
September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

Efficiently Measuring an Accurate and Generalized

Clone Detection Precision using Clone Clustering

Jeffrey Svajlenko

Department of Computer Science, University of Saskatchewan,

176 Thorvaldson Building, 110 Science Place
Saskatoon, Saskatchewan S7N 5C9,Canada jeff.svajlenko@usask.ca

http://www.jeff.svajlenko.com

Chanchal K. Roy

Department of Computer Science, University of Saskatchewan,

176 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9,Canada chanchal.roy@usask.ca
http://www.cs.usask.ca/∼croy/

An important measure of clone detection performance is precision. However, there has
been a marked lack of research into methods of efficiently and accurately measuring the

precision of a clone detection tool. Instead, tool authors simply validate a small random

sample of the clones their tools detected in a subject software system. Since there could
be many thousands of clones reported by the tool, such a small random sample cannot

guarantee an accurate and generalized measure of the tool’s precision for all the varieties

of clones that can occur in any arbitrary software system. In this paper, we propose
a machine-learning based approach that can cluster similar clones together, and which

can be used to maximize the variety of clones examined when measuring precision,

while significantly reducing the biases a specific subject system has on the generality of
the precision measured. Our technique reduces the efforts in measuring precision, while

doubling the variety of clones validated and reducing biases that harm the generality

of the measure by up to an order of magnitude. Our case study with the NiCad clone
detector and the Java class library shows that our approach is effective in efficiently

measuring an accurate and generalized precision of a subject clone detection tool.

Keywords: clone; clone detection; precision; clone clustering, clone variety

1. Introduction

Code clones are pairs of code fragments that are similar. Developers create clones

when they reuse code using copy, paste and modify; although clones may arise for

a variety of other reasons [1]. Clone detection tools locate clones within or between

software systems. Developers need to detect and manage their clones in order to

maintain software quality, detect and prevent bugs, reduce developer risks, and so

on [1]. Clone detectors are also used to study software systems and mine software

repositories, including: mining for new library candidates [2], detecting similar appli-

cations [3] and forks [4], detecting license violations within software communities [5],

1

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

2 Jeffrey Svajlenko and Chanchal K. Roy

code search and recommendation [6], and so on. It is therefore important that the

developers have high-quality clone detection tools, which requires knowledge of their

detection performance.

Clone detection tools are evaluated in terms of recall and precision. Where re-

call is the ratio of the clones within a software system a tool is able to detect,

and precision is the ratio of the reported clones that are true positives, not false

positives. While high-quality benchmarks have been recently proposed for measur-

ing recall [7, 8, 9], accurately measuring precision remains difficult. In general, there

has been a marked lack of research into methodologies for measuring a generalized

precision both accurately and efficiently.

Precision can be measured by executing the clone detector for a software sys-

tem and then manually validating the detected clones. This is repeated for a large

number of software systems across a variety of software domains. This is done to

expose the tool to a large variety of true and false clones. By variety we do not

just mean the different clone types, but the different ways those clone types can be

expressed, which determines if they are true or false positives. Precision is measured

for each software system as the ratio of the detected clones that are judged to be

true positives. The clone detector’s overall precision is the average of its precision

across all of the subject software systems. The average is taken to normalize for the

bias the distribution of the clone varieties in a particular subject system has on the

measurement of precision. A particular variety of clone could make up a large pro-

portion of the detected clones in one system, but be rare or never appear in another

system. By normalizing across a variety of software systems the measurement is

then the expected precision of the clone detector for any arbitrary software system.

The problem is that clone validation is a very time consuming process, and

even smaller software systems can contain thousands to tens of thousands of clone

pairs [1, 10]. Validating the clones detected in even a single software system can be

exhausting, while validating the clones from a variety of systems becomes infeasible

due to the time and effort required. This is exasperated by the fact that clone

validation is very subjective, and likely the clones should be validated by multiple

clone experts to reflect multiple opinions on what constitutes a true positive clone.

The reliability of judges is also a major concern [11, 12, 13], so one cannot simply

hire a large number of non-experts (e.g., undergraduate students) to scale the task.

Instead, precision is typically approximated by validating a random sample of

the clones the tool detects within a software system. For example, tool authors

have checked on the order of 100 clones detected by their tool [14, 15]. However,

this leads to a precision that is not generalizable and therefore not accurate. While a

tool often detects a diverse variety of clones within a software system, the detection

report is often dominated by a few large groups of similar clones. These groups

are distinct varieties of clone pairs that are common in the subject system, and are

similar in terms of clone validation, but are not necessarily clones of each other (i.e.,

clone classes). A random sampling will mostly select from these similar clones, and

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 3

a significant variety of clones are missed. This biases the measurement of precision

to the varieties of clones that are most common in this subject system, but which

may be rare or non-existent in another software system. The result is a precision

measurement that is not generalizable to another arbitrary software system, and

therefore not an accurate or useful measure for the users of the tool. While variety

of clones examined could be increased by sampling clones from a variety of software

systems, this returns to the problem of too many clones to validate. Previous studies

have had difficulty measuring precision for more than two [16] to eight [17] subject

systems. Random sampling is simply not an efficient way to select a variety of clones

for measuring precision.

In this paper, we propose a novel machine-learning approach for efficiently mea-

suring an accurate and generalized precision. This approach involves clustering the

similar clone pairs (and false positives) detected in a software system (or collection

of software systems) together. The goal is to cluster the clone pairs that are similar

in terms of the semantics or syntax that causes them to be validated as true or false

positives, and which should be considered a distinct variety of clone when measuring

precision. While the clone pairs within a cluster are of the same variety, they may

not be clones of each other, and a cluster may encompass multiple clone classes. The

number of clusters captures the range of clone varieties the clone detector detects

within the software system. The sizes of the clusters captures the distribution of

these clone varieties in the software system (how common or uncommon). Precision

can then be measured by validating a single randomly chosen exemplar clone pair

from each cluster. This efficiently maximizes the variety of the clone pairs examined

when measuring precision. It avoids duplicate manual validation efforts by consid-

ering each variety of clone only once, allowing the measurement of precision to scale

better to a large collection of subject systems. Sampling clones across the clusters

eliminates the bias caused by the particular distribution of the varieties of clones

in the specific subject system allowing a more generalized result to be obtained.

We evaluate our approach in an experiment using the state of the art NiCad [18]

as our subject clone detector and a portion of the Java [19] class library as our

subject system. We vectorized the clone pairs using a custom document vectoriza-

tion technique, and performed dimensionality reduction with principal component

analysis [20]. We explored clustering solutions with both the k-means clustering

algorithm [21] and by fitting Guassian mixture models using the expectation max-

imization algorithm [22]. We used the silhouette [23] metric to choose an optimal

clustering solution, which we found to be produced by the k-means algorithm for 100

clusters. We manually inspected the clustering solution and found it was effective

in separating the clone varieties, although not perfect (it is not realistic to expect

a perfect clustering). We found that 76 clusters contained only a single variety of

clones, although a few varieties were split across a small number of clusters, and 24

clusters contained multiple varieties of clones. A 100 clone pair sample produced

by selecting one clone pair per cluster yields 76 distinct varieties of clones. This is

over twice the variety of clones obtained by a random sampling of the same sample

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

4 Jeffrey Svajlenko and Chanchal K. Roy

size, and three times as efficient as the random sample size required to meet the

same variety. Our technique reduces the bias due to the specific distribution of the

clone varieties in the subject system under test by up to an order of magnitude per

variety of clone. Our evaluation shows us that our technique can efficiently measure

an accurate and generalized precision of a subject clone detection tool.

2. Clone Types and Varieties

Clones are code fragments within a software system that are similar, either syntac-

tically and/or semantically. They are reported as either clone pairs or clone classes.

Researchers agree on three primary clone types [1, 17]:

Code Fragment: A continuous segment of source code, specified by the triple

(l, s, e), including the source file l, the line the fragment starts on, s, and the line it

ends on, e.

Clone Pair: A pair of code fragments that are similar, specified by tuple

(f1, f2, φ), including the similar code fragments f1 and f2, and their clone type

φ.

Clone Class: A set of code fragments that are similar. Specified by tuple

(f1, f2, ..., fn, φ). Each pair of distinct fragments is a clone pair: (fi, fj , φ), i, j ∈
1..n, i 6= j.

Type-1 Clone: Identical code fragments, except for differences in white space,

layout and comments.

Type-2 Clone: Identical code fragments, except for differences in identifier

names and literal values, in addition to Type-1 clone differences.

Type-3 Clone: Similar code fragments that differ at the statement level. The

fragments have statements added, modified and/or removed with respect to each

other, in addition to Type-1 and Type-2 clone differences.

Our goal in this paper is to measure a more accurate and generalized clone de-

tection precision by validating a wide variety of clones detected by a tool without

bias to any particular variety. We consider two clone pairs to be different clone va-

rieties if they represent different cloning experiences from the perspective of clone

validation. Two clone pairs are of the same clone variety if they share the same

syntax, code patterns and/or semantics that determine their validation as true or

false positives. This is different from clone types. When measuring precision we

only want to validate a single exemplar from each clone variety because additional

exemplars do not tell us anything new about the clone detector’s precision. To mea-

sure a generalized precision, we want to give each variety of clone equal weighting,

as different clone varieties may be more common or more rare in different subject

systems (different distribution).

