
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 1

The Mutation and Injection Framework:
Evaluating Clone Detection Tools with Mutation

Analysis
Jeffrey Svajlenko Chanchal k. Roy

Abstract—An abundant number of clone detection tools have been proposed in the literature due to the many applications and
benefits of clone detection. However, there has been difficulty in the performance evaluation and comparison of these clone detectors.
This is due to a lack of reliable benchmarks, and the manual efforts required to validate a large number of candidate clones. In
particular, there has been a lack of a synthetic benchmark that can precisely and comprehensively measure clone-detection recall. In
this paper, we present a mutation-analysis based benchmarking framework that can be used not only to evaluate the recall of clone
detection tools for different types of clones but also for specific kinds of clone edits and without any manual efforts. The framework uses
an editing taxonomy of clone synthesis for generating thousands of artificial clones, injects into code bases and automatically evaluates
the subject clone detection tools following the mutation analysis approach. Additionally, the framework has features where custom
clone pairs could also be used in the framework for evaluating the subject tools. This gives the opportunity of evaluating specialized
tools for specialized contexts such as evaluating a tool’s capability for the detection of complex Type-4 clones or real world clones
without writing complex mutation operators for them. We demonstrate this framework by evaluating the performance of ten modern
clone detection tools across two clone granularities (function and block) and three programming languages (Java, C and C#).
Furthermore, we provide a variant of the framework that can be used to evaluate specialized tools such as for large gaped clone
detection. Our experiments demonstrate confidence in the accuracy of our Mutation and Injection Framework when comparing against
the expected results of the corresponding tools, and widely used real-world benchmarks such as Bellon’s benchmark and
BigCloneBench. We provide features so that most clone detection tools that report clones in the form of clone pairs (either in
filename/line numbers or filename/tokens) could be evaluated using the framework.

Index Terms—Clone, Clone Detection, Benchmark, Mutation Analysis, Mutation Operators, Recall

F

1 INTRODUCTION

CODE clones are pairs of code fragments within a soft-
ware system that are similar, either textually, syntacti-

cally or semantically. Code reuse by copy and paste, with or
without modifications, is one of the most common sources
of code clones, although they are known to arise for a variety
of reasons [1]. Previous research has shown that clones
can be both harmful [1], [2] and beneficial [1], [3], [4] to
software quality and the costs of the software development
and maintenance. There is a consensus that clones should
be detected in order to mitigate their potential harm [2], and
to address the other use cases that require the detection of
similar code fragments [1], [5].

A 2009 survey of clone detection tools and techniques
by Roy et al. [6] found the existence of at least 39 clone
detection tools. A 2013 survey by Rattan et al. [7] found
at least 70 tools, a 75% increase in only four years. This
number reflects the importance the community has placed
on clone detection for use in software development and
research. However, despite the number of available tools
and techniques, there has been a lack of benchmarks for

• J. Svajlenko is with the Department of Computer Science, University of
Saskatchewan, Saskatoon, Canada.
E-mail: jeff.svajlenko@usask.ca

• C. K. Roy is with the Department of Computer Science, University of
Saskatchewan, Saskatoon, Canada.
E-mail: chanchal.roy@usask.caof Computer Science, University of
Saskatchewan, Saskatoon, Canada.

evaluating and comparing their performance.
Clone detection tools are commonly evaluated using

recall and precision. Recall is the ratio of the clones within a
software system that a tool is able to detect. This measures
how well a tool detects and reports true clones. Precision is
the ratio of the clones reported by a tool that are true clones,
not false positives. This measures the tool’s accuracy in
detecting and reporting clones. A good clone detection tool
has both high recall and precision. While time consuming,
clone detection precision can be measured by executing
the tool for a variety of software systems from a variety
of software domains and validating a significant random
sample of the detected clones. This is typically done, at least
informally, by the tool’s author during development [1].
However, measuring recall is very challenging as it requires
foreknowledge of the clones within a subject system(s). As
well, decision on whether two code fragments constitutes
a true clone is highly subjective [8], and depends on the
individual’s intended use-case of clone detection [9].

Recall can be measured by building a reference corpus of
known clones within a subject system(s), and measuring the
ratio of the clones within this reference corpus that the tool
is able to detect. This process is extremely effort intensive,
as it requires the examination of every possible pair of code
fragments in a subject system to determine if they form
a true clone pair. Even a small system such as cook (51
KLOC, 1244 functions) contains on the order of one million
code fragment pairs at the function granularity alone [10].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 2

This is far too many potential clone pairs to examine accu-
rately, and cook does not contain a sufficient number and
variety of true clone pairs on its own to properly evaluate
a clone detector. Additional subject systems are required,
which adds to the workload issue. Instead, clone detection
researchers must come up with innovative ways to create
benchmarks that can accurately estimate clone detection
tool performance without the need to fully oracle multiple
subject systems.

Clone detection recall should be evaluated using both
synthetic and real-world benchmarking strategies. A syn-
thetic clone benchmark measures the recall of a clone detec-
tion tool for artificially constructed clones under controlled
conditions. The advantage of a synthetic benchmark is a
comprehensive, precise and unbiased measurement of recall
at a fine granularity in terms of clone types and cloning con-
texts. A real-world benchmark consists of real clones mined
from a software system or collection of software systems.
The advantage of a real-world benchmark is the evaluation
of recall for real clones produced by real developers in real
software systems. Real-world benchmarks measure recall
under real conditions, but precise measurement is more
difficult, and a comprehensive and unbiased measurement
cannot be guaranteed. Therefore, we get the best evaluation
by using both strategies for benchmarking.

The most well-known real-world benchmark is Bellon’s
Benchmark [11], which Bellon built by manually validat-
ing 2% of the clones detected by six contemporary (2002)
tools for eight subject systems, requiring 77 hours of man-
ual clone validation efforts. While the union may provide
good relative performance evaluation between participating
tools [11], there is no guarantee that subject tools have col-
lectively detected all clones within the subject systems and
therefore the measure of absolute performance is question-
able. The reference corpus is therefore biased by the types
of the clones the participating tools detect. We have found
that Bellon’s Benchmark, and its variants [12], are possibly
not suitable for accurately measuring the recall of modern
clone detection tools [13]. Baker [14] raised concerns with
problems in the creation of Bellon’s benchmark, including
the clone validation procedure. Charpentier et al. [15] revali-
dated a number of the clones and found disagreement in the
results. While BigCloneBench [16] could overcome some of
the concerns of Bellon’s benchmark, the reliability of judges
in building the benchmark is still a concern. This calls for
a synthetic benchmark that could provide a comprehensive
and fine-grained analysis of clone detection recall.

In this paper, we present the Mutation and Injection
Framework, a synthetic clone benchmarking framework
that precisely evaluates clone detection recall at a fine granu-
larity using a mutation-analysis procedure. The framework
begins by selecting a random code fragment from a large
repository of sample source code. It duplicates and mutates
this code fragment to produce a code clone of a known clone
type and with a known difference. The mutation operators
used in clone synthesis are based on a comprehensive and
empirically validated taxonomy of the types of edits devel-
opers make on copy and pasted code. The clone is then
injected into a software system, evolving the system by a
single copy-paste and modify clone. The clone detection tool
is then executed for this software system and recall is mea-

sured for the injected clone. Since the framework created the
clone itself, it is able to precisely evaluate the tool’s detection
of the clone, including if it appropriately handled the clone-
type specific differences between the cloned code. This is
repeated thousands of times across all of the edit types in
the taxonomy, allowing a comprehensive and exhaustive
measurement of recall. The framework fully automates the
recall experiment, and allows all aspects of the experiment
to be customized and controlled.

The Mutation and Injection Framework has a number
of distinct advantages in measuring recall. It supports three
programming languages (Java, C and C#) and two clone
granularities (function and block) and can evaluate and
compare clone detection tools not only for different types
of clones but also at a finer granularity. These are abstracted
from the procedure, and the framework can be extended to
additional languages and granularities with little efforts. It
is fully automated, and requires no manual clone validation
efforts. The framework includes mutation operators for
every type of edit developers make on copy and pasted
code. This allows recall to be comprehensively measured
at a finer granularity than clone type, allowing a tool’s
specific capabilities to be measured. The user configures the
properties of the clones to be included in the synthesized
reference corpus, including clone size, syntactical similarity,
mutations and granularity. The user can therefore create
a custom benchmark corpus for any general or specific
cloning context to evaluate their tool against. Recall exper-
iments produced by the framework can be easily dupli-
cated, shared and modified. Furthermore, we developed a
specialized variant of the framework where large-gapped
clone detection tools could be evaluated automatically too.
In addition to that, the framework has features that let users
use custom clones (whether real clones or hand-made) in
the injection and evaluation process. This makes it possible
to evaluate specialized tools in specialized contexts.

We evaluate the usage and accuracy of the Mutation and
Injection Framework by measuring the recall of ten clone
detection tools for three languages (Java, C and C#) and two
code fragment granularities (block and function) at a fine
granularity. This case study demonstrates the compatibility
of our benchmark with different clone detectors, and its
usefulness in revealing insight about tool performance. In
order to build confidence in the accuracy of our benchmark
we compare its results against our expectations for the tools,
which are based on our knowledge of their capabilities and
techniques, and consultations with their original authors
where available. In order to gain further confidence on the
framework, we compare the results against the existing real-
world widely used benchmarks including Bellon’s Bench-
mark [11] and our BigCloneBench [16], [17]. We find strong
agreement between the Mutation Framework and both our
expectations and the results of BigCloneBench. Among the
differences, we do not find any significant anomaly that
makes us suspicious of the framework results. For Bellon’s
benchmark, we experienced disagreements which helped us
find anomalies in their benchmark. Our framework results
are consistent with a few recent studies [13], [14], [15]
that suggests Bellon’s benchmark may not be appropriate
for evaluating modern clone detectors. We also used the
framework for evaluating large gapped clone detection tool.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 3

This paper is organized as follows. We begin with es-
sential definitions in Section 2. We discuss the related work
and our previous work in clone benchmarking in Section 3.
In Section 4 we fully explore the Mutation and Injection
Framework, including how it synthesizes clones, constructs
a reference clone corpora, and automates the execution of
subject clone detection tools and the measurement of their
recall. In Section 5 demonstrate the framework’s usage by
evaluating ten clone detection tools, and evaluate the effec-
tiveness of our benchmark by comparing its results against
our expectations of the tools and their performance mea-
surement by other benchmarks. We discuss the limitations
of this work in Section 7 in conclude this work in Section 8.

The Mutation and Injection Framework is open-source
and available on-line [18], including the generated bench-
marks used in this study.

2 DEFINITIONS

Code clones consist of similar source code fragments. They are
expressed as clone pairs and clone classes. Unless otherwise
stated, we are referring to clone pairs when we use the term
“clone”. We define these terms as follows:

Code Fragment A continuous region of source code.
Specified by the triple (l,s,e), including the source file
l, the line it starts on, s, and the line it ends on, e.

Code Clone/Clone Pair A pair of code fragments that
are similar, for some type of similarity. Specified by
the tuple (f1, f2, φ), the similar code fragments f1
and f2, and their type of similarity, φ.

Clone Class A set of code fragments that are similar.
Specified by the tuple (f1, f2, ..., fn). Each pair of
distinct code fragments is a clone pair:
(fi, fj , φ), i, j ∈ 1..n, i 6= j. Clone classes may
include clone pairs of different clone types.

Researchers agree upon four primary clone types [1],
[11]. The clone types are mutually exclusive, and are defined
by the clone detection capabilities needed to identify them.
These clone types are defined as follows:

Type-1 Syntactically identical code fragments, except for
differences in white space, layout and comments.

Type-2 Syntactically identical code fragments, except for
differences in identifier names, literal values, white
space, layout and comments.

Type-3 Syntactically similar code fragments that differ
at the statement level. The code fragments have state-
ments added, removed, or modified with respect to
each other.

Type-4 Syntactically dissimilar code fragments that im-
plement the same functionality.

Clone researchers do not agree upon the minimum
syntactical similarity of Type-3 clones, while Type-4 clone
detection is not supported by most tools.

3 RELATED AND PREVIOUS WORK

Some experiments have ignored recall, and simply mea-
sured precision by manually validating a small sample of
a tool’s candidate clones [19], [20], [21], [22], [23]. Others
have tackled the recall problem by accepting the union of
multiple tools’ candidate clones as the reference set, possibly

with some manual validation [11], [12], [24], [25], [26]. For
some experiments, very small subject systems were manu-
ally inspected for clones [27], [28], [29]. An ideal benchmark
could be made if all the pairs of code fragments in a subject
system were inspected. However, this is not feasible except
for toy systems. For example, when considering only clones
between functions in the relatively small system Cook, there
is nearly a million function pairs to manually inspect [10].

Lavoie and Merlo [30] use of the Levenshtein met-
ric to automatically build Type-3 clone benchmarks. Their
methodology avoids the subjectivity of manual clone val-
idation, and builds a complete benchmark that measures
both recall and precision. However, the Levensthein metric
for clone detection is subject to its own recall and precision.
Nonetheless, this methodology is useful for comparing a
tool against the Levenshtein metric as a baseline.

Krutz and Le [31] had several expert judges manually
validate 1,536 randomly selected method pairs to construct
a clone benchmark of 66 true clone pairs across the four
clone types. While their benchmark has high confidence, it
lacks the size and variety needed to reliable measure clone
detection recall.

Yuki et al. [32] built a clone benchmark without man-
ual validation by automatically identifying refactored code
clones in the revision history of a software system. The refac-
toring of these clones by the developers is used as expert
validation of the clones. They use code change heuristics
and clone similarity metrics to locate instances of clone
refactoring by the method merging pattern. Applying this
technique across 15,000 revisions of three software projects
identified 19 true code clones. A limitation with this tech-
nique is it only locates clones that the developers were
aware of and were possibly detected using clone detectors,
and misses the clones the developers were not aware of.

Schulze and Meyer [33] as well as Ragkhitwetsagul [34],
[35] have evaluated clone detection tools for duplicate code
that has undergone automatic obfuscation in attempt to hide
code plagiarism. This is similar to our mutation framework
in that automatic techniques are used to synthesize bench-
mark clones, although these works have targeted a specific
cloning scenario: license violation and plagiarism detection.
In contrast, our mutation operators do not target any specific
cloning scenario. As our framework is extensible, the obfus-
cation techniques employed by these researchers could be
integrated into the framework as mutation operators, and
the Mutation Framework could be used to automatically
orchestrate similar experiments.

Wagner et al. [36] built a benchmark of semantically
similar program (file) clones by randomly sampling user-
submitted solutions to Google Code Jams programming
contests. They investigated whether two Type-3 clone de-
tectors and one semantic clone detector could detect these
program clones. They reduced their dataset to 58 clone pairs
which they publish as an open benchmark. The authors
relied on the Google Code Jam process to validate the
semantic similarity of the solutions, and did not manually
validate them themselves.

