles the various cloning scenarios. However,
doing this by hand means very few examples have been tested, so it has not been tested
against the various ways the source syntax may express these scenarios. This technique is
comprehensive in the kinds of types of clones that can exist, but is not comprehensive in the
variety of ways they can be expressed. Authors that have used this technique have typically

60

measured recall for only tens of clones.
Another technique has been using artificial clones, where an existing or new software

system is automatically seeded with synthetically produced clones. Sometimes this is done
based on a taxonomy of the types of edits made on copy and pasted or plagiarized code.
This technique is also similar to the Mutation and Injection Framework. The limitation of
this technique is the synthetic clones may not reflect real clones in practice, so it is based to
pair this approach with a benchmark of real clones.

Another technique has been to use clone detector(s) with validation, where one or
more clone detectors are executed for a subject system(s), and their results are taken as the
reference corpus after removing the false positives. Since clone detection results can be large,
sometimes only a random sample of the detection results are considered. This is most similar
to Bellon’s Benchmark, which used the same technique. The problem with this method is
it does not contain the kinds of clones the tools are unable to detect, and suffers from the
subjectivity of manual clone validation. It is also a very time consuming approach.

For two of the works, we were unable to identify the methodology used to build the
reference corpus. Actually, in most cases the authors have provided only minimal details
on how they built their reference corpora. Also, in most cases their reference clones are
not released for public examination. This makes it impossible to reproduce or validate the
results. It also means that future studies cannot directly compare to their results, as their
reference corpora is not available. This is why standard benchmarks are strongly needed by
the clone detection community.

5.4 Standards of Evaluation by Authors

Previously in this section, we have ranked how well the authors have evaluated their clone
detection tools and techniques. We are interested in what is the standards of evaluation
by the authors. To understand this, we measure various statistics about the frequency in
which the evaluation criteria are satisfied by the authors. We begin in Section 5.4.1 by
measuring the frequency in which the individual evaluation criteria are satisfied. Then in
Section 5.4.2 we evaluate how frequently the authors have measured different combinations
of the performance metrics. Lastly, in Section 5.4.3, we evaluate the correlations between
the evaluation criteria, including how often the different performance metrics are measured
together. The results show the state of tool evaluation by the authors. We show statistics
for all works, and individually for the named tools, and unnamed cone detection techniques,
as discussed earlier in Section 5.2.

5.4.1 Frequency of Metric Evaluations by Authors

We measured how frequently each of the evaluation criteria are examined by the tool authors.
In Table 16, we report the percentage of the works that evaluate each of the evaluation
criteria. We report our findings across all of the works, and individually for the named clone
detection tools and unnamed clone detection techniques. For each of the evaluation criteria,
we found that authors of named tools were more likely to measure that criteria than authors
of unnamed techniques.

61

Table 16: Frequency of Evaluations of Clone Detection Tools by Authors

Evaluation Type
All Tools and

techniques
Named Tools

Unnamed
Techniques

Case Study 93% 98% 89%
Tool Comparison 38% 49% 29%

Recall 34% 47% 23%
Precision 44% 54% 36%

Execution Time 52% 68% 38%
Scalability 25% 39% 13%

Case Study We find that an overwhelming majority of the works, 93%, are evaluated at
least using a case study. Named clone detection tools are somewhat more likely to have a
case study than unnamed techniques, 98% versus 89%, but in both cases it is very com-
mon. Case studies range from a demonstration of the tool/technique for a single software
system, reporting at least the size of the detection result, to large-scale studies examining
the kinds of clones detected and exploring its configurations and use-cases. In some cases,
the tool/technique is demonstrated through its use in a real industrial use-case.

Tool Comparison Comparison to other tools is much more rare, just 38%. While authors
typically discuss other tools and techniques in their related work, rarely are they directly and
quantitatively compared against the author’s work. This may be due to lack of access to the
competing tools, as few are publicly released. It may also be due to the difficulty in conducting
tool comparison studies, due to the differences between the tools, and historical lack of
universal clone benchmarks. This suggests that works are often accepted for publication based
on the novelty of their algorithms, and not because their tool/technique is demonstrably and
quantitatively better or distinct from the related work.

Tool comparison is more common for named tools, 49%, than for unnamed techniques,
29%. It may be that there is a higher expectation for tools to be compared against the
popular/competing tools, while techniques are accepted on the merit of a novel algorithm
or detection metrics/strategy. Unnamed clone detection techniques may not have a working
prototype, which can make comparison to the existing tools more challenging.

Recall and Precision Precision and recall are important measures of clone detection
performance. However, only 44% of works measure precision, and only 34% measure recall.
It is understandable that recall evaluation is low, as it requires a reference corpus. Historically,
there have been few clone benchmarks, and reference corpora are very challenging and time-
consuming to build. However, precision is very easy to measure, only requiring the author
to manually validate a sample of their detected clones. The efforts required to measure
precision are small compared to the effort required to research, develop, and publish a new
clone detection tool or technique, so it is reasonable to expect authors to at least report
precision.

It is much more common for precision and recall to be measured for named tools, 54%

62

and 47%, compared to unnamed techniques, 36% and 23%. This may be because named tool
works have more mature tools/prototypes, or there is a higher expectation for evaluation for
clone detection tool papers. It may be that clone detection techniques are published on the
merit of their new algorithms alone, and reviewers do not expect a thorough evaluation of
their detection performance. Works published as clone detection techniques may not have
a mature enough prototype (or a prototype at all) for measurement of recall and precision.
However, these are still important measures, and it is hard to see the value in a new detection
technique if its detection performance is not evaluated.

Execution Time and Scalability Execution time is the most commonly measured per-
formance metric, 52%. It is more commonly reported for named tools, 68%, than unnamed
techniques, 38%. This could be because some unnamed techniques lack a prototype, so it is
not possible to measure execution time. Or the current prototype was implemented without
concern for speed, so the authors are hesitant to report it. Still, all papers featuring at least
a prototype should report execution time as it is simple to measure.

It is much more rare for scalability to be measured, just 25% of the works. Although it
is more commonly evaluated for named tools, 39%, than unnamed techniques, 13%. Some
have systematically evaluated scalability by reporting execution time (and sometimes memory
usage) for various subject system sizes. Others have also explored scalability for different tool
configuration settings, such as similarity thresholds. Scalability is not challenging to evaluate,
requiring the author to pull subject systems of various sizes from open-source repositories,
and report the execution time of their tool/prototype.

Summary Comments While most of the clone detection tools and techniques are pub-
lished with at least a case study, the other evaluation criteria are more often than not ne-
glected. Most often execution time is measured, but this is still for only 52% of the published
tools and techniques.

5.4.2 Frequency of Evaluation Scopes

In the previous section, we examined the frequency of different types of evaluations by authors
of the clone detection tools. Now we look at what are the standard ways that authors evaluate
their tools. In other words, which set of metrics do tool/technique authors most frequently
evaluate. In Table 17 we show the frequency in which tool and technique authors evaluate
certain combinations of performance metrics. We focus on the four primary metrics of recall,
precision, execution-time and scalability. We show the statistics for all the tools/techniques,
as well as individually for named tools and unnamed tools (techniques).

Most common, in 27% of the works, the authors have measured none of these performance
metrics. In 25% of the works the authors measured just one of the metrics, in 24% of the
works the authors measured two of the metrics, in 17% they measured three metrics, and in
9% of the works they measured all four.

When the authors only measured one metric, they most commonly measured execution
time and then precision. When they measured two metrics, it is most common they measured
recall and precision together. When three metrics are measured, it is most common that
recall, precision and execution time are measured. Overall, it is fairly rare that all four

63

Table 17: Standards of Clone Detection Tool Evaluation by Authors

Recall Precision
Execution

Time
Scalability All

Named
Tools

Unnamed
Techniques

x x x x 9% 14% 5%

x x x 7% 11% 3%
x x x 1% 1% 1%
x x x 3% 6% 0%

x x x 6% 9% 4%

x x 12% 10% 13%
x x 1% 0% 1%
x x 1% 1% 0%

x x 4% 6% 3%
x x 0% 0% 0%

x x 6% 8% 4%

x 2% 3% 1%
x 6% 3% 8%

x 17% 14% 19%
x 0% 0% 0%

27% 13% 39%

metrics are evaluated. It is rare that scalability is measured without execution time. When
it is measured without execution time, this is where the authors evaluate scalability by
examining complexity and memory usage alone.

Considering all combinations, the top-4 most common cases are: (1) no metrics evaluated,
(2) only execution-time is measured, (3) recall and precision are measured, and (4) all four
metrics are measured. Comparing named tools and unnamed tools, it is much more common
that authors of unnamed tools do not measure any of the metrics.

Given that precision, execution time and scalability are simple to measure, it is surpris-
ingly that this case is not more common. When the authors have at least prototyped their
tools, execution time and scalability can be measured using open-source systems, for which
precision can be estimated by manually validating a sample of the clones detected in these
studies. Only recall is significantly challenging to measure, as it requires a reference corpus
(clone benchmark).

These results show that tool and technique authors need to become more proactive in eval-
uating their tools/techniques. The availability of clone benchmarks that are accessible and
easy to use should hopefully encourage authors to thoroughly evaluate their tools/techniques.

5.4.3 Correlation Between Evaluations

Also of interested is the correlation between the the evaluation criteria. For example, given
that an author has measured the precision of their clone detection tool/technique, what is
the chance they also measured recall, and vice-versa. This way we can examine how these

64

Table 18: Correlation Between Evaluation Criteria
Probability that this Criteria is also Measured

Measured Number
Case
Study

Tool Com-
parison

Recall Precision
Execution

Time
Scalability

Case Study 184 x 41% 36% 48% 55% 27%
Tool Comp. 75 100% x 56% 64% 56% 36%

Recall 67 100% 63% x 84% 55% 39%
Precision 88 100% 55% 64% x 58% 36%

Execution Time 102 100% 41% 36% 50% x 45%
Scalability 49 100% 55% 53% 65% 94% x

dimensions of tool evaluation are correlated in the works.
We show these correlations in Table 18. For each evaluation criteria, we present the num-

ber of tools/techniques that were evaluated for that criteria, and then the ratio of those which
were also evaluated for the other evaluation criteria. There are some interesting observations
we can make from this data.

For all of the criteria, if measured, then there is a 100% chance a case study was performed.
This is because we count any of the other evaluation criteria as a case study. In this way,
the chance of the other criteria given a case study was done can be considered a baseline
chance of the other evaluation criteria being measured, given that we ignore the few papers
that have no evaluation of the tool or technique. In no case do we see the measurement of
one criteria reducing the chance another was measured to below the baseline probability.

When recall is measured, there it is high chance (84%) that precision is also measured. The
reverse is not as strongly true, 64%, although recall is most likely measured when precision is
also measured. Recall is more challenging to measure, and if the author has taken the time
to evaluate recall they likely will make the time to measure precision too. It is difficult to
interpret a measurement of recall without a measurement of precision, and vice-versa.

Given that a work measures the scalability of their tool/technique, it is very likely that
execution time is also reported. This is because scalability is typically measured by presenting
execution time for different input sizes, although scalability has been presented by simply
indicating successful execution without specifying time. What is interesting, is that the
likelihood execution time is measured does not vary significantly for the other criteria.

A tool comparison is most likely when recall is measured. Given that the author has
produced a corpus or has access to a clone benchmark, they are more likely to take the time
to evaluate multiple tools with that reference corpora.

5.5 Threats to Validity of this Survey

There are a few threats to the validity of this survey. It is likely that we have not found
all of the tools in the literature. We relied on the previous surveys being comprehensive
on the available works up to 2011. We then thoroughly searched the major databases for
publications between 2011 and march 2017. However, with some of the databases we had to
constraint our search query in order to receive a reasonable number of results to manually
examine. While we may have missed some papers, we are confidant we have a sufficient

65

sample to measure accurate trends on clone detection tool evaluation by the authors. We
validate this assumption by the fact that our search yielded all the major clone detection
tools we were already aware of.

6 A Survey of Tool Comparison Studies

In this section, we survey the existing clone detection tool comparison studies and experi-
ments. For this survey we only consider those papers that perform an unbiased tool compar-
ison experiment. We do not consider publications that introduce a new clone detection tool
or technique, and include a tool comparison study as part of its evaluation. While tool au-
thors often perform high-quality experiments, these studies have been designed to highlight
the performance and novelty of their new tool, so there is a potential bias in the experiment
design.

This survey is organized as follows. In Section 6.1 we discuss our survey procedure, and
in Section 6.2 we summarize the results. Then in Section 6.3 we summarize and critique
the qualitative tool comparison studies, and the same in Section 6.4 for the quantitative
studies. We discuss the threats to this survey in Section 6.5, with some concluding remarks
in Section 6.6.

6.1 Survey Procedure

We identified the existing tool comparison studies by examining the existing clone detection
surveys [1, 2, 3]. We also searched the relevant academic databases for publications. We
did this as part of our survey of the evaluation of clone detection tools by their authors, as
described in Section 5.1. The search terms were broad enough to capture both clone detection
tool publications and tool comparison studies. We searched the related work sections and
citations of the benchmarks and tool comparison papers to find any other works. We also
searched the academic databases for papers that cite the important clone detection tool
comparison publications. For example, Bellon et al.’s [5] study was a major milestone in
clone detection tool comparison, and most comparison studies at least cite this work.

6.2 Results

In total we found twelve tool comparison works spread across fifteen publications. A few
of the works included multiple publications, both a conference publication and an extended
journal publication. We split the works into two categories: (1) predominately qualitative
tool comparison studies and (2) predominately quantitative tool comparison studies.

The qualitative studies are summarized in Table 19. The papers are listed in chronological
order, and where a work has multiple publications we list the publication with the most
details. For each work, we list the number of tools evaluated, the number of subject systems
considered, the sizes of the subject systems, and the programming languages considered. We
then provide a short and long description of the qualitative analysis performed.

The quantitative studies are summarized in Table 20. The papers are listed in chrono-
logical order, and where a work has multiple publications we list its comprehensive (journal)

66

publication. For each work we list the number of tools compared, the number of subject
systems used, the sizes of the subject systems, the programming languages considered, and
the clone detection performance metrics measured. Each of the publications measure recall,
so we list the reference corpora used (benchmark name or methodology) and its size.

6.3 Qualitative Studies

In this section we summarize and discuss each of the qualitative tool comparison studies.

Evaluating Clone Detection Techniques from a Refactoring perspective
Filip Van Rysselberghe and Serge Demeyer

Rysselberghe and Demeyer [268] implemented three clone detection techniques from the
lierature and executed them for five subject systems to evaluate their detection results from
a refactoring perspective. For clone detection, the implemented techniques based on string
matching, token-based with parameterized matches by suffix trees, and one based on metric
fingerprints. They used four Java software systems (537LOC to 100KLOC) and one C++
system (12KLOC). They evaluated the techniques for four criteria relating to refactoring: (1)
suitable (for a refactoring tool), (2) relevance (prioritizes larger clone classes), (3) confidence
(precision), and (4) focus (within a class versus project-wide).

For each category, the authors discuss which of the three investigated clone detection
techniques performed best. However, their analysis is very short, and lacks any examples.
Some of their criticisms of the clone detection techniques could be solved by pre-processing
or post-processing. For example, they indicate that metric fingerprinting is the most suitable
for refactoring as it detects method-level clones, while the token-based and string-based are
not because they ignore the boundaries of logical code units. The authors implemented the
techniques, so they could have unified their compatibility by implementing the string-based
and token-based techniques over methods as well.