As an example, clone detectors often report simple constructors as clones. These

are constructors that take a number of arguments and initialize member fields with

their values. These clones may vary by length, or some may include a super() call,

but in all cases validation depends on the decision of if two simple constructors

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 5

form a true clone. So we consider this a distinct variety of clone. Two clone pairs

of this variety may not be clones of each other due to differences in the size of the

constructors. Some other clone varieties we have observed in this study include:

clones of methods that register action listeners, clones of equals() methods auto-

generated by Eclipse IDE, clones of methods that implement buffer slicing, and so

on.

We are not attempting to build a taxonomy of all varieties of clones. Across

the entire software development community, there is likely an unlimited number of

clone varieties, and these varieties may overlap. Our interest is simply to judge if a

cluster contains a single or multiple varieties of clones. As well as to measure the

total variety of clones considered when measuring precision for a subject system or

a set of subject systems.

3. Clustering Background

Clustering is an unsupervised learning technique for grouping similar objects. The

goal is to group the objects such that an object is more similar to those within

its own group, called a cluster, than those in other clusters. Given a dataset of n

objects (data points), where each object is represented by a d-dimensional vector of

measured features; the clustering problem is to label each data point with a value

[1, k], for a target number of clusters k. The data labels constitute a clustering

solution to the data. Most algorithms require the data to be formatted in a n by d

matrix of numerical values and for a number of clusters, k, to be specified.

3.1. K-Means Clustering

K-means [21] is an iterative clustering algorithm that aims to partition the data in

a way that minimizes a loss function: the within-cluster sum of squares as shown

in Eq. 1. Where k is the number of clusters, Ci is the set of data points in cluster

i, ~µi is the center of cluster i, and d(~x, ~µi) is the distance between data point ~x in

cluster Ci and the cluster’s center ~µi. In document clustering, where documents are

represented as weighted term-frequency vectors, the cosine distance, Eq. 2, is the

preferred distance metric [26].

k∑
i=1

∑
xεCi

‖d(~x, ~µi)‖2 (1)

d(~a,~b) = 1− cos(θ) = 1− ~a ·~b
||~a|| ||~b||

(2)

Given an initial set of cluster centers, the k-means algorithm iteratively updates

the cluster centers to a local minimum of the loss function using the following

algorithm:

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

6 Jeffrey Svajlenko and Chanchal K. Roy

(1) Assign each data point to its nearest cluster center using the chosen distance

measure.

(2) Update the cluster centers to the mean of the points assigned to them.

(3) Repeat steps 1-2 until the sums of squares converges or a maximum number

of iterations has been reached.

The algorithm is guaranteed to converge to a local optimum, although this may

not be the global optimum. The clustering solution returned depends on the number

of clusters and the initial cluster centers used.

3.2. Initializing K-Means with K-Means++

K-means++ [21] is an algorithm for choosing initial cluster centers for the k-means

algorithm. It aims to avoid poor clusterings by choosing random but evenly dis-

tributed cluster centers amongst the data. It guarantees a clustering solution that

is at least O(log k) competitive with the optimal solution, and generally improves

the speed and accuracy of k-means [21]. The algorithm chooses clustering centers

using the following procedure, where D is the dataset:

(1) Choose one x ∈ D with uniform probability to be the first initial cluster

center.

(2) For each data point x ∈ D the distance, d(x), between x and its nearest

previously chosen initial cluster center is measured.

(3) Choose the next initial cluster center from x ∈ D with a probability of

choosing x of d(x)2∑
y∈D d(y)2 .

(4) Repeat steps 2-3 until k initial cluster centers have been chosen.

Each cluster center is chosen non-deterministically, while the weighted probabil-

ity prefers to select the next center as a point further from the previously selected

centers. It ensures the centers are well spread amongst the data.

3.3. Gaussian Mixture Model (GMM)

A Gaussian mixture model [27] is a probability distribution composed of the com-

bination of a number of weighted individual Gaussian distributions. It can be

used to model data where the population is believed to contain a number of sub-

populations, even when these sub-populations are not known. By learning the pa-

rameters of the individual Gaussian distributions, the data can be clustered into

the sub-populations they are most likely to originate from.

To solve the problem of clone clustering, we consider the clones to have been

drawn from a mixture of k multivariate Gaussian distributions. Each Gaussian

distribution is a sub-population, or cluster of the clones. We assume each clone was

drawn from just one of the individual Gaussian distributions, and the drawing of

each clone is independent of the drawing of each of the other clones.

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 7

The ith Gaussian is shown in Eq. 3 for the representation of a clone, ~x, as a

d-dimensional vector of real numbers. The mixture of k Gaussian distributions is

shown in Eq. 4, where αi is the weighting of the ith Gaussian distribution in the

mixture, and
∑k
i=1 αi = 1.

To complete this model we need to learn the model parameters, Θ. Where Θ

includes the number of Gaussian distributions, k, their weightings in the mixture

~α = {α1, α2, ..., αk}, and the parameters of each individual Gaussian distribution,

θi = {~µi,Σi}. Given a known number of Gaussian distributions (clusters), k, the

weightings, means and covariances of the Gaussian distributions can be learned

using the Expectation Maximization algorithm, which is discussed in the following

subsection.

pi(~x|µi,Σi) =
1

(2π)d/2 |Σi|2
e−

1
2 (~x− ~µi)

tΣ−1
i (~x− ~µi) (3)

p(~x|Θ) =

k∑
i=1

αipi(~x|µi,Σi) (4)

The clones in the dataset are then assigned to the Gaussian distribution in the

mixture most responsible for generating it. In other words, the cluster the clone is

most likely to belong to. The responsibility cluster i takes for clone c is shown in

Eq. 5, where
∑k
i=1 rci = 1.

rci = p(ci = 1|~xc,Θ) =
αi · pi(~xc|θi)∑k

m=1 αm · pm(~xc|θm)
(5)

3.4. Expectation Maximization (EM) Clustering

Given a known number of mixture components, k, the Expectation Maximization

algorithm [27] can approximate the maximum likelihood estimate (MLE) of

the parameters of each Gaussian component of the mixture model. This is the

weighting αi, mean µi, and covariance Σi of each of the k Gaussian distributions,

i = (1, 2, ..., k).

The algorithm requires initialization with the number of Gaussian distributions

in the mixture k, an initial weighting of their contribution ~α, and an estimate

of the mean and covariance, θi = {~µi,Σi}, of each Gaussian distribution. The

initial weightings and Gaussian distribution component parameters can be chosen

randomly, or from a k-means clustering solution (discussed in the next subsection).

The algorithm then iteratively updates Θ = {~α, θ} until convergence of the

log-likelihood of the parameters, or some maximum number of iterations. Only

the k parameter is kept fixed during the algorithm. Each iteration is guaranteed

to increase the likelihood of the parameters given the data. However, it may not

find the ΘMLE , but instead return a local maximum. Each iteration involves an

expectation (E) step and a maximization (M) step.

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

8 Jeffrey Svajlenko and Chanchal K. Roy

E-Step. In the expectation step, the responsibility, rci, each Gaussian distribu-

tion (cluster), ci, takes for generating each clone, ~xc, in the dataset is calculated.

This is equivalent to calculating the expectation of the log-likelihood of the posterior

distribution given the current estimates of the parameters [27].

M-Step. In the maximization step, Θ is updated to maximize the expected

log-likelihood using a number of derived equations [27]. Specifically, new weightings

and the Gaussian distribution component parameters (mean and covariance) are

updated as shown in Eq. 6 and Eq. 7, where N is the number of data points.

α′i =
Ni
N

~µ′i =
1

Ni

N∑
c=1

rci · ~xc Ni =

N∑
c=1

rci. (6)

Σ′i =
1

Ni

N∑
c=1

rci · (~xc − ~µ′i)(~xc − ~µ′i)
t (7)

Convergence is detected when the log-likelihood of Θ, shown in Eq. 8, no longer

increases by an appreciable amount.

log l(Θ) =

N∑
c=1

log p(~xc|Θ) =

N∑
c=1

(
log

K∑
i=1

αi · pi(~xc|θi,Σi)
)

(8)

While the expectation maximization algorithm can be initialized with random

parameters, it is ideal to start with good estimates. Assuming a chosen number of

clusters, k, initial values for the Gaussian can be derived from a clustering solution

produced by a simpler clustering algorithm. Specifically, we target the use of k-

means to provide an initial clustering of the clones to initialize the Gaussian mixture

model for the expectation maximization algorithm.

3.5. Initializing EM using K-means

The results of the k-means algorithm can be used to initialize a Gaussian mixture

model for the expectation maximization algorithm. The output of the k-means

algorithm is the clones labeled with their cluster id. For each k-means cluster, mk,

a Gaussian distribution is initialized in the mixture with parameters shown in Eq. 9.