Bellon’s Benchmark [11] is perhaps the most well-known
clone benchmark and there have been several extensions to
it as well [12], [13]. It is the product of Bellon et al.’s bench-
marking experiment on tools contemporary to 2002 [11].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 4

Their experiment measured the recall and precision of six
clone detection tools for eight subject software systems.
There are however a number factors that may raise concerns
on its accuracy. The union results of the participating tools
were used in the construction of the benchmark. While
this could give good relative measurements of precision
and recall, there is no guarantee that even the whole set
of participating tools actually detected all of the clones in
the subject systems [14]. Manually building an oracle for
a subject system or manually validating a large sample
of the detected clones is also challenging [14]. It took 77
hours for Bellon et al. to validate only 2% of the candidate
clones in their tool comparison experiment [1]. Manually
oracling a small system was possible in some cases [37],
[38]. However, even when considering a relatively small
system such as Cook, and even if we consider only function
clones, we would need to examine all pairs of functions
of that system, resulting in millions of function pairs to
manually check. Even if we had the time available to do
that, it would be impossible to do so without some level of
inadvertent human error. There is also the question of the
reliability and subjectivity of the judges, which neither of
these experiments nor the individual tool authors attempted
to evaluate. This is a crucial issue in evaluating clone detec-
tion tools since even expert judges often disagree in creating
clone reference data [39]. Another important aspect is the
capability of dealing with different types of clones, in par-
ticular, Type 3 or “near-miss” clones, where there could be
statement level differences between the cloned fragments,
where statements could be added, modified or deleted from
the reused pasted fragments. While Bellon et al. had done a
great job, an update of the reference corpus was essential
[14]. There have been also empirical assessments of the
Bellon benchmark. For example, Charpentier et al. [15] also
found disagreements in the different types of clones when
they were judged by multiple independent judges. In a more
recent experiment [8], they also found that the judgments of
non-experts could be potentially unreliable. Of course, this
is no surprise, since subjective disagreement is an inherent
problem in clone detection. While in BigCloneBench [16] we
were able to overcome some of these limitations (e.g., no use
of any clone detection tools in creating the benchmark and
provide type specific clone results), there are still concerns
as stated above.

The Mutation and Injection Framework was designed
to overcome these limitations. It does away with manual
efforts by automatically synthesizing new clones for the
reference corpus rather than mining a subject system for
existing clones. The artificial clones are based upon a com-
prehensive taxonomy of the types of edits developers make
on copy and pasted code. This ensures that the synthesized
clones are both realistic and comprehensive. It avoids sub-
jective clone validation by carefully synthesizing true clones
rather than validating potential clones reported by clone
detectors themselves. Careful construction of the reference
corpus ensures that there are no biases in performance
measurement. The Mutation Framework measures recall at
a finer granularity than Bellon’s Benchmark.

Our previous work includes the proposal of mutation
analysis for clone detection tool benchmarking [40], and a
proof of concept implementation and experiment to demon-

strate its value [41]. The prototype framework was imple-
mented specifically for variants of a single clone detection
tool (NiCad [29]), which allowed it to be rapidly imple-
mented.

In this paper we provide a generalized and fully auto-
mated version of the Mutation and Injection Framework
that can be used to evaluate any clone detection tool. This in-
cludes improvements in clone synthesis, matching and cor-
pus validation. We use a rigorous approach, which allows
clone detection performance to be measured and compared
at a fine granularity without bias. It includes a simple user
interface that allows users to customize, share, replicate and
extend tool evaluation experiments. A preview of an early
version of the full Mutation and Injection Framework was
published in a short tool demonstration paper [42]. In this
paper, we provide the full details of the framework, as well
as an experiment demonstrating its usage and validating its
effectiveness.

We have used the framework in previous tool evalu-
ation experiments [13], [17]. We compared the Mutation
Framework’s results for Java and C block clones against
Bellon’s Framework [13] to investigate the state of recall
measurements of modern clone detectors. We compared
the Mutation Framework’s results for Java function clones
against BigCloneBench [17] to demonstrate the need for
both real-world and synthetic benchmarks to fully evaluate
clone detection tools. For benchmark comparison we used
summary (per-clone-type) results. The tool evaluation ex-
periment in this paper looks at the tool’s recall performance
at the per mutation-operator (edit-type) granularity for mul-
tiple languages and clone granularities.

4 THE MUTATION AND INJECTION FRAMEWORK

The Mutation and Injection Framework measures the recall
of clone detection tools using a mutation analysis procedure.
It is a fully automatic framework that requires no manual
efforts during either the construction of the reference corpus
nor the evaluation of the subject tools. It achieves this by
synthesizing a reference corpus of artificial clones using
source-code mutation and injection, rather than mining for
real clones in a subject system. An advantage of the frame-
work is that it requires no manual clone validation, which
has been an obstacle in measuring recall. By synthesizing
the reference corpus, its properties can be controlled, and
potential biases can be avoided. An abstract version of
the framework is shown in Figure 1, which executes the
following procedure:

1) A single clone pair is added to a software system
by simulating the creation of a copy, paste and mod-
ify clone by a developer. This is accomplished by
duplicating and mutating a source code fragment
using cloning mutation operators, and introducing
this new clone pair into a subject software system
using source-code injection.

2) The subject clone detection tool is executed for this
mutant version of the subject system.

3) The tool’s unit recall is measured specifically for the
detection of the injected clone.

4) Steps 1-3 are repeated for a large number and variety
of clone pairs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 5

Subject System

Repository of

Source Code

4. Repeat for a large number and types of clones.

Clone Synthesis

Mutant System

Clone Injection
Tool

1. Synthesize a clone.

2. Execute subject tool. 3. Evaluate unit recall.

Performance

Summary

Measure Unit

Recall

5. Summarize

 performance.

Clone Detection

Report

Fig. 1: Overview of the Mutation Framework Procedure

TABLE 1: Editing Taxonomy for Cloning

ID Edit Description Clone Type

1 Change in whitespace.
Type-12 Change in commenting.

3 Change in formatting.

4 Systematic renaming of an identifier.
Type-25 Renaming of a single identifier instance.

6 Change in value of a literal.

7 Small insertion within a line.

Type-3
8 Small deletion within a line.
9 Insertion of a line.
10 Deletion of a line.
11 Modification of a line.

12 Reordering of declaration statements.

Type-413 Reordering of statements.

14 Replacement of one type of control statement with
another (ex: for loop with a while loop).

5) The tool’s average recall across these mutant systems
(the reference corpus) is reported.

This is a mutation analysis procedure, similar to that
used in mutation testing. In mutation testing, mutation op-
erators are used to randomly introduce a bug into a software
system and the system’s testing strategy is evaluated for its
ability to detect and isolate the synthetic bug. To evaluate
clone detection tools, we inject duplicate code into a system,
and use mutation operators to introduce a random differ-
ence between the duplicated code fragments corresponding
to one of the clone types. The subject clone detection tool
is evaluated for its ability to detect the synthetic clone.
The mutation operators are based upon a comprehensive
taxonomy of the types of edits developers make on cloned
code as shown in Table 1. Details about the taxonomy could
be found in our earlier work [6]. This was constructed based
upon a literature survey of clone types, clone taxonomies,
and empirical studies. This strategy allows us to measure
the subject tool’s recall not only per clone type but also per
clone edit (mutation) type, which provides greater insight
into the performance, capabilities and weaknesses of the
particular clone detection tool.

Our implementation of the framework splits the ab-

stract procedure into two discrete phases: (1) the generation
phase and (2) the evaluation phase. During the generation
phase, the clones are synthesized and injected into distinct
copies of a subject system. These mutant systems and the
injected clones they contain form the reference corpus. The
framework allows many constraints to be placed on the
generated corpus in order to control its properties. The
evaluation phase executes the subject tools for the mutant
systems, and measures their recall for the injected clones.
The implementation is split in this way to allow the corpus
to be generated ahead of time and then shared and reused
in multiple tool evaluation experiments.

In the following subsections we describe the framework
in full detail. We begin by describing how the clones are
synthesized. Next we outline the generation phase, during
which clone synthesis is used to create the reference corpus.
Then we outline the evaluation phase, and how it automates
the subject tool execution and evaluation for the reference
corpus.

4.1 Clone Synthesis

The framework synthesizes clone pairs by mutating real
code fragments mined from a source code repository. The
mutations are based upon the editing taxonomy for cloning
(Table 1), which is a validated and comprehensive taxonomy
of the types of edits developers make on copy and pasted
code. Mutations are applied by mutation operators, which
take a code fragment as input and output the same code
fragment with a single random modification of their edit
type. The framework users specify the types of clones to be
synthesized using mutators, which are sequences of one or
more mutation operators. The mutator applies the mutation
operators one by one, in order, to an input code fragment.
The original code fragment produced by a real developer,
and its mutant code fragment produced by a mutator, form a
synthetic clone pair produced by mimicking the copy, paste
and modify cloning activities of a real software developer.
The framework currently supports the synthesis of Java,
C and C# clone pairs of the first three clone types at the
function and block syntax granularities, although it could
be extended to any language.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 6

Original Mutant

Synthetic Type-2
Clone Pair

Mutation Operators

Source Code
Repository

mCF : Changes formatting.

mCL : Changes a literal value.

mCC : Adds a comment.

public static int factorial(int n) {
 System.out.println(n= + n);
 int retval = 1;
 for(int i=1; i<=n; i++) {
 retval = retval*i;
 }
 return retval;
}

public static int factorial(int n) {
 System.out.
println(NewValue + n);
 int retval = 1;
 for(int i=1; i<=n; i++) {
 retval = retval*i; //Comment
 }
 return retval;
}

Original Code Fragment

Mutator

Mutant Code Fragment

mCF mCL mCC

Fig. 2: Clone Synthesis Example

An example of clone synthesis is shown in Figure 2.
The original code fragment is mutated by a mutator with
a mutation operator sequence of length three. The muta-
tion operators apply a single random change of their edit
type. The first mutation operator changes formatting, the
second changes the value of a literal, and the third adds a
comment. The mutation operators are applied, in this order,
to a copy of the original code fragment. The mutations
have been highlighted in the final mutant code fragment.
The first and third mutation operator apply Type-1 clone
differences, while the second mutation operator applies a
Type-2 clone difference. Therefore the original and mutant
code fragments form a Type-2 clone pair.

In the following sections, we describe the mutation op-
erators and mutators in more detail.

4.1.1 Mutation Operators

The mutations are performed by mutation operators, a con-
cept of mutation analysis. From the editing taxonomy, we
created fifteen mutation operators that mimic the types of
edits developers make on copy and pasted code. These
mutation operators take a code fragment as input, and
output the same code fragment with a single random edit
of the operator’s defined edit type. Our mutation operators
are summarized in Table 2. This table lists each mutation
operators’ name, edit type, how the edit type is realized in
its implementation, and the clone type the edit belongs to.

The mutation operators are implemented in TXL [43],
a source transformation language. They use a simple
language-dependent grammar to parse the input code frag-
ment into a syntax tree. The grammar captures both the

syntax tokens and the white space (formatting) of the input
fragment. The operator’s mutation is implemented using
a subtree search and replacement pattern. The operator
applies the mutation by replacing exactly one randomly
selected subtree that matches the search pattern with the
corresponding replacement pattern. The output fragment is
produced by un-parsing the modified syntax tree. The result
is an output code fragment that differs from the input code
fragment by a single random application of the intended
mutation. The input fragment’s syntax and formatting is
otherwise unmodified in the output fragment. The opera-
tors are able to detect when they can not be applied to a
particular input fragment (i.e., when there is no matches to
the search and replace pattern), in which case they return an
error.

The operators exist as independent programs that are
registered with the Mutation Framework. While our muta-
tion operators are registered by default, the user is free to
register their own custom mutation operators implemented
in any technology they wish. Our mutation operators target
general clone detection, and cover our clone taxonomy for
the first three clone types. Users of the framework might
design their own mutation operators to target specific clone
detection use-cases, or for specific targeted debugging of
their tool. Custom mutation operators must conform to
the same input/output procedure. The mutation operator
receives the input code fragment and language as input,
and output the mutated code fragment.

The framework includes mutation operators imple-
mented for Java, C and C# source code. Their implemen-
tations rely on simple token grammars for these languages.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 7

TABLE 2: Mutation Operators

Name Edit Implementation Clone Type

mCW A Addition of whitespace. A tab or space character is inserted between two randomly
chosen tokens.

mCW R Removal of whitespace. An (syntactically redundant) random tab or space charac-
ter is removed.

mCC BT Change in between token (/* */) comments. A /* */ comment is added between two randomly chosen
tokens. Type-1

mCC EOL Change in end of line (//) comments. A // comment is added at the end of a randomly chosen
line.

mCF A Change in formatting (addition of a newline). A newline is inserted between two randomly chosen to-
kens.

mCF R Change in formatting (removal of a newline). A randomly chosen newline is removed.

mSRI Systematic renaming of an identifier. A randomly chosen identifier, and all of its occurrences,
are renamed.

Type-2
mARI Arbitrary renaming of an identifier. A randomly chosen single instance of an identifier is

renamed.

mRL N Change in value of a numeric literal. The value of a randomly chosen numerical literal is
changed.

mRL S Change in value of a string or character literal. The value of a randomly chosen string or character literal
is changed.

mSIL Small insertion within a line. A parameter is added to a randomly chosen method call
or signature.

mSDL Small deletion within a line. A parameter is deleted from a randomly chosen method
call or signature.

mIL Insertion of a line. A line of source code (containing a single statement) is
inserted at a random line in the code fragment.

Type-3
mDL Deletion of a line. A randomly selected line (containing a whole single-line

statement) is deleted.

mML Modification of a whole line.
A randomly selected line is modified by placing it in a
single-line if statement. For example ’x = 15*y;’ becomes
’if(X==Y) x=15*y;’

The mutation operators can be easily adapted to support ad-
ditional languages. In particular, for C-style languages like
Java, C and C#, the mutation operators can be adapted to a
new language by simply adding the language’s token-based
grammar, with no changes the mutation search/replace
patterns.

4.1.2 Mutators

The framework user specifies the kinds of clones to be
synthesized for the reference corpus using mutators, which
are sequences of one or more mutation operators. A mutator
synthesizes a clone pair by executing its mutation operators
as an input/output chain, supplying the input code frag-
ment to the first operator, and retrieving the mutant code
fragment from the last mutation operator. Any number of
mutators may be defined using the default and custom mu-
tation operators. By specifying the set of mutators used to
synthesize clones, the framework user can create a reference
corpus tailored for the cloning context they wish to evaluate
their subject clone detection tools for.

The mutators also support a number of constraints to be
placed on the synthesized clones, including: clone size, clone
similarity, and mutation containment. The clone size con-
straint allows the framework user to specify the minimum
and maximum size, by line and by token, of a synthesized
clone pair’s original and mutant code fragments. The clone
similarity constraint allows the framework user to specify
the minimum clone similarity, measured by line or by token
of the synthesized clones. These constraints can be used to
shape the context and properties of the reference corpus,
and are optional.

The framework defaults and recommends the use of a
single-operator mutator for each of the registered mutation
operators. This creates a reference corpus that measures
a tool’s performance at the edit type granularity. Multi-
operator mutators allow a reference corpus with more com-
plex clones to be generated. For example, a mutator set
could be defined for a variety of sequences of mutation
operators that produce Type-1 clones. This would allow
strong evaluation of tools specifically for a variety of Type-1
clones. However, higher order mutations pose some risk. As
more operators are applied, it becomes difficult to predict
how the operators may interact. Later mutation operators
in a mutator’s sequence may even reverse previous ones.
Additionally, when mutation operators are mixed, you lose
the ability to measure performance per edit type. Higher-
order mutations are advanced use of the framework, and
require careful attention and interpretation. The default
single-operator mutators are recommended for standard
tool evaluation usage.

4.2 Clone Similarity
Clone similarity (as used in this paper) is the measure of the
syntactical similarity between a clone pair’s code fragments.
It is expressed as a ratio between 0.0 (totally different syn-
tax) and 1.0 (identical syntax). It can be measured by line, by
statement, or by language token. The compliment of clone
similarity is clone difference, the measure of the syntactical
difference between a clone pair’s code fragments. For this
paper, and with our Mutation and Injection Framework,
we measure clone similarity and difference using each code
fragment’s unique percentage of items (UPI).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 8

Random Code

Fragment

Selection

Subject

System

Repository of

Source Code

Random Clone

Injection
Mutator (2)

Mutator (1)

Mutator (m)

.

.

.

Mutant Systems

Database
Mutant Fragment

Specification

Mutant System

Specification

Fragment

Specification

Corpus Files

(i)

.

.

.