However, examining clone detectors for refactoring is an important study, and the authors
highlighted various ways in which clone detectors could be improved for this use-case.

Comparison and Evaluation of Code Clone Detection Techniques and Tools: A
Qualitative Approach
Chanchal K. Roy, James R. Cordy and Rainer Koschke

Roy et al. [2, 267] performed a large-scale property-based and scenario-based evaluation
of 38 clone detection tools. The authors recommend that clone detection users identify the
properties and cloning scenarios relevant to their task, and then use the author’s evaluations
to select the set of tools best for their task.

In their property-based evaluation, they categorized the tools for twenty-two facets across
ten categories, including: usage (platform, dependencies, availability), interaction (UI, output
format, IDE support), language (paradigm and support), clone (relation, granularity, types),
technical (comparison algorithm, comparison granularity, complexity), adjustment (config-
urable pre/post-processing, configurable heuristics/thresholds), transformation/normalization
support, code representation (text, metrics, vector, trees, PDG, etc), program analysis (pars-
ing type/complexity), and evaluation (empirical, availability of results, subject systems).
This evaluation exhaustively annotates the properties of their tools, and makes it easy for

67

the reader to select a tool with their desired features.
For their scenario-based evaluation, the authors created an empirically validated taxon-

omy of the sixteen types of edits developers makes on copy and pasted code, for clones of the
four primary clone types. Using their knowledge of the tools’ features from the property-based
evaluation, they judged how well each of the tools’ support these sixteen cloning scenarios.
They used a seven point scale that captures the certainty or uncertainty of a tools’ support
based on the underlying algorithm, features, empirical evaluations, etc.

The authors have provided a very strong qualitative evaluation of the existing tools. The
advantage of this methodology is it does not require the clone detection tool to be pub-
licly available, which is often the case with clone detection publications. The problem with
this methodology is it is time-consuming to classify the tools, and there is the threat of
miss-classification. This would be a good methodology to be adopted as a standard in the
community, with tool authors classifying their own tools, perhaps with feedback from the
community. The community could then update the evaluation facets and categories as new
clone detection techniques are created.

An extended assessment of type-3 clones as detected by state-of-the-art tools
Rebecca Tiarks, Rainer Koschke and Raimar Falke

Tiarks et al. [269,270] evaluated the Type-3 clones reported by six state-of-the-art tools.
They executed the tools for the six subject systems from Bellon’s Benchmark, as well as six
industry systems. In total, 381,628 Type-3 clones were detected, for which 751 were carefully
validated over 40 hours of manual validation. They found only 189 of these clones were
true positives from human perspective. They studied these clones to answer three research
questions. They determined what kind of syntactical differences occur between Type-3 clones,
and classify the clones by these kinds of differences. They then derive from these syntactical
differences the semantic abstractions that exist in the Type-3 clones. In total they identify
fourteen categories of abstractions. They then study fifteen kinds of similarity metrics to
determine if they can be used to differentiate true and false Type-3 clones from the human
perspective. They specifically look to see how well these metrics separate the true and false
positives into separable distributions (e.g., using a threshold). They also investigate the use
of metric combinations and decision trees (machine learning).

The important findings of this evaluation study is that most (approximately 75%) of the
detected Type-3 clones were rejected by human inspection. Their identification of common
syntactical differences and semantic abstractions are helpful for developing new Type-3 clone
detectors and designing automated or semi-automated Type-3 clone refactoring patterns and
tools. Their study of metrics for distinguishing true and false positive Type-3 clones will help
with designing better clone detectors.

However, there is a few flaws in this study. Four of the five tools were produced by the
author’s research lab, which could bias the results. The validation is not reported per tool, so
it is unknown if the significant 75% false positives during validation is due to poor precision
of all the tools, or poor precision of just a few tools.

Searching for Configurations in Clone Evaluation A Replication Study
Chaiyong Ragkhitwetsagul, Matheus Paixao, Manal Adham, Saheed Busari, Jens Krinke and
John H. Drake

68

Ragkhitwetsagul et al. [271] replicate a study by Wang et al. [?] where clone detector
configurations are optimized for a subject system(s) by searching for the configurations that
maximize agreement between the tools. The search is performed using a genetic algorithm
and framework called EvaClone. They found optimal configurations of four clone detection
tools for 14 individual revisions of the Mockito software system. They compared the detection
results for the optimized configurations against the tools’ default configurations in terms of
detection result agreement, and studied the stability of the configurations across the revisions.

The authors found that the EvaClone does indeed find configurations that produce higher
agreement amongst the tools compared to the default configurations. Also, the authors
found that no configuration was optimal across all revisions of the same software systems,
with instability in the configurations between subsequent revisions. However, the authors
notice that EvaClone maximizes agreement between the tools by significantly increasing or
decreasing the number of cloned lines detected by the tools compared to their default settings,
which produces more false positives or false negatives, respectively.

This is a very good study that shows the dangers of searching for tool configurations by
maximizing the agreement between clone detection tools. However, the study would have
been stronger if precision and recall had been measured for the tools optimized and default
configurations to confirm the suspicion that EvaClone is either increasing the number of false
positives or false negatives detected by the tools to force agreement on the cloned lines within
Mockito. At the very least, precision could have easily been measured to strengthen their
findings.

While this publication relies upon measurable facts, we do not include it as a quantitative
evaluation as it does not measure any of the common clone detection performance metrics
(recall, precision, execution time and scalability). The results in this paper are extrapolated
from the clone detection sizes, so the conclusions are also qualitative.

6.4 Quantitative Studies

In this section we summarize and discuss the quantitative studies, which are listed in Ta-
ble 20. As can be seen, recall is the most commonly measured performance metric, which is
the opposite of our findings with the tool evaluations performed by the authors themselves
(Section 5). The sizes of the reference corpora used range from just hundreds of clones to
million of clone pairs. Precision is commonly measured, but execution performance is often
omitted.
Evaluating clone detection tools for use during preventative maintenance
Elzabeth Burd and John Bailey

Burd and Bailey [189] measured the recall and precision of five clone detection tools (in-
cluding CCFinder, CloneDr, Covet, JPlag and Moss) from the perspective of preventative
maintenance. The tools were executed for a small subject system, GraphTool, locally devel-
oped by a post-graduate student, and therefore familiar to the authors. In total 1,463 unique
clones were detected and manually validated by the authors. The clones were validated as
true positives if they would be useful for preventative maintenance. Using this oracle, re-
call and precision were measured for the tools. Additionally, the authors investigated the
properties of the detected clones, and the overlap and differences between the tools’ outputs.

69

The authors recommended the best tools in terms of various concerns of preventative main-
tenance, including: (1) high recall, (2) high precision, (3) replication frequency (clone class
size), (4) ease of refactorability, (5) tool usability.

As one of the earliest tool comparison studies, this work is very commendable. How-
ever, there are a few limitations. Only a single subject system and programming language
are considered, so the results may not be generalizable. The results also depend upon the
validation of the clones, and this process is not sufficiently described. The reference corpus
was built using the participating clone detection tools themselves, which means it may be
missing clones that none of the participating tools are able to detect, possibly over-estimating
recall. However, the authors did investigate all of the detected clones, so their measurement
of precision is precise.

On the use of clone detection for identifying crosscutting concern code
Magiel Bruntink, Arie van Deursen, Remco van Engelen and Tom Tourwé

Bruntink et al. [272] evaluated the performance of clone detection tools specifically for
identifying cross-cutting concerns. They manually identified and annotated five cross-cutting
in a 16KLOC industrial C system. The identified cross-cutting concerns included memory
error handling, null-value checking, range checking, error handling, and tracing/logging. In
total, 4182 source lines across 45 source files were identified as concerns, including the inter-
section of 386 functions.

They executed three clone detectors (including ccdmiml, CCFinder and PDG-DUP) for
the subject system and evaluated how well they detected the concern code. They measure
recall and precision per concern given a selection of the clone classes in the detection reports.
Recall is measured as the ratio of the concern’s code lines detected as clones, and precision as
the ratio of the detected clones lines that are in the concern’s code. They propose a greedy
algorithm for selecting clone classes from a clone detector’s output that aims to maximize
the average precision across the concerns. This selection algorithm is used to measure re-
call/precision specifically for the concerns, ignoring the other kinds of clones detected. They
then plot recall vs. precision for each clone detector and concern, and discuss the results.
They also investigate the performance of the tools when the detection results are combined.
Overall, they find that clone detectors show promise for detecting cross-cutting concerns.

This is an excellent study that evaluates clone detectors for a new use-case. The authors
take reasonable steps to filter out non-concern related clones so that the clone detectors can
be evaluated for the concern code in isolation. This study motivates research into automatic
or semi-automatic methods of categorizing detected clones in concern and non-concern re-
lated clones. The study has a few threats to the validity of its results. First, only a single
and rather small subject system is considered. It could be that precision would be lower
for a larger system where there is more chance of false positives including concern code to
be detected. Additionally, it relied upon manual inspection and validation, which can be
error-prone.

Comparison and Evaluation of Clone Detection Tools
Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke and Ettore Merlo

Bellon et al. [5] measured the relative recall and precision of six clone detection tools for
four C and four Java software systems. The reference corpus was built by validating 2% of

70

the detected clones, randomly and evenly distributed across the clone detectors and subject
systems. The subject tools were configured and executed by their authors. Validation was
performed by Bellon, who was kept unaware of which tool proposed a given clone. Recall and
precision (lower bound) were measured using this reference corpus and two clone matching
algorithms. The experiment was conducted in two phases, with an initial run to identify
and resolve the problems with the procedure, and the main run to measure the reported
results. The authors thoroughly explore the detection performance and results of the tools,
including the properties of the clones. Performance, including execution time and memory
requirements, are also reported for the clone detectors. Although the tools were not executed
on the same machine, so the results are not perfectly comparable.

This tool comparison experiment was the first large-scale experiment to measure the re-
call and precision of clone detectors for multiple subject systems and multiple programming
languages. It is a very commendable experiment, and the reference data has been used by
many tool authors to evaluate their works. The limitation of the experiment is it can only
measure relative performance, since the clone detectors were used to built the reference cor-
pus. Missing is clones none of the tools are able to detect, and the corpus is likely biased
towards the kinds of clones the tools are best at detecting. Reliability in the validation of
the clones by Bellon has been shown to be suspect by multiple researchers [12,21].

Searching for Better Configurations: A Rigorous Approach to Clone Evaluation
Tiantian Wang, Mark Harman, Yue Jia and Jens Krinke

Wang et al. [273] measured the recall and (lower bound) precision of six clone detection
tools using Bellon’s Benchmark and optimally chosen configurations. They created a tool,
EvaClone, that uses a genetic algorithm to search for configurations for a set of tools that
maximizes a fitness function. For Bellon’s Benchmark, they designed a fitness function
that maximizes agreement on the cloned lines with a subject system(s). They searched for
configurations for the C and Java systems as sets, and for each individual subject system.
They measure recall and precision for each tool using their default configuration, their optimal
configuration for the given subject systems, and their optimal configuration for the set of
subject systems. They find that their search algorithm improves recall in comparison to the
default configuration, but hurts precision.

The authors have addressed what they call the “confounding configuration problem”, that
the configuration of the tools greatly affects the outcome of a clone detection experiment.
The authors present an efficient algorithm for exploring the search space of tool configura-
tions given a fitness function. The strength of this work is they rigorously considered tool
configurations when evaluating the tools. However, their fitness function appears to maxi-
mize recall at a significant cost to precision. They do not suggest an alternate fitness function
for balancing both the recall and precision concern. They also do not investigate their al-
gorithm with multiple sets of tools to see if the presence of a single tool can dominate the
re-configuration for agreement.

A missed opportunity is they do not attempt to create targeted configurations of the tools
considering the benchmark properties and tool documentation, and then see if their search
algorithm can produce better configurations. The default tool configurations are typically
very conservative, and intended for the user to get their toes wet before exploring the con-
figuration choices. It would be interesting to compare the configurations found by EvaClone

71

against configurations decided by an experienced user.

On the Robustness of Clone Detection to Code Obfuscation
Sandro Schulze and Daniel Meyer

Schulze and Meyer [274] measured the robustness of three clone detection tools (includ-
ing, JPlag, CloneDigger and Scorpio) to obfuscated code. The authors took a single small
C software system and created 15 alternate versions of its source code with fifteen different
combinations of five obfuscation techniques, including: renaming, code expansion, code con-
traction, loop transformation and conditional transformation. The authors then executed the
clone detectors for each pair of original software system and obfuscated software system, and
measure how the obfuscations reduce the recall of the clone detectors given the knowledge
that the obfuscated systems are semantically identical to the original system. They then
evaluate the different clone detection techniques with respect to these obfuscations.

This is an interesting study for evaluating clone detection tools for detecting plagiarized
or stolen code in the presence of source-level obfuscation. The obfuscations also map well
to general Type-2, Type-3 and Type-4 clone differences, so this is also a good evaluation of
the tools against common clone edits. The weakness in the study is the technique is applied
to only a single and small subject system. The results could be improved by repeating this
study for multiple subject systems of various source languages and paradigms.

Evaluating Modern Clone Detection Tools Jeffrey Svajlenko and Chanchal K. Roy
Svajlenko and Roy [7] measured and compared the recall of eleven clone detection tools

using three variants of Bellon’s Benchmark and the Mutation and Injection Framework.
They measured recall for both Java and C clones. To evaluate the accuracy of the bench-
marks themselves, the authors compared the benchmarks against each other and against
their expectations and knowledge of the tools. They find significant disagreement between
the benchmarks, but find that the Mutation and Injection Framework has better agreement
with their expectations of performance. Additionally, they found anomalies between the
results from Bellon’s Benchmark and knowledge of the tools’ characteristics. The authors
suggest that the reference corpus used by Bellon’s Benchmark is not relevant for modern
clone detection tools. They demonstrate this by showing that CCFinderX’s recall measured
by Bellon’s Benchmark is significantly lower than its earlier version CCFinder. The authors
suggested that a new real-world benchmark was needed to replace Bellon’s Benchmark as
a complimenet to synthetic benchmarking by the Mutation and Injection Framework. The
authors response to their finding was to introduce BigCloneBench [14,33] in later publications.

Evaluating Clone Detection Tools with BigCloneBench Jeffrey Svajlenko and Chan-
chal K. Roy

Svajlenko and Roy [275] measure the recall of ten clone detection tools using their real-
world benchmark, BigCloneBench, and their synthetic benchmark, the Mutation and Injec-
tion Framework. The authors demonstrate the need for both synthetic and real-world bench-
marking in tool evaluation. With the Mutation and Injection Framework, they measure the
tools’ precise capabilities for each clone type in an controlled and unbiased experiment. With
BigCloneBench, they measure how the tools perform for complex clones from thousands of
real software systems. They measure recall per clone type, and for particular regions of syn-

72

tactical similarity. They also measure recall specifically for intra-project versus inter-project
clones. The authors compare real-world vs synthetically measured recall to show how they
tell something different about the clone detection tools. Additionally, they use multiple clone
matching metrics to show how well the clone detectors capture the reference clones.