The initial weightings of the Gaussian components can be uniform, or initialized

to the ratio of the dataset encapsulated in their corresponding k-means clusters.

The mean of the Gaussian is set as the centroid (average) of the cluster, and the

covariance as the covariance of the cluster’s data-points (clones).

αi =
Ni
N

~µi =

∑
xεmk

x

Nk
Σiab = cov(Xa, Xb) (9)

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 9

3.6. Silhouette Metric

The silhouette metric [23, 24] measures the quality of a clustering solution by how

well each data point is clustered. The silhouette of data point i is shown in Eq. 10,

where a(i) is the average distance between data point i and the other points in its

own cluster, and b(i) is the lowest average distance between data point i and the

data points in the other clusters. a(i) measures how dissimilar the data point is to

other members of its own cluster, while b(i) measures how dissimilar the data point

is to its most similar neighboring cluster. The silhouette of a data point ranges from

-1.0 to 1.0. In this study we measure similarity and dissimilarity using the cosine

similarity metric (Eq. 2).

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(10)

A silhouette closer to 1.0 indicates that data point i is much more similar to the

data points in its own cluster than those in its neighboring clusters (a(i) << b(i)),

and is appropriately clustered. A silhouette closer to -1.0 indicates the data point is

much more similar to data points in a neighboring cluster than those within its own

cluster (a(i) >> b(i)), and would be more appropriately placed in the neighboring

cluster. A value closer to 0.0 indicates that the data point lies on the border of

two clusters (a(i) ∼= b(i)). The silhouette of a clustering solution (or an individual

cluster) is measured as the average silhouette of its data points. This measures how

well the data has been clustered, with a value closer to 1.0 being preferable.

The silhouette has a flaw we must control for. If a cluster is created per data

point (or per unique data point, if the dataset contains duplicates), the silhouette

trivially returns 1.0, a “perfect” clustering. Although such a clustering is unlikely

to be useful. We want to cluster similar clones, not only identical clones. To control

for this we also measure the percentage of singleton clusters. This is the ratio of the

clusters that contain only a single unique data point (although they may contain

multiple duplicate data points). We use this metric to determine if an increase in

silhouette by adding additional clusters is due to a more natural clustering or due

to an increase in singleton clusters.

3.7. Choosing a Number of Clusters

Often clustering is performed on data where the number of classifications in the

data is unknown, as is the case with our clone data. A technique must be used

to choose the number of clusters. In this paper we use the ‘elbow method’ [25]

to estimate the natural number of clusters in the data. This involves plotting the

quality (silhouette) of the clustering solutions as a function of the number of clusters,

k, then looking for an ‘elbow’ in the plot where the gain in cluster silhouette by

adding additional clusters drops. This estimates the natural number of clusters as

the point where adding additional clusters does not significantly improve the quality

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

10 Jeffrey Svajlenko and Chanchal K. Roy

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10

Silh
oue

tte

Number of Clusters, K
Fig. 1: Example of the Elbow Method

of the clustering solution. A contrived example of the elbow method is shown in

Figure 1, where the elbow occurs at five clusters.

3.8. Principal Component Analysis (PCA)

Principle component analysis [20] is an orthogonal linear transformation of the data

onto a new basis of linearly uncorrelated axes called principal components. These

axes are chosen in decreasing order of the greatest data variance they explain. The

dimensionality of the transformed data can be reduced by dropping the principal

components that explain the least variance in the original data. Since the principal

components are ordered by variance explained, only the Top-T principal components

are kept for some target preservation of total variance explained. For example, T

may be chosen to preserve 90% of the data’s total variance.

4. Measuring Precision with Clone Clusters

In this section, we overview how the precision of a clone detector can be measured

using a clone clustering solution. The subject clone detector is executed for a sub-

ject software system (or collection of software systems), and the detected clone pairs

are vectorized and clustered by a clustering algorithm (we explore this in detail in

Section 5). This labels each clone pair with a value [1, k], where k is the number

of clusters. Note that we are clustering clone pairs as a whole unit, not their in-

dividual code fragments. We cluster clone pairs rather than clone classes because

clone detectors might might mix true and false positives and different varieties of

clone pairs within the same class, because validating (especially large) Type-2 and

Type-3 clone classes can be unwieldy, and because not all clone detectors report

clone classes. The number of clusters in the clustering solution captures the range

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 11

of the clone varieties detected in the subject system(s). The sizes of the clusters

indicates the distribution (how common/uncommon) of these clones varieties in the

tool’s detection report.

The goal is to cluster the similar clone pairs together such that each cluster

represents a distinct variety of clones, as described in Section 2. Although all the

clone pairs within a cluster are of the same variety, the cluster may contain multiple

clone classes, and the clones within a cluster may not be clones of each other. To

measure precision, an exemplar clone pair is randomly selected from each cluster

and manually judged as a true or false positive by a clone expert(s). Each exemplar

represents the clone variety of its originating cluster. The validated exemplars and

their originating clusters can be used to measure precision. This technique maxi-

mizes the variety of clones considered when measuring precision, while minimizing

the number of clones that need to be manually validated. This procedure could be

executed for a number of diverse subject software systems, with precision measured

for each system individually and than averaged. Alternatively, the clones detected

across a variety of software systems could be combined before clustering. This would

minimize the sample size while maximizing the variety of detected clones inspected

for the subject tool across a community of software systems.

Precision can then be measured in multiple ways. It can be measured as the

ratio of the exemplar clone pairs that are true positives. This gives each variety

of clone a uniform weighting in the measurement of precision, regardless of how

common (cluster size) each variety of clone is in the target subject system(s). This

is a generalized measure of precision, as it normalizes for the distribution of the

varieties of clones in the specific subject system(s) used. This allows the precision

to remain true for an arbitrary software system where the distribution of clone

varieties are different. Alternatively, the non-generalized precision for the specific

subject system(s) can be measured by weighting the contribution of the exemplars

by the size of their corresponding clusters. This is similar to measuring precision

by a random sampling where more common clones have a stronger impact on the

precision. However, a pure random sampling requires a large sample to ensure the

population is sufficiently represented. By clustering the clones we can ensure the

variety of clones has been examined while minimizing the number of clones that

need to be manually validated.

The above procedure assumes a perfect clustering, where every cluster contains

exactly one variety of clones, and each cluster has a different clone variety than

the others. However, it is unrealistic to expect a perfect clustering. It is difficult

to capture the semantic concept of similar clones, from the perspective of clone

validation, numerically for a clustering algorithm. It is also challenging to learn the

number of clone varieties (clusters) in a clone dataset. The clustering algorithms

themselves also have limitations. Specifically, a variety of clones may be split across

multiple clusters, or a cluster may contain multiple varieties of clones. However,

despite this, we find we are able to achieve a good result, and a high-quality precision

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

12 Jeffrey Svajlenko and Chanchal K. Roy

Software

System

Clone

Detector
Vectorization

PCA

Transformation

Dimension

Reduction

Clustering

(k-means, GMM)

Evaluate

Clustering

Solutions

Choose Best

Clustering

Solution

Final

Clustering

Solution

Manual Inspection and Evaluation

Fig. 2: Overview of Experimental Procedure

measurement. In the remainder of the paper we explore clone clustering (Section 5),

and we evaluate how well this enables the measurement of precision as proposed in

this procedure (Section 6).

5. Experiment

In this section we experiment with clustering clones using the k-means and Guassian

Mixture Model (GMM) clustering algorithms for the purpose of measuring precision

as described in Section 4. Our experimental procedure is summarized in Figure 2. We

begin by executing a clone detection tool for a software system. For this experiment,

we use the NiCad clone detector as our subject clone detector, and a package of the

Java class library as our subject software system. We then vectorize the clone pairs

into real-valued vectors using an adaptation of standard document vectorization,

specifically targeting the properties of clone pairs as documents.

The clone vectors are in a very high dimensionality, and clustering algorithms

are known to perform poorly in high dimensions, so we perform dimensionality re-

duction with principle component analysis (Section 3.8). First we rotate the vectors

onto their principle components, and then keep only the Top-T dimensions that

capture a target total percentage of the original data variance. Using the k-means

algorithm and our clustering quality metrics (Section 3.6), we explore different val-

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 13

ues of T while varying the number of clusters, k. We choose the best value of T as

the largest reduction in dimensionality that still indicates a natural clustering point

using the elbow method (Section 3.7).

We then cluster the clones using the reduced clone vectors using both the k-

means (Section 3.1-3.2) and GMM (Section 3.3-3.5) algorithms. We execute both

algorithms for a range of number of clusters, k, and select their best clustering solu-

tions using the silhouette and percentage of singleton clusters metrics (Section 3.6),

and the knee method (Section 3.7). We initialize the k-means algorithm using the

k-means++ algorithm, and initialize the GMM algorithm using the corresponding

k-means clustering solutions.

We then compare the algorithms using the metrics to determine which provided

us the best clustering solution. We manually inspect this final clustering solution

to determine how well it has clustered the clones for use with our procedure for

measuring precision (Section 4) using a clone clustering.