(i)

(i)

Repeat for n fragments

Fig. 3: Overview of Generation Phase

Code fragments can be considered as either sequences
of source code lines or language tokens. We can detect the
differences in these sequences, from an editing perspec-
tive, using the Unix diff program (greatest common sub-
sequences). A code fragment’s UPI, with respect to another
code fragment, is the ratio of its source code lines or tokens
that are not found in the other code fragment, when also
considering their order. In other words, the lines/tokens
in the code fragment not matched to a line/token in the
other code fragment by the greatest common subsequences
algorithm. The UPI of code fragment f1 with respect to
code fragment f2 is expressed mathematically in Equation 1,
where items can be either source code lines or tokens. We
measure clone dissimilarity as the larger of the clone’s code
fragment UPI, as shown in Equation 2, with clone similarity
as its compliment, as shown in Equation 3.

upi(f1, f2) =
unique items in f1 by diff (f1, f2)

of items in f1
(1)

dissimilarity(f1, f2) = max(upi(f1, f2), upi(f2, f1)) (2)

similarity(f1, f2) = 1− dissimilarity(f1, f2) (3)

Cloned code fragments often contain Type-1 (white
space, formatting and layout) as well as Type-2 (identifier
name and literal value) differences. These differences can
greatly lower our clone similarity measurement. These types
of differences are considered inconsequential in the cloning
context, and a more accurate clone similarity is measured
if these differences are ignored. We therefore apply Type-
1 and Type-2 normalizations to the code fragments before

measuring clone similarity. Our Type-1 normalization ap-
plies a strict pretty-printing, which results in a single state-
ment per line with normalized whitespace, and removes
all comments and blank lines. Our Type-2 normalization
replaces each identifier with ‘X’, and each literal with ‘0’.
With these normalizations, all Type-1 and Type-2 clones will
have a similarity of 100%, while Type-3 clones will have a
similarity less than 100%. The clone difference will therefore
measure the amount of Type-3 differences between the code
fragments.

4.3 Generation Phase

During the generation phase, the reference corpus is con-
structed by synthesizing clones and injecting them into a
unique copies of a subject system. An overview of this
phase is shown in Figure 3. The generation process begins
by selecting a random code fragment from a repository of
source code. This selected code fragment is then mutated by
m user-defined clone-synthesizing mutators. The resulting
m mutant code fragments differ from the selected code
fragment by a random application of the mutation defined
by their mutator. The mutant code fragments are paired
with the selected code fragment to formm synthesized clone
pairs. For each of these clone pairs, i mutant versions of
the subject system are created by injecting the selected and
mutant code fragments into the subject system at a random
syntactically correct locations. Each of these mutant systems
evolve the subject system by a single copy, paste and modify
clone. In total, mi mutant systems are created from a single
randomly selected code fragment. This process is repeated
for n randomly selected code fragments in order to create a
reference corpus containing nmi unique clone pairs. Each
reference clone pair is contained within its own mutant

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 9

version of the subject system. This is done so the subject
tools may be evaluated for each of the reference clones in
isolation.

A database is used to track the specification of each
selected code fragment, mutant code fragment, and mutant
system. The selected and mutant code fragment text is
stored in files referenced by the database. This information
can be used to construct any of the mutant systems, which
contain a single clone from the reference corpus. Clone
detection tools can be evaluated for the reference corpus
by executing them for each of the mutant systems and
evaluating their recall for the injected clone, which is the
role of the evaluation phase.

In the following sub-sections we explore the generation
phase in detail. We begin by discussing how the genera-
tion phase can be configured to control the properties and
contents of the generated reference corpus. Next, we detail
the steps of the generation phase as they are executed per
selected code fragments. There are two primary steps: (1)
selecting and mutating a selected code fragment, and (2)
injecting the resulting clone pairs into copies of the subject
system.

4.3.1 Configuration
The generation phase is highly configurable, which provides
the user full control over the size, properties and contents
of the generated reference corpus. The user provides a
repository of source code from which real code fragments
are selected for mutation. The user must also provide the
subject software system the synthesized clones are injected
into. The user specifies the types of clones to be generated
for the corpus by defining the set of clone-synthesizing
mutators (Section 4.1) to be used. The generation phase also
allows numerous constraints to be placed on the generated
corpus, such as the language and granularity of the clones,
the size of the corpus, and various clone properties. In this
section we describe these configurations and their effect on
the generation phase.

Source Code Repository: The user provides a source
code repository from which real code fragments are selected
for clone synthesis. The repository may be any collection of
source code of the target programming language. Ideally,
the repository should be large and varied. For example, a
combination of the Java standard library and popular 3rd
party libraries (e.g., Apache Commons) is a good source
code repository for generating a Java clone reference corpus.

Subject Software System: The user provides a sub-
ject software system into which the clones are injected. Any
subject system of the target language will do, so long as its
large enough to have a variety of injection locations. Since
each clone in the reference corpus is injected into its own
copy of the subject system, the subject clone detection tools
have to be executed for mutants of this system many times.
Therefore, the subject system should be small enough that
the subject tools can be executed for it perhaps thousands
of times within a reasonable time frame. We include with
the framework special empty subject systems which allow
measuring recall for the generated clones in isolation.

Mutator Set: The user can specify any number of
mutators by specifying the sequence of mutation operators
they should apply to the selected code fragments. The

framework’s default mutator set includes 15 single-operator
mutators, one for each of the 15 default mutation operators.
The default mutators mutate the selected code fragment
with a single instance of their assigned mutation operator.
This creates a reference corpus that can measure the tool’s
performance at the edit type (mutation operator) granular-
ity.

Generation Constraints: The generation constraints
allow the size, scope and clone properties of the generated
reference corpus to be specified. The available constraints
are as follows:

Clone Granularity The granularity of clones to synthe-
size. The framework supports clone synthesis at the
function and block (a code segment defined by an
opening and closing bracket, i.e., {...}) granularities.

Language The programming language of the generated
reference corpus. The framework supports the syn-
thesis of Java, C and C# clone pairs.

Number of Selected Code Fragments The maximum
number of code fragments to select for clone
synthesis.

Injection Number The number of times to inject each
synthesized clone pair. In other words, the number
of mutant systems to create per clone. Each injection
of a clone uses a different injection location in the
subject system.

Clone Size The minimum and maximum size of a
clone’s code fragments. Specified by line and by
token, independently.

Minimum Clone Similarity Minimum clone similarity,
measured by line and by token using the UPI method
described in Section 4.2, after Type-1 and Type-2
normalization.

Mutation Containment The minimum distance the mu-
tation must be from the edges (start/end) of the
selected code fragment, specified as a fraction of the
fragment’s size in lines.

Fragment granularity and language are used to set the
scope of the experiment. By limiting a corpus to a particular
programming language and clone granularity, more specific
performance evaluation can be accomplished. The intention
is for the user to perform multiple experiments with the
framework using the different permutations of clone gran-
ularity and language. Performance can then be individually
measured per language and granularity.

The number of selected code fragments, n, the injection
number, i, and the size of the mutator set, m, define the
maximum size of the generated reference corpus: mni clone
pairs. The framework will continue to select code fragments
for clone generation until its specified maximum is reached,
or all eligible fragments in the repository have been ex-
hausted. A larger number of selected code fragments, n,
results in larger diversity in the syntax of the reference
corpus’s clones. A larger number of injection locations per
clone, i, increases the diversity in clone location in the
reference corpus’s clones. Both are essential for creating a
reference corpus that accurately measures recall.

The clone size and minimum clone similarity constraints
make it easier to configure the subject clone detection tools.
Most clone detection tools are parameterized by clone size

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 10

and some by clone similarity thresholds, which are used to
limit the scope of their clone search and reporting processes.
These parameters may also affect a tool’s execution time and
precision. By placing similar constraints on the reference
corpus, the tools can be properly and confidently configured
for the corpus. This reduces the incidence of inaccurate
performance measurement due to configuration mismatch
between the tool and reference corpus, which is a significant
threat to benchmarking [44]. These constraints may also be
used to constrain the corpus for evaluating specific cloning
contexts. For example, a corpus could be generated for
evaluating the detection of only small or large clones, or a
corpus could be made for very similar or less similar clones.

The mutation containment constraint is used to ensure that
the mutations are an integral part of the synthesized clone
pairs. The framework’s goal is to measure how well the
tools perform for specific differences between cloned code
fragments. If the mutation is too near the edge of the clone, it
may actually be external to the clone. This constraint ensures
that the mutation occurs far enough away from the edges of
the clone’s code fragments that it is a guaranteed component
of the clone pair. And therefore it is correct to require a clone
detection tool to handle the mutation to have successfully
detected the clone. Mutation containment is specified as
a ratio of the size of the selected fragment measured in
lines. For a mutation containment of 20% and a selected
fragment 10 lines long, all mutant fragments produced will
not modify the selected fragment’s first or last 2 lines.

The configurable mutators and generation options allow
the framework user to generate a variety of well under-
stood benchmark reference corpora. They allow the user to
generate a corpus targeting the cloning context they wish
to evaluate their tools for. By generating multiple corpora
using different configurations, the user can evaluate their
tools for a variety of cloning contexts. Having a corpus
with exactly known properties ensures that the performance
results are correctly interpreted. It also allows the tools to be
properly configured for the benchmark.

4.3.2 Step 1 - Code Fragment Selection and Mutation

The first step of the generation phase is to select a real code
fragment from a source repository, and mutate it with the
m user-defined mutators to produce a set of m synthetic
clone pairs. The framework begins by extracting all of the
code fragments in the source code repository that satisfy
the clone language, granularity and size constraints. The
code fragments are tracked by a data structure that allows
random selection without repeats.

The data structure is queried for a random code frag-
ment that has not been selected previously. This selected
code fragment is mutated by each of the m user-defined
mutators, and the output mutant fragments are collected.
The mutators are configured to only produce mutant frag-
ments that satisfy the clone size, minimum clone similar-
ity, and mutation containment constraints. A mutator will
produce an error if the mutation can not be applied, or if
the constraints cannot be satisfied. If all of the mutators are
successful, then the selected code fragment is paired with
each of its mutant code fragments, and the resulting clone
pairs are added to the reference corpus.

If at least one of the mutators fail, for any reason, then the
selected fragment and its mutant fragments are discarded,
and a new code fragment is selected. This is done to ensure
that each mutator contributes the same number of clones
to the reference corpus, and to ensure that their clones
originate from the same set of selected code fragments.
This makes it possible to measure and compare a subject
clone detector’s recall per mutator without bias due to the
code fragment selection or number of synthesized clones per
mutator.

This process is repeated until either the maximum num-
ber of selected code fragment constraint is reached (not
counting the selected code fragments that are discarded),
or when all of the code fragments in the repository are
exhausted. For a large enough source repository, exhausting
the available code fragments should not occur. The gener-
ated clones are tracked by a database, including: the origin
and text of the selected code fragment, and the mutator
and text of its mutant fragments. These clone pairs are now
ready for injection into the subject system.

4.3.3 Step 2 - Clone Injection and Mutant Systems
For each of the synthesized clone pairs, one or more mutant
systems are created by randomly injecting the clone into the
subject system. The mutant system differs from the original
subject system by a single copy, paste and modify clone. The
injection simulates the development of a new code fragment
in the system (injection of the selected code fragment of the
clone pair) followed by the cloning and modification of this
fragment (injection of the mutant code fragment of the clone
pair).

Each clone pair is injected into its own unique copy of
the subject system in order to minimize the amount of sim-
ulated development performed on the subject system, and
to prevent the injected clones from interacting. This allows
the framework to evaluate the clone detection tools for each
injected clone in isolation, and prevents the properties and
structure of the mutant system from diverging too far from
that of a real software system.

Clone injection location depends on the clone granular-
ity. Function clones are injected by selecting two random
functions in the subject system, and injecting the selected
(function) code fragment after one of these functions, and
the mutant (function) code fragment after the other. The
clone is injected after existing functions rather than before
in order to prevent the injection from separating an existing
function from its in-code documentation (e.g., javadoc in
Java), which is typically placed before the function. Block
clones are injected by selecting two random code blocks
from the subject system, and injecting the selected (block)
code fragment within one of these blocks, and the mutant
(block) code fragment within the other. For simplicity, block
code fragments are injected either at the start or the end of
the chosen code block. A code block can be safely injected at
the start or end of an existing code block without creating a
syntax error. To simplify tracking of the injected clone, and
to prevent any one file in the subject system from diverging
too far from its original state, the selected and mutant code
fragments are always injected into different source files.

The injection process guarantees that the modified files
remain syntactically correct after the injection of the clones.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 11

As the integrity of the generated reference corpus is very
important, the framework verifies this by validating the
modified source files against a full language grammar.
While syntactically correct, the modified files may not com-
pile. The injected code may refer to global variables, fields,
functions, types, etc. that do not exist within the subject
system. This is not a problem as most clone detectors do not
require compiled code, or even compilable code, so long as
the code is syntactically correct. Additionally, it is unlikely
that the injected code will be semantically compatible with
the source files it is injected into. As the framework focuses
on syntactical clones and syntactical clone detectors, the
semantic mismatch will not affect the tool evaluation.

The injection number configuration controls the number
of mutant systems the framework creates per generated
clone. Each additional mutant system created for a clone
will use a different injection location. Using an injection
number greater than one is important to the quality of the
reference corpus. A clone detection tool may fail to detect
an injected clone not due to the syntax of the clone or
its clone difference, but due to its location. For example,
the tool might be unable to parse the file(s) the clone was
injected into due to limitations in its parser, or it may fail
to search for clones contained in these files. In this case,
the tool may have successfully detected the clone if it had
been injected elsewhere. This way, a tool’s average recall
for different injections of the same clone better reflects it
detection of that clone. By varying the injection location, the
overall recall of a tool can be more accurately measured.

Injection locations are chosen per selected code fragment
rather than per clone. Therefore, all clones originating from
the same selected fragment use the same injection location
(or set of injection locations if the injection number is greater
than one). This way, if the reference corpus is split per
mutator, each sub-corpus has the same injection location
representation and variance. Recall can then be measured
and compared per mutator without bias due to the injection
locations used.

In total, mni mutant systems are created, where m is the
size of the mutator set, n is the number of selected code
fragments, and i is the injection number. The number of
mutant systems can be very large. It is not space efficient
to store a copy of each of these mutant systems as they
differ from the subject system by only the injected clone.
The generation phase builds the mutant systems to verify
their integrity, but deletes them afterwards. Instead it stores
only the specifications of the mutant systems. A mutant
system is specified by the clone to be injected (a selected
code fragment and one of its mutant code fragments), and
the injection location (the source files and file positions
to inject at). The mutant systems are then constructed as
needed during the evaluation phase using this specification.
This keeps the reference corpus small enough for storage
on a high performance drive as well as for convenient
distribution over the Internet.

4.4 Evaluation Phase

During the evaluation phase, the subject clone detection
tools are evaluated for the reference corpus synthesized
during the generation phase. The subject tools are executed

for each of the mutant systems, and their recall is measured
specifically for the injected clones. Remember that the ref-
erence corpus contains nmi mutant systems. The n selected
code fragments were mutated bymmutators to produce nm
clone pairs that were each injected into i copies of the subject
system to produce nmi mutant systems, each containing a
single injected clone pair. The evaluation phase automates
the execution of the subject clone detectors, requiring only
a simple communication protocol be implemented for the
tool. This protocol, implemented by a tool runner, allows
the framework to configure and execute the tool, as well as
collect and understand its clone detection report.

The evaluation phase is depicted in Figure 4. This
processes is repeated per mutant system in the reference
corpus. First, the mutant system is constructed from its
specification in the reference corpus. Next, the subject clone
detection tools are automatically executed for the mutant
system using their tool runners. The framework collects and
stores the resulting standardized clone detection reports.
These reports are analyzed to measure each tool’s unit recall
specifically for the injected clone in the mutant system.