This study provides an extensive look at the recall of the popular and publicly avail-
able clone detection tools, using both synthetic and real-world benchmarking methodologies,
and measuring recall for clones with different properties. In their clone detection tool pa-
per introducing SourcererCC (Hitesh et al. [35]), the authors extended this experiment with
SourcererCC and a few of the existing tools to also measure precision, execution time and
scalability. However, we do not include this paper in this survey’s table, as we are focusing
on the papers that are just tool comparison experiments.

Similarity of Source Code in the Presence of Pervasive Modifications
Chaiyong Ragkhitwetsagul, Jens Krinke and David Clark

Ragkhitwetsagul et al. [276,277] evaluated the recall and precision of 30 tools and metric
for clone detection in the presence of pervasive modifications, specifically source-level and
bytecode-level obfuscation. Specifically, they sought to answer three questions: (1) how well
do current detection techniques perform for clones with pervasive modifications, (2) what
are the optimal configurations of these techniques, and (3) does compilation of the source-
code followed by de-compilation improve the detection of pervasively modified clones. The
authors considered tools and metrics from different domains, including five clone detectors,
six plagiarism detectors, twelve compression algorithms, and seven other metrics (mostly
string similarity/differentiating techniques).

The authors built a benchmark with known ground truth by obfuscating a dataset of
five Java source files. Obfuscation was performed using both source-level and bytecode-level
obfuscation tools. From each source file, nine cloned versions with pervasive changes are
produced by a combination of source-level and byte-level obfuscation, and two de-compilation
tools (for the byte-code obfuscated files). The final dataset contains 50 source files with 500
true and 2000 false file clones. As a post-processing step, all the source files in the dataset are
pretty-printed. They executed the tools and metrics for these file pairs, and measures recall,
precision and f-measure. The tools were executed for many configurations and similarity
thresholds, and the configuration with optimal f-measure reported.

For their base experiment, they execute the tools for the dataset, and choose the optimal
configurations that optimize f-measure. For their second experiment, they normalize the
source code by compiling it and then de-compiling it using two major decompilers (Krakatau
and Procyon). They find that the compilation/de-compilation is a good normalization for
improving clone detection accuracy in the presence of pervasive modifications.

The message of this paper is that compilation followed by de-compilation is an effective
normalization for detecting clones where the copied code has been obfuscated, perhaps to
hide license violations, plagiarism or intellectual theft. They also show which are the best
tools/metrics for detecting copied code that has been hidden by source-level and/or byte-level
obfuscation.

The strength of this paper is the authors evaluated many detection strategies, and opti-
mized the tool configurations to balance their recall and precision. However, there are some
weaknesses in the reference corpus. It is very small, built from just five original source files.

73

Since the reference data is built automatically, the authors could have built a much larger
corpus and improved confidence in their results. Other studies using artificial clones generate
on the order of tens of thousands of clones [7, 8].

The corpus is also not well described. The authors only provide one small example, and do
not report how obfuscation effected the similarity of the reference clones. The authors could
improve their study by generating multiple datasets with different kinds and levels/amounts
of source-level and byte-level obfuscation, to see how this changes detection performance.
While the authors show that compilation/de-compilation as a normalization improves detec-
tion in many cases, they do not re-optimize the configurations of the tools with respect to
this added normalization. The tool configurations were only optimized for the version of the
dataset without this post-processing.

6.5 Threats to Validity

As with all surveys, the threat is that we have not found all of the publications. However, we
were quite extensive in our survey process, and since there is so few tool comparison papers,
it is typical that they cite each other. So we are confident we have found all or most of the
tool comparison papers.

6.6 Conclusions

We have found that there are very few tool comparison studies, despite the publication
of at least 197 clone detection tools and techniques. This is a significant threat in the
clone detection research, as many techniques have been proposed, but very few have been
objectively evaluated. A challenge in tool evaluation studies is the availability of the tools.
While at least 197 exist in the literature, very few of these have been publicly released
and maintained. While many tool authors have evaluated the performance of their own tool
(Section 5), and some have even compared their tool against other tools and techniques, these
evaluations are designed to highlight the unique advantages/performances of the featured
tool. Tool comparison studies are needed to objectively compare the performance of tools,
with an experiment designed irrespective of the individual tools. This is not a criticism of
studies implemented by tool authors, readers expect their experiments to highlight what is
distinct about their tool compared to the related work.

7 Conclusion

In this work, we thoroughly explored and evaluated the literature on clone detection tool
and technique evaluation. We began by surveying the clone detection benchmarks that are
in the literature. We thoroughly evaluated and compared these benchmarks across multiple
facets, and recommended the best benchmarks to be used at the time of writing.

We then surveyed the published clone detection tool and techniques to see how authors
evaluate their own tools. We ranked these works by how well they measured recall, precision,
execution time and scalability. We identified the works that best evaluated all four metrics

74

to act as exemplars for how authors should evaluate their clone detection tools/techniques.
We then report statistics on how authors evaluate their own tools/techniques. We find that
authors often neglect to evaluate their tools/techniques, which is a threat in the literature.
This lack of evaluation is due to the historic lack of clone benchmarks and standard eval-
uation strategies. We hope that our study will motivate future authors to evaluate their
tools/techniques, and use our exemplars and evaluations as a guide on how to run good
evaluation studies.

Lastly, we surveyed the tool comparison studies, to see how researchers (not necessarily
tool authors) evaluate and compare clone detection tools. We summarize these works, and
compare their attributes. We identify both qualitative and quantitative comparisons of the
tools. Overall, there is very few studies comparing the clone detection tools despite so many
published works on clone detection.

Our findings is that there is a significant lack of clone detection tool evaluation, despite
significant work in introducing new detection tools and techniques. We find that this has
been due to a historic lack of good clone benchmarks. There is a strong need by the clone
detection research community for strong benchmarks and for good exemplars on how to
conduct tool evaluation and comparison experiments.

75

T
a
b

le
1
9
:

S
u

rv
ey

o
f

Q
u

a
li

ta
ti

v
e

T
o
o
l

C
o
m

p
a
ri

so
n

S
tu

d
ie

s

P
a
p
e
r

Y
e
a
r

#Tools

#Systems

SystemSize

L
a
n
g
u
a
g
e

Q
u
a
la
ta

ti
v
e

S
u
m

m
a
r
y

C
o
m

m
e
n
ts

E
v
a
lu

a
ti

n
g

cl
o
n

e
d

et
ec

ti
o
n

te
ch

n
iq

u
es

fr
o
m

a
re

fa
ct

o
ri

n
g

p
er

sp
ec

ti
v
e

[2
6
8
]

2
0
0
4

3
5

5
3
7

to 9
8
K

J
a
v
a
,C

+
+

R
ef

a
ct

o
ri

n
g
-B

a
se

d
M

a
n
u

a
ll

y
ex

a
m

in
ed

cl
o
n

es
to

ju
d

g
e

re
fa

ct
o
ra

b
il
it

y
o
f

th
e

d
e-

te
ct

ed
cl

o
n

es
b

a
se

d
o
n

fo
u

r
cr

it
er

ia
:

su
it

a
b

le
,

re
le

v
a
n
t,

co
n

fi
-

d
en

ce
,

fo
cu

s.

C
o
m

p
a
ri

so
n

a
n
d

E
v
a
lu

a
ti

o
n

o
f

C
o
d

e
C

lo
n

e
D

et
ec

ti
o
n

T
ec

h
n

iq
u

es
a
n

d
T

o
o
ls

:
A

Q
u

a
li
ta

ti
v
e

A
p

p
ro

a
ch

[2
,2

6
7
]

2
0
0
9

3
8

In
d

ep
en

d
en

t
P

ro
p

er
ty

-B
a
se

d
S

ce
n

a
ri

o
-B

a
se

d

E
x
te

n
si

v
e

ev
a
lu

a
ti

o
n

o
f

cl
o
n

e
d

et
ec

to
r

fe
a
tu

re
s

a
n

d
p

ro
p

er
-

ti
es

.
E

v
a
lu

a
ti

o
n

o
f
d

et
ec

ti
o
n

p
er

fo
rm

a
n

ce
fo

r
cl

o
n

in
g

sc
en

a
ri

o
s

b
a
se

d
o
n

d
es

cr
ib

ed
fe

a
tu

re
s.

A
n

ex
te

n
d

ed
a
ss

es
sm

en
t

o
f

ty
p

e-
3

cl
o
n

es
a
s

d
et

ec
te

d
b
y

st
a
te

-o
f-

th
e-

a
rt

to
o
ls

[2
6
9
,2

7
0
]

2
0
1
1

5
1
4

1
9
K

-
2
3
5
K

J
a
v
a
,

C
E

C
V

a
li
d

a
ti

o
n

a
n

d
C

a
te

g
o
ri

za
ti

o
n

M
a
n
u

a
ll

y
v
a
li
d

a
te

d
T

y
p

e-
3

cl
o
n

es
d

et
ec

te
d

b
y

th
e

to
o
ls

.
In

v
es

-
ti

g
a
te

d
th

ei
r

sy
tn

a
ct

ic
d

iff
er

en
ce

s
a
n

d
d

er
iv

ed
th

ei
r

se
m

a
n
ti

c
a
b

st
ra

ct
io

n
s.

In
v
es

ti
g
a
te

d
ch

a
ra

ct
er

is
ti

cs
th

a
t

su
g
g
es

t
tr

u
e-

p
o
si

ti
v
e

fr
o
m

h
u

m
a
n

p
er

sp
ec

ti
v
e.

S
ea

rc
h

in
g

fo
r

C
o
n

fi
g
u

ra
ti

o
n

s
in

C
lo

n
e

E
v
a
lu

a
ti

o
n

:
A

R
ep

li
ca

ti
o
n

S
tu

d
y

[2
7
1
]

2
0
1
6

4
1
4

5
6
K

-
2
5
0
K

J
a
v
a

In
fe

ri
n

g
R

el
a
ti

v
e

P
er

fo
rm

a
n

ce

E
st

im
a
ti

n
g

ch
a
n

g
es

to
re

ca
ll

a
n

d
p

re
ci

si
o
n

b
a
se

d
o
n

cl
o
n

e
d

e-
te

ct
io

n
si

ze
.

R
ep

li
ca

te
s

E
v
a
C

lo
n

e
st

u
d

y
w

it
h

fo
u

r
to

o
ls

a
n

d
d

iff
er

en
t

sy
st

em
(M

o
ck

it
o
).

S
h

o
w

s
th

a
t

tu
n

in
g

to
o
l

co
n

fi
g
u

ra
-

ti
o
n

s
b
y

a
g
re

em
en

t
m

a
y

re
su

lt
in

m
o
re

fa
ls

e
p

o
si

ti
v
es

o
r

fa
ls

e
n

eg
a
ti

v
es

.

76

T
a
b

le
2
0
:

S
u

rv
ey

o
f

Q
u

a
n
ti

ta
ti

v
e

T
o
o
l

C
o
m

p
a
ri

so
n

S
tu

d
ie

s

P
a
p
e
r

Y
e
a
r

#Tools

#Systems

SystemSize

L
a
n
g
u
a
g
e

Recall

Precision

ExecutionTime

Scalability

R
e
fe
r
e
n
c
e
C
o
r
p
u
s

C
o
r
p
u
s
S
iz
e

E
v
a
lu

a
ti

n
g

cl
o
n

e
d

et
ec

ti
o
n

to
o
ls

fo
r

u
se

d
u

ri
n

g
p

re
v
en

ta
ti

v
e

m
a
in

te
n

a
n

ce
[1

8
9
]

2
0
0
2

5
1

1
6
k

J
a
v
a
,C

+
+

x
x

C
lo

n
e

D
et

ec
to

rs
w

it
h

V
a
li
d

a
ti

o
n

1
4
6
3

cl
o
n

e
p

a
ir

s

O
n

th
e

u
se

o
f

cl
o
n

e
d

et
ec

ti
o
n

fo
r

id
en

-
ti

fy
in

g
cr

o
ss

cu
tt

in
g

co
n

ce
rn

co
d

e
[2

7
2
]

2
0
0
5

3
1

1
6
K

C
x

x
M

a
n
u

a
l

In
sp

ec
ti

o
n

1
6
K

L
O

C
o
f

co
n

ce
rn

s

C
o
m

p
a
ri

so
n

a
n

d
E

v
a
lu

a
ti

o
n

o
f

C
lo

n
e

D
et

ec
ti

o
n

T
o
o
ls

[5
]

2
0
0
6

6
8

1
1
K

-
2
3
5
K

J
a
v
a
,

C
x

x
x

x
B

el
lo

n
’s

B
en

ch
m

a
rk

4
3
1
9

cl
o
n

e
p

a
ir

s

S
ea

rc
h

in
g

fo
r

B
et

te
r

C
o
n

fi
g
u

ra
ti

o
n

s:
A

R
ig

o
ro

u
s

A
p

p
ro

a
ch

to
C

lo
n

e
E

v
a
lu

a
-

ti
o
n

[2
7
3
]

2
0
1
3

6
8

1
1
K

-
2
3
5
K

J
a
v
a
,

C
x

x
B

el
lo

n
’s

B
en

ch
m

a
rk

4
3
1
9

cl
o
n

e
p

a
ir

s

O
n

th
e

ro
b

u
st

n
es

s
o
f

cl
o
n

e
d

et
ec

ti
o
n

to
co

d
e

o
b

fu
sc

a
ti

o
n

[2
7
4
]

2
0
1
3

3
1

2
4
0
0

J
a
v
a

x
A

rt
ifi

ci
a
l

C
lo

n
es

3
3
6

cl
o
n

e
p

a
ir

s

E
v
a
lu

a
ti

n
g

M
o
d

er
n

C
lo

n
e

D
et

ec
ti

o
n

T
o
o
ls

[7
]

2
0
1
4

1
1

9
1
1
K

-
2
3
5
K

J
a
v
a
,

C
x

B
el

lo
n

’s
B

en
ch

m
a
rk

(a
n

d
d

er
iv

a
ti

v
es

)
a
n

d
M

u
ta

ti
o
n

F
ra

m
ew

o
rk

4
3
1
9

a
n

d
7
5
,0

0
0

cl
o
n

e
p

a
ir

s

E
v
a
lu

a
ti

n
g

cl
o
n

e
d

et
ec

ti
o
n

to
o
ls

w
it

h
B

ig
C

lo
n

eB
en

ch
[2

7
5
]

2
0
1
5

1
0

2
2
5
0
M

J
a
v
a

x
B

ig
C

lo
n

eB
en

ch
a
n

d
M

u
ta

ti
o
n

F
ra

m
ew

o
rk

8
m

il
li
o
n

a
n

d
3
7
,5

0
0

cl
o
n

e
p

a
ir

s

S
im

il
a
ri

ty
o
f

S
o
u

rc
e

C
o
d

e
in

th
e

P
re

s-
en

ce
o
f

P
er

v
a
si

v
e

M
o
d

ifi
ca

ti
o
n

s
[2

7
6
,

2
7
7
]

2
0
1
6

3
0

1
5
0

cl
a
ss

es
J
a
v
a

x
x

A
rt

ifi
ci

a
l

C
lo

n
es

2
5
0
0

cl
o
n

e
p

a
ir

s

77

A Oversized Tables

Table 21: Clone Detection Tool and Techniques and their Evalua-
tions by their Authors

Named Tool or Authors Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark/Refernce Corpus