In the following subsections we go over each step of the experiment in detail.

5.1. Subject Software System

We use the source files under the top-level ‘java’ package of the Java 8 class library as

our subject system. Packages of the Java class library are a common target in clone

studies [17, 8]. The ‘java’ package includes a diverse collection of functionalities, and

therefore should contain a significant variety of clones. As a standard library, we

also expect it to repeat various programming patterns and practices, and therefore

should also contain a number of similar clones. The ‘java’ package contains 1868

Java source files encompassing 291 thousand lines of Java code.

Previously, we propose that clustering for measuring precision could be applied

to clones detected in a single subject system or to the combination of clones detected

in a variety of software systems. This subject system represents both cases well. The

‘java’ package is itself a complete subject system, while its 56 sub-packages are also

complete subject systems. In this way we are investigating clone clustering for many

datasets in a cross-project clone detection scenario. These properties make this an

ideal subject system for our study. Of course, our approach could be executed for

any subject system and programming language.

5.2. Subject Clone Detector

We use NiCad [18] as our subject clone detector. NiCad is a popular and state

of the art clone detector with strong recall [28, 8]. It is a hybrid abstract-syntax-

tree (AST) and text-based clone detector. It uses TXL to parse the source files,

extract the code fragments, and perform source normalizations to improve clone

detection. It supports clone detection in Java, C, C# and python software systems

at the block, function and file granularity. It uses a strict pretty-printing, which

normalizes spacing and line breaks and removes comments. This exposes Type-1

clones as textually identical code fragments. It includes identifier renaming and

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

14 Jeffrey Svajlenko and Chanchal K. Roy

literal value normalizations, which expose Type-2 clones as textually identical code

fragments. Type-3 clones are detected by an optimized longest common subsequence

algorithm, along with a maximum clone dissimilarity threshold. NiCad supports

additional TXL-based source transformations, and extension to additional source

languages and granularities, by a plugin architecture.

We executed NiCad for the detection of function granularity clones with no

more than 30% dissimilarity after blind identifier normalization and literal value

abstraction. We use a minimum clone size of 6 lines, which is common in clone

detection tool evaluation [17, 28]. In total, 14,076 clone pairs were detected in the

subject system. We intentionally used a generous configuration to ensure we detect

both true and false clones, for the best test of our clustering procedure.

5.3. Clone Vectorization

Clustering algorithms require the data to be represented by a n by d matrix of real

or discrete numerical values. Where n is the number of data points (clone pairs),

and d is the number of features per data point. In order to cluster the clones we

need to convert them into representative real-valued vectors in d dimensions. To do

this we use standard document vectorization [26].

The most common document vectorization technique is to consider a document

as a bag-of-terms, and represent it as a vector of term-frequencies in term-space. The

vector is typically weighted by the inverse-document-frequencies of the terms, under

the assumption that frequent terms have less discriminating power when clustering

documents. A document has the vector form shown in Eq. 11, where tf i (term-

frequency) is the frequency of term i in the document, df i (document-frequency) is

the number of documents term i appears in, n is the number of documents, and d

unique terms occur across all of the documents.

document = {tf1 log
n

df1
, tf2 log

n

df2
, ..., tf d log

n

df d
} (11)

Clones are pairs of similar code fragments. To apply the document vectorization

technique we need to convert the clone pairs into a single document representation,

and choose a term definition. A natural choice from the clone definitions (Section 2)

is to represent a clone pair as a document of the statement-level cloned code patterns

(as terms) shared by its code fragments. From the definitions, the most important

aspect is the code shared by the code fragments. The clone-type definitions indicate

that clones may contain differences in identifiers and literals, so we normalize these

differences, turning the code fragments into code patterns over arbitrary identifier

names and literal values.

We choose to capture code patterns at the statement-level as statements capture

semantically complete steps. Java has a fairly concise syntax, so it may be trivial for

clones to share normalized statement code patterns. Instead, we capture higher-level

code patterns by considering sequences of multiple statement as code patterns using

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 15

n-grams. The goal is to cluster clone pairs that have similar high-level syntax and

semantics in their cloned-code from the perspective of clone validation. For this,

we ignore the non-cloned code and the minor lower-level syntactical similarities.

The full vectorization process is described in the following subsections. While we

target Java for this experiment, this technique is applicable for any programming

language.

While this process shares some processes with clone detectors – source normal-

ization and capturing of cloned code regions – this is different from clone detection.

Our goal here is to extract a clone pair’s significant high-level cloned code patterns

that define its clone variety. Then clustering is used to group it with clone pairs

of the same clone variety, even if they are not clones of each other. Therefore, this

process is designed to consider only the significant cloned features of the clone pairs,

not the fine-grained cloned and non-cloned features that define variance within a

clone variety.

5.3.1. Extracting Shared Code Patterns

Before vectorization, we must convert the clones into their single-document rep-

resentations by extracting their shared code patterns. We begin by extracting the

clone pair’s code fragments from the software system. An example clone pair is

shown in Figure 3a. Next we convert the code fragments into single-statement code

patterns as shown in Figure 3b. This is achieved using TXL-based [29] source-code

normalizations. First we use a strict pretty-printing, which reformats the code to

one statement per line. Then we replace all identifier names with the token ‘X’ and

all literal values (strings, numerical, boolean, null) with the token ‘0’.

We capture the higher-level code patterns in the code fragments by applying

an n-gram transformation across the single-statement code patterns, as shown in

Figure 3c for n = 3. An advantage of n-grams is it preserves some of the statement

sequence information that would otherwise be lost in the bag-of-terms representa-

tion. The goal is to capture just the high-level cloned code patterns between the

clone’s code fragments, so that the clustering algorithm groups clones based on

similarities in their major syntactical and semantic features. This is a compromise

between capturing high-level semantics in the code, and being mindful that Type-3

clones contain statement-level gaps that may split sequences of shared code state-

ments.

We now treat each code fragment as a bag of (N -statement) code patterns.

We extract the shared code patterns by computing the intersection of the two

bags. With the 3-gram representation, only the shared code patterns that are three

statements or longer are kept. This prevents clones that share only trivial cloned

code patterns from being clustered together. Duplicate 3-grams are allowed in the

bags, and the number of duplicates shared is computed by the intersection. The

single-document representation of the clone is then a sequence of the shared code

patterns, as shown in Figure 3d. The order of this sequence is not important as the

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

16 Jeffrey Svajlenko and Chanchal K. Roy

static Period readExternal(DataInput in)
throws IOException {

int years = in.readInt();
System.out.println(years);
int months = in.readInt();
int days = in.readInt();
return Period.of(years, months, days);

}

static ChronoPeriodImpl readExternal(DataInput in) throws IOException {
Chronology chrono = Chronology.of(in.readUTF());
int years = in.readInt();
System.out.println(years);
int months = in.readInt();
int days = in.readInt();
return new ChronoPeriodImpl(chrono, years, months, days);

}

(a) Original Clone Pair

static x x(x x) throws x {
int x = x.x();
x.x.x(x);
int x = x.x();
int x = x.x();
return x.x(x, x, x);
}

static x x(x x) throws x {
x x = x.x(x.x());
int x = x.x();
x.x.x(x);
int x = x.x();
int x = x.x();
return new x(x, x, x, x);
}

(b) Normalization to Single-Statement Code Patterns

static x x(x x) throws x { int x = x.x(); x.x.x(x);
int x = x.x(); x.x.x(x); int x = x.x();
x.x.x(x); int x = x.x(); int x = x.x();
int x = x.x(); int x = x.x(); return x.x(x, x, x);
int x = x.x(); return x.x(x, x, x); }

static x x(x x) throws x { x x = x.x(x.x()); int x = x.x();
x x = x.x(x.x()); int x = x.x(); x.x.x(x);
int x = x.x(); x.x.x(x); int x = x.x();
x.x.x(x); int x = x.x(); int x = x.x();
int x = x.x(); int x = x.x(); return new x(x, x, x, x);
int x = x.x(); return new x(x, x, x, x); }

(c) Higher Level Code Patterns Using 3-Gram Transformation

x x = x.x(x.x()); int x = x.x(); x.x.x(x);
int x = x.x(); x.x.x(x); int x = x.x();
x.x.x(x); int x = x.x(); int x = x.x();

(d) Shared Higher Level Code Patterns

Fig. 3: Clone-Pair to Single-Document Conversion

next step is vectorization.

5.3.2. Vectorization

The single-document representations of the clones are vectorized using the N -gram

code patterns as terms, as described in Eq. 11. For our subject system, we found a

significant number of the terms only appear in a single clone. The inverse-document-

frequency puts a significant weight on these dimensions, while they do not help

cluster these clones with other similar clones, and increases the risk of single-point

clusters, which are undesirable. We therefore drop these terms from the vectors.