A unit recall of 1.0 is assigned to a subject tool for a
mutant system if the tool successfully detected and reported
the injected clone, otherwise it is a assigned a unit recall of
0.0. Successful detection is determined by a clone matching
algorithm. This algorithm requires the tool to report a clone
pair that: (1) subsumes the injected clone, within a given
tolerance, (2) handles the clone-type defining mutation in
the injected clone, and (3) exceeds a minimum clone simi-
larity threshold. The reported clone is required to subsume
the injected clone, rather than exactly match it, as there may
be additional cloned code surrounding the injected clone
due to the choice of injection location (at least in the case of
block granularity clones). The reported clone must include
the mutated portion of the injected clone, as the goal of this
framework is to see how well the tools are able to handle
these particular differences between cloned code fragments.
The reported clone is required to exceed a given similarity
threshold to prevent false positives reported by a tool, that
happen to subsume the injected clone by chance, from
being accepted as a successful match. Therefore, a successful
match is a true clone pair that captures the injected clone
and handles the particular clone differences introduced by
mutation.

The framework measures the subject tools’ unit recall
for all of the mutant systems. It aggregates these results and
reports the subject tools’ average recall for various subsets
of the reference corpus. Specifically, the framework reports
the subject tools’ recall per clone type, per mutator, and per
mutation operator.

In the following subsections, we describe the evaluation
phase in detail. We begin by over-viewing its configurations
options. We then describe the subsume-based clone match-
ing algorithm used to determine if an injected clone was
detected by a subject tool. Next, we outline the individual
steps of the evaluation phase that are executed for each pair
of mutant system and subject tool. Including: (1) building
the mutant system, (2) executing the clone detection tool for
the mutant system, (3) measuring the tool’s unit recall for
the injected clone. We conclude with an overview of the
evaluation phase’s final statistical performance reporting

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 12

Construct

Mutant Systems

.

.

.

. . .

. . .

Tool (1)

Tool (2)

Tool (k)

.

.

.

Execute

Tool Runners

 Collect Clone

Detection Reports

Database

Evaluate Unit

Recall

Statistical

Evaluation

and Reporting

Average

Recall

Store Unit

Result

Summarize and

Report Results

R
ef

er
en

ce
 C

or
p

u
s

Unit Recall

Evaluator

. . .

(n)

(m)

(i)

.

.

.

(1)

(2)

(n*m)

(i)

(mni)

Fig. 4: Overview of Evaluation Phase

about the subject tools.

4.4.1 Configuration

The evaluation phase has the following configuration op-
tions listed below. These options are used to configure
the subsume-based clone matching algorithm during the
evaluation phase. The meaning and consequences of these
parameters are explained in the subsequent sections.

Subsume Tolerance A relaxing tolerance for the
subsume-based clone matching algorithm, allowing
the tool to miss a number of lines from the start
and end of a reference clone while still being
considered to have subsumed it. Specified as a ratio
of the size (measure in lines) of the selected code
fragment of the injected clone in the mutant system
of interest. Must be equal to or less than the mutation
containment in order to require the subject tools to
detect the clone-type specific mutant aspects of the
reference clones.

Required Clone Similarity The minimum clone simi-
larity of a detected clone to be accepted as a match of
a reference clone.

The evaluation phase is also configured with the subject
clone detection tools it is evaluating. For each subject tool,
the framework requires the following information:

Name The name of the tool.
Description A description of the tool.
Tool Runner The subject tool’s tool runner executable.

When a subject tool is registered with the framework,
its details are added to the experiment’s database, which
assigns the subject tool an unique identifier. The name and
description of the tool are used by the framework to allow
the user to easily identify a subject tool in the performance
report. The tool runner is used by the framework to execute
the subject tool automatically, and implements the input
and output specification expected by the framework. The
subject tools are specified by the framework user prior to
the execution of the evaluation phase.

4.4.2 Clone Matching Algorithm

The framework uses a subsume-based clone matching al-
gorithm to determine if a given clone pair, C , reported
by the subject clone detector for a mutant subject system
sufficiently matches the reference clone pair, R, injected into
that mutant system, for R to be considered as detected by
C . The framework considers C as a sufficient match of R if
it meets three criteria: (1) C subsumes R given the config-
urable subsume tolerance; (2) C captures the mutations in
R, and therefore handles the clone-type specific differences
in R; and, optionally, (3) C is not likely a false positive that
subsumes R by chance, as determined by a clone similarity
threshold. We overview these three requirements in detail,
followed by a mathematical definition of the full algorithm.

(1) Subsumes the reference clone: To be a successful
match, the reported clone (C) must subsume the injected
clone (R). In other words, there must exist a pairing of C’s
and R’s code fragments such that the code fragments of
C subsume those of R. A subsume-based match is used
because the injected clone may be surrounded by additional
cloned code due to the selection of injection location. The
subject tool may report this larger clone which subsumes
the injected clone.

Clone detection tools may not report the reference
clones perfectly. In particular, off-by-one line errors are
common [11]. For this reason we allow a subsume tolerance
to be specified, allowing the tool to miss a number of lines
at the start and end of the reference clone while still being
considered to have subsumed it. This is controlled by the
subsume tolerance configuration, a ratio. The number of
lines that can be missed at the start and end of the reference
clone’s code fragments is equal to the subsume tolerance
configuration (a percentage) multiplied by the length (in
lines) of the selected code fragment of the injected reference
clone, rounded down to the nearest integer. For example,
if the injected clone has a selected code fragment 10 lines
long, and the framework user specified a subsume tolerance
of 15%, then the tool is allowed to miss the first and last 1
lines (b10 ∗ 0.15c = b1.5c = 1) of the clone. This method

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 13

of specifying the subsume tolerance (in lines) is done to
consider differences in clone size as well as to accommodate
the second criteria.

(2) Handles the clone-type specific differences in
the clone: A goal of this framework is to evaluate how well
the tools detect clones with particular types of differences,
i.e., with different editing activities (mutations) and of dif-
ferent clone types. It is therefore required that the reported
clone capture the mutations in the reference clone to be
accepted as a successful detection of the reference clone. It is
not sufficient for the tool to detect only the identical portions
of the clone, it must handle the introduced differences. For
example, it is not sufficient for a subject tool to report only
the identical regions of a Type-2 clone, it must handle and
report the Type-2 differences as part of the overall clone.

This requirement is enforced using the subsume toler-
ance. During the generation of the reference corpus, the
framework user specifies a mutation containment. This is
the minimum distance of the mutation from the edges of
the selected code fragment, specified as a ratio of the size of
the selected (original) code fragment in lines. So long as the
subsume tolerance is set equal to or less than the mutation
containment, the clone matcher will only accept a reported
clone that contains the mutation(s). The framework enforces
this relationship between the two configuration parameters
to ensure the subject tools must handle the mutations.

(3) Is not a likely false positive (optional): A po-
tential problem with the subsume clone matching algorithm
is it will accept any reported clone that trivially subsumes
the injected clone, even if the reported clone is a likely false
positive. In practice, this is not common (Section 5.2), but
could be caused if the tool contains a bug causing it to report
line boundaries incorrectly or large selections of mostly
dissimilar code as clones. To account for this, we (option-
ally) require the reported clone to satisfy a minimum clone
similarity threshold. This is user configurable, but should
be set low as to only filter the obvious false positives. Clone
similarity is measured both by line and by token after Type-
1 (strict pretty-printing) and Type-2 (identifier and literal)
normalizations. This requirement is optional, and should
only be used with syntax-based tools where reporting clones
with low similarity is unexpected and indicates a bug. Espe-
cially for Type-2 clone detectors, where all reported clones
should be exact matches after normalization. Of course,
similarity thresholds are not perfect at distinguishing false
positives, but this limitation can be overcome by running
the experiment both with this requirement enabled and
disabled as well as using multiple similarity thresholds,
which we describe further in Section 4.4.5.

Mathematical Definition: We now summarize the
above clone matching algorithm mathematically in Equa-
tion 4, where C is a clone reported by the tool, R is the in-
jected reference clone in the mutant system, t is the subsume
tolerance, and s is the required clone similarity. The sim()
function is implemented as described in Section 4.2. The
subsume function is evaluated as in Equation 5, where C.f1
and C.f2 are the code fragments of the reported clone,R.o is
the original code fragment and R.m the mutant code frag-
ment of the reference clone, and T (t) = bt ∗R.o.lengthc.
Equation 6 defines if a code fragment f1 subsumes code
fragment f2 given a tolerance of T (t) lines.

match(C,R) = subsumes(C,R, t) ∧ sim(C) ≥ s (4)

subsumes(C,R, t) =
(
C.f1.subsume(R.o, T (t))∧

C.f2.subsume(R.m, T (t))
)

∨
(
C.f2.subsume(R.o, T (t))∧

C.f1.subsume(R.m, T (t))
)

(5)

f1.subsume(f2, T) =

(f1.file = f2.file)∧
(f1.startLine ≤ f2.startline+ T)∧
(f1.endline ≥ f2.endline− T)

(6)

4.4.3 Step 1 - Construct Mutant System
The first step in the evaluation phase process, as executed
per subject tool and mutant system pair, is to construct
the mutant system. The mutant system’s specification is
retrieved from the database. This specification references
the selected code fragment and its mutant code fragment
that comprise the injected clone, along with their respec-
tive injection locations. The mutant system is constructed
by duplicating the subject system, and copying the code
fragments into the specified source files at the specified
positions. The mutant system is then ready to be analyzed
by the subject clone detection tools.

While each subject tool must be executed for the same
mutant systems, the framework deletes and re-constructs
the mutant systems for each tool. Many tools leave behind
analysis files which could interfere with another tool’s exe-
cution. A bug in a subject tool could cause changes to the
mutant system. To ensure the evaluation is fair, each tool is
given a fresh version of each mutant system.

4.4.4 Step 2 - Clone Detection
In this next step, the framework executes the subject tools
for the mutant system. The framework is able to execute a
subject tool and collect its detection report automatically. To
do this, a tool runner must be implemented for the subject
tool. A tool runner is an executable that implements a simple
communication protocol between the framework and the
subject tool. The tool runner wraps the subject tool in an
input/output specification that the framework expects. It is
the responsibility of the experimenter or tool developer to
implement this tool runner.

For a given mutant system, the framework executes the
tool runner and passes it the following input parameters: (1)
the location of the mutant system, (2) the installation direc-
tory of the subject tool, (3) the properties of the reference
corpus, including: the minimum and maximum clone size,
the minimum clone similarity, and the mutation contain-
ment, and (4) the clone type of the injected clone, and the
mutation operators used to synthesize it. The tool runner
uses this information to configure and execute the subject
tool for the mutant system. The framework expects the tool
runner to output a clone detection report that lists the clone

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 14

pairs the tool found in the mutant system in a simple comma
separated format. It is up to the tool runner to covert the
subject tool’s output format to this standardized format. The
framework retains a copy of this clone detection report for
evaluation.

The tool runner is free to make use of any of the input
data provided to it to configure the subject tool for the
mutant system. By implementing multiple tool runners, it is
possible to evaluate a tool’s performance for different usage
scenarios. For example, a tool runner could be implemented
that ignores the injected clone information (clone type and
mutation operators). It would configure the tool for generic
clone detection, and the recall measurements would reflect
the general usage of the tool. Another tool runner could con-
sider the injected clone information, and configure itself for
targeted detection of the injected clone. This result would be
beneficial for tools which are highly configurable, especially
towards the detection of specific clone types. The recall
measurements would reflect highly targeted clone detection
by the tool.

4.4.5 Step 3 - Measuring Unit Recall

Next, the subject tool’s detection report is analyzed to evalu-
ate its unit recall for the injected clone in the mutant system.
A subject tool is given a unit recall of 1.0 for a particular
mutant system if it successfully detects the injected clone,
or 0.0 if it does not. To successfully detect the injected
clone, the subject tool must report a clone that: (1) subsumes
the injected reference clone within a given tolerance (2)
captures the clone-type defining mutation in the reference
clone, and (3) is itself not an obvious false positive that
happens to include the reference clone. These conditions
are evaluated by the clone-matching algorithm described in
Section 4.4.2. The framework increments through the subject
tool’s clone detection report until a clone pair is found that is
determined to be a successful match of the reference clone
by the clone matching algorithm (unit recall = 1.0), or the
end of the report is reached (unit recall = 0.0).

The measured recall depends on the configuration of
the clone-matching algorithm, including the subsume tol-
erance and required clone similarity, as discussed earlier
(Section 4.4.2). The subsume tolerance defines what ratio of
the reference clone the tool can miss from the start and end
of the clone while still being considered to have subsumed
it. This cannot be set higher than the mutation containment
configuration (of the generation phase) to ensure a detected
clone is only considered a match of the reference clone if
it captures the clone-type specific mutation operators. A
higher subsume tolerance is more flexible, allowing the tool
to miss more of the clone while still being considered a
match, favoring the tools in the evaluation. It acknowledges
that when a developer uses the clone detection results, the
detected clone is sufficient for them to identify the clone, as
well as the missed lines. A lower threshold is more strict
with the tools, expecting a more perfect capture. This is
important for automated tasks that cannot recognize the
missed portions of the clone. The subsume tolerance can
also be completely disabled. The framework allows recall to
be efficiently measured with multiple subsume tolerances.
The framework user can then compare and interpret the

differences in measured recall for different strictness in the
capture.

The required clone similarity is used to protect against
an obvious false positive coincidentally subsuming the ref-
erence clone. However, selecting a threshold for indicating
obvious false positive clones is too rigid, and will have its
own precision problems. To overcome this, the framework
supports multiple efficient executions of the evaluation
phase using different threshold configurations. For example,
recall may be measured for a required clone similarity of:
0%, 50%, 60%, 70%. This is an optional requirement which
is appropriate to use with syntax-based clone detectors. We
find that disabling this feature still provides high quality re-
sults (Section 5.2), and recommend that experiments be run
both with this feature enabled and disabled, and compare
the results to check for potential impact of limitations of the
subsume metric.

Using a threshold of 0% disables this aspect of the
clone-matching algorithm. A 50% threshold rejects a re-
ported clone if it shares less than half of its syntax after
Type-1 (strict pretty-printing) and Type-2 (identifier and
literal) normalizations. A higher threshold is more strict
when measuring recall. The measurement can be compared
against different thresholds, and the results interpreted. For
example, if a tool’s recall drops significantly between a 0%
threshold (disabled) and 50% (weak threshold), this indi-
cates the tool is capturing (subsuming) the reference clones,
but its reporting of the reference clones contains a lot of
additional dissimilar code, even after heavy normalization.
If recall remains unchanged as the required clone similar-
ity is increased from 0% to the minimum clone similarity
of the generated clones (70% for example), this indicates
that the tool is both capturing the reference clones and
reporting clones that are highly similar syntactically. This
threshold cannot be set higher than the minimum clone
similarity threshold used in the generation phase. Note that
the similarity threshold only affects the validation of Type-
3 clones as Type-1 and Type-2 clones have 100% similarity
after normalization.

4.4.6 Performance Reporting

The evaluation phase concludes by producing an evalua-
tion report of the subject tools’ recall performances for the
generated reference corpus. For each tool, the framework
reports its recall per mutation operator, per mutator, per
clone type, as well as across the entire reference corpus.
Summary values are calculated by averaging the unit per-
formances across all mutant systems containing an injected
clone part of that summary set. Per mutator performance
is calculated by averaging the unit performance across all
mutant systems containing an injected clone produced by
that mutator. Per mutation operator performance averages
the unit performance for all mutant systems containing an
injected clone with at least one application of the mutation
operator. While per clone type performance averages the
unit performance for all mutant systems containing an in-
jected clone of that clone type, as determined by the mutator
used.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 15

5 EVALUATING THE FRAMEWORK

We have used the Mutation and Injection Framework in a
number of studies evaluating and comparing the recall of
clone detection tools [13], [17], [45], [46]. In this section,
we use results from our previous experiments to demon-
strate and evaluate the effectiveness and usefulness of our
benchmark. A comprehensive comparison, evaluation and
analysis of the available clone detection tools is outside the
scope of this paper, and has been a focus of our previous
work [13], [17], [45], [46]. Our goal here is demonstration
and evaluation of the Mutation Framework itself.