Agec [171] x x
Asta [85,86] x x x x x Bellon’s Benchmark
AST-CC [155] x x x Clones from Literature
AuDeNTES [108] x x x x Manual Inspection
BAT [69] x x x x Artificial Clones
Bauhaus [222,223]
BinClone [40] x x x x x Manual Inspection
Boreas [94,95] x x x x x
C2D2 [172] x x
CBCD [41] x x x x x x Manual Inspection

CCCD [109,110] x x x x
Krutz Benchmark and Clones from
Literature

CCFinder(X) [10] x x x
CD-Form [42,43] x x x x x x Clone Detector Baseline
CDSW [70] x x x x x Bellon’s Benchmark (extended)
CLCMiner [111] x x x Clone Detector with Validation
ClemenX [135] x x x x
Clone Detective (ConQat) [136,137] x x x
clone-digger [224] x
CloneDr [28,29] x
Clone Miner [225,226,227,228] x
clones/cscope [71] x x x x x Bellon’s Benchmark
Clonewise [82] x x x x x Manual Inspection

CloneWorks [37] x x x x x x
Mutation Framework and
BigCloneBench

CMCD [134] x x x x Clones from Literature
CMGA [44] x x x x x x Clone Injection

78

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

CodeBlast [72] x x x x x Clone Injection
CodeCompare [156] x x x Clone Injection
Coogle [229] x
Covet/CLAN [5,27] x x
cpdetector [71,73] x x x x x Bellon’s Benchmark
CPDP [112] x x x x Artificial Clones
CP-Miner [96,97] x x x x x
CSeR [230] x
CtCompare [144] x x x
D-CCFinder [173] x x
Deckard [159] x x x
Decrescendo [145] x x x
DroidClone [113] x x x x Manual Inspection
DuDe [45] x x x x x Bellon’s Benchmark
Dup [21,22,23] x x x x Bellon’s Benchmark
DuplicationDetector [114] x x x Manual Inspection
Duplix [24] x x x x
DupLoc [25,26] x x x x x Bellon’s Benchmark
DyCLINK [146] x x x x x
eMetrics [115,116] x x x Manual Inspection
EqMiner [138] x x x x
Exas [160] x x
FCFinder [98] x x x x
FRISC [117] x x x x Bellon’s Benchmark
GPLAG [174] x x x
Hanni [175] x x
HeapAbsCC [87] x x x x Clone Injection
HitoshiIO [99] x x x x
iClones [9, 176] x x x
JCCD [177] x x x
JPlag [74] x x x x Manual Inspection

JSCD [118] x x x x
Mutation Framework and Manual
Inspection

79

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

K-Clone [209] x x
LLVM-Based Framework [88,89] x x x x x Clones from Literature
LSC Miner [178] x x x
MeCC [46] x x x x x x Clone Injection
MiLoCo [139] x x x x
ModelCD [100] x x x x x
MQlone [75] x x x x Manual Inspection and Clone Injection
NiCad [47,48,49,50,51] x x x x x Mutation Framework
PC Detector [231] x
PDG-DUP [179,180] x x
R2D2 [161] x x
RTF [140] x x x
SaCD [101] x x x x x

ScalClone [52] x x x x x x
Manual Inspection and Clone Detector
with Validation

Scorpio [157] x x Bellon’s Benchmark
SeByte [53,54,55,56] x x x x x x Manual Inspection
SeClone [148,149] x x x x
SHINOBI [76,77] x x x x x Unknown
Shuffling Framework [90,91,92] x x x x x Clone Detector
sif [93] x x x x Artificial Clones
SimCad [57,58] x x x x x x Mutation Framework
Sim [181] x x
Simian [182] x x
Simon [78] x x x x x Like2Drops
Simone [210,211,212] x x
SimScan -
SMAT [232] x
SourcererCC [59,60,61,62,63] x x x x x x BigCloneBench
SSD [150] x x x
STVsm [233] x
Wrangler [183] x x
XIAO [102,103] x x x x

80

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

Abd-El-Hafiz [119] x x x x Clone Detector
Abdelkader and Mimoun [79] x x x x Bellon’s Benchmark
Agrawal and Yadav [213] x x
Ahkin and Itsykson [184] x x
Al-Batran et al. [234] x
Ali et al. [185] x x x

Al-Omari et al. [120] x x x x
Clone Detectors with Manual
Validation

Antony et al. [235] x
Ballarin et al. [236] x
Bansal and Tekchandani [121] x x x x Bellon’s Benchmark
Barbour et al. [151] x x x
Bauer et al. [122] x x x Clone Injection
Chen et al. [162] x x x
Chen et al. [141] x x x
Chilowicz et al. [152] x x x x
Chodarev et al. [237] x
Choi et al. [238] x
Corazza et al. [64] x x x x x Clone Injection and Artificial Clones
Cordy et al. [186] x x
Dandois and Vanhoof [187] x x
Davey et al. [239] x
Deissenboeck et al. [240] x
Devi and Punithavalli [241] x
Di Lucca et al. [188,189] x x
DL-Clone [123] x x x x Clone Detectors
Dou et al. [163] x x x
Dumas et al. [190,191] x x
Ekanayake et al. [124] x x x Clone Injection
Elva and Leavens [242]
Falke et al. [65] x x x x x x Bellon’s Benchmark
Grant and Cordy [192] x x
HaRe [147] x x x

81

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

He [243]
Hermans et al. [164] x x
Higo and Kusumoto [244] x
Higo et al. [193] x x
Huang and Li [194] x x x
Hummel et al. [195] x x
Hummel et al. [153] x x x
Ishihara et al. [104] x x x x
Ito et al. [245] x
Iwamoto et al. [125] x x x Manual Inspection
Iwamoto et al. [126] x x x Manual Inspection
Jadon [165] x x
Johnson [196,197,198] x x
Joshi et al. [166] x x
Juillerat and Hirsbrunner [246]
Kam1n0 [66] x x x x x x Clone Detector Baseline
Kamalpriya and Singh [214] x x
Kamiya [199] x x
Karus and Kilgi [67] x x x x x x Clones from Literature
Kaur and Singh [215] x x Clones from Literature
Keivanloo and Rilling [216] x x
Keivanloo and Rilling [247]
Keivanloo et al. [127] x x x x BigCloneBench
Kodhai et al. [217] x x
Kong et al. [158] x x Clone Injection
Kontogiannis et al. [142] x x x
Koschke [105] x x x x x
Koschke [106] x x x x
Kumar [248]
Kumar et al. [249]
Lavoie and Merlo [80] x x x x x Clone Detector
Lavoie et al. [200] x x
Lazar and Banias [201] x x

82

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

Lee and Doh [250]
Li and Sun [128] x x x Manual Inspection
Li et al. [202] x x x x
Lucia et al. [129] x x x Manual Inspection
Maeda [251]
Marcus and Maletic [252] x
Matsushita and Sasano [218] x x
Min et al. [253] x
Patil et al. [167] x x
Perumal et al. [133] x x x Bellon’s Benchmark?
Petrik et al. [219] x x
Priyambadha and Rochimah [168] x x
Pulkkinen et al. [203] x x

Qu et al. [68] x x x x x x
Clones from Literature and Clone
Detectors with Validation

Ragkhitwetsagul and Krinke [169] x x
Raheja and Tekchandani [254] x
Rattan et al. [255]
Rodrigues and Vilaãa [256]
Sabi et al. [220] x x
Saebjornsen et al. [107] x x x x
Santone [257]
Sheneamer and Kalita [130] x x x x Bellon’s Benchmark
Sheneamer and Kalita [131] x x x x BigCloneBench
Singh and Raminder [258] x Manual Clone Injection
Singh and Sharma [259] x
Stojanović et al [132] x x x x

Störrle [81] x x x x
Manual Clone Injection and Manual
Inspection

Strüber [204] x x
Sudhamani and Rangarajan [260] x
Surendran et al. [261]
Sutton et al. [262] x

83

Tool Citations C
a
se

S
tu

d
y

C
o
m
p
a
ri
so

n

R
e
c
a
ll

P
re

c
is
io
n

E
x
e
c
u
ti
o
n

S
c
a
la
b
il
it
y

Benchmark

Tairas and Gray [263] x
Tairas [264] x
Tekchandani et al. [265] x
Tekchandani et al. [221] x x
Tekin and Buzluca [154] x x x
Tekin et al. [266] x
Udagawa [205] x x
Udagawa [206] x x
Uemura et al. [170] x x
Wahler et al. [207] x x
White et al. [143] x x x x
Zhang et al. [208] x x

Zibran and Roy [83, 84] x x x x x
Mutation Framework and Clone
Detector

84

References

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” School of
Computing, Queens University, Tech. Rep. TR 2007-541, 2007, 115 pp.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Sci.
Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2009.02.007

[3] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic review,”
Information and Software Technology, vol. 55, no. 7, pp. 1165 – 1199, 2013.

[4] M. F. Zibran and C. K. Roy, “The road to software clone management: A survey,”
Department of Computer Science, University of Saskatchewan, Tech. Rep. TR 2012-
03, 2012, 62 pp.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and eval-
uation of clone detection tools,” IEEE Transactions on Software Engineering, vol. 33,
no. 9, pp. 577–591, Sept 2007.

[6] C. Roy and J. Cordy, “Nicad: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization,” in Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, June 2008, pp. 172–181.

[7] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,” in The 30th
International Conference on Software Maintenance and Evolution, ser. ICSME 2014,
2014, p. 10.

[8] ——, “Evaluating clone detection tools with bigclonebench,” in Software Maintenance
and Evolution (ICSME), 2015 IEEE International Conference on, Sept 2015, pp. 131–
140.

[9] N. Göde and R. Koschke, “Incremental clone detection,” in Software Maintenance and
Reengineering, 2009. CSMR ’09. 13th European Conference on, March 2009, pp. 219–
228.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code,” Software Engineering, IEEE Trans-
actions on, vol. 28, no. 7, pp. 654–670, Jul 2002.

[11] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems creating task-
relevant clone detection reference data,” in WCRE, 2003, pp. 285–294.

[12] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère, “An empirical
assessment of bellon’s clone benchmark,” in Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, ser. EASE
’15. New York, NY, USA: ACM, 2015, pp. 20:1–20:10. [Online]. Available:
http://doi.acm.org/10.1145/2745802.2745821

85

http://dx.doi.org/10.1016/j.scico.2009.02.007
http://doi.acm.org/10.1145/2745802.2745821

[13] D. E. Krutz and W. Le, “A code clone oracle,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 388–391. [Online]. Available: http:
//doi.acm.org/10.1145/2597073.2597127

[14] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia, “Towards a
big data curated benchmark of inter-project code clones,” in Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution, ser. ICSME
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 476–480. [Online].
Available: http://dx.doi.org/10.1109/ICSME.2014.77

[15] T. Lavoie and E. Merlo, “Automated type-3 clone oracle using levenshtein
metric,” in Proceedings of the 5th International Workshop on Software Clones, ser.
IWSC ’11. New York, NY, USA: ACM, 2011, pp. 34–40. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985411

[16] C. K. Roy and J. R. Cordy, “Towards a mutation-based automatic framework for
evaluating code clone detection tools,” in Proceedings of the 2008 C3S2E Conference,
ser. C3S2E ’08. New York, NY, USA: ACM, 2008, pp. 137–140.

[17] C. Roy and J. Cordy, “A mutation/injection-based automatic framework for evaluat-
ing code clone detection tools,” in Software Testing, Verification and Validation Work-
shops, 2009. ICSTW ’09. International Conference on, April 2009, pp. 157–166.

[18] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based benchmarking
framework for clone detectors,” in Proceedings of the 7th International Workshop on
Software Clones, ser. IWSC ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 8–9.

[19] J. Svajlenko and C. K. Roy, “A machine learning based approach for evaluating clone
detection tools for a generalized and accurate precision,” International Journal of Soft-
ware Engineering and Knowledge Engineering, vol. 26, no. 09n10, pp. 1399–1429, 2016.

[20] S. Bellon, “Stefan bellon’s clone detector benchmark,” http://www.softwareclones.org/
research-data.php.

[21] B. Baker, “Finding clones with dup: Analysis of an experiment,” IEEE Transactions
on Software Engineering, vol. 33, no. 9, pp. 608–621, 2007.

[22] B. S. Baker, “A program for identifying duplicated code,” in Computer Science and
Statistics: Proc. Symp. on the Interface, March 1992, pp. 49–57. [Online]. Available:
http://citeseer.nj.nec.com/baker92program.html

[23] ——, “On finding duplication and near-duplication in large software systems,” in Pro-
ceedings of 2nd Working Conference on Reverse Engineering, Jul 1995, pp. 86–95.

[24] J. Krinke, “Identifying similar code with program dependence graphs,” in Proceedings
Eighth Working Conference on Reverse Engineering, 2001, pp. 301–309.

86

http://doi.acm.org/10.1145/2597073.2597127
http://doi.acm.org/10.1145/2597073.2597127
http://dx.doi.org/10.1109/ICSME.2014.77
http://doi.acm.org/10.1145/1985404.1985411
http://www.softwareclones.org/research-data.php
http://www.softwareclones.org/research-data.php
http://citeseer.nj.nec.com/baker92program.html

[25] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone
detection by string matching,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 18, no. 1, pp. 37–58, 2006. [Online]. Available:
http://dx.doi.org/10.1002/smr.317

[26] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach for detect-
ing duplicated code,” in Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE
International Conference on, 1999, pp. 109–118.

[27] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic detection of
function clones in a software system using metrics,” in 1996 Proceedings of International
Conference on Software Maintenance, Nov 1996, pp. 244–253.

[28] I. D. Baxter, C. Pidgeon, and M. Mehlich, “Dms reg;: program transformations for
practical scalable software evolution,” in Proceedings. 26th International Conference
on Software Engineering, May 2004, pp. 625–634.

[29] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using
abstract syntax trees,” in Proceedings. International Conference on Software Mainte-
nance (Cat. No. 98CB36272), Nov 1998, pp. 368–377.

[30] H. Murakami, Y. Higo, and S. Kusumoto, “A dataset of clone references with gaps,”
in MSR’14, 2014, pp. 412–415.

[31] A. Charpentier, J.-R. Falleri, F. Morandat, E. Ben Hadj Yahia, and L. Réveillère,
“Raters’ reliability in clone benchmarks construction,” Empirical Software Engineering,
vol. 22, no. 1, pp. 235–258, 2017.

[32] J. Svajlenko, C. K. Roy, and S. Duszynski, “Forksim: Generating software forks for
evaluating cross-project similarity analysis tools,” in 2013 IEEE 13th International
Working Conference on Source Code Analysis and Manipulation (SCAM), Sept 2013,
pp. 37–42.

[33] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool evaluation framework
with bigclonebench,” in 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2016.

[34] Y. Yuki, Y. Higo, K. Hotta, and S. Kusumoto, “Generating clone references with
less human subjectivity,” in 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), May 2016, pp. 1–4.

[35] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcerercc: scaling
code clone detection to big-code,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 1157–1168.

[36] J. Svajlenko and C. Roy, “The mutation and injection framework,” http://www.jeff.
svajlenko.com/mutationframework.

87

http://dx.doi.org/10.1002/smr.317
http://www.jeff.svajlenko.com/mutationframework
http://www.jeff.svajlenko.com/mutationframework

[37] J. Svajlenko and C. K. Roy, “Fast and flexible large-scale clone detection with
cloneworks,” in Proceedings of the 39th International Conference on Software
Engineering Companion, ser. ICSE-C ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 27–30. [Online]. Available: https://doi.org/10.1109/ICSE-C.2017.3

[38] J. Svajlenko and C. Roy, “Bigclonebench,” http://www.jeff.svajlenko.com/
bigclonebench.html.