This reduces the overall dimensionality of the data, which can improve clustering

performance [30]. We normalize the vectors by their length in order to ignore differ-

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 17

0
2
4
6
8
10

1
10

100
1000

10000
100000

1 501 1001 1501 2001 2501 Inve
rse

Doc
um

ent

Fre
que

ncy

Doc
um

ent

Fre
que

ncy

3-Gram/Statement Code Pattern

Document Frequency
Inverse Document Frequency

Fig. 4: Document Frequency of 3-Grams in the Dataset

ences in clone (shared code pattern) size. The clones are output as a n by d matrix

ready for clustering.

5.3.3. Applying to the Dataset

We vectorized the clone pairs NiCad detected in our subject system using the above

process. We used 3-gram (statement) code pattern terms for document vectorization

with term-frequency inverse-document-frequency (tf-idf). The vectors are over 2711

term dimensions. This is a reduction from 7719 term dimensions after removing

the singleton terms (those that appear in only a single clone document). Figure 4

plots the document frequencies and inverse document frequency weights of the non-

singleton terms in order of decreasing document frequency. The document frequency

very closely matches a power-law distribution. Most of the terms appear in 2-100 of

the clone documents. Only 71 terms appear in more than 100 clone documents, with

the most frequent term appearing in 3350 clone documents. The inverse-document-

frequency weighting in the vectorization accounts for this disparity in common and

rare code patterns, and prevents clusters from being trivially created by only the

common terms. It is the sharing of rare terms that is most likely to indicate similar

clones.

The clone vectors are very sparse. On average, a clone vector has a non-zero

magnitude in just 4.2 dimensions. Across all of the clone vectors, there are only

59,947 non-zero real values. While the dataset includes 14,076 vectorized clones, only

1422 of these vectors are unique. Clone pairs with the same vector representation

are not necessarily identical clones, but their single-document representation has

the same terms (3-gram code patterns) in the same ratios. Both clones have code

fragments that share the same 3-statement code patterns in the same ratios, ignoring

differences in clone size.

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

18 Jeffrey Svajlenko and Chanchal K. Roy

0
20
40
60
80

100

0 100 200 300 400 500 600 700 800 900 1000% T
ota

l Va
rian

ce
Exp

lain
ed

Top-T Dimensions
Fig. 5: Total Variance Explained by PCA Reduction

5.4. Dimensionality Reduction

The vectorized clones are in a very high dimensionality. Clustering algorithms are

known to perform poorly in high dimensions [30]. In high dimensions, distance

metrics begin to return similar values for any arbitrary pair of data vectors due to

high degree of orthogonality.

Dimensional reduction can be achieved using principal component analysis (Sec-

tion 3.8). The clone vectors are rotated onto a linearly uncorrelated principal com-

ponent basis. The principal components are in decreasing order of the original data

variance they explain. Reduction is achieved by keeping only the top-T principal

components (dimensions) that preserve a target total data variance explained.

We used MatLab [31] to perform PCA on the data. This returns the rotated data

as well as the variance explained by each principal component. Figure 5 shows the to-

tal variance explained by the Top-T principle components (dimensions). Essentially

100% of the variance is explained by the first 1000 of 2711 principle components.

However, the majority of the total variance is explained by only the first 15-250

principal components. Ideally, we want a significant reduction from the original

2711 term dimensions.

We explore values of T for preserving 50-90% of the variance in the data. This

corresponds to convenient T values of 15 (56%), 25 (63%), 50 (71%), 100 (80%), and

250 (90%). We execute an initial k-means clustering (with k-means++ initialization

and using the cosine distance metric) for each reduction for a range of k from

20 to 1300. We measure the silhouette of each clustering solution, and plot this

for each reduction and across k in Figure 6. We want to choose the reduction

which best indicates a natural clustering point, as determined by the elbow method

(Section 3.7), while optimizing the silhouette at this clustering point.

A reduction to the first 100 principal components (80% of total variance ex-

plained) appears to be the ideal reduction. It has a single well defined elbow (natu-

ral clustering point), while the other reductions have either multiple and/or unclear

elbows. It achieves a higher silhouette than keeping more dimensions (250), while

having comparable silhouette to the further reductions (15-50). So we choose to

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 19

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Silh
oue

tte

Number of Clusters, K

15 (56%) 25 (63%) 50 (71%) 100 (80%) 250 (90%)

Fig. 6: Silhouette of K-Means Solutions Across k for Different PCA Dimensionality

Reductions

reduce the PCA-transformed dataset to the first 100 principal components for use

with k-means clustering. This also applies to the GMM clustering, which we initial-

ize using k-means clustering.

5.5. K-Means Clustering

We now explore k-means clustering solutions for a range of k from 20 to 1300

on the clone vectors after PCA dimension reduction keeping the top-100 princi-

pal components. We use MatLab’s [31] k-means implementation with k-means++

initialization and cosine distance metric. We use an increment of 20 in the range

20-400 where the elbow is observed, and an increment of 50 from 400-1300. It was

not executed for every k in this range due to execution time considerations.

For each clustering solution, we measured its silhouette and percentage of sin-

gleton clusters, as described in Section 3.6. These are shown across k in Figure 7.

The silhouette increases rapidly as the number of clusters increases to 100. After-

wards, the silhouette increases slowly to near 1.0 as the number of clusters increases

to 1300. After 1300 clusters, the k-means algorithm became unstable, splitting du-

plicate clone vectors into different clusters, which cause the silhouette measure to

become undefined. The ‘elbow method’ (Section 3.7) on the silhouette indicates that

100 clusters is the natural number of clusters for this data. This is the point where

the improvement in clustering quality (silhouette) by adding additional clusters

sharply declines.

This is supported by the ‘percentage of singleton’ clusters measure. Remember

(Section 3.6) that the silhouette metric has the flaw where it trivially returns a per-

fectly clustering, 1.0, when there is a cluster for each unique data point (allowing

duplicates). As the silhouette slowly increases to 1.0 after 100 clusters, we see the

percentage of singleton clusters increases linearly at a significant slope. The (weak)

increase in silhouette after 100 clusters is most strongly due to the increase in sin-

gleton clusters. In contrast, before 100 clusters, the percentage of singleton clusters

oscillates without any definite trend. The increase in silhouette as the number of

clusters is increased to 100 is most dependent upon approaching a natural clustering

point, not the number of singleton clusters. Therefore the best k-means solution is

achieved at k = 100 clusters. This clustering solution has a silhouette of 0.86 with

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

20 Jeffrey Svajlenko and Chanchal K. Roy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Silh
oue

tte,
 % S

ingl
eto

n

Number of Clusters, K

SilhouettePercent of Singleton Clusters

Fig. 7: Evaluation of K-Means Clustering Solutions

16% singleton clusters.

5.6. GMM Clustering

We now explore GMM clustering solutions for a range of k from 20 to 400. Clustering

is performed by initializing a mixture model of k Gaussian distributions (Section 3.3)

and fitting it using the expectation maximization algorithm (Section 3.4). The data

points (clones) are assigned to the Gaussian component (cluster) most likely to have

generated it. Fitting the Gaussian mixture model was accomplished using MatLab.

The Gaussian mixture models were initialized using their corresponding k-means

clustering solution as described in Section 3.5, using an uniform initial weighting.

The EM algorithm is very sensitive to initial conditions, so we use the k-means

solution to provide a good starting condition. This can be seen as using a GMM

clustering to refine the k-means solutions by modeling the covariance in the clustered

data. A regularization value of 1x10−6 was used to prevent ill-fitting covariance

matrices. The covariance matrices were restricted to diagonal matrices to reduce

the number of free parameters.

Restricting to diagonal covariance matrices greatly reduces the number of free

parameters in our case. It is a requirement as otherwise there is not enough data

to properly fit the Gaussian mixture models, although diagonal covariance matrices

somewhat reduces the power of the model. After PCA dimensionality reduction

our data is in 100 dimensions. Assuming a natural clustering point of around 100

clusters (as found with k-means), full covariance matrices would require one million

free parameters. An additional 10,100 free parameters are required for the Gaussian

means and mixture weightings. However, we have only 14,072 data vectors spanning

1.41 million real-values. The sparsity of the data reduce this to 59,947 non-zero real-

values. This is insufficient to fit on the order of one million free parameters. Diagonal

matrices reduces the free parameters from the covariance matrices to 10,000, or

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 21

-7.00E+06
-6.50E+06
-6.00E+06
-5.50E+06
-5.00E+06
-4.50E+06
-4.00E+06

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 40 80 120 160 200 240 280 320 360 400

Neg
ativ

e Lo
g-Li

keli
hoo

d

Silh
oue

tte,
 % S

ingl
eto

n

Number of Clusters, K

Silhouette Percent Singleton Negative Log Likelihood

Fig. 8: Evaluation of Gaussian Mixture Model Clustering Solutions

20,100 free parameters in total. With diagonal covariance matrices the data at least

exceeds the number of free parameters. This is the challenge of using Gaussian

mixture model to cluster data with a large number of natural clusters and high

dimensionality.