We begin by demonstrating the compatibility of our
benchmark with various tools and the usefulness of its
results. For this we evaluate the recall of ten clone de-
tection tools at a fine granularity across six benchmarking
experiments covering all permutations of the two clone
granularities (function and block) and three programming
languages (Java, C and C#) supported by the Mutation
Framework. We show that measuring recall at the clone edit
level (mutation operator) provides new insights into tool
performance.

A concern with any benchmark is whether the measured
results are accurate, although this is very challenging to
evaluate. To build confidence in the results of our bench-
mark, we compare them against recall measured in three
different ways, including: 1) our expectations of the recall
of the tools as informed by their features, algorithms and
discussions with their authors when available, 2) recall mea-
sured by Bellon’s benchmark [11], and 3) recall measured by
BigCloneBench [16], [17].

5.1 Experimental Setup
Our configuration of the evaluations using the three bench-
marks (Mutation Framework, Bellon’s Benchmark, Big-
CloneBench), and the configuration of the tools for these
benchmarks, are as follows.

5.1.1 Mutation Framework
Code fragments for clone synthesis were randomly se-
lected from the following source repositories: JDK6 and
Apache-Commons (Java), the Linux Kernel (C), and
Mono/MonoDevelop (C#). For each experiment, we config-
ured the framework to select 250 random code fragments
from the source repository. We used 15 single-operator
mutators, one for each of the 15 mutation operators. Each
of these mutators apply a single instance of their assigned
mutation operator. From the selected fragments, a total of
3,750 unique clone pairs were synthesized by the mutators
per language.

We used IPScanner (Java), Monit (C) and MonoOSC (C#)
as our subject systems. For each clone, we configured the
framework to construct 10 mutant systems using different
random injection locations within the subject system. In
total, each experiment’s reference corpus contains 37,500
mutant subject systems. Across these six experiments, we
have constructed 225,000 mutant systems (unique clones)
for tool evaluation.

We also inject the clones into empty systems, which
consist of two source files with the minimal structural code
to allow injection of the clone. For example, for Java this

is two source files each with a class with a single empty
main function. The empty systems allow us to measure the
tools capabilities for the generated clones in isolation as a
baseline. Then we can compare how the tools’ raw detection
of the clones versus when the clone is hidden in a real
software system.

We constrained the generation process to give the refer-
ence corpora the following clone properties: (1) 15-200 lines
in length, (2) 100-2000 tokens in length, (3) a minimum 70%
clone similarity measured by line and by token after Type-1
and Type-2 normalization, and (4) a mutation containment
of 15%. Since our experiments contain a large number of
mutant systems, we preferred slightly larger clones for our
reference corpora. Clone detection tools often run signif-
icantly faster when configured for larger minimum clone
sizes. This allowed us to evaluate the tools in a reasonable
time-frame.

We measured unit recall using four minimum clone
similarity thresholds: 0%, 50%, 60% and 70%. With 0% the
framework measures the tool’s ability to capture the injected
clone, regardless of the quality of the subsuming reported
clone. The non-zero similarity thresholds measure recall
with the expectation that the reported clone not only sub-
sumes the injected clone, but contains a minimum degree of
syntactical similarity. This is to prevent accepting a match
where the candidate clone is suspected to be a buggy clone
or a false positive that happens to subsume the reference
clone.

We use a range of similarity thresholds as a single
threshold may be too rigid. It is difficult to decide which
threshold provides the best results. We measure recall for
a 0% similarity threshold, to see how well the subject
tools capture the reference clones when the quality of the
detection is ignored. We use 50% as our weakest definition
of a true clone. This requires the code fragments of the true
clone pair to share at least half of their syntax, by line or by
token. This is a reasonable minimum expectation for a true
positive clone of the first three clone types. Our strongest
threshold is 70%, which is the minimum similarity of the
clones in the generated reference corpora. We also include
the 60% threshold as a balance between these two. When we
evaluate the tools, we consider how their recall changes as
the minimum similarity parameter is varied. This way we
overcome the rigidity of a single threshold.

5.1.2 Bellon’s Benchmark

We executed the tools for the benchmark’s subject systems,
and imported their results into the benchmark. We executed
the benchmark’s mapping and recall evaluation procedures
using our better-ok clone-matching algorithm, which is an
improvement over Bellon’s original ok metric [13]. This
matching algorithm is based on the contains metric, which
is shown in Eq. 7.

contain(FA, FB) =
|FA ∩ FB |
|FA|

(7)

The contains metric measures how well code fragment
FB contains code fragment FA by measuring the ratio of
the source lines in FA that are also in FB . The better-
ok clone matching algorithm considers reference clone R

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 16

in the benchmark to be matched by candidate clone C
reported by the clone detector if the code fragments of
C contain the code fragments of R by a given threshold.
This algorithm is shown in Eq. 8, where the code fragments
are ordered (avoiding comparing both permutations). C is
considered as a match for R if the minimum containment
of R’s code fragments by C’s code fragments satisfies the
given minimum threshold σ. This algorithm is very similar
to the subsume-based clone matching algorithm used with
the Mutation Framework, and so it optimal for comparing
results between the benchmarks.

better-ok(C,R, σ) = min(contain(R.F1, C.F1)),

contain(R.F2, C.F2))) ≥ σ (8)

In contrast, Bellon’s original ok clone matching algo-
rithm considers containment in both directions, and will
also accept C as a match of R if C is contained by R by the
given threshold. The problem with this metric is it accepts
poor matches whereC is much smaller thanR. For example,
if R is a 100 line clone, and C is a 5 line clone contained
entirely within R, this is considered as a perfect match
for R, which is not desirable. Bellon also has a good clone
matching algorithm based on code fragment overlap, but
we found found this metric to be too strict [13]. Murakami et
al. [12] extended the benchmarks and matching algorithms
to consider the gaps in the Type-3 clones, but we found
this had a negligible effect on the recall measured for these
tools [13].

We executed the benchmark for a minimum clone match-
ing threshold of 0.70, which is the value used in Bellon
et al.’s [11] original experiment, and the value we have
used with the Mutation Framework. Further details on
the procedure of Bellon’s benchmark can be found in its
publication [11], and in our previous work [18].

5.1.3 BigCloneBench

BigCloneBench [47], [48] is a collection of 8 million Java
function clones of 43 distinct functionalities mined from
IJaDataset-2.0, and big Java inter-project repository contain-
ing 25,000 open-source software systems. BigCloneBench
contains clones of all four clone types, including the entire
range of syntactical similarity. BigCloneBench tool evalua-
tion experiments can be conducted using our BigCloneEval
tool evaluation framework [48].

Recall was measured using a subsume-based clone-
matching algorithm that requires the tool to subsume 70%
of a reference clone to be considered to have detected it.
This is less strict than the Mutation Framework’s clone-
matching algorithm. Since the Mutation Framework synthe-
sizes its reference clones, it is able to measure if the tool
appropriately handled the clone-type specific mutations it
applied, and did not capture the clone by chance within a
obvious false positive clone. This is one of the advantages
of controlled synthetic benchmarking. While the advantage
of real-world benchmarking is measuring recall for natural
clones produced by real developers, the clone-matching
algorithm cannot be as precise since the clone was not
created under controlled circumstances.

We do not include Deckard in this experiment as we
previously found its Java-1.4 capable parser is not be suf-
ficient for IJaDataset, leading to poor recall [17]. With Big-
CloneBench study we use a minimum clone size of 6 lines
to match previous real-world benchmark experiments [11],
[17], [25]. With the Mutation Framework we used a larger
clone size, 15 lines, for performance reasons when executing
the subject tools for 225,000 mutant subject systems. How-
ever, the results are comparable as we used strict minimum
clone sizes and configured the tools appropriately in each
case.

5.1.4 Tool Configuration
The participating subject tools, their programming language
and clone type support, as well as their their configurations
for the three benchmarks are summarized in Table 3.

We configured the tools from an experienced user’s
perspective. An experienced user has explored a tool’s
configuration options, defaults and documentation, and
modifies the tool’s settings, where appropriate, for their use
case. An experienced user is not necessarily a clone expert
or researcher, but is comfortable configuring the tools for
their target input. Specifically, we wanted to measure the
performance an experienced user can expect when using
these tools with their own subject systems.

To configure the tools we first consulted their documen-
tation and default settings. We enabled any features that
provided Type-1 and Type-2 normalization. Clone size and
clone similarity thresholds were configured with respect
to known properties of the benchmarks. We avoided over-
configuring the tools, especially where precision might suf-
fer.

Full Type-1 and Type-2 normalizations were not enabled
for some tools. CPD only supports these normalizations for
Java subject systems. SimCad has two identifier normal-
ization options: systematic renaming and blind renaming.
The blind renaming can find more clones, but can hurt
precision, so we used systematic renaming. Simian supports
identifier normalization for its supported languages, but
we found that it produced unusually large clone reports
for C# systems with identifier normalization enables. This
indicates a bug or precision problem, so we disabled iden-
tifier normalizations with the C# experiments. SourcererCC
does not formally support Type-2 clone detection, as it does
not use Type-2 normalizations. Instead it targets Type-2 and
Type-3 clones using its bag-of-tokens source model and
similarity threshold. It does, however, perform stemming
on the source tokens which could be seen as a partial Type-
2 normalization.

In a couple cases we did not execute a tool for its
supported languages or settings. Deckard’s Java parser only
supports the Java-1.4 specification, so we did not evaluate it
in our Java experiments which use the Java-1.6 specification.
While Deckard can still be executed for such systems, its
detection performance is compromised by the parser. We
only executed ConQat for Java. ConQat is a powerful toolkit
for rapid development and execution of software quality
analysis. Included is functionality for performing clone de-
tection with multiple languages. However, only for Java
does it include a preconfigured analysis script for Type-3
clone detection.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 17

TABLE 3: Participating Subject Tools, Their Language and Clone Type Support, and Benchmark Configurations

Tool Languages Types Bellon’s Benchmark Big Clone Bench Mutation Framework

CCFinderX Java, C, C# 1,2 min. size: 25 tokens, min. token
types: 6

Min length 50 tokens, min
token types 12.

Min length 50 tokens, min
token types 12.

ConQat Java, C 1,2,3 Min length 6 lines, max. editing
distance 3, gap ratio 30%.

Min length 6 lines, max. editing
distance 5, gap ratio 30%.

Min length 15 lines, max errors
3, gap ratio 30%.

CPD Java, C, C# 1,2 Min length 30 tokens, ignore
annotations/identifiers/literals,
skip parser errors.

Min length 50 tokens, ignore
annotations/identifiers/literals,
skip parser errors.

Min length 100 tokens, ignore
annotations/identifiers/literals,
skip parser errors.

CtCompare Java, C 1,2 Min length 30 tokens, max 6
isomorphic relations.

Min length 50 tokens, max 6
isomorphic relations.

Min length 100 tokens, max 3
isomorphic relations.

Deckard Java, C 1,2,3 Min length 30 tokens, 90%
similarity, 5 token stride.

Min length 50 tokens, 85%
similarity, 2 token stride.

Min length 50 tokens, 85%
similarity, 2 token stride.

iClones Java, C 1,2,3 Min length 30 tokens, min
block 10 tokens.

Min length 50 tokens, min
block 20 tokens.

Min length 100 tokens, min
block 20 tokens.

NiCad Java, C, C# 1,2,3 Min length 6 lines, blind
identifier normalization,
identifier abstraction, min 70%
similarity.

Min length 6 lines, blind
identifier normalization,
identifier abstraction, min 70%
similarity.

Min length 15 lines, blind
identifier normalization,
identifier abstraction, min 70%
similarity.

SimCad Java, C, C# 1,2,3 Greedy transformation,
Unicode support, min 6 lines.

Greedy transformation,
Unicode support, min 6 lines.

Greedy transformation,
Unicode support, min 15 lines.

Simian Java, C, C# 1,2 Min length 6 lines, ignore
identifiers and literals.

Min length 6 lines, ignore
identifiers (Java/C) and literals.

Min length 15 lines, ignore
identifiers and literals.

SourcererCC Java, C, C# 1,3 Min length 6 lines, min
similarity 70%, function
granularity.

Min length 15 lines, min
similarity 70%, function
granularity.

5.2 Demonstrating Compatibility and Usefulness

To demonstrate the compatibility of the Mutation Frame-
work, and its usefulness to clone detection researchers
and practitioners, we used it to measure the recall of the
ten clone detection tools for three programming languages
(Java, C and C#) and two clone granularities (block and
function). The results of these experiments are summarized
in Table 4 and Table 5.

Recall is summarized per mutation operator for two
experiments. In our baseline experiment, we measure recall
for the generated clones injected into an empty software
system (E). This allows us to measure recall for the clones
without any bias due to surrounding code which could
impact the tools’ detection. However, this is not a realistic
use-case, so we also measure recall for the generated clones
injected into real software systems. For this experiment we
configured the clone-matching algorithm to use a 0%, 50%,
60% and 70% required similarity threshold. We show here
only the results for 0% (similarity disabled, S0) and 60%
(S60) – we found very little difference between 50% and 60%,
while 70% was too similar to the similarity threshold used
during generation which caused some anomalies. These ex-
periments go from least to most strict detection requirement.
We use the · symbol in the results tables to better highlight
where recall does not change going from less strict to more
strict experiments (left to right). We omit CCFinderX from
the baseline experiment as we had difficult getting it to work
on a modern Linux system (the other results are from our
previous experiment work).

The results of our experiment clearly demonstrate the
compatibility of our benchmark. We were able to evaluate
ten of the popular and common clone detection tools across
three languages and two clone granularities. The gaps in the
results are cases where a clone detector does not support
a given source language. We did not encounter a case
where any of the evaluated tools were incompatible with
the framework due to the synthetic nature of the clones or
their granularity.

The Mutation Framework is useful in that it measures

the recall of clone detection tools for the first three clone
types. What sets the Mutation Framework apart from exist-
ing benchmarks [11], [16] is it can measure recall per clone
edit type (mutation operator) and clone granularity, which
leads to unique insights about the tools that is not possible
or challenging with existing benchmarks. In the remainder
of this section, we will demonstrate this by highlighting
unique insights from this experiment. We do not focus on
the results of the individual tools, which we have done in
previous works [13], [17], [45], [46].

There are a number of reasons why a tool may fail to
detect one of the generated clones. (1) It may be unable to
detect the clone due to the syntax of the clone originating
from the selected code fragment during generation. This will
manifest as a uniform drop in recall across the mutation
operators as we use the same set of selected code fragments
uniformly with each mutation operator. (2) It may be unable
to detect a clone due to the clone edit we applied using the
mutation operators. This will manifest as a larger drop in
recall for the mutation operators the tools’ struggle with.
(3) A tool may fail to detect a clone not due to properties
of the clone, but due to its injection location or the syntax
surrounding the clone. This will manifest as a drop in recall
going from the base experiment, where the tool is executed
against the clone in isolation, to our experiment where the
clones are injected into a real software system. We now
explore specific instances of these cases and the insights they
provide.

We see cases where tools fail to detect clones due to their
syntax. CCFinderX, ConQat and Deckard exhibit a uniform
recall result across the mutation operators they perform best
with.