[39] M. Uddin, C. Roy, and K. Schneider, “Simcad: An extensible and faster clone detection
tool for large scale software systems,” in Program Comprehension (ICPC), 2013 IEEE
21st International Conference on, May 2013, pp. 236–238.

[40] M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi, “Binclone: Detecting
code clones in malware,” in 2014 Eighth International Conference on Software Security
and Reliability (SERE), June 2014, pp. 78–87.

[41] J. Li and M. D. Ernst, “Cbcd: Cloned buggy code detector,” in 2012 34th International
Conference on Software Engineering (ICSE), June 2012, pp. 310–320.

[42] A. Cuomo, A. Santone, and U. Villano, “A novel approach based on formal methods
for clone detection,” in 2012 6th International Workshop on Software Clones (IWSC),
June 2012, pp. 8–14.

[43] ——, “Cd-form: A clone detector based on formal methods,” Science of Computer
Programming, vol. 95, Part 4, pp. 390 – 405, 2014, special Issue on Software
Clones (IWSC’12). [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642313003067

[44] T. Wang, K. Wang, X. Su, and P. Ma, “Detection of semantically similar code,”
Frontiers of Computer Science, vol. 8, no. 6, pp. 996–1011, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11704-014-3430-1

[45] R. Wettel and R. Marinescu, “Archeology of code duplication: recovering duplication
chains from small duplication fragments,” in Seventh International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC’05), Sept 2005, pp.
8 pp.–.

[46] H. Kim, Y. Jung, S. Kim, and K. Yi, “Mecc: Memory comparison-based clone
detector,” in Proceedings of the 33rd International Conference on Software Engineering,
ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 301–310. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985835

[47] J. R. Cordy and C. K. Roy, “Tuning research tools for scalability and performance:
The nicad experience,” Science of Computer Programming, vol. 79, pp. 158 – 171,
2014, experimental Software and Toolkits (EST 4): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WASDeTT-3 2010). [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167642311002024

88

https://doi.org/10.1109/ICSE-C.2017.3
http://www.jeff.svajlenko.com/bigclonebench.html
http://www.jeff.svajlenko.com/bigclonebench.html
http://www.sciencedirect.com/science/article/pii/S0167642313003067
http://www.sciencedirect.com/science/article/pii/S0167642313003067
http://dx.doi.org/10.1007/s11704-014-3430-1
http://doi.acm.org/10.1145/1985793.1985835
http://www.sciencedirect.com/science/article/pii/S0167642311002024

[48] ——, “The nicad clone detector,” in 2011 IEEE 19th International Conference on
Program Comprehension, June 2011, pp. 219–220.

[49] C. K. Roy and J. R. Cordy, “Near-miss function clones in open source
software: an empirical study,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 22, no. 3, pp. 165–189, 2010. [Online]. Available:
http://dx.doi.org/10.1002/smr.416

[50] C. K. Roy, “Detection and analysis of near-miss software clones,” in 2009 IEEE Inter-
national Conference on Software Maintenance, Sept 2009, pp. 447–450.

[51] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization,” in 2008 16th IEEE International
Conference on Program Comprehension, June 2008, pp. 172–181.

[52] M. R. Farhadi, B. C. Fung, Y. B. Fung, P. Charland, S. Preda, and M. Debbabi,
“Scalable code clone search for malware analysis,” Digital Investigation, vol. 15, pp. 46
– 60, 2015, special Issue: Big Data and Intelligent Data Analysis. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000705

[53] I. Keivanloo, C. K. Roy, and J. Rilling, “Sebyte: A semantic clone detection tool
for intermediate languages,” in 2012 20th IEEE International Conference on Program
Comprehension (ICPC), June 2012, pp. 247–249.

[54] ——, “Java bytecode clone detection via relaxation on code fingerprint and semantic
web reasoning,” in Proceedings of the 6th International Workshop on Software Clones,
ser. IWSC ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 36–42. [Online].
Available: http://dl.acm.org/citation.cfm?id=2664398.2664404

[55] ——, “Java bytecode clone detection via relaxation on code fingerprint and semantic
web reasoning,” in 2012 6th International Workshop on Software Clones (IWSC), June
2012, pp. 36–42.

[56] ——, “Sebyte: Scalable clone and similarity search for bytecode,” Science of Computer
Programming, vol. 95, Part 4, pp. 426 – 444, 2014, special Issue on Software
Clones (IWSC’12). [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642313002773

[57] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On the effectiveness of
simhash for detecting near-miss clones in large scale software systems,” in 2011 18th
Working Conference on Reverse Engineering, Oct 2011, pp. 13–22.

[58] M. S. Uddin, C. K. Roy, and K. A. Schneider, “Simcad: An extensible and faster clone
detection tool for large scale software systems,” in 2013 21st International Conference
on Program Comprehension (ICPC), May 2013, pp. 236–238.

[59] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcerercc: Scaling
code clone detection to big-code,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), May 2016, pp. 1157–1168.

89

http://dx.doi.org/10.1002/smr.416
http://www.sciencedirect.com/science/article/pii/S1742287615000705
http://dl.acm.org/citation.cfm?id=2664398.2664404
http://www.sciencedirect.com/science/article/pii/S0167642313002773
http://www.sciencedirect.com/science/article/pii/S0167642313002773

[60] V. Saini, H. Sajnani, J. Kim, and C. Lopes, “Sourcerercc and sourcerercc-i: Tools to
detect clones in batch mode and during software development,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion (ICSE-C), May
2016, pp. 597–600.

[61] H. Sajnani, J. Ossher, and C. Lopes, “Parallel code clone detection using mapreduce,”
in 2012 20th IEEE International Conference on Program Comprehension (ICPC), June
2012, pp. 261–262.

[62] H. Sajnani and C. Lopes, “A parallel and efficient approach to large scale clone detec-
tion,” in 2013 7th International Workshop on Software Clones (IWSC), May 2013, pp.
46–52.

[63] H. Sajnani, V. Saini, and C. Lopes, “A parallel and efficient approach to large scale
clone detection,” Journal of Software: Evolution and Process, vol. 27, no. 6, pp. 402–
429, 2015, jSME-13-0129.R2. [Online]. Available: http://dx.doi.org/10.1002/smr.1707

[64] A. Corazza, S. D. Martino, V. Maggio, and G. Scanniello, “A tree kernel based approach
for clone detection,” in 2010 IEEE International Conference on Software Maintenance,
Sept 2010, pp. 1–5.

[65] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of clone detection using
syntax suffix trees,” Empirical Software Engineering, vol. 13, no. 6, pp. 601–643, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s10664-008-9073-9

[66] S. H. Ding, B. C. Fung, and P. Charland, “Kam1n0: Mapreduce-based assembly
clone search for reverse engineering,” in Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’16. New York, NY, USA: ACM, 2016, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939719

[67] S. Karus and K. Kilgi, “Code clone detection using wavelets,” in 2015 IEEE 9th Inter-
national Workshop on Software Clones (IWSC), March 2015, pp. 8–14.

[68] W. Qu, Y. Jia, and M. Jiang, “Pattern mining of cloned codes in software
systems,” Information Sciences, vol. 259, pp. 544 – 554, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025510001787

[69] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding software license
violations through binary code clone detection,” in Proceedings of the 8th Working
Conference on Mining Software Repositories, ser. MSR ’11. New York, NY, USA: ACM,
2011, pp. 63–72. [Online]. Available: http://doi.acm.org/10.1145/1985441.1985453

[70] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped code clone
detection with lightweight source code analysis,” in 2013 21st International Conference
on Program Comprehension (ICPC), May 2013, pp. 93–102.

90

http://dx.doi.org/10.1002/smr.1707
http://dx.doi.org/10.1007/s10664-008-9073-9
http://doi.acm.org/10.1145/2939672.2939719
http://www.sciencedirect.com/science/article/pii/S0020025510001787
http://doi.acm.org/10.1145/1985441.1985453

[71] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract syntax suffix
trees,” in 2006 13th Working Conference on Reverse Engineering, Oct 2006, pp. 253–
262.

[72] A. Bhattacharjee and H. M. Jamil, “Codeblast: A two-stage algorithm
for improved program similarity matching in large software repositories,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing, ser.
SAC ’13. New York, NY, USA: ACM, 2013, pp. 846–852. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480525

[73] R. Koschke, J. F. Girard, and M. Wurthner, “An intermediate representation for in-
tegrating reverse engineering analyses,” in Proceedings Fifth Working Conference on
Reverse Engineering, Oct 1998, pp. 241–250.

[74] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among a set of
programs with jplag,” JOURNAL OF UNIVERSAL COMPUTER SCIENCE, vol. 8,
pp. 1016–1038, 2000.

[75] H. Störrle, “Towards clone detection in uml domain models,” Software &
Systems Modeling, vol. 12, no. 2, pp. 307–329, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10270-011-0217-9

[76] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and
H. Iida, “Shinobi: A tool for automatic code clone detection in the ide,” in 2009 16th
Working Conference on Reverse Engineering, Oct 2009, pp. 313–314.

[77] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S. Kawaguchi, and
H. Iida, “Shinobi: A real-time code clone detection frool for software maintenance,”
Graduate School for Information Science, Nara Institute of Science and Technology,
Tech. Rep. NAIST-IS-TR2007011, 2008.

[78] M. Zilberstein and E. Yahav, “Leveraging a corpus of natural language descriptions
for program similarity,” in Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software, ser.
Onward! 2016. New York, NY, USA: ACM, 2016, pp. 197–211. [Online]. Available:
http://doi.acm.org/10.1145/2986012.2986013

[79] M. Abdelkader and M. Mimoun, “Clone detection using time series and dynamic time
warping techniques,” in 2015 Third World Conference on Complex Systems (WCCS),
Nov 2015, pp. 1–6.

[80] T. Lavoie and E. Merlo, “An accurate estimation of the levenshtein distance using
metric trees and manhattan distance,” in 2012 6th International Workshop on Software
Clones (IWSC), June 2012, pp. 1–7.

[81] H. Störrle, Effective and Efficient Model Clone Detection. Cham: Springer
International Publishing, 2015, pp. 440–457. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-15545-6 25

91

http://doi.acm.org/10.1145/2480362.2480525
http://dx.doi.org/10.1007/s10270-011-0217-9
http://doi.acm.org/10.1145/2986012.2986013
http://dx.doi.org/10.1007/978-3-319-15545-6_25
http://dx.doi.org/10.1007/978-3-319-15545-6_25

[82] S. Cesare, Y. Xiang, and J. Zhang, Clonewise – Detecting Package-Level Clones Using
Machine Learning. Cham: Springer International Publishing, 2013, pp. 197–215.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-04283-1 13

[83] M. F. Zibran and C. K. Roy, “Ide-based real-time focused search for near-miss
clones,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing,
ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 1235–1242. [Online]. Available:
http://doi.acm.org/10.1145/2245276.2231970

[84] ——, “Towards flexible code clone detection, management, and refactoring in
ide,” in Proceedings of the 5th International Workshop on Software Clones, ser.
IWSC ’11. New York, NY, USA: ACM, 2011, pp. 75–76. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985423

[85] W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via structural abstraction,”
in 14th Working Conference on Reverse Engineering (WCRE 2007), Oct 2007, pp.
150–159.

[86] ——, “Clone detection via structural abstraction,” Software Quality Journal,
vol. 17, no. 4, pp. 309–330, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s11219-009-9074-y

[87] L. Dong, J. Wang, and L. Chen, “Modular heap abstraction-based code clone detection
for heap-manipulating programs,” in 2012 12th International Conference on Quality
Software, Aug 2012, pp. 197–200.

[88] S. Sargsyan, S. Kurmangaleev, A. Belevantsev, and A. Avetisyan, “Scalable and
accurate detection of code clones,” Programming and Computer Software, vol. 42, no. 1,
pp. 27–33, 2016. [Online]. Available: http://dx.doi.org/10.1134/S0361768816010072

[89] A. Avetisyan, S. Kurmangaleev, S. Sargsyan, M. Arutunian, and A. Belevantsev,
“Llvm-based code clone detection framework,” in 2015 Computer Science and Infor-
mation Technologies (CSIT), Sept 2015, pp. 100–104.

[90] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Big data clone detection using
classical detectors: an exploratory study,” Journal of Software: Evolution and
Process, vol. 27, no. 6, pp. 430–464, 2015, jSME-13-0126.R1. [Online]. Available:
http://dx.doi.org/10.1002/smr.1662

[91] I. Keivanloo, C. K. Roy, J. Rilling, and P. Charland, “Shuffling and randomization for
scalable source code clone detection,” in 2012 6th International Workshop on Software
Clones (IWSC), June 2012, pp. 82–83.

[92] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Scaling classical clone detection tools for
ultra-large datasets: An exploratory study,” in 2013 7th International Workshop on
Software Clones (IWSC), May 2013, pp. 16–22.

92

http://dx.doi.org/10.1007/978-3-319-04283-1_13
http://doi.acm.org/10.1145/2245276.2231970
http://doi.acm.org/10.1145/1985404.1985423
http://dx.doi.org/10.1007/s11219-009-9074-y
http://dx.doi.org/10.1007/s11219-009-9074-y
http://dx.doi.org/10.1134/S0361768816010072
http://dx.doi.org/10.1002/smr.1662

[93] U. Manber, “Finding similar files in a large file system,” in Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994 Technical Conference,
ser. WTEC’94. Berkeley, CA, USA: USENIX Association, 1994, pp. 2–2. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267074.1267076

[94] Y. Yuan and Y. Guo, “Boreas: an accurate and scalable token-based approach to code
clone detection,” in 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, Sept 2012, pp. 286–289.

[95] Y. Yuan, “A scalable and accurate approach based on count matrix for
detecting code clones,” in Proceedings of the 11th Annual International Conference
on Aspect-oriented Software Development Companion, ser. AOSD Companion
’12. New York, NY, USA: ACM, 2012, pp. 21–22. [Online]. Available:
http://doi.acm.org/10.1145/2162110.2162126

[96] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste and related
bugs in large-scale software code,” IEEE Transactions on Software Engineering, vol. 32,
no. 3, pp. 176–192, March 2006.

[97] ——, “Cp-miner: A tool for finding copy-paste and related bugs in operating system
code,” in Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 20–20. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1251254.1251274

[98] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file clones in freebsd ports
collection,” in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), May 2010, pp. 102–105.

[99] F.-H. Su, J. Bell, G. Kaiser, and S. Sethumadhavan, “Identifying functionally similar
code in complex codebases,” in 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), May 2016, pp. 1–10.

[100] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Com-
plete and accurate clone detection in graph-based models,” in 2009 IEEE 31st Inter-
national Conference on Software Engineering, May 2009, pp. 276–286.

[101] Q. Q. Shi, L. P. Zhang, F. J. Meng, and D. S. Liu, “A novel detection approach for
statement clones,” in 2013 IEEE 4th International Conference on Software Engineering
and Service Science, May 2013, pp. 27–30.