For each GMM clustering solution, we measured their silhouette and percent-

age of singleton clusters. Since this is a probabilistic model, we were also able to

measure the negative log-likelihood of the clustering solutions. These are plotted

against number of clusters (Guassian components), k, in Figure 8. Like the k-means

solutions, the silhouette has most of its gains increasing the number of clusters from

20 to 100. Afterwards, the silhouette slowly increases towards 1.0 as the percentage

of singleton clusters increases. We stopped at 400 clusters with GMM as the number

of free parameters begins to overwhelm the data.

There is a strange feature in the silhouette plot at 120 clusters where the silhou-

ette drops dramatically before recovering at 140 clusters. This feature makes it more

challenging to apply the ‘knee method’ in choosing a natural number of clusters.

The knees in the plot appear to be at 100 and 140 or 160 clusters. If we assume the

120 clusters solution is an anomaly and smooth over it, than 100 clusters would be

the single knee. This is supported by the plot of the negative log likelihood, where

the significant (negative) increase in log-likelihood occurs up to 100 clusters, with

weak increase afterwards.

So the best GMM clustering solution is for 100 clusters. This achieves a silhouette

of 0.74 with 34% singleton clusters. We compare this against the k-means clustering

solutions in the next section.

5.7. Comparing Clustering Solutions

In this section we compare the k-means and GMM clustering solutions to determine

which provides the better clustering. From both algorithms, the natural clustering

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

22 Jeffrey Svajlenko and Chanchal K. Roy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 40 80 120 160 200 240 280 320 360 400

Ave
rag

e D
ata

 Silh
oue

tte

Number of Clusters, K

Silhouete (GMM) Silhouette (K-Means) %Singleton (GMM) %Singleton (K-Means)

Fig. 9: k-means vs. GMM Clustering Solutions

point appears to be around 100 clusters. At 100 clusters, k-means achieves a clus-

tering solution with a silhouette of 0.86 and a low percentage of singleton clusters,

16%. While GMM achieves a silhouette of 0.74 with 34% singleton clusters. Both

algorithms achieve a good silhouette, although k-means achieves a higher silhouette.

The k-means solution has a much lower percentage of singleton clusters, 16% versus

GMM’s 34%.

To get a better idea of how these algorithms compare, we compare their silhou-

ette and percentage of singleton clusters across the range of k from 20 to 400, which

is plotted in Figure 9. As can be seen, the k-means algorithm consistently provides

clustering solutions that achieve higher silhouette with fewer singleton clusters. The

k-means solutions is also free of anomalies, such as the one occurring at 120 clus-

ters with GMM clustering. Both algorithms have a similar phenomenon where the

silhouette slowly approaches 1.0 as the percentage of singleton clusters increases.

Overall, k-means provides better clustering solutions for our clone data. In gen-

eral, it is expected that GMM clustering can provide a better clustering solution

since it models the covariance of the clusters. There are a number of possible reasons

why it is performing worse than k-means in this case. One possibility is that the

distribution of the clone data cannot be approximated by a mixture of Gaussian

distributions. Another likely possibility is there is simply not enough data to ap-

proximate the parameters of the Gaussian mixture model. With a natural clustering

point of 100 clusters, the Gaussian mixture model (limited to diagonal covariances)

requires 20,100 free parameters, whereas the dataset contains only 14,072 sparse

data vectors totaling 59,947 non-zero data values. We therefore use the best k-

means clustering solution as our final clustering solution.

5.8. Final Clustering Solution

In the previous sections, we found that k-means provides the best clustering solu-

tion, with a natural clustering point at 100 clusters with dimensionality reduction

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 23

0.87

0.0
0.2
0.4
0.6
0.8
1.0

0 25 50 75 100

Silh
oue

tte

Clusters (In Order of Increasing Cluster Silhouette)

Cluster Silhouette Average Cluster Silhouette

Fig. 10: Distribution of Cluster Silhouette

to the top-100 dimensions after principle component analysis. For our final cluster-

ing solution, we re-executed the k-means algorithm for 100 clusters with the same

parameters (k-means++ initialization, cosine distance) except with 10 replications.

This means that the algorithm is executed ten times with different initial condi-

tions, and the solution with the lowest total sums of squares is chosen as the optimal

solution. This final clustering solution has a silhouette of 0.87 with 19% singleton

clusters. In this section we measure properties of the final clustering solution.

While we measured the overall silhouette of the clustering solution (0.87), also

of interest is the silhouette of the individual clusters. The silhouette of an individual

cluster is measured as the average silhouette of only the data points in that cluster.

The distribution of the individual cluster silhouettes is plotted in Figure 10 in order

of increasing cluster silhouette. 75% of the clusters have an excellent silhouette,

greater than 0.80. Of the remaining 25% below 0.80, only 5% have a silhouette less

than 0.5, with one cluster having the worst silhouette of 0.2. The average cluster

silhouette across these 100 clusters is 0.87, so the majority of the clusters are of

high quality, as judged by the silhouette metric.

Figure 11 plots the distribution of cluster sizes in order of increasing cluster

size, along with their cumulative ratio of the dataset. The clusters range from 15

to 2540 clone pairs in size. The majority of the clones are in the larger clusters.

Figure 12 bins the clusters into convenient regions. The majority of the clusters

(71%) contain only 15-99 clones and span only 24% of the clones, while 28% of

the clones are contained within two very large (1440 and 2540 clones) clusters. The

remaining 48% of the dataset occurs in clusters of sizes 101 to 702 clones, although

the majority of these occur in the 100-194 range.

This confirms our knowledge of the distribution of clone variety in a software

system. Given that each cluster groups similar clones, 71% of the variety makes up

only 24% of the dataset. A pure random sampling of the clones will be biased by

the clones in the larger clusters because they make up a more significant ratio of

the total dataset. For example, 28% of a pure random sample should be from the

two largest clusters. This is why we need to sample the clones per cluster to ensure

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

24 Jeffrey Svajlenko and Chanchal K. Roy

0.0
0.2
0.4
0.6
0.8
1.0

0
2
4
6
8

10

15 16 20 21 22 23 25 26 28 29 32 36 39 40 42 43 45 46 47 48 52 54 56 60 62 66 68 69 72 73 74 75 78 79 83 85 89 91 103 105 117 120 136 146 148 170 193 194 219 223 224 247 253 276 325 406 417 435 451 624 702 144
0

254
0

Cum
ulat

ive
% o

f
Dat

ase
t

Num
ber

 of
Clu

ster
s

Cluster Size

Number of Clusters Cumulative % of Dataset

Fig. 11: Cluster Size Distribution

71

14 6 1 4 0 1 1 0 0 2
24%

38% 48% 50%
62% 62% 67% 72% 72% 72%

100%

0%
20%
40%
60%
80%
100%

0
20
40
60
80

100

Cum
ulat

ive
% o

f Da
tase

t

Num
ber

 of
Clu

ster
s

Cluster Size
Fig. 12: Binned Cluster Size Distribution

maximum clone variety is captured in a minimum sample size.

5.9. Manual Inspection

We manually inspected the final clustering solution to see how well it meets our

needs for measuring precision as previously outlined in Section 4. The goal was to

produce a clustering of clone pairs where distinct varieties of clones are placed in

their own cluster, and where all of the clone pairs in a cluster can be represented

by a single randomly chosen exemplar from that cluster when measuring precision.

Manual inspection of the clusters was done for evaluation only, and is not a required

component of the procedure for measuring precision. During this inspection we

judged the clusters as strong or weak. A “strong” cluster is one that contains only a

single variety of clones, and which can be represented by a single randomly chosen

exemplar from the cluster. A “weak” cluster contains multiple varieties of clones,

and cannot be fully represented by a single exemplar. In total we found 76 strong

clusters and 24 weak clusters.

When judging the clusters as strong or weak, i.e. if they contain a single or

multiple varieties of clones (Section 2), we considered the syntax, semantics and

code patterns of the clone pairs. In particular, how these elements affect the decision

to validate the clones as true or false positives from the perspective of a variety of

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 25

clone. A particular clone variety may span multiple clone types. A few examples

of strong clusters we found include: clones of constructors that take a number of

parameters and initialize fields with these values, clones of functions implementing

buffer slicing on arrays of different primitive data types, and clones of short file-

system operations wrapped in a common Java security manager code-pattern. In a

few cases a large cluster of a single variety of clones contained a single or a small

number of outliers. We judged these as strong clusters if the number of outliers was

very small compared to the cluster size, in which case it would be unlikely to choose

an outlier as the exemplar of the cluster.

In our approach (Section 4), precision is measured by validating a random ex-

emplar clone from each cluster. Since the strong clusters contain clones of a single

clone variety, and we judged clone variety based on the aspects that affect clone

validation, it is safe to extrapolate the validation of the exemplar as a true or false

positive to all clone pairs within the strong cluster. We now provide some detailed

observations about the strong and weak clusters.

Strong Clusters: While inspecting the clusters we noticed that some of the

strong clusters should ideally be merged. For example, there were multiple clusters

containing clones of functions implementing object cloning using the same code

pattern. These clusters were split by the k-means algorithm due to some differences

in the code patterns their clones shared. This means that some of the exemplars

from the strong clusters will be similar. We selected a random exemplar from each

of the strong clusters and manually grouped those of the same variety of clone.