The Mutation Framework is good at determining which
clone types and clone edit types a clone detector supports,
which could be different than what the tool advertises or
its developers intend (e.g., bugs). The Mutation Framework
correctly identifies that CCFinderX, CPD, CtCompare and
Simian do not support Type-3 clone detection for any
language, and that CPD does not support Type-2 clone

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 18

TABLE 4: Mutation Framework Recall Results for Function Clones

CCFX ConQat CPD CtComp. Deckard. iClones NiCad SimCad Simian Sourc.CC
E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60

Ja
va

Ty
pe

-1

mCC BT x 99 · 91 · · 100 99 · 99 97 · 100 · · 100 · · 100 · · 97 91 · 100 · ·
mCC EOL x 99 · 91 · · 100 99 · 99 97 · 100 · · 100 · · 100 · · 97 91 · 100 · ·

mCF A x 99 · 90 · · 100 98 · 99 96 · 100 · · 100 · · 100 · · 62 58 · 100 · ·
mCF R x 99 · 91 · · 0 98 · 99 97 · 100 · · 100 · · 100 · · 70 66 · 100 · ·
mCW A x 99 · 91 · · 100 99 · 99 95 · 100 · · 100 · · 100 · · 97 91 · 100 · ·
mCW R x 99 · 91 · · 100 99 · 99 96 · 100 · · 100 · · 100 · · 97 91 · 100 · ·

Ty
pe

-2

mSRI x 91 · 88 · · 100 99 · 99 95 · 85 · · 100 · · 100 · · 97 91 · 100 · ·
mARI x 22 · 90 · · 100 99 · 99 95 · 96 · · 100 · · 83 · · 97 91 · 100 · ·

mRL N x 96 · 91 · · 0 · · 0 · · 99 · · 100 · · 100 · · 96 89 · 100 · ·
mRL S x 99 · 91 · · 100 99 · 0 · · 93 · · 100 · · 100 · · 97 91 · 100 · ·

Ty
pe

-3

mDL x 0 · 85 · · 1 · · 0 · · 94 · · 100 · · 85 · · 0 · · 100 · ·
mIL x 0 · 85 · · 0 2 · 0 · · 98 · · 100 · · 90 · · 0 1 · 100 · ·

mML x 0 · 88 · · 0 · · 0 · · 96 · · 100 · · 83 · · 0 · · 100 · ·
mSDL x 0 · 86 · · 0 · · 0 · · 95 · · 100 · · 99 · · 0 · · 100 · ·

C
Ty

pe
-1

mCC BT x 100 · 100 99 98 100 83 · 91 73 · 100 · · 99 · · 100 · · 97 97 · 100 · ·
mCC EOL x 100 · 100 99 98 0 · · 91 73 · 100 · · 99 · · 100 · · 100 99 · 100 · ·

mCF A x 100 · 100 96 · 100 83 · 91 73 · 100 · · 99 · · 100 · · 63 63 · 100 · ·
mCF R x 100 · 100 96 95 100 83 · 90 72 · 100 · · 99 · · 99 · · 59 59 · 100 · ·
mCW A x 100 · 100 99 98 100 83 · 91 73 · 100 · · 99 · · 100 · · 96 96 · 100 · ·
mCW R x 100 · 100 99 98 100 83 · 91 73 · 100 · · 99 · · 100 · · 97 96 · 100 · ·

Ty
pe

-2

mSRI x 98 · 0 · · 100 80 · 90 72 · 90 · · 99 · · 98 · · 100 99 · 100 · ·
mARI x 33 · 0 · · 100 80 · 91 73 · 99 · · 99 · · 92 · · 100 99 · 100 · ·

mRL N x 100 · 0 · · 0 · · 91 73 · 98 · · 99 · · 100 · · 90 90 · 100 · ·
mRL S x 100 · 0 · · 0 · · 91 73 · 98 · · 99 · · 100 · · 100 99 · 100 · ·

Ty
pe

-3

mDL x 0 · 0 · · 0 · · 82 66 · 98 · · 99 · · 89 · · 0 · · 100 · ·
mIL x 0 · 0 · · 0 · · 81 65 · 99 · · 99 · · 96 · · 0 · · 100 · ·

mML x 0 · 0 · · 0 · · 90 72 · 99 · · 99 · · 81 · · 0 · · 100 · ·
mSDL x 0 · 0 · · 0 · · 90 72 · 98 · · 99 · · 96 · · 0 · · 100 · ·
mSIL x 0 · 0 1 · 0 · · 90 72 · 99 · · 99 · · 84 · · 0 · · 100 · ·

C
#

Ty
pe

-1

mCC BT x 100 90 0 51 · 98 · · 100 · · 93 88 · 100 · ·
mCC EOL x 100 90 0 52 · 98 · · 100 · · 93 88 · 100 · ·

mCF A x 100 90 84 51 · 98 · · 100 · · 54 51 · 100 · ·
mCF R x 100 89 0 52 · 98 · · 100 · · 53 50 · 100 · ·
mCW A x 100 90 85 51 · 98 · · 100 · · 93 88 · 100 · ·
mCW R x 100 90 80 52 · 98 · · 100 · · 93 88 · 100 · ·

Ty
pe

-2

mSRI x 99 88 0 · · 98 · · 100 · · 0 0 · 100 · ·
mARI x 36 33 0 · · 98 · · 88 · · 0 0 · 100 · ·

mRL N x 98 88 0 · · 98 · · 100 · · 91 86 · 100 · ·
mRL S x 100 90 0 · · 98 · · 100 · · 93 88 · 100 · ·

Ty
pe

-3

mDL x 0 · 0 1 · 97 · · 89 · · 0 1 · 100 · ·
mIL x 0 · 0 · · 98 · · 93 · · 0 0 · 100 · ·

mML x 0 · 0 · · 98 · · 78 · · 0 0 · 100 · ·
mSDL x 0 · 0 · · 98 · · 98 · · 0 0 · 100 · ·
mSIL x 0 · 0 · · 98 · · 82 · · 0 1 · 100 · ·

E = Clone only (empty system), S0 = Injected clone, 0% required similarity, S60 = Injected clone, 60% required similarity, · = Same recall as result on left

detection for C. At the edit level, it correctly identifies
that CtCompare does not support literal normalization in
Type-2 clone detection, and identifies we disabled identifier
normalization for Simian with C# due to performance and
precision issues.

While CPD advertises literal normalization in Java clone
detection, the framework reveals that it does not actually
support numerical literal normalization, possibly due to a
bug. While CtCompare handles any comment type differ-
ences in Java, it unexpectedly is unable to detect clones with
differences in end of lines comments in C. Our benchmark
is helpful to find such omissions or bugs so that they
can be corrected. It would be more challenging to identify
these issues using existing real-world benchmarks where
the researcher would need to manually examine the clones
missed by the tools to try to determine patterns in false
negatives. In a real-world benchmark these edit types would
be mixed with others which could mislead the researcher,
or may lack representation in the benchmark and be missed
completely.

The Mutation Framework is good at uncovering partic-
ular weaknesses in the tools. For example, while CCFind-
erX has overall good Type-2 recall, it disproportionately
struggles in detecting Type-2 clones with arbitrarily re-
named identifies. SimCad is also weakest as these Type-2
clone edits compared to the other edit types, which sug-
gest these isolated changes cause more dissimilarity in its
simhashing. In contrast, iClones struggles more with sys-
tematically renamed identifiers, as these show up as more
dispersed token-level changes to its detection algorithms.
While Simian’s text-based detection algorithm is robust to
most Type-1 clones, it in particular struggles for clones with
a change in formatting – where a newline has been added
or removed.

Comparing the baseline experiment (empty system)
against the primary experiment (real software system), we
do see cases where tools are failing to detect clones due to
injection location, or other properties of the subject system.
We see this in particular for Deckard and CtCompare, and
to a lesser degree with CPD and Simian. These tools have

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 19

TABLE 5: Mutation Framework Recall Results for Block Clones

CCFX ConQat CPD CtComp. Deckard. iClones NiCad SimCad Simian Sourc.CC
E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60 E S0 S60

Ja
va

Ty
pe

-1

mCC BT x 94 · 94 · · 100 98 · 99 97 · 100 · · 100 · · 100 · 98 96 90 · 100 · ·
mCC EOL x 94 · 94 · · 100 98 · 99 98 · 100 · · 100 · · 100 · 98 96 90 · 100 · ·

mCF A x 94 · 94 · · 100 98 · 99 98 · 100 · · 100 · · 100 · 98 70 66 · 100 · ·
mCF R x 94 · 94 · · 0 98 · 99 98 · 100 · · 100 · · 100 · 98 60 55 · 100 · ·
mCW A x 94 · 94 · · 100 98 · 99 98 · 100 · · 100 · · 100 · 98 96 90 · 100 · ·
mCW R x 94 · 94 · · 100 98 · 99 98 · 100 · · 100 · · 100 · 98 96 90 · 100 · ·

Ty
pe

-2

mSRI x 90 · 92 · · 100 98 · 99 96 · 84 82 · 100 · · 100 · 98 96 90 · 100 · ·
mARI x 20 · 94 · · 100 98 · 99 96 · 96 98 · 100 · · 91 · 89 96 90 · 100 · ·

mRL N x 93 · 94 · · 0 · · 0 · · 98 98 · 100 · · 100 · 97 93 88 · 100 · ·
mRL S x 94 · 94 · · 100 98 · 0 · · 94 97 · 100 · · 100 · 97 96 90 · 100 · ·

Ty
pe

-3

mDL x 0 · 87 · · 1 · · 1 · · 94 · · 100 · · 94 · 91 2 2 · 100 · ·
mIL x 0 · 87 · · 2 · · 0 · · 96 97 · 100 · · 96 · 93 1 1 · 100 · ·

mML x 0 · 90 · · 0 · · 0 · · 95 97 · 100 · · 88 · 86 0 0 · 100 · ·
mSDL x 2 · 89 · · 0 · · 0 · · 95 95 · 100 · · 99 · 96 0 0 · 100 · ·
mSIL x 2 · 90 · · 1 · · 1 · · 97 98 · 100 · · 89 · 87 0 0 · 100 · ·

C
Ty

pe
-1

mCC BT x 99 · 100 · · 100 81 · 90 61 59 100 · · 100 · · 100 · 98 96 93 · 100 · ·
mCC EOL x 99 · 100 · · 0 · · 90 61 59 100 · · 100 · · 100 · 98 100 97 · 100 · ·

mCF A x 99 · 100 · · 100 81 · 90 61 59 100 · · 100 · · 100 · 98 64 61 · 100 · ·
mCF R x 99 · 100 · · 100 81 · 89 61 58 100 · · 99 · · 99 · 97 54 53 · 100 · ·
mCW A x 99 · 100 · · 100 81 · 90 61 59 100 · · 100 · · 100 · 98 97 94 · 100 · ·
mCW R x 99 · 100 · · 100 81 · 90 61 59 100 · · 100 · · 100 · 98 98 95 · 100 · ·

Ty
pe

-2

mSRI x 98 · 0 · · 100 81 · 90 61 59 96 95 · 100 · · 100 · 97 100 97 · 100 · ·
mARI x 30 · 0 · · 100 81 · 90 61 59 100 99 · 100 · · 96 · 93 100 97 · 100 · ·

mRL N x 99 · 0 · · 0 · · 90 61 59 100 99 · 100 · · 100 · 98 88 85 · 100 · ·
mRL S x 99 · 0 · · 0 · · 90 61 59 97 96 · 100 · · 100 · 98 100 97 · 100 · ·

Ty
pe

-3

mDL x 0 · 0 · · 0 · · 78 57 54 98 97 · 99 · · 91 · 88 0 0 · 100 · ·
mIL x 0 · 1 · · 1 · · 81 58 56 98 98 · 100 · · 94 · 92 1 1 · 100 · ·

mML x 1 · 1 · · 1 · · 89 61 58 98 97 · 100 · · 88 · 86 0 0 · 100 · ·
mSDL x 0 · 0 · · 0 · · 89 60 58 98 98 · 100 · · 98 · 95 0 0 · 100 · ·
mSIL x 1 · 1 · · 1 · · 90 61 59 98 98 · 100 · · 91 · 89 0 0 · 100 · ·

C
#

Ty
pe

-1

mCC BT x 96 96 0 50 · 99 · · 97 · · 86 84 · 100 · ·
mCC EOL x 96 96 0 51 · 99 · · 97 · · 87 84 · 100 · ·

mCF A x 96 96 92 51 · 99 · · 97 · · 56 53 · 100 · ·
mCF R x 96 96 0 51 · 98 · · 96 · · 50 49 · 100 · ·
mCW A x 96 96 86 50 · 99 · · 97 · · 88 84 · 98 · ·
mCW R x 96 96 78 51 · 99 · · 97 · · 88 84 · 100 · ·

Ty
pe

-2

mSRI x 94 94 0 · · 99 · · 97 · · 0 · · 100 · ·
mARI x 35 35 0 · · 99 · · 85 · · 0 · · 100 · ·

mRL N x 94 94 1 0 · 99 · · 97 · · 86 83 · 100 · ·
mRL S x 96 96 0 · · 99 · · 97 · · 86 82 · 100 · ·

Ty
pe

-3

mDL x 2 2 1 0 · 98 · · 83 · · 1 · · 100 · ·
mIL x 0 0 0 · · 99 · · 90 · · 0 · · 99 · ·

mML x 0 0 0 · · 99 · · 83 · · 0 · · 100 · ·
mSDL x 0 0 0 · · 99 · · 94 · · 1 · · 100 · ·
mSIL x 0 0 0 · · 99 · · 82 · · 0 · · 100 · ·

E = Clone only (empty system), S0 = Injected clone, 0% required similarity, S60 = Injected clone, 60% required similarity, · = Same recall as result on left

good detection of the clones, but lose recall when these
clones are injected into various positions in a real software
system. While clone injection is causing a bias in this case,
injection represents a more realistic use-case of these tools.
The baseline represents the performance of these tools in the
ideal case where the software system has no impact on their
performance, but the primary experiment may reflect better
the actual performance of these tools in real use-cases. We
see an anomaly with CPD for C# clones where it has better
recall in the baseline case for some kinds of Type-1 clones,
but for others it is only able to detect them when injected
into a real software system, suggesting a bug with the tool.
ConQat, iClones, NiCad, SimCad and SourcererCC are not
impacted by injection location as revealed by no change
between the baseline and primary (at least S0) experiments.

The Mutation Framework’s flexible similarity require-
ment for the clone matching algorithm allows clone de-
tection quality to be considered. The majority of the tools
show little or not difference in recall when the similarity

requirements is increased from 0% to 60%. Only CCFinderX
and only for function granularity C# clones do we see a
significant difference, with an absolute drop of up to 11%.
Since CCFinderX is a Type-1/Type-2 clone detector, and
should not be reporting clones with a similarity less than
100%, this suggests a issue in reporting clone boundaries
for the C# function clones. While we cannot rely on the
required similarity threshold to judge true vs false clones,
we do find it is useful to find cases where limitations in the
subsume-matching metric may be impacted by bugs in the
clone detector.

The Mutation Framework is also good at determining
if a clone detection tool has a weakness for a particular
language or granularity. While most of the tools have similar
recall for block and function clones, we note that Deckard
has significantly higher recall for function clones than block
clones. CCFinderX has somewhat lower recall for function
clones in C#, and somewhat lower recall for block clones in
Java, but the difference is not as pronounced as for Deckard.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 20

Differences in function and blocks recall could indicate
some issue in how these tools align the code fragments for
clone detection. Across the programming languages, we see
that CtCompare performs better for Java than C, and CPD
performs vastly better for Java and C than for C#. Simian
has marginally higher recall for Type-1 C clones compared
to Type-1 Java clones. Where recall is lower for one language
could indicate problems in that parser for that language.

In this experiment, we have demonstrated that the Mu-
tation Framework can provide insights about the tools that
are only possible with its fine-grained analysis. While real-
world benchmarks contain clones with the various clone
edit types and granularities, they are not able to evaluate
the tools for them in isolation with limited bias. The Mu-
tation Framework is symmetric (selected code fragments,
injection locations) across the mutation operators, allowing
fine-grained recall to be compared across the edit types with
reduced bias.