[102] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “Xiao: Tuning code clones at
hands of engineers in practice,” in Proceedings of the 28th Annual Computer Security
Applications Conference, ser. ACSAC ’12. New York, NY, USA: ACM, 2012, pp.
369–378. [Online]. Available: http://doi.acm.org/10.1145/2420950.2421004

[103] Y. Dang, S. Ge, R. Huang, and D. Zhang, “Code clone detection experience at
microsoft,” in Proceedings of the 5th International Workshop on Software Clones,

93

http://dl.acm.org/citation.cfm?id=1267074.1267076
http://doi.acm.org/10.1145/2162110.2162126
http://dl.acm.org/citation.cfm?id=1251254.1251274
http://dl.acm.org/citation.cfm?id=1251254.1251274
http://doi.acm.org/10.1145/2420950.2421004

ser. IWSC ’11. New York, NY, USA: ACM, 2011, pp. 63–64. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985417

[104] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project functional
clone detection toward building libraries - an empirical study on 13,000 projects,” in
2012 19th Working Conference on Reverse Engineering, Oct 2012, pp. 387–391.

[105] R. Koschke, “Large-scale inter-system clone detection using suffix trees,” in 2012 16th
European Conference on Software Maintenance and Reengineering, March 2012, pp.
309–318.

[106] ——, “Large-scale inter-system clone detection using suffix trees and hashing,”
Journal of Software: Evolution and Process, vol. 26, no. 8, pp. 747–769, 2014. [Online].
Available: http://dx.doi.org/10.1002/smr.1592

[107] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting code clones
in binary executables,” in Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009,
pp. 117–128. [Online]. Available: http://doi.acm.org/10.1145/1572272.1572287

[108] L. Mariani and D. Micucci, “Audentes: Automatic detection of tentative plagiarism
according to a reference solution,” Trans. Comput. Educ., vol. 12, no. 1, pp. 2:1–2:26,
Mar. 2012. [Online]. Available: http://doi.acm.org/10.1145/2133797.2133799

[109] D. E. Krutz, S. A. Malachowsky, and E. Shihab, “Examining the effectiveness of
using concolic analysis to detect code clones,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, ser. SAC ’15. New York, NY, USA: ACM, 2015,
pp. 1610–1615. [Online]. Available: http://doi.acm.org/10.1145/2695664.2695929

[110] D. E. Krutz and E. Shihab, “Cccd: Concolic code clone detection,” in 2013 20th
Working Conference on Reverse Engineering (WCRE), Oct 2013, pp. 489–490.

[111] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu, and J. Zhao, “Mining revision histo-
ries to detect cross-language clones without intermediates,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), Sept 2016, pp.
696–701.

[112] B. Muddu, A. Asadullah, and V. Bhat, “Cpdp: A robust technique for plagiarism
detection in source code,” in 2013 7th International Workshop on Software Clones
(IWSC), May 2013, pp. 39–45.

[113] S. Alam, R. Riley, I. Sogukpinar, and N. Carkaci, “Droidclone: Detecting android
malware variants by exposing code clones,” in 2016 Sixth International Conference on
Digital Information and Communication Technology and its Applications (DICTAP),
July 2016, pp. 79–84.

[114] H. Liu, Z. Ma, L. Zhang, and W. Shao, “Detecting duplications in sequence diagrams
based on suffix trees,” in 2006 13th Asia Pacific Software Engineering Conference
(APSEC’06), Dec 2006, pp. 269–276.

94

http://doi.acm.org/10.1145/1985404.1985417
http://dx.doi.org/10.1002/smr.1592
http://doi.acm.org/10.1145/1572272.1572287
http://doi.acm.org/10.1145/2133797.2133799
http://doi.acm.org/10.1145/2695664.2695929

[115] F. Lanubile and T. Mallardo, “Finding function clones in web applications,” in Seventh
European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings.,
March 2003, pp. 379–386.

[116] F. Calefato, F. Lanubile, and T. Mallardo, “Function clone detection in web
applications: A semiautomated approach,” J. Web Eng., vol. 3, no. 1, pp. 3–21, May
2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=2011138.2011140

[117] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Folding repeated instruc-
tions for improving token-based code clone detection,” in 2012 IEEE 12th International
Working Conference on Source Code Analysis and Manipulation, Sept 2012, pp. 64–73.

[118] W. T. Cheung, S. Ryu, and S. Kim, “Development nature matters: An empirical study
of code clones in javascript applications,” Empirical Software Engineering, vol. 21, no. 2,
pp. 517–564, 2016. [Online]. Available: http://dx.doi.org/10.1007/s10664-015-9368-6

[119] S. K. Abd-El-Hafiz, “A metrics-based data mining approach for software clone detec-
tion,” in 2012 IEEE 36th Annual Computer Software and Applications Conference,
July 2012, pp. 35–41.

[120] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling, “Detecting clones across mi-
crosoft .net programming languages,” in 2012 19th Working Conference on Reverse
Engineering, Oct 2012, pp. 405–414.

[121] G. Bansal and R. Tekchandani, “Selecting a set of appropriate metrics for detecting
code clones,” in 2014 Seventh International Conference on Contemporary Computing
(IC3), Aug 2014, pp. 484–488.

[122] V. Bauer, T. Vlke, and E. Jrgens, “A novel approach to detect unintentional re-
implementations,” in 2014 IEEE International Conference on Software Maintenance
and Evolution, Sept 2014, pp. 491–495.

[123] P. Schugerl, “Scalable clone detection using description logic,” in Proceedings of
the 5th International Workshop on Software Clones, ser. IWSC ’11. New York,
NY, USA: ACM, 2011, pp. 47–53. [Online]. Available: http://doi.acm.org/10.1145/
1985404.1985413

[124] C. C. Ekanayake, M. Dumas, L. Garćıa-Bañuelos, M. La Rosa, and A. H. M. ter
Hofstede, Approximate Clone Detection in Repositories of Business Process Models.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 302–318. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32885-5 24

[125] M. Iwamoto, S. Oshima, and T. Nakashima, “Token-based code clone detection tech-
nique in a student’s programming exercise,” in 2012 Seventh International Conference
on Broadband, Wireless Computing, Communication and Applications, Nov 2012, pp.
650–655.

95

http://dl.acm.org/citation.cfm?id=2011138.2011140
http://dx.doi.org/10.1007/s10664-015-9368-6
http://doi.acm.org/10.1145/1985404.1985413
http://doi.acm.org/10.1145/1985404.1985413
http://dx.doi.org/10.1007/978-3-642-32885-5_24

[126] ——, “A token-based illicit copy detection method using complexity for a program exer-
cise,” in 2013 Eighth International Conference on Broadband and Wireless Computing,
Communication and Applications, Oct 2013, pp. 575–580.

[127] I. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free code clone detection for a large-
scale heterogeneous java repository,” in 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), March 2015, pp. 201–210.

[128] Z. O. Li and J. Sun, “A metric space based software clone detection approach,” in
2010 2nd IEEE International Conference on Information Management and Engineer-
ing, April 2010, pp. 393–397.

[129] A. de Lucia, M. Risi, G. Tortora, and G. Scanniello, “Clustering algorithms and latent
semantic indexing to identify similar pages in web applications,” in 2007 9th IEEE
International Workshop on Web Site Evolution, Oct 2007, pp. 65–72.

[130] A. Sheneamer and J. Kalita, “Code clone detection using coarse and fine-grained hybrid
approaches,” in 2015 IEEE Seventh International Conference on Intelligent Computing
and Information Systems (ICICIS), Dec 2015, pp. 472–480.

[131] ——, “Semantic clone detection using machine learning,” in 2016 15th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), Dec 2016, pp.
1024–1028.

[132] S. Stojanovi, Z. Radivojevi, and M. Cvetanovi, “Approach for estimating
similarity between procedures in differently compiled binaries,” Information
and Software Technology, vol. 58, pp. 259 – 271, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584914001517

[133] A. Perumal, S. Kanmani, and E. Kodhai, “Extracting the similarity in detected software
clones using metrics,” in 2010 International Conference on Computer and Communi-
cation Technology (ICCCT), Sept 2010, pp. 575–579.

[134] Y. Yuan and Y. Guo, “Cmcd: Count matrix based code clone detection,” in 2011 18th
Asia-Pacific Software Engineering Conference, Dec 2011, pp. 250–257.

[135] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen, “Cle-
manx: Incremental clone detection tool for evolving software,” in 2009 31st Inter-
national Conference on Software Engineering - Companion Volume, May 2009, pp.
437–438.

[136] E. Juergens, F. Deissenboeck, and B. Hummel, “Clonedetective - a workbench for clone
detection research,” in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 603–606.

[137] F. Deissenboeck, B. Hummel, E. Jrgens, B. Schtz, S. Wagner, J. F. Girard, and
S. Teuchert, “Clone detection in automotive model-based development,” in 2008

96

http://www.sciencedirect.com/science/article/pii/S0950584914001517

ACM/IEEE 30th International Conference on Software Engineering, May 2008, pp.
603–612.

[138] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code fragments
via random testing,” in Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009,
pp. 81–92. [Online]. Available: http://doi.acm.org/10.1145/1572272.1572283

[139] W. Qian, X. Peng, Z. Xing, S. Jarzabek, and W. Zhao, “Mining logical clones in
software: Revealing high-level business and programming rules,” in 2013 IEEE Inter-
national Conference on Software Maintenance, Sept 2013, pp. 40–49.

[140] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek, “Efficient
token based clone detection with flexible tokenization,” in The 6th Joint Meeting
on European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering: Companion Papers, ser. ESEC-FSE
companion ’07. New York, NY, USA: ACM, 2007, pp. 513–516. [Online]. Available:
http://doi.acm.org/10.1145/1295014.1295029

[141] J. Chen, T. R. Dean, and M. H. Alalfi, “Clone detection in matlab stateflow models,”
Software Quality Journal, vol. 24, no. 4, pp. 917–946, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11219-015-9296-0

[142] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein, “Pattern
matching for clone and concept detection,” Automated Software Engineering, vol. 3,
no. 1, pp. 77–108, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00126960

[143] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code frag-
ments for code clone detection,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), Sept 2016, pp. 87–98.

[144] W. Toomey, “Ctcompare: Code clone detection using hashed token sequences,” in 2012
6th International Workshop on Software Clones (IWSC), June 2012, pp. 92–93.

[145] Y. Yuki, Y. Higo, and S. Kusumoto, “A technique to detect multi-grained code clones,”
in 2017 IEEE 11th International Workshop on Software Clones (IWSC), Feb 2017, pp.
1–7.

[146] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara, “Code
relatives: Detecting similarly behaving software,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 702–714. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950321

[147] C. Brown and S. Thompson, “Clone detection and elimination for haskell,” in
Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, ser. PEPM ’10. New York, NY, USA: ACM, 2010, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1706356.1706378

97

http://doi.acm.org/10.1145/1572272.1572283
http://doi.acm.org/10.1145/1295014.1295029
http://dx.doi.org/10.1007/s11219-015-9296-0
http://dx.doi.org/10.1007/BF00126960
http://doi.acm.org/10.1145/2950290.2950321
http://doi.acm.org/10.1145/1706356.1706378

[148] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code clone search
via multi-level indexing,” in 2011 18th Working Conference on Reverse Engineering,
Oct 2011, pp. 23–27.

[149] I. Keivanloo, C. Forbes, and J. Rilling, “Similarity search plug-in: Clone detection
meets internet-scale code search,” in 2012 4th International Workshop on Search-
Driven Development: Users, Infrastructure, Tools, and Evaluation (SUITE), June
2012, pp. 21–22.

[150] S. Lee and I. Jeong, “Sdd: High performance code clone detection system for
large scale source code,” in Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 140–141. [Online]. Available:
http://doi.acm.org/10.1145/1094855.1094903

[151] L. Barbour, H. Yuan, and Y. Zou, “A technique for just-in-time clone detection in large
scale systems,” in 2010 IEEE 18th International Conference on Program Comprehen-
sion, June 2010, pp. 76–79.

[152] M. Chilowicz, tienne Duris, and G. Roussel, “Finding similarities in source code
through factorization,” Electronic Notes in Theoretical Computer Science, vol. 238,
no. 5, pp. 47 – 62, 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1571066109003946

[153] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code clone
detection: incremental, distributed, scalable,” in 2010 IEEE International Conference
on Software Maintenance, Sept 2010, pp. 1–9.

[154] U. Tekin and F. Buzluca, “A graph mining approach for detecting identical design
structures in object-oriented design models,” Science of Computer Programming, vol.
95, Part 4, pp. 406 – 425, 2014, special Issue on Software Clones (IWSC’12). [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167642313002451

[155] J. Feng, B. Cui, and K. Xia, “A code comparison algorithm based on ast for plagiarism
detection,” in 2013 Fourth International Conference on Emerging Intelligent Data and
Web Technologies, Sept 2013, pp. 393–397.

[156] G. Tao, D. Guowei, Q. Hu, and C. Baojiang, “Improved plagiarism detection algorithm
based on abstract syntax tree,” in 2013 Fourth International Conference on Emerging
Intelligent Data and Web Technologies, Sept 2013, pp. 714–719.

[157] Y. Higo and S. Kusumoto, “Code clone detection on specialized pdgs with heuristics,”
in 2011 15th European Conference on Software Maintenance and Reengineering, March
2011, pp. 75–84.

[158] D. Kong, X. Su, S. Wu, T. Wang, and P. Ma, “Detect functionally equivalent code frag-
ments via k-nearest neighbor algorithm,” in 2012 IEEE Fifth International Conference
on Advanced Computational Intelligence (ICACI), Oct 2012, pp. 94–98.

98

http://doi.acm.org/10.1145/1094855.1094903
http://www.sciencedirect.com/science/article/pii/S1571066109003946
http://www.sciencedirect.com/science/article/pii/S1571066109003946
http://www.sciencedirect.com/science/article/pii/S0167642313002451

[159] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-
based detection of code clones,” in Proceedings of the 29th International Conference on
Software Engineering, ser. ICSE ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 96–105. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.30

[160] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen,
Accurate and Efficient Structural Characteristic Feature Extraction for Clone Detection.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 440–455. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00593-0 31

[161] A. M. Leitão, “Detection of redundant code using r2d2,” Software Quality Journal,
vol. 12, no. 4, pp. 361–382, 2004. [Online]. Available: http://dx.doi.org/10.1023/B:
SQJO.0000039793.31052.72

[162] X. Chen, A. Y. Wang, and E. Tempero, “A replication and reproduction of
code clone detection studies,” in Proceedings of the Thirty-Seventh Australasian
Computer Science Conference - Volume 147, ser. ACSC ’14. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2014, pp. 105–114. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2667473.2667486

[163] W. Dou, S.-C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei, “Detecting
table clones and smells in spreadsheets,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 787–798. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950359

[164] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen, “Data clone detection and
visualization in spreadsheets,” in Proceedings of the 2013 International Conference on
Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp.
292–301. [Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486827

[165] S. Jadon, “Code clones detection using machine learning technique: Support vector
machine,” in 2016 International Conference on Computing, Communication and Au-
tomation (ICCCA), April 2016, pp. 399–303.

[166] B. Joshi, P. Budhathoki, W. L. Woon, and D. Svetinovic, Software Clone Detection
Using Clustering Approach. Cham: Springer International Publishing, 2015, pp.
520–527. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-26535-3 59

[167] R. V. Patil, S. D. Joshi, S. V. Shinde, D. A. Ajagekar, and S. D. Bankar, “Code clone
detection using decentralized architecture and code reduction,” in 2015 International
Conference on Pervasive Computing (ICPC), Jan 2015, pp. 1–6.