In total, the 76 strong clusters yielded 56 distinct clone varieties. Eleven clone

varieties were split into multiple clusters. The majority of these (six) were split into

two clusters, while two were split into three, two into four and one into five clusters.

While the splitting of a clone variety into multiple strong clusters is not a problem in

terms of missing a variety of clones, it does needlessly increase the number exemplars

to be examined, and adds a small bias when a generalized precision is measured by

giving each cluster equal weighting (Section 4). In this case it is minor, affecting

only 11 of the 56 (20%) clone varieties found in the strong clusters.

Weak Clusters: The weak clusters are those that contain multiple clone vari-

eties, where a single exemplar cannot represent the whole cluster when measuring

precision. This does not mean the clones within the cluster do not share features,

nor that they are all completely disparate, the cluster just simply cannot be rep-

resented by only a single exemplar. When we investigated the weak clusters we

found that they could be converted into strong clusters if appropriately split. In

most cases, a weak cluster was the merging of only 2-5 varieties of clones, while

others had a more significant number of these hidden strong clusters. Some of these

hidden strong clusters are of varieties of clones not previously seen, while some

of them would ideally be merged with one of the existing strong clusters. These

hidden strong clusters have been merged by the algorithm due to sharing a code

pattern or sharing linearly correlated code patterns (due to rotation onto principal

components).

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

26 Jeffrey Svajlenko and Chanchal K. Roy

Since some of the weak clusters contain clones not seen in the strong clusters,

exemplars chosen from them still contribute to the variety of clones examined. We

randomly selected an exemplar from each of the weak clusters and found that 20 of

these 24 clones were distinct from each other and not seen in the strong clusters.

This suggests that some clone variety is missed when we only select a single exemplar

from the weak clusters. This could be alleviated by selecting multiple exemplars from

these clusters, although this is not necessary to measure a high-quality precision.

A better use of additional efforts would be to extend the measure of precision

to additional subject systems. In the next section we provide a full quantitative

analysis of the performance of our technique and compare it against the traditional

random sampling approach.

Summary: We judged 76 of the 100 clusters as strong and 24 as weak. In

absolute number of clone pairs, 10,505 of the 14,069 clones pairs (75%) are in the

strong clusters. So the strong clusters perfectly capture the clone variety in the

majority of the clone detection report, while the weak clusters still capture partial

clone variety for the remaining 25%. Selecting one exemplar per cluster, a total

sample size of 100 clones, yields 76 distinct varieties of clones: 56 from the strong

clusters and 20 from the weak clusters, as we found in Section 5.9. This is an

efficiency of 76% in terms of clone variety within the inspected clone pairs.

6. Evaluation

We now compare our technique against the traditional pure random sampling in

terms of clone variety and the biases that affect the accuracy and generality of

the precision measure. As we found in the previous section, a sample of clones by

choosing a single exemplar from each cluster in our final clustering solution (k-

means, 100 clusters) yields 76 distinct varieties of clones within a 100 clone sample

(76% efficiency). For comparison we selected 100 random clone pairs from the entire

clone dataset (without clustering) and manually grouped them by clone varieties.

A sample of 100 clone pairs by pure-random sampling yields only 37 distinct clone

varieties (37% efficiency). This is the best case we saw over several trials. Our

cluster-based approach achieves over twice the clone variety for the same clone

validation efforts.

We continued to randomly sample clone pairs until we reached parity. The ran-

dom sampling approach required a sample size of 272 clone pairs to reach 76 distinct

clone varieties at 28% efficiency. The efficiency in selecting a variety of clones by

random sampling becomes less efficient as the sample size grows as it becomes more

likely to choose varieties already seen. The random sampling approach requires

almost three times the manual efforts to capture the same variety of clones. For

this same effort, we could execute our cluster-based approach for additional subject

systems and further increase the variety of clones considered.

While, with significant additional efforts, the traditional approach can match

our approach in terms of total variety of clones considered, it cannot guarantee an

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 27

1 2 3 4 5 6 8 12 13 24 30

64

1 2 3 4 5
010203040506070

1 2 … 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

Fre
que

ncy

Clone Varieties

Cluster Exemplars Radom Sample

Fig. 13: Distribution of the Varieties of Clones Sampled - Our Cluster-Based Ap-

proach vs Random Sampling

accurate and generalized precision due to biases in the clone sample. We compare

the distribution of the 76 clone varieties found by our cluster-based approach (100

exemplar clone pairs) and the traditional random sampling (272 randomly sampled

clone pairs) in Figure 13. This plot shows the number of times each variety of clones

appears in the clone samples produced by the two approaches. The clone varieties are

ordered by increasing frequency, but the clone varieties do not necessary correspond

between the two techniques.

For an accurate and generalized precision, each clone variety ideally has equal

weighting in the measurement of precision. The clones considered by both tech-

niques exhibit some bias due to some clone varieties appearing multiple times in

the sample, causing these clone varieties to have a stronger weighting in the pre-

cision measurement. Our cluster-based technique has 13 clone varieties appearing

multiple times in the sample, with most occurring twice, and a worst case of 5

exemplar clone pairs being of the same clone variety. The random sampling tech-

nique has 25 clone varieties appearing multiple times in its sample, with a range of

re-occurrence of 2 to 64. With random sampling, five of the clone varieties have an

order of magnitude higher impact on the precision measurement than the others,

with a range of 12x to 64x in the worst case. These clone varieties significantly bias

the precision measurement. In contrast, our cluster-based approach reduces these

biases by up to an order of magnitude. Overall, our approach exhibits very little

bias.

While random sampling can estimate the specific precision of a particular subject

system, it is not effective in measuring a generalized precision. Our cluster-based

technique excels in measuring an accurate and generalized precision. It can also be

used to measure the specific precision for a particular subject system by weighting

each exemplar by the size of the cluster it was drawn from. Our technique requires

a smaller sample size, therefore less efforts, than random sampling.

7. Case Study: NiCad

We now measure the precision of NiCad using the clustering solution. We randomly

selected one exemplar clone pair per cluster (100 clones) for manual validation.

We judged a clone pair as true positive if its code fragments shared syntax and/or

semantics, in addition to it being useful or important to a software maintenance

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

28 Jeffrey Svajlenko and Chanchal K. Roy

and evolution task or concern. We judged a clone pair as false positive if it did

not share syntax or semantics, or if it only trivially did and would’t be useful to

a developer. We measured a generalized precision of 74% by giving each exemplar

clone equal weighting. We measure a specific precision of 54% for the subject system

by weighting the contribution of each exemplar by the size of its cluster. The false

positives we saw did share syntax, but were not useful clones. For example, clones of

functions registering action listeners, clones of simple constructors setting member

fields, clones of equals functions using the same programming conventions, and so

on. The discrepancy between the generalized and system-specific precisions is due to

the aforementioned false positives being very common in this subject system, a class

library. We would not expect these false positives to be as common in a different type

of subject system. This is the usefulness of our cluster-based technique, it allows us

to measure a generalized precision by removing the bias of the distribution of the

clone varieties in the particular subject system.

If we only require the clone pairs to share syntax to be true positives, we mea-

sure a precision of 100% – indicating no false positives caused by bugs in NiCad’s

algorithms. Noting that some of the false positives were clones of common Java pro-

gramming and API idioms, the precision of NiCad could be improved by targeting

these programming patterns and filtering the detected clones. Our clustering tech-

nique could be used as a manual filtering technique, allowing the user to discard the

clusters that contain false positives after a minimum inspection. In our experience

with this case study we noted a few additional advantages of our technique. If we

were unsure how to judge a particular clone pair we could check other exemplars

of the same clone variety to make our decision. By keeping the number of clones

needing valuation small, and by reducing the chance of seeing two exemplars of the

same clone variety (Figure 13), we were more confident we were judging the clones

consistently.

8. Related Work

Although equally as important as recall, there has been a marked lack in the mea-

surement of clone detection precision, possibly due to the challenges involved (e.g.,

extensive manual efforts [17, 32], reliability of judges [13], etc). Algorithm and tool

publications occasionally include a measure of precision [33, 14, 34, 35, 15, 36]. Usu-

ally the tool author checks on the order of 100 clones detected in a single or a

couple software systems. Roy and Cordy [32] measure a semi-automated precision,

where an automatic clone validator attempts to validate the clones, while leaving

the clones it is unsure of up to manual inspection. However, their approach is lim-

ited to artificial clones created by a mutation analysis procedure and injected into

the subject system.

There have been a few studies that compare the precision of multiple tools.

Burd and Bailey [37] measured the precision of 5 tools by manually validating all

the clones they found in a very small subject system, 1741 clones overall. Falke

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 29

et al. [16] measured the precision of 4 tools using 2 subject systems, and report

requiring 11 working days to validate 9,415 clones. The most extensive study was

done by Bellon et al. [17] who measured the precision (and recall) of 6 tools by

manually validating 2% of the clones they detected in 8 subject systems, with the

clones selected randomly. In total, 77 hours of effort were required to validate 6528

clones.