5.3 Building Confidence in Benchmarking Accuracy

While the Mutation Framework was created to measure
the recall of clone detection tools, it is very challenging
to measure the accuracy of the Mutation Framework itself.
In order to build confidence in recall results measured by
our Mutation Framework we evaluate the tools in three
additional ways and compare these results against our
benchmark to build our confidence and to check for any
anomalies in the results. First we compare the results against
our expectations for the tools based on their algorithms,
features and consultations with their authors. While we ex-
pect to find disagreements with our expectations where the
Mutation Framework provides new insights into the tools,
we do not expect to find significant anomalies between
our knowledge of the tools and the benchmark results. We
then compare our synthetic benchmarking results against
measurements from two real-world benchmarks, Bellon’s
Benchmark and BigCloneBench. Strong agreement between
benchmarks built in different ways builds our confidence in
their accuracy. While we expect to find differences due to the
advantages and disadvantages of the different benchmark-
ing methodologies, these differences should be explainable
by the differing approaches. Anomalous disagreement be-
tween the benchmarks suggests inaccuracies in one or both
of the benchmarks. We use our Mutation Framework results
for injection into a real software system and with a 60%
similarity threshold as the strictest experiment and the most
similar to the other benchmarks.

5.3.1 Mutation Framework vs. Expectations
We build confidence in the Mutation and Injection Frame-
work by comparing its results against our knowledge and
expectations of the evaluated tools. While we cannot be
certain our expectations are correct, and agreement between
our expectations and our benchmark does not guaranteed
the Mutation Framework is accurate, this comparison is
a good “sanity check” for problems in the benchmark.
Significant or anomalous disagreement between our knowl-
edge/expectations and the benchmark results could indicate
problems in the benchmark, therefore we investigate the
cases of disagreement carefully to check for problems.

We show the agreement between our expected recall
and the measured recall by the Mutation Framework in
Table 6. We compare the Mutation Framework’s agreement
with our expectations separately for the function and block
clone granularities, although we did not create expectations
separately for these granularities. Agreement is marked
with a crossed circle, while disagreement is marked with
a empty circle. The table summarizes the ratio of the cases
where the framework and our expectations agree.

Our expectations of the subject tool’s recall are shown
per language and clone type in Table 6. Our expectations
were decided before the experiments were executed. We
evaluated our expectations of the tools’ recall in 25% in-
crements, starting at 0% and capped at 90%. We consider
a measured recall to agree with our expectation if it is
within 12.5% of the expected value. This strategy gives our
expectations flexibility, as they are educated estimates.

If agreement is found, then we are confident that the ex-
pectation and benchmark are correct. Otherwise, we suspect
that either our expectation and/or the benchmark is inac-
curate. We chose our expectations by consulting the tools’
documentation, publication, and literature discussion [6],
[7]. We also considered our experiences with these tools in
our other studies. Where possible, we reached out to the
tool developers for their opinions on our expectations. In
general, we were optimistic about the quality of the tools.
Despite these efforts, the expectations may still contain
inaccuracies. This is why we use a generous window (25%)
around the expectation when determining agreement.

We expect a recall of 0% if a tool does not support
the detection of a particular clone type. If a tool fully
supports a clone type (e.g., supports the required source
normalizations), we assigned it an expected recall of 90%
for that type. If a tool only partially supports a clone type,
or if we felt it may struggle in detecting a clone type, we
estimated the degree of its partial support as 25%, 50% or
75%.

The Type-3 clone detectors we tested use advanced de-
tection techniques and support a variety of source normal-
izations. We expect that these tools have high recall (90%)
for the three clone types. We expected the Type-2 clone
detectors (CCFinderX, CPD, CtCompare, Simian) to have
0% Type-3 recall as they do not support clones containing
gaps.

CPD only supports Type-2 normalizations with Java
source code, so we expected it to have 0% recall for Type-2
clones in C and C# systems. With CtCompare, we lowered
our Type-2 expectations to 50% as CtCompare does not
support literal normalization. We lowered SourcererCC’s
expected Type-2 recall to 75% because SourcererCC does not
apply Type-2 normalizations other than token stemming.
However, its Type-3 detection capabilities, a flexible bag-
of-tokens model and similarity threshold, should allow it
to detect many Type-2 clones when considering the Type-
2 differences as Type-3 gaps. We lowered our expectations
of Deckard’s Type-3 recall to 75%. Deckard recommends a
relatively higher similarity threshold to maintain precision.
This may cause it to miss some Type-3 clones with larger
degrees of dissimilarity.

The expected and measured recall are compared in Ta-
ble 6. Since we selected our expectations in 25% increments,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 21

TABLE 6: Agreement Between Measured and Expected Recall

Tool CCFX ConQat CPD CtCom. Deckard iClones NiCad SimCad Simian Sourc.CC %Agree
Clone Type 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Java

Expected — -
Function-Actual — -
Function-Agree — 89%

Block-Actual — -
Block-Agree — 89%

C

Expected — -
Function-Actual — -
Function-Agree — 85%

Block-Actual — -
Block-Agree — 81%

C#

Expected — — — — -
Function-Actual — — — — -
Function-Agree — — — — 83%

Block-Actual — — — — -
Block-Agree — — — — 83%

= Agree (±12.5%) = Disagree = Recall (0, 25, 50, 75, 90%)

we consider a measurement to agree with our expectations
if they are within ±12.5%. The framework agrees with
our expectations in 81-89% of the cases, depending on the
programming language and clone granularity. This high
agreement allows us to have confidence in the results of
our benchmark. However, there is some disagreement. This
could be due to errors in our expectations, or inaccuracies in
the benchmark. We investigate these cases to determine the
likely reason. With the exception of SourcererCC’s Type-2
recall, measured recall was lower than our expectations in
the cases of disagreement.

In most of the cases, disagreement was due to tool
having an unexpectedly low recall for one or two particular
mutation operators (i.e., types of differences between cloned
code). This would cause the tools’ average recall for the
corresponding clone type(s) to fall below expectations. The
tools’ recall for the other mutation operators of that clone
type agreed with the expectations. This scenario covers the
cases of disagreement with CCFinderX, CPD (for Java),
CtCompare and Simian. Each of these tools have difficul-
ties with different mutation operators, so there does not
appear to be any systemic issue with how the framework
handles these mutations. At least one tool performs well
for the clones produced by each mutation operator. Rather,
disagreement appears to be due to an incorrect expecta-
tion. These tools contain deficiencies that were unknown
to us. We are therefore confident that for these cases of
disagreement, the Mutation Framework is correct and our
expectations are incorrect.

With SourcererCC, the Mutation Framework has mea-
sured a higher Type-2 recall than expected. We believed
SourcererCC may miss some Type-2 clones because it does
not use full Type-2 normalization, only language token
stemming. SourcererCC does not use Type-2 normalization
as it would cause poor precision and execution performance
with its optimized bag-of-tokens approach. However, it
appears that the dissimilarity caused by the Type-2 changes
fall within the Type-3 clone similarity threshold of the tool,
allowing the tool to detect them using its Type-3 detection
capabilities.

Disagreement with expectations for Deckard and CPD
(for C#) do not appear to be due to a inefficiency with
any particular kind of clone. Rather these tools’ recall for
every mutation operator was lower than expected. It is
possible our expectations were too high for these cases of
disagreement, or it may be that the Mutation Framework
is measuring a recall that is too low. However, since the
other cases support confidence in the Mutation Framework,
and we do not see uniformly poor recall across all the tools
(some tools are detecting these clones well), we therefore
believe our expectations were too high in these particular
cases.

The Mutation Framework agrees with our expectations
in a large majority of the cases. In most of the cases of
disagreement, we have found specific unknown weaknesses
in the subject tools. Overall, we did not find any major or
consistent anomalies in the results of the Mutation Frame-
work that would lead is to suspect its accuracy. While this
comparison does not prove the accuracy of the Mutation
Framework, it does build our confidence that the benchmark
is providing accurate measurements.

5.3.2 Mutation Framework vs. Bellon’s Benchmark

Now we compare the Mutation and Injection Frame-
work (synthetic benchmark) against Bellon’s Benchmark
(real-world benchmark). Since Bellon’s benchmark contains
clones at the arbitrary line level, we compare against the
block granularity results from Mutation Framework as the
closest match. Recall per clone type and programming lan-
guage as well as agreement between the benchmarks is
shown in Table 7. We consider the benchmarks to agree if
their measurements have an absolute difference no larger
than 15%, which is a value we have used successfully
in our previous work [13]. As can be seen, there is poor
agreement between the benchmarks. The benchmarks agree
for only 38% of measurements for Java, and 25% for for C.
The benchmarks agree that the tools that do not support
Type-3 detection have poor or no detection of these clones.
Otherwise the benchmarks have some agreement on CPD,
CtCompare, iClones and Simian. Where the benchmarks

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 22

disagree, Bellon’s benchmark consistently measures a lower
recall, often significantly lower.

Some disagreement is expected between the bench-
marks. The Mutation Framework generates only simple
Type-3 clones with a single change, so Bellon’s bench-
mark may measure a lower Type-3 recall where clones
can have more significant differences. We expected Bellon’s
benchmark to measure lower recall for NiCad and SimCad
due to clone granularity. These tools only detect clones at
the strict function and block granularity, whereas Bellon’s
benchmark contains clones at arbitrary granularity. This is
a tool compatibility issue with Bellon’s benchmark, which
is a problem since many recent clone detectors have tar-
geted strict (usually function) granularities [45], [46], [49],
[50], [51]. In contrast, clone detectors that report clones at
arbitrary granularity are compatible with the function and
block clones produced by our Mutation Framework.

Where disagreement is most puzzling is for Type-1 and
Type-2 recall. The Mutation Framework shows us that many
of these tools have high recall for the various kinds of Type-
1 and Type-2 clone edits. We expect this would translate
to high recall for real clones in real software systems, and
yet Bellon’s Benchmark is measuring low Type-1 and Type-
2 recall for many of these tools. These tools feature the
normalizations required to detect the Type-1 and Type-2
clones, and the Mutation Framework confirms they work
correctly, so this leads us to be suspicious of the results from
Bellon’s Benchmark.

Analysis of Bellon’s Benchmark from the literature sup-
ports our suspicions of Bellon’s Benchmark. Baker [14]
found inconsistencies in Bellon’s validation of the clones.
Charpentier et. al [15] re-investigated some of Bellon’s
clones with additional judges and found disagreement in
the validation results. Our previous extensive evaluation of
Bellon’s Benchmark [13] found that the benchmark may not
be applicable to modern clone detectors. For example, we
compared the evaluation of the modern CCFinderX with
the benchmark against the results for the contemporary
CCFinder (which participated in Bellon’s original exper-
iment) and found the benchmark measured significantly
poorer recall for CCFinderX. A significant obstacle with
Bellon’s benchmark is it was built using the clone detectors
themselves, and it may not be accurate for measuring the
recall of clone detectors that did not contribute to the
benchmark. Updating the benchmark would require signif-
icant effort without solving the root issues, and expanding
the benchmark is not possible as Bellon’s clone validation
procedure is not sufficiently documented [14], [15].

Strong disagreement between these benchmarks sug-
gests that one or both are incorrect. The anomalies in the
Bellon’s benchmark results for the modern tools makes us
suspicious of its results, but does not guarentee the Mutation
Framework is accurate. An extensive evaluation of Bellon’s
benchmark can be found in our previous work [13], which
explores additional anomalies in the Bellon’s benchmark
results for modern tools. Our conclusion was that an up-
dated real-world benchmark was needed to evaluate the
modern tools and to support the accuracy of our Mutation
Framework. This was one of our primary motivations to
build BigCloneBench [16].

5.3.3 Mutation Framework vs. BigCloneBench
We introduced BigCloneBench [16] as a real-world bench-
mark for evaluating modern clone detection tools in order to
at least partially overcome the limitations of Bellon’s bench-
mark. Now we compare its results against our Mutation
Framework to build confidence in the accuracy both bench-
marks. We expect that when the Mutation Framework mea-
sures good performance for the various types of clone edits
that this should translate into good real-world performance
as measured by BigCloneBench. Since these benchmarks
were built using very different methodologies, agreement
builds our confidence in the accuracy of both benchmarks,
whereas disagreement could suggest an anomaly in one
or both benchmarks. We measure agreement between the
benchmark for the first three clone type, and investigate
reasons for disagreement.

We do expect some disagreement between the bench-
marks due to the nature of synthetic vs real-world bench-
marks. We expect recall to be lower for BigCloneBench,
where the real-world clones are more complex and contain
various combinations of clone edits. Differences in recall
measured per clone type may be different in BigCloneBench
where the distribution of clone edits reflect real systems,
whereas the Mutation Framework uses a flat distribution
to summarize per-type recall from the per-mutation results.
Since the Mutation Framework generates simple clones with
known properties, its clone matching algorithm is more pre-
cise and can check that the tools correctly detected the type-
specific clone edit within a reference clone. BigCloneBench
cannot be that precise since the clones are more complex,
and might measure higher recall for the clone types that the
clone detectors do not formally support.

Since BigCloneBench contains Java function clones, we
compare it against the Java Function recall measured by
the Mutation Framework. BigCloneBench evaluates recall
for clones across the entire range of syntactical similarity,
and reports Type-3 recall for different regions of syntactical
similarity. We compare the Mutation Framework’s Type-3
recall measurement against BigCloneBench’s ‘Very-Strongly
Type-3’ recall measurement. This is Type-3 recall for clones
with a syntactical similarity, after both Type-1 and Type-
2 normalizations and measured both by line and by token
as shown in Section 4.2, in the range: [90, 100)%. We find
that Type-3 clones in this range best match the Java function
clones in our Mutation Framework experiment. While the
Mutation Framework was configured to generate clones
with a minimum 70% Type-3 clone similarity, the single-
operator Type-3 mutators mostly produced very similar
Type-3 clones. Type-3 recall at lower syntactical similari-
ties can be found in our previous BigCloneBench experi-
ment [17].

Recall is summarized per clone type for Java function
clones as measured by both benchmarks in Table 8. We
consider the benchmarks to agree if their measurements
have an absolute difference no greater than 15%. This is a
threshold we have used when comparing benchmarks in
previous work [13]. We find that the benchmarks agree in 19
out of 27 cases, 70%. We now investigate the specific cases
of disagreement.

Both benchmarks agree on the Type-3 recall of the tools
which do formally support Type-3 detection, but disagree

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 23

TABLE 7: Mutation and Injection Framework vs. Bellon’s Benchmark

CCFX ConQat CPD CtComp. Deckard iClones NiCad SimCad Simian
Java T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
MF 98 77 0 91 90 86 99 74 0 96 48 0 - - - 100 93 96 100 100 100 100 96 89 81 90 0

Bellon 49 50 7 75 23 12 91 85 14 63 34 3 - - - 89 41 13 67 54 63 68 46 18 83 23 1
Agree? - - -

C T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
MF 99 82 0 - - - 98 0 0 69 40 0 73 73 69 100 96 99 99 99 99 100 97 89 85 97 0

Bellon 64 45 6 - - - 73 11 3 21 22 10 32 2 1 95 56 27 33 30 28 38 29 28 64 15 3
Agree? - - -

TABLE 8: Mutation and Injection Framework vs. BigCloneBench

CCFX ConQat CPD CtComp. iClones NiCad SimCad Simian Sourc.CC
Clone Type T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

MF 98 77 0 91 90 86 99 74 0 96 48 0 100 93 96 100 100 100 100 96 89 81 90 0 100 100 100
BCB 100 93 62 67 90 73 100 94 71 95 78 59 100 82 82 100 100 100 100 98 91 95 78 53 100 98 93

Agree?

on the Type-3 recall of the tools which only offer Type-
2 clone detection, including: CCFinderX, CPD, CtCompare
and Simian. In all of these cases, BigCloneBench is measur-
ing a significant Type-3 recall (53-71%), while the Mutation
Framework is measuring no recall (0%). Neither benchmark
is incorrect in these cases, but rather is telling us something
different about the tools, and shows the need for both
synthetic and real-world benchmarks.