[168] B. Priyambadha and S. Rochimah, “Case study on semantic clone detection based on
code behavior,” in 2014 International Conference on Data and Software Engineering
(ICODSE), Nov 2014, pp. 1–6.

99

http://dx.doi.org/10.1109/ICSE.2007.30
http://dx.doi.org/10.1007/978-3-642-00593-0_31
http://dx.doi.org/10.1023/B:SQJO.0000039793.31052.72
http://dx.doi.org/10.1023/B:SQJO.0000039793.31052.72
http://dl.acm.org/citation.cfm?id=2667473.2667486
http://doi.acm.org/10.1145/2950290.2950359
http://dl.acm.org/citation.cfm?id=2486788.2486827
http://dx.doi.org/10.1007/978-3-319-26535-3_59

[169] C. Ragkhitwetsagul and J. Krinke, “Using compilation/decompilation to enhance clone
detection,” in 2017 IEEE 11th International Workshop on Software Clones (IWSC),
Feb 2017, pp. 1–7.

[170] K. Uemura, A. Mori, K. Fujiwara, E. Choi, and H. Iida, “Detecting and analyzing code
clones in hdl,” in 2017 IEEE 11th International Workshop on Software Clones (IWSC),
Feb 2017, pp. 1–7.

[171] T. Kamiya, “Agec: An execution-semantic clone detection tool,” in 2013 21st Interna-
tional Conference on Program Comprehension (ICPC), May 2013, pp. 227–229.

[172] N. A. Kraft, B. W. Bonds, and R. K. Smith, “Cross-language clone detection.” in
Software Engineering and Knowledge Engineering, 2008, pp. 54–59.

[173] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale code clone analysis
and visualization of open source programs using distributed ccfinder: D-ccfinder,” in
29th International Conference on Software Engineering (ICSE’07), May 2007, pp. 106–
115.

[174] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: Detection of software
plagiarism by program dependence graph analysis,” in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’06. New York, NY, USA: ACM, 2006, pp. 872–881. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150522

[175] M. Lillack, C. Bucholdt, and D. Schilling, “Detection of code clones in software
generators,” in Proceedings of the 6th International Workshop on Feature-Oriented
Software Development, ser. FOSD ’14. New York, NY, USA: ACM, 2014, pp. 37–44.
[Online]. Available: http://doi.acm.org/10.1145/2660190.2662116

[176] N. G’́ode, “Incremental clone detection,” Ph.D. dissertation, Department of Mathe-
matics and Computer Science, University of Bremen, 2008.

[177] B. Biegel and S. Diehl, “Highly configurable and extensible code clone detection,” in
2010 17th Working Conference on Reverse Engineering, Oct 2010, pp. 237–241.

[178] S. U. Rehman, K. Khan, S. Fong, and R. Biuk-Aghai, “An efficient new multi-language
clone detection approach from large source code,” in 2012 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Oct 2012, pp. 937–940.

[179] R. Komondoor and S. Horwitz, Tool Demonstration: Finding Duplicated Code Using
Program Dependences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
383–386. [Online]. Available: http://dx.doi.org/10.1007/3-540-45309-1 25

[180] ——, Using Slicing to Identify Duplication in Source Code. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 40–56. [Online]. Available: http://dx.doi.org/
10.1007/3-540-47764-0 3

100

http://doi.acm.org/10.1145/1150402.1150522
http://doi.acm.org/10.1145/2660190.2662116
http://dx.doi.org/10.1007/3-540-45309-1_25
http://dx.doi.org/10.1007/3-540-47764-0_3
http://dx.doi.org/10.1007/3-540-47764-0_3

[181] D. Gitchell and N. Tran, “Sim: A utility for detecting similarity in computer
programs,” in The Proceedings of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’99. New York, NY, USA: ACM, 1999,
pp. 266–270. [Online]. Available: http://doi.acm.org/10.1145/299649.299783

[182] S. Harris, “Simian,” http://www.harukizaemon.com/simian/.

[183] H. Li and S. Thompson, Similar Code Detection and Elimination for Erlang Programs.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 104–118. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11503-5 10

[184] M. Akhin and V. Itsykson, “Tree slicing: Finding intertwined and gapped clones
in one simple step,” Automatic Control and Computer Sciences, vol. 47, no. 7, pp.
427–432, 2013. [Online]. Available: http://dx.doi.org/10.3103/S0146411613070171

[185] A. F. M. Ali, S. Sulaiman, and S. M. Syed-Mohamad, “An enhanced generic pipeline
model for code clone detection,” in 2011 Malaysian Conference in Software Engineering,
Dec 2011, pp. 434–438.

[186] J. R. Cordy, T. R. Dean, and N. Synytskyy, “Practical language-independent detection
of near-miss clones,” in Proceedings of the 2004 Conference of the Centre for Advanced
Studies on Collaborative Research, ser. CASCON ’04. IBM Press, 2004, pp. 1–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1034914.1034915

[187] C. Dandois and W. Vanhoof, Clones in Logic Programs and How to Detect Them.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 90–105. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32211-2 7

[188] G. D. Lucca, M. D. Penta, A. R. Fasolino, and P. Granato, “Clone analysis in the web
era: an approach to identify cloned web pages,” in IN PROCEEDINGS OF THE 7TH
IEEE WORKSHOP ON EMPIRICAL STUDIES OF SOFTWARE MAINTENANCE
(WESS99, 2001, pp. 107–113.

[189] E. Burd and J. Bailey, “Evaluating clone detection tools for use during preventative
maintenance,” in Proceedings. Second IEEE International Workshop on Source Code
Analysis and Manipulation, 2002, pp. 36–43.

[190] M. Dumas, L. Garca-Bauelos, M. L. Rosa, and R. Uba, “Fast detection of exact
clones in business process model repositories,” Information Systems, vol. 38, no. 4,
pp. 619 – 633, 2013, special section on {BPM} 2011 conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306437912000993

[191] R. Uba, M. Dumas, L. Garćıa-Bañuelos, and M. La Rosa, Clone Detection in
Repositories of Business Process Models. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 248–264. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-23059-2 20

[192] S. Grant and J. R. Cordy, “Vector space analysis of software clones,” in 2009 IEEE
17th International Conference on Program Comprehension, May 2009, pp. 233–237.

101

http://doi.acm.org/10.1145/299649.299783
http://www.harukizaemon.com/simian/
http://dx.doi.org/10.1007/978-3-642-11503-5_10
http://dx.doi.org/10.3103/S0146411613070171
http://dl.acm.org/citation.cfm?id=1034914.1034915
http://dx.doi.org/10.1007/978-3-642-32211-2_7
http://www.sciencedirect.com/science/article/pii/S0306437912000993
http://dx.doi.org/10.1007/978-3-642-23059-2_20
http://dx.doi.org/10.1007/978-3-642-23059-2_20

[193] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto, “Incremental code clone detection:
A pdg-based approach,” in 2011 18th Working Conference on Reverse Engineering,
Oct 2011, pp. 3–12.

[194] J. l. Huang and F. p. Li, “Quick similarity measurement of source code based on suffix
array,” in 2009 International Conference on Computational Intelligence and Security,
vol. 2, Dec 2009, pp. 308–311.

[195] B. Hummel, E. Juergens, and D. Steidl, “Index-based model clone detection,”
in Proceedings of the 5th International Workshop on Software Clones, ser.
IWSC ’11. New York, NY, USA: ACM, 2011, pp. 21–27. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985409

[196] J. H. Johnson, “Identifying redundancy in source code using fingerprints,” in
Proceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative
Research: Software Engineering - Volume 1, ser. CASCON ’93. IBM Press, 1993, pp.
171–183. [Online]. Available: http://dl.acm.org/citation.cfm?id=962289.962305

[197] ——, “Visualizing textual redundancy in legacy source,” in Proceedings of
the 1994 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’94. IBM Press, 1994, pp. 32–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=782185.782217

[198] ——, “Substring matching for clone detection and change tracking,” in Proceedings
1994 International Conference on Software Maintenance, Sep 1994, pp. 120–126.

[199] T. Kamiya, “An execution-semantic and content-and-context-based code-clone detec-
tion and analysis,” in 2015 IEEE 9th International Workshop on Software Clones
(IWSC), March 2015, pp. 1–7.

[200] T. Lavoie, M. Eilers-Smith, and E. Merlo, “Challenging cloning related problems with
gpu-based algorithms,” in Proceedings of the 4th International Workshop on Software
Clones, ser. IWSC ’10. New York, NY, USA: ACM, 2010, pp. 25–32. [Online].
Available: http://doi.acm.org/10.1145/1808901.1808905

[201] F. M. Lazar and O. Banias, “Clone detection algorithm based on the abstract syntax
tree approach,” in 2014 IEEE 9th IEEE International Symposium on Applied Compu-
tational Intelligence and Informatics (SACI), May 2014, pp. 73–78.

[202] C. Li, J. Sun, and H. Chen, “An improved method for tree-based clone detection in
web applications,” in 2014 Fourth International Conference on Digital Information and
Communication Technology and its Applications (DICTAP), May 2014, pp. 363–367.

[203] P. Pulkkinen, J. Holvitie, O. S. Nevalainen, and V. Leppänen, “Reusability based
program clone detection: Case study on large scale healthcare software system,”
in Proceedings of the 16th International Conference on Computer Systems and
Technologies, ser. CompSysTech ’15. New York, NY, USA: ACM, 2015, pp. 90–97.
[Online]. Available: http://doi.acm.org/10.1145/2812428.2812471

102

http://doi.acm.org/10.1145/1985404.1985409
http://dl.acm.org/citation.cfm?id=962289.962305
http://dl.acm.org/citation.cfm?id=782185.782217
http://doi.acm.org/10.1145/1808901.1808905
http://doi.acm.org/10.1145/2812428.2812471

[204] D. Strüber, J. Plöger, and V. AcreŢoaie, Clone Detection for Graph-Based Model
Transformation Languages. Cham: Springer International Publishing, 2016, pp.
191–206. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-42064-6 13

[205] Y. Udagawa, “An empirical study on retrieving structural clones using sequence
pattern mining algorithms,” in Proceedings of the 16th International Conference
on Information Integration and Web-based Applications and Services, ser. iiWAS
’14. New York, NY, USA: ACM, 2014, pp. 270–276. [Online]. Available:
http://doi.acm.org/10.1145/2684200.2684290

[206] ——, “Maximal frequent sequence mining for finding software clones,” in Proceedings
of the 18th International Conference on Information Integration and Web-based
Applications and Services, ser. iiWAS ’16. New York, NY, USA: ACM, 2016, pp.
26–33. [Online]. Available: http://doi.acm.org/10.1145/3011141.3011160

[207] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in source code by
frequent itemset techniques,” in Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on, Sept 2004, pp. 128–135.

[208] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software plagiarism detec-
tion,” in 2014 IEEE 25th International Symposium on Software Reliability Engineering,
Nov 2014, pp. 66–77.

[209] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita, “Kclone: a proposed
approach to fast precise code clone detection,” in Proceedings of the 3rd intentional
conference on software clones, 2009.

[210] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson, “Models are code
too: Near-miss clone detection for simulink models,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM), Sept 2012, pp. 295–304.

[211] J. R. Cordy, “Simone: architecture-sensitive near-miss clone detection for simulink
models,” in 2015 First International Workshop on Automotive Software Architecture
(WASA), May 2015, pp. 1–2.

[212] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson, “Near-miss
model clone detection for simulink models,” in 2012 6th International Workshop on
Software Clones (IWSC), June 2012, pp. 78–79.

[213] A. Agrawal and S. K. Yadav, “A hybrid-token and textual based approach to find
similar code segments,” in 2013 Fourth International Conference on Computing, Com-
munications and Networking Technologies (ICCCNT), July 2013, pp. 1–4.

[214] C. M. Kamalpriya and P. Singh, “Enhancing program dependency graph based clone
detection using approximate subgraph matching,” in 2017 IEEE 11th International
Workshop on Software Clones (IWSC), Feb 2017, pp. 1–7.

103

http://dx.doi.org/10.1007/978-3-319-42064-6_13
http://doi.acm.org/10.1145/2684200.2684290
http://doi.acm.org/10.1145/3011141.3011160

[215] R. Kaur and S. Singh, “Clone detection in software source code using operational
similarity of statements,” SIGSOFT Softw. Eng. Notes, vol. 39, no. 3, pp. 1–5, Jun.
2014. [Online]. Available: http://doi.acm.org/10.1145/2597716.2597723

[216] I. Keivanloo and J. Rilling, “Clone detection meets semantic web-based transitive clo-
sure computation,” in 2012 First International Workshop on Realizing AI Synergies in
Software Engineering (RAISE), June 2012, pp. 12–16.

[217] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B. V. Saranya, “Detection of
type-1 and type-2 code clones using textual analysis and metrics,” in 2010 Interna-
tional Conference on Recent Trends in Information, Telecommunication and Comput-
ing, March 2010, pp. 241–243.

[218] T. Matsushita and I. Sasano, “Detecting code clones with gaps by function
applications,” in Proceedings of the 2017 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, ser. PEPM 2017. New York, NY, USA: ACM,
2017, pp. 12–22. [Online]. Available: http://doi.acm.org/10.1145/3018882.3018892

[219] J. Petrk, D. Chud, and B. Steinmller, “Source code plagiarism detection: The unix
way,” in 2017 IEEE 15th International Symposium on Applied Machine Intelligence
and Informatics (SAMI), Jan 2017, pp. 000 467–000 472.

[220] Y. Sabi, Y. Higo, and S. Kusumoto, “Rearranging the order of program statements for
code clone detection,” in 2017 IEEE 11th International Workshop on Software Clones
(IWSC), Feb 2017, pp. 1–7.

[221] R. Tekchandani, R. Bhatia, and M. Singh, “Semantic code clone detection for
internet of things applications using reaching definition and liveness analysis,”
The Journal of Supercomputing, pp. 1–28, 2016. [Online]. Available: http:
//dx.doi.org/10.1007/s11227-016-1832-6

[222] Bauhaus-Stuttgart, “Projekt bauhaus,” http://www.bauhaus-stuttgart.de/.

[223] A. Raza, G. Vogel, and E. Plödereder, Bauhaus – A Tool Suite for Program Analysis
and Reverse Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
71–82. [Online]. Available: http://dx.doi.org/10.1007/11767077 6

[224] P. Bulychev and M. Minea, “Duplicate code detection using anti-unification,” in Spring
Young Researchers Colloquium on Software Engineering, 2008, pp. 51–54.

[225] H. A. Basit and S. Jarzabek, “Detecting higher-level similarity patterns in programs,”
in Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 156–165.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081733

[226] Y. Zhang, H. A. Basit, S. Jarzabek, D. Anh, and M. Low, “Query-based filtering and
graphical view generation for clone analysis,” in 2008 IEEE International Conference
on Software Maintenance, Sept 2008, pp. 376–385.

104

http://doi.acm.org/10.1145/2597716.2597723
http://doi.acm.org/10.1145/3018882.3018892
http://dx.doi.org/10.1007/s11227-016-1832-6
http://dx.doi.org/10.1007/s11227-016-1832-6
http://www.bauhaus-stuttgart.de/
http://dx.doi.org/10.1007/11767077_6
http://doi.acm.org/10.1145/1081706.1081733

[227] H. A. Basit and S. Jarzabek, “A data mining approach for detecting higher-level clones
in software,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 497–514,
July 2009.