While Bellon’s validated clones are publicly available [38], and can be used

to measure the recall of clone detectors [17, 8], the benchmark can only be used

to measure a lower bound on precision for tools that were not used to build the

benchmark. This involves accepting as true positives the detected clone pairs that

match those in the benchmark. This is not very effective due to the low chance

of matching clones between the benchmark and modern clone detectors [8]. Also,

there is concern regarding the quality of Bellon’s clone corpus [11, 12, 8]. Adding

a new tool the benchmark, and measuring its precision, requires extensive manual

validation efforts, and is not comparable to the original tools due to undocumented

clone validation procedures [16].

The most similar work to ours is by Yang et al. [39], who use supervised learning

to classify clones similar to manually labeled clones in a training set with a 70-90%

accuracy depending on the user, subject system and number of labels. The training

set was built by manual labeling of a random selection of clones. In contrast, our

work uses unsupervised learning to cluster similar clones to ensure a wide variety of

clones are considered when measuring precision. Our technique efficiently measures

an accurate precision using a variety of clones while minimizing biases inherit to

random sampling approaches.

9. Threats to Validity

A different configuration of the experiment might provide better results. For exam-

ple, a different number of clusters, or a different number of principal components to

keep. We chose these parameters based on cluster quality metrics (silhouette), but

these metrics do not understand the semantic goal of our clustering. This requires

manually investigating the chosen clustering solution, which is too time-intensive to

repeat for many permutations of the configurations. However, we have shown that

the metrics do lead us to a clustering solution with good results for our motivating

use-cases.

As part of our evaluation, we manually inspected clone clusters to judge if they

contained a single or multiple varieties of clones. We also manually clustered ran-

domly selected clones to judge the total number of clone varieties seen. These judg-

ments are somewhat subjective, and are based on our experience in clone research

and clone detection benchmarking. The judgments may differ if made by different

researchers, although they require a clone expert to make good judgments. We doc-

umented our clone variety judgments, and ensured that we applied these judgments

uniformly across the experiments. Therefore we minimize the affect this subjectivity

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

30 Jeffrey Svajlenko and Chanchal K. Roy

has on the comparison between the traditional and our cluster-based approach to

measuring precision.

10. Conclusion

In this paper we presented a novel approach for efficiently measuring an accurate

and generalized clone detection precision. Our approach selects clone pairs for vali-

dation from a clustering solution which guarantees a wide variety of clone pairs are

considered with minimal bias. We cluster the clones using a custom vectorization

process and the k-means algorithm after dimensionality reduction with principal

component analysis. We evaluated our approach with NiCad as our subject clone

detector and a selection of the Java class library as our subject system. We com-

pared our approach against the traditional measurement of precision by random

sampling. We found that our technique considers twice the variety of clones for

the same sample size, while random sampling requires a sample size nearly three

times larger to match our variety of clones considered. Traditional random sampling

suffers from biases that harm the generality of the precision measured due to the

uneven distribution of different clone varieties within the specific subject system,

which may be different in another arbitrary software system. Our technique reduces

these biases by up to an order of magnitude, and has very little bias overall. As

future work, we plan to use this approach with the clones we detected in our recall

experiments [28, 8] to measure the precision of the modern clone detection tools.

References

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” Tech.
Rep. TR 2007-541, School of Computing, Queens University, 2007. 115 pp.

[2] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project functional
clone detection toward building libraries - an empirical study on 13,000 projects,” in
Reverse Engineering (WCRE), 2012 19th Working Conference on, pp. 387–391, Oct
2012.

[3] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability simultaneously
in detecting application clones on android markets,” in Proceedings of the 36th In-
ternational Conference on Software Engineering, ICSE 2014, (New York, NY, USA),
pp. 175–186, ACM, 2014.

[4] S. Cesare, Y. Xiang, and J. Zhang, “Clonewise - detecting package-level clones using
machine learning,” in Security and Privacy in Communication Networks, vol. 127 of
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 197–215, Springer International Publishing, 2013.

[5] R. Koschke, “Large-scale inter-system clone detection using suffix trees,” in Soft-
ware Maintenance and Reengineering (CSMR), 2012 16th European Conference on,
pp. 309–318, March 2012.

[6] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code clone search
via multi-level indexing,” in Reverse Engineering (WCRE), 2011 18th Working Con-
ference on, pp. 23–27, Oct 2011.

[7] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia, “Towards a big
data curated benchmark of inter-project code clones,” in Proceedings of the 2014

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

Efficiently Measuring an Accurate and Generalized Clone Detection Precision using Clone Clustering 31

IEEE International Conference on Software Maintenance and Evolution, ICSME ’14,
(Washington, DC, USA), pp. 476–480, IEEE Computer Society, 2014.

[8] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,” in ICSME,
2014. 10 pp.

[9] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based benchmarking
framework for clone detectors,” in Proceedings of the 7th International Workshop on
Software Clones, IWSC ’13, pp. 8–9, 2013.

[10] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone management:
Past, present, and future (keynote paper),” in 2014 Software Evolution Week - CSMR-
WCRE’14, pp. 18–33, 2014.

[11] B. Baker, “Finding clones with dup: Analysis of an experiment,” Softw. Eng., IEEE
Trans. on, vol. 33, no. 9, pp. 608–621, 2007.

[12] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère, “An empirical assessment
of bellon’s clone benchmark,” in Proceedings of the 19th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’15, (New York, NY,
USA), pp. 20:1–20:10, ACM, 2015.

[13] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems creating task-
relevant clone detection reference data,” in Reverse Engineering, 2003. WCRE 2003.
Proceedings. 10th Working Conference on, pp. 285–294, Nov 2003.

[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-
based detection of code clones,” in Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pp. 96–105, May 2007.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste and related
bugs in large-scale software code,” Software Engineering, IEEE Transactions on,
vol. 32, pp. 176–192, March 2006.

[16] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of clone detection using
syntax suffix trees,” Empirical Software Engineering, vol. 13, no. 6, pp. 601–643, 2008.

[17] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and evalu-
ation of clone detection tools,” Software Engineering, IEEE Transactions on, vol. 33,
pp. 577–591, Sept 2007.

[18] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization,” in ICPC, pp. 172–181, 2008.

[19] Oracle Corporation, “Java SE development kit 8.”
https://www.oracle.com/java/index.html, 1995–2015.

[20] J. E. Jackson, A User’s Guide to Principal Components. Wiley Series in Probability
and Statistics, Wiley-Interscience, 2004.

[21] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’07, pp. 1027–1035, 2007.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the em algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY,
SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[23] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53
– 65, 1987.

[24] MathWorks, “Silhouette plot - matlab silhouette.”
http://www.mathworks.com/help/stats/silhouette.html?refresh=true.

[25] DataScienceLab, “Finding the k in k-means cluster, the
data science lab.” https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-
in-k-means-clustering/.

September 21, 2016 20:26 WSPC/INSTRUCTION FILE ws-ijseke

32 Jeffrey Svajlenko and Chanchal K. Roy

[26] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document clustering
techniques,” in In KDD Workshop on Text Mining, 2000.

[27] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 3 ed.,
2012.

[28] J. Svajlenko and C. Roy, “Evaluating clone detection tools with bigclonebench,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International Conference
on, pp. 131–140, Sept 2015.

[29] J. Cordy, “The txl programming language.” http://www.txl.ca/.
[30] J. Ullman, “Clustering.” http://infolab.stanford.edu/ ullman/mmds/ch7.pdf.
[31] MATLAB, (R2015b). Natick, Massachusetts: The MathWorks Inc., 2015.
[32] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic framework for

evaluating code clone detection tools,” in Software Testing, Verification and Valida-
tion Workshops, 2009. ICSTW ’09. International Conference on, pp. 157–166, April
2009.

[33] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” in Proceedings
of the 30th International Conference on Software Engineering, ICSE ’08, (New York,
NY, USA), pp. 321–330, ACM, 2008.

[34] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in source code,”
in Proceedings of the 8th International Symposium on Static Analysis, SAS ’01, (Lon-
don, UK, UK), pp. 40–56, Springer-Verlag, 2001.

[35] J. Krinke, “Identifying similar code with program dependence graphs,” in Reverse
Engineering, 2001. Proceedings. Eighth Working Conference on, pp. 301–309, 2001.

[36] C. Roy and J. Cordy, “Nicad: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization,” in Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, pp. 172–181, June 2008.

[37] E. Burd and J. Bailey, “Evaluating clone detection tools for use during preventative
maintenance,” in Source Code Analysis and Manipulation, 2002. Proceedings. Second
IEEE International Workshop on, pp. 36–43, 2002.

[38] S. Bellon, “Detection of software clones.” http://www.bauhaus-stuttgart.de/clones/.
Accessed: 2015-01-15.

[39] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Classification model for code
clones based on machine learning,” Empirical Software Engineering, vol. 20, no. 4,
pp. 1095–1125, 2015.