[228] H. A. Basit, U. Ali, and S. Jarzabek, “Viewing simple clones from structural clones’
perspective,” in Proceedings of the 5th International Workshop on Software Clones,
ser. IWSC ’11. New York, NY, USA: ACM, 2011, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985406

[229] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting similar java classes
using tree algorithms,” in Proceedings of the 2006 International Workshop on Mining
Software Repositories, ser. MSR ’06. New York, NY, USA: ACM, 2006, pp. 65–71.
[Online]. Available: http://doi.acm.org/10.1145/1137983.1138000

[230] F. Jacob, D. Hou, and P. Jablonski, “Actively comparing clones inside the code
editor,” in Proceedings of the 4th International Workshop on Software Clones, ser.
IWSC ’10. New York, NY, USA: ACM, 2010, pp. 9–16. [Online]. Available:
http://doi.acm.org/10.1145/1808901.1808903

[231] G. Mahajan and M. Bharti, “Implementing a 3-way approach of clone detection and
removal using pc detector tool,” in 2014 IEEE International Advance Computing Con-
ference (IACC), Feb 2014, pp. 1435–1441.

[232] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, Measuring Similarity
of Large Software Systems Based on Source Code Correspondence. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 530–544. [Online]. Available:
http://dx.doi.org/10.1007/11497455 41

[233] N. Li, M. Shen, S. Li, L. Zhang, and Z. Li, STVsm: Similar Structural Code Detection
Based on AST and VSM. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
15–21. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35267-6 3

[234] B. Al-Batran, B. Schätz, and B. Hummel, “Semantic clone detection for model-based
development of embedded systems,” in Proceedings of the 14th International
Conference on Model Driven Engineering Languages and Systems, ser. MODELS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 258–272. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2050655.2050681

[235] E. P. Antony, M. H. Alalfi, and J. R. Cordy, “An approach to clone detection in be-
havioural models,” in 2013 20th Working Conference on Reverse Engineering (WCRE),
Oct 2013, pp. 472–476.

[236] M. Ballarin, R. Lapeña, and C. Cetina, Leveraging Feature Location to
Extract the Clone-and-Own Relationships of a Family of Software Products.
Cham: Springer International Publishing, 2016, pp. 215–230. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-35122-3 15

105

http://doi.acm.org/10.1145/1985404.1985406
http://doi.acm.org/10.1145/1137983.1138000
http://doi.acm.org/10.1145/1808901.1808903
http://dx.doi.org/10.1007/11497455_41
http://dx.doi.org/10.1007/978-3-642-35267-6_3
http://dl.acm.org/citation.cfm?id=2050655.2050681
http://dx.doi.org/10.1007/978-3-319-35122-3_15

[237] S. Chodarev, E. Pietrikov, and J. Kollr, “Haskell clone detection using pattern com-
paring algorithm,” in 2015 13th International Conference on Engineering of Modern
Electric Systems (EMES), June 2015, pp. 1–4.

[238] S. Choi, H. Park, H. il Lim, and T. Han, “A static {API} birthmark for windows
binary executables,” Journal of Systems and Software, vol. 82, no. 5, pp. 862
– 873, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0164121208002689

[239] N. Davey, P. Barson, S. Field, and R. Frank, “The development of a software clone
detector,” International Journal of Applied Software Technology, vol. 1, pp. 219–236,
1995.

[240] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, “Challenges of the dy-
namic detection of functionally similar code fragments,” in 2012 16th European Con-
ference on Software Maintenance and Reengineering, March 2012, pp. 299–308.

[241] D. G. Devi and M. Punithavalli, “A hierarchical method for detecting codeclone,” in
2011 3rd International Conference on Electronics Computer Technology, vol. 1, April
2011, pp. 126–128.

[242] R. Elva and G. T. Leavens, “Semantic clone detection using method ioe-behavior,” in
2012 6th International Workshop on Software Clones (IWSC), June 2012, pp. 80–81.

[243] J. He, “Detecting c source code clones in college students’ homework,” in 2012 Inter-
national Conference on Computer Science and Information Processing (CSIP), Aug
2012, pp. 104–107.

[244] Y. Higo and S. Kusumoto, “How should we measure functional sameness from program
source code? an exploratory study on java methods,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ser. FSE 2014. New York, NY, USA: ACM, 2014, pp. 294–305. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635886

[245] K. Ito, T. Ishio, and K. Inoue, “Web-service for finding cloned files using b-bit minwise
hashing,” in 2017 IEEE 11th International Workshop on Software Clones (IWSC), Feb
2017, pp. 1–2.

[246] N. Juillerat and B. Hirsbrunner, “Detecting and removing clones in an automated
way,” in 3rd Workshop on Software Evolution through Transformations: Embracing
the Change. SeTra, 2006.

[247] I. Keivanloo and J. Rilling, “Semantic-enabled clone detection,” in 2013 IEEE 37th
Annual Computer Software and Applications Conference, July 2013, pp. 393–398.

[248] K. Kumar, “Detecting collaborative patterns in programs,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, Sept 2014, pp. 664–664.

106

http://www.sciencedirect.com/science/article/pii/S0164121208002689
http://www.sciencedirect.com/science/article/pii/S0164121208002689
http://doi.acm.org/10.1145/2635868.2635886

[249] K. Kumar and S. Jarzabek, “Detecting design similarity patterns using program
execution traces,” in Proceedings of the Companion Publication of the 2014 ACM
SIGPLAN Conference on Systems, Programming, and Applications: Software for
Humanity, ser. SPLASH ’14. New York, NY, USA: ACM, 2014, pp. 55–56. [Online].
Available: http://doi.acm.org/10.1145/2660252.2660397

[250] H.-S. Lee and K.-G. Doh, “Tree-pattern-based duplicate code detection,” in
Proceedings of the ACM First International Workshop on Data-intensive Software
Management and Mining, ser. DSMM ’09. New York, NY, USA: ACM, 2009, pp.
7–12. [Online]. Available: http://doi.acm.org/10.1145/1651309.1651312

[251] K. Maeda, “Syntax sensitive and language independent detection of code clones,”
International Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 3, no. 12, pp. 2845 – 2849, 2009. [Online]. Available:
http://waset.org/Publications?p=36

[252] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source code,”
in Proceedings 16th Annual International Conference on Automated Software Engineer-
ing (ASE 2001), Nov 2001, pp. 107–114.

[253] M. Dong, H. Zhuang, R. Zhang, S. Bi, X. Zeng, S. Guo, W. Cai, and Z. Tang, “A new
method of software clone detection based on binary instruction structure analysis,”
in 2012 8th International Conference on Wireless Communications, Networking and
Mobile Computing, Sept 2012, pp. 1–4.

[254] K. Raheja and R. K. Tekchandani, “An efficient code clone detection model on java byte
code using hybrid approach,” in Confluence 2013: The Next Generation Information
Technology Summit (4th International Conference), Sept 2013, pp. 16–21.

[255] D. Rattan, R. Bhatia, and M. Singh, “Model clone detection based on tree comparison,”
in 2012 Annual IEEE India Conference (INDICON), Dec 2012, pp. 1041–1046.

[256] N. Rodrigues and J. L. Vilaça, Identifying Clones in Functional Programs for
Refactoring. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 309–317.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-16402-6 33

[257] A. Santone, “Clone detection through process algebras and java bytecode,”
in Proceedings of the 5th International Workshop on Software Clones, ser.
IWSC ’11. New York, NY, USA: ACM, 2011, pp. 73–74. [Online]. Available:
http://doi.acm.org/10.1145/1985404.1985422

[258] S. Singh and R. Kaur, “Clone detection in uml class models using class metrics,”
SIGSOFT Softw. Eng. Notes, vol. 39, no. 3, pp. 1–3, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2597716.2597726

[259] M. Singh and V. Sharma, “Detection of file level clone for high level cloning,”
Procedia Computer Science, vol. 57, pp. 915 – 922, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915020384

107

http://doi.acm.org/10.1145/2660252.2660397
http://doi.acm.org/10.1145/1651309.1651312
http://waset.org/Publications?p=36
http://dx.doi.org/10.1007/978-3-642-16402-6_33
http://doi.acm.org/10.1145/1985404.1985422
http://doi.acm.org/10.1145/2597716.2597726
http://www.sciencedirect.com/science/article/pii/S1877050915020384

[260] M. Sudhamani and L. Rangarajan, “Structural similarity detection using structure of
control statements,” Procedia Computer Science, vol. 46, pp. 892 – 899, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1877050915002239

[261] A. Surendran, P. Samuel, and K. P. Jacob, “Code clones in program test sequence iden-
tification,” in 2011 World Congress on Information and Communication Technologies,
Dec 2011, pp. 1050–1055.

[262] A. Sutton, H. Kagdi, J. I. Maletic, and L. G. Volkert, “Hybridizing evolutionary
algorithms and clustering algorithms to find source-code clones,” in Proceedings
of the 7th Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’05. New York, NY, USA: ACM, 2005, pp. 1079–1080. [Online]. Available:
http://doi.acm.org/10.1145/1068009.1068191

[263] R. Tairas and J. Gray, “Phoenix-based clone detection using suffix trees,” in
Proceedings of the 44th Annual Southeast Regional Conference, ser. ACM-SE
44. New York, NY, USA: ACM, 2006, pp. 679–684. [Online]. Available:
http://doi.acm.org/10.1145/1185448.1185597

[264] R. Tairas and J. Cabot, Cloning in DSLs: Experiments with OCL. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 60–76. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28830-2 4

[265] R. Tekchandani, R. K. Bhatia, and M. Singh, “Semantic code clone detection using
parse trees and grammar recovery,” in Confluence 2013: The Next Generation Infor-
mation Technology Summit (4th International Conference), Sept 2013, pp. 41–46.

[266] U. Tekin, U. Erdemir, and F. Buzluca, “Mining object-oriented design models for
detecting identical design structures,” in Proceedings of the 6th International Workshop
on Software Clones, ser. IWSC ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp.
43–49. [Online]. Available: http://dl.acm.org/citation.cfm?id=2664398.2664405

[267] C. K. Roy and J. R. Cordy, “Scenario-based comparison of clone detection techniques,”
in 2008 16th IEEE International Conference on Program Comprehension, June 2008,
pp. 153–162.

[268] F. V. Rysselberghe and S. Demeyer, “Evaluating clone detection techniques from a
refactoring perspective,” in Proceedings. 19th International Conference on Automated
Software Engineering, 2004., Sept 2004, pp. 336–339.

[269] R. Tiarks, R. Koschke, and R. Falke, “An extended assessment of type-3 clones
as detected by state-of-the-art tools,” Software Quality Journal, vol. 19, no. 2, pp.
295–331, 2011. [Online]. Available: http://dx.doi.org/10.1007/s11219-010-9115-6

[270] ——, “An assessment of type-3 clones as detected by state-of-the-art tools,” in 2009
Ninth IEEE International Working Conference on Source Code Analysis and Manipu-
lation, Sept 2009, pp. 67–76.

108

http://www.sciencedirect.com/science/article/pii/S1877050915002239
http://doi.acm.org/10.1145/1068009.1068191
http://doi.acm.org/10.1145/1185448.1185597
http://dx.doi.org/10.1007/978-3-642-28830-2_4
http://dl.acm.org/citation.cfm?id=2664398.2664405
http://dx.doi.org/10.1007/s11219-010-9115-6

[271] C. Ragkhitwetsagul, M. Paixao, M. Adham, S. Busari, J. Krinke, and J. H.
Drake, Searching for Configurations in Clone Evaluation – A Replication Study.
Cham: Springer International Publishing, 2016, pp. 250–256. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-47106-8 20

[272] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe, “On the use of clone
detection for identifying crosscutting concern code,” IEEE Transactions on Software
Engineering, vol. 31, no. 10, pp. 804–818, Oct 2005.

[273] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better configurations:
A rigorous approach to clone evaluation,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: ACM, 2013, pp. 455–465. [Online]. Available: http:
//doi.acm.org/10.1145/2491411.2491420

[274] S. Schulze and D. Meyer, “On the robustness of clone detection to code obfuscation,”
in 2013 7th International Workshop on Software Clones (IWSC), May 2013, pp. 62–68.

[275] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with BigCloneBench,”
in 2015 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), Sept 2015, pp. 131–140.

[276] C. Ragkhitwetsagul, “Measuring code similarity in large-scaled code corpora,” in 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME), Oct
2016, pp. 626–630.

[277] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source code in the presence
of pervasive modifications,” in 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), Oct 2016, pp. 117–126.

109

http://dx.doi.org/10.1007/978-3-319-47106-8_20
http://doi.acm.org/10.1145/2491411.2491420
http://doi.acm.org/10.1145/2491411.2491420

	1 Introduction
	2 Cloning Theory
	2.1 Code Clones
	2.2 Clone Types
	2.2.1 Type-1 Clones
	2.2.2 Type-2 Clones
	2.2.3 Type-3 Clones
	2.2.4 Type-4 Clones

	2.3 Syntactic and Semantic Clones
	2.4 Clone Granularity, Boundaries
	2.4.1 Arbitrary Statement Clone Boundaries

	2.5 Clone Size
	2.6 Clone Detection Tools

	3 Benchmarking Theory
	3.1 Recall and Precision
	3.1.1 Measuring Recall and Precision with an Oracle
	3.1.2 Challenges in building an Oracle
	3.1.3 Measuring Recall and Precision with a Reference Corpus
	3.1.4 Clone Matching Algorithm/Metric

	3.2 Methods for building a Reference Corpus
	3.3 Measuring Precision without a Reference Corpus
	3.4 Execution Time and Scalability

	4 A Survey of Clone Benchmarks
	4.1 Survey Procedure
	4.2 Overview of Results
	4.3 Detailed Results
	4.3.1 Bellon's Benchmark
	4.3.2 Lavoie and Merlo
	4.3.3 Mutation and Injection Framework
	4.3.4 ForkSim
	4.3.5 BigCloneBench
	4.3.6 Yuki et al.
	4.3.7 Krutz and Le

	4.4 Evaluating the Benchmarks
	4.4.1 General Requirements
	4.4.2 Subject System Requirements
	4.4.3 Reference Corpus Requirements
	4.4.4 Measuring Recall Requirements
	4.4.5 Other Metrics Requirements
	4.4.6 Summary

	4.5 Threats to Validity

	5 A Survey of Clone Detector Evaluations by Authors
	5.1 Survey Procedure
	5.2 Evaluation Criteria
	5.3 Results
	5.3.1 Results Ranked by their Measurement of Recall
	5.3.2 Results Ranked by their Measurement of Precision
	5.3.3 Results Ranked by their Measurement of Execution Time
	5.3.4 Results Ranked by their Measurement of Scalability
	5.3.5 Exemplars in Tool Evaluation
	5.3.6 How Tool Authors Measure Recall

	5.4 Standards of Evaluation by Authors
	5.4.1 Frequency of Metric Evaluations by Authors
	5.4.2 Frequency of Evaluation Scopes
	5.4.3 Correlation Between Evaluations

	5.5 Threats to Validity of this Survey

	6 A Survey of Tool Comparison Studies
	6.1 Survey Procedure
	6.2 Results
	6.3 Qualitative Studies
	6.4 Quantitative Studies
	6.5 Threats to Validity
	6.6 Conclusions

	7 Conclusion
	A Oversized Tables