Since the Mutation Framework requires the tool to de-
tect the Type-3 features (mutations) in the Type-3 reference
clones, it correctly measures 0% recall for the tools that do
not support the detection of clones with gaps. In contrast,
BigCloneBench only requires the tool to subsume 70% of the
reference clones. It is showing that although these tools do
not formally support Type-3 detection, they are able to re-
port significant Type-1 or Type-2 regions within these very-
strongly Type-3 clones. This is probably sufficient when a
developer manually examines these clones and recognizes
the Type-3 features outside of the reported clone boundaries.
These tools would not be appropriate for automated clone
analysis tasks as an automated clone analyzer would not be
able to recognized the larger Type-3 clone the tool missed.
BigCloneBench shows that the ability of the Type-2 clone
detectors to locate significant cloned regions within the
Type-3 clones significantly drops when the Type-3 clone
similarity is less than 90% [17].

The benchmarks disagree on the Type-2 recall of
CCFinderX, CPD and CtCompare, with the Mutation
Framework measuring lower recall. These are cases where
the Mutation Framework found particular weaknesses in
these tools’ Type-2 detection (Table ??). CCFinderX strug-
gled with Type-2 clones with arbitrarily renamed identifiers,
CPD struggled with Type-2 clones with changes in numeric
literal values, and CtCompare did not support the detec-
tion of Type-2 clones with either changes in numeric or
string literal values. These tools have 90-99% Type-2 recall
considering only the Type-2 mutations operators they do
support, which agrees with the BigCloneBench results. The
Mutation Framework measures average Type-2 recall as an
equal weighted average across the Type-2 per-mutation-
operator recalls, so poor performance for just one Type-
2 mutation operator can drag down the average perfor-

mance. It is possible these tools have much higher Type-
2 recall with BigCloneBench because the kinds of Type-2
edits they do support are the ones most common in the
BigCloneBench clones. While the Mutation Framework pin-
points the weaknesses and omissions of these tools’ Type-
2 detection, BigCloneBench suggests these tools may still
perform well in the general case.

The benchmarks disagree on ConQat’s Type-1 recall,
with BigCloneBench measuring a significantly lower re-
call. In this case, ConQat was missing a significant num-
ber of small Type-1 clones of a particular functionality in
BigCloneBench. We tried re-configuring ConQat for these
clones and were unable to get it to detect them, suggesting a
bug. In contrast, the Mutation Framework does not find any
weakness in ConQat’s Type-1 performance, despite evalu-
ating it for every kind of Type-1 difference across a wide
variety of syntax. Specifically, ConQat has problems with
a large group of similar Type-1 clones found in IJaDataset,
but the Mutation Framework shows it does not have prob-
lems in the general-case for Type-1 clone detection. The
advantage of synthetic benchmarking is its comprehensive
and exhaustive evaluation, while real-world benchmarks
are limited to the variety of clones they contain. Still, the
real-world benchmark demonstrates that clone detectors can
perform well in synthetic tests but then encounter problems
with a particular clone detection target.

Overall, the benchmarks agree for most recall measure-
ments. Ignoring the cases where the tools do not formally
support a clone type, the benchmarks agree in 89% (8 of 9)
of the Type-1 cases, 67% (6 of 9) of Type-2 cases, and 100%
(5 of 5) of Type-3 cases. Of the eight cases of disagreement,
four (50%) were due to BigCloneBench not rejecting Type-
1/Type-2 clones as sufficient capture of a Type-3 clone,
there (38%) are cases where BigCloneBench measures higher
Type-2 recall possibly due to differences in Type-2 edit
distributions in real-world datasets (versus flat distribution
in our synthetic benchmarking), and only one is an anomaly
which we manually investigated (ConQat Type-1 detection).

The benchmarks have strong agreement, and most of the
cases of disagreement are expected due to the differences in
synthetic versus real-world benchmarking. We did not find
any significant anomalies when comparing the benchmarks,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 24

which builds our confidence in their accuracy.

5.3.4 Summary
In this section, we built our confidence in recall mea-
surements by the Mutation and Injection Framework by
comparing its results against our expectations for the clone
detection tools and results from two real-world clone bench-
marks.

We found strong agreement between our benchmark
and our expectations of the tools, 89% for Java and 81%
for C. Based on our knowledge of the tools, we do not
find any concerning anomalies in the Mutation Framework
results. Poor agreements between the Mutation Framework
and Bellon’s benchmark were consistent with some recent
studies [13], [14], [15] which again show high confidence on
our Mutation framework over Bellon’s benchmark.

Next we compared the Mutation Framework against
BigCloneBench and found strong agreement between the
benchmarks, 70% for Java clones. Most of the disagree-
ment was for cases where a clone detector had a higher
recall with BigCloneBench for clone types that they do not
formally support. Unlike the Mutation Framework, Big-
CloneBench cannot reject matches where the clone detector
fails to capture the Type-2 or Type-3 elements of a reference
clone. More precise evaluation is one of the advantages
of synthetic benchmarking with the Mutation Framework.
Ignoring these cases, the benchmarks agreed on 89% of the
measurements.

Strong agreement between the Mutation Framework,
BigCloneBench and our expectations, and the absence of
any significant anomalies in the results, builds confidence
that the Mutation Framework is an accurate benchmark.
While Bellon’s experiment was a significant triumph in
measuring the relative performance of the contemporary
clone detection tools [11], researchers agree that it may not
be appropriate as a reusable benchmarking dataset [13], [14],
[15], [40] for evaluating modern tools.

6 EXTENDING THE FRAMEWORK - CASE STUDY:
LARGE GAP CLONES

The Mutation Framework is user-extensible by allowing
pluggable custom mutation operators. In this way the users
can extend the framework to conduct recall evaluation ex-
periments not covered by the default mutation operators.
For example, with Wang et al. [46], we extended the Mu-
tation Framework to evaluate the recall of clone detection
tools for gapped clones.

Gap clones are a kind of Type-3 clone where the code
fragments are identical except for a dissimilar gap due to the
insertion of code into one of the code fragments. With Wang
et al. [46], we introduced a new clone detection tool called
CCAligner which aims to detect the large gapped clones
that are outside the detection capabilities of standard Type-
3 clone detection tools. To demonstrate the effectiveness of
our tool over the existing Type-3 clone detectors, we used
the Mutation Framework to synthesize gapped clones with
various gap sizes.

To extend the Mutation Framework, we created a new
gapped clone mutation operator. This operator takes a code
fragment as input and outputs a new version of the code

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Re
ca

ll

Gap Size in Source Lines

CCALigner NiCad SourcererCC

Fig. 5: Mutation Framework - Recall for Gap Clones for
Various Gap Sizes

fragment with a block of contiguous source lines randomly
inserted within. The operator can be configured for different
gap sizes (number of source lines) so that recall can be
measured for increasing gap sizes. An example of a clone
generated by this mutation operator is shown in Figure 9,
where a 6 line gap has been inserted. The operator includes
a dataset of source lines selected from a large collection of
open-source Java projects. It synthesizes a gap by randomly
selecting source lines from this dataset, and inserts this block
of code at a random line in the input code fragment.

We used this mutation operator in an experiment mea-
suring the recall of CCAligner for clones with gaps ranging
from one to twenty lines. We configured the framework to
generate 200 synthetic gapped clones per gap size, creating
a benchmark with 2,000 synthetic gapped clones. We also
evaluated NiCad and SourcererCC using this benchmark,
as they are the top performing Type-3 clone detectors [45].
Recall for these tools is plotted by increasing gap size in Fig-
ure 5. As can be seen, while NiCad and SourcererCC have
better recall for clones with a small gap, only CCAligner is
able to maintain its recall for larger gaps.

It is very challenging to evaluate tools that target specific
kinds of clones or domain specific clones as there may
not be existing clone benchmarks that specifically highlight
these clones. While benchmarks exist for Type-3 clones [11],
[16], [18], none of the existing benchmarks specifically target
clones with large gaps. Since large-gap clone research is still
relatively new, building a high quality real-world bench-
mark would be very challenging as this kind of clone is not
yet well understood. Extending the Mutation Framework to
build a synthetic benchmark of large-gap clones was a great
way to demonstrate that CCAligner is indeed detecting a
classification of clones not found by the best of the existing
tools, without requiring the extensive manual validation
efforts a new real-world benchmark would require.

As large gap clones become better understood, a more
diverse set of large-gap clone mutation operators can be
created to better evaluate the tools. Once the importance
of large-gap clones becomes clear, the investment to build
a real-world benchmark of large-gap clones to compliment
synthetic benchmarking will be warranted. With this case
study we have demonstrated that the Mutation Framework

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 25

Line# Original Fragment Line# Mutant Gapped Fragment
1 public BAD PARAM invalidTaggedProfile(CompletionStatus cs, Throwable t) 1 public BAD PARAM invalidTaggedProfile(CompletionStatus cs, Throwable t)
2 { 2 {
3 BAD PARAM exc = new BAD PARAM(INVALID TAGGED PROFILE, cs) ; 3 BAD PARAM exc = new BAD PARAM(INVALID TAGGED PROFILE, cs) ;
4 if (t != null) 4 if (t != null)
5 exc.initCause(t) ; 5 exc.initCause(t) ;

6 HardObjectReference ref = HardObjectReference.peekPersisted(trans, id, 1);
7 ((ComponentUI) (uis.elementAt(0))).getAccessibleChildrenCount(a);
8 oidStore.put(s.getName(), s) ;
9 column = (column / TabInc * TabInc) + TabInc;
10 dummyAction.removePropertyChangeListener(arg0);
11 factories.add(new PrintStreamProviderFactory(ps));

6 if (logger.isLoggable(Level.WARNING)) 13 if (logger.isLoggable(Level.WARNING))
7 { 14 {
8 Object[] parameters = null ; 15 Object[] parameters = null ;
9 doLog(Level.WARNING, ”ORBUTIL.invalidTaggedProfile”, 16 doLog(Level.WARNING, ”ORBUTIL.invalidTaggedProfile”,
10 parameters, ORBUtilSystemException.class, exc) ; 17 parameters, ORBUtilSystemException.class, exc) ;
11 } 18 }
12 return exc ; 19 return exc ;
13 } 20 }

TABLE 9: Example Gapped Clone Produced by the Mutation Framework

is a great benchmarking tool for evaluating domain-specific
clone detectors even in the early stages of their research
and development due to the low investment in manual
efforts. Similarly, one could possibly write mutation rules
for another domain such as finding API usability patterns
or concept locations and could evaluate tools of that domain
with little adaptations of the framework. Our framework
was even adapted for working with models by Stephan and
Cordy [52] where they evaluate model clone detection tools.

7 THREATS TO THE VALIDITY

A threat with the Mutation Framework is the synthetic
clones may not be ones a real developer would create.
The code fragments we randomly select for clone synthesis
may not be ones a real developer would choose to clone.
While the empirically validated clone editing taxonomy [6]
guarantees our random mutations correspond to the types
of edits real developers make on cloned code, it does not
guarantee they apply edits a real developer would apply
to the target code fragment. As well, since we focus on
first-order mutations, the clones we generate may be simple
compared to real-world clones. The advantage of synthetic
clones is we can measure recall of the tools very precisely
for each type of edit in the taxonomy. In our evaluation
of our benchmark, we showed that synthetic benchmarking
does yield unique insights into the tools not possible with
previous benchmarks. However, we now have options in
the framework where one can give a representative set of
real clone pairs in the framework as input along with a sub-
ject codebase. The framework would then use those clone
pairs for generating thousands of mutant codebases for
evaluating the subject clone detection tools. This addresses
the concern of synthetic clones to a great extent. It is also
possible to apply higher-order mutations (applying more
than one mutation operators) with minor changes in the
framework which may more realistically reflect developers
edit operations. Furthermore, we can overcome limitations
in synthetic benchmarking with the Mutation Framework
by pairing it with a real-world clone benchmark such as our
BigCloneBench.

The current version of the Mutation Framework does not
support the detection capability of Type-4 clones well. Given
that most of the modern tools detect clones up to clones of
Type-3, our focus in this work was to create a benchmark
for clones up to Type-3. However, since our framework is
extensible, future work on semantic transformations could

be integrated into the framework as mutation operators.
This is however challenging since semantic transformation
is undecidable in general. In particular, one would need to
create mutation operator that transforms a code fragment
into a semantically equivalent but syntactically dissimilar
version. It is also challenging to obtain a comprehensive
taxonomy of edit operations for a given programming lan-
guage for such semantic equivalency of code fragments.

While the Mutation Framework can generate very large
benchmark corpora, the execution speed of subject clone
detectors under evaluation is a limiting factor in the bench-
mark size. The tools need to be executed for each mutant
system in the synthesized benchmark. While this is not
a problem for most clone detectors which have execution
times on the order of seconds for an average subject system,
some clone detectors use more expensive algorithms and
may require days of execution time to complete the bench-
mark. We generated benchmark corpora as large as possible
considering the slowest of the participating clone detectors.
Required execution time could be reduced by using a very
small subject software system, or even a toy system of
only two source files, but this harms the realism of the
benchmark. While we could have reduced execution time by
injecting all of the clones into a single software system, for
any reasonably sized subject system the injected cloned code
would overwhelm the original code and that this would
violate the mutation analysis procedure. Nonetheless, with
minor adaptations one could use this option in the mutation
framework and reduce the execution time significantly.

We designed the framework to support as many clone
detection tools as possible. We generate clones with strict
block and function boundaries, which most tools support.
The framework could be adapted to generate clones at
arbitrary granularities, but these benchmarks would be
incompatible with many tools. We generate clones whose
boundaries can be reported by start and end source lines
as most or all tools can report clones in this way. While
some clone detection tools can report clones more precisely
by start and end token or start and end character position,
we restrict to line level boundaries for compatibility while
evaluating them in the framework.

The framework guarantees that the mutated and injected
code is syntactically valid, but does not guarantee that the
modified source files will compile. Therefore, clone detec-
tors that rely on compiled code may not be compatible
with the framework. This is not a limitation in the Mutation
Framework concept or procedure, but its current implemen-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 26

tation. The framework could be made compatible by adding
a repair process which fixes compile errors after clone injec-
tion with additional code injection and modification. This
would be very challenging, and was not considered during
implementation of the framework as very few available
clone detectors require compilable code.

During the generation process the framework can con-
strain the synthesized clones with a minimum similarity
threshold measured by line and/or token after source nor-
malizations. This constraint was included to help the user
configure their subject clone detection tools appropriately
for the generated corpus. A limitation here is that not
all tools use line-based or token-based similarity metrics,
and even those that do may measure similarity differently.
Therefore, the user may still need to experiment with thresh-
olds to find appropriately configurations for their subject
tools. The limitation could be overcome by augmenting
the framework with additional similarity metrics, including
variations on line-based and token-based measurements.
However, this is not a major limitation in the framework
as clones can be reliably generated with this constraint
disabled.

The Mutation Framework does not identify cases where
tools detect benchmark clones as split clones, which is a
known problem in clone detection. This is when a clone
detector reports a single clone as multiple clones split by
differences in the clone. For example, if we generated a
Type-2 clone with a changed string value, a clone detector
may report the code before the string change as one Type-
1 clone and the code after the string change as a separate
Type-1 clone. We intentionally reject such a detection of the
clone as it shows the tool is unable to handle the injected
Type-2 difference. The Type-1 mutation operators will al-
ready show the tool is able to detect Type-1 clones, so with
the Type-2 and Type-3 mutation operators we are measuring
if the tool can detect such clones without splitting. While
some detection algorithms may be prone to splitting, this
can be corrected in post-processing by merging neighboring
identical clones [53]. This is however not a limitation of the
framework but is a limitation of the clone detection tools.

Our expectations of the tools’ recall, which we used
to evaluate the framework itself, may not be accurate. We
formulated our expectations by consulting the tools’ docu-
mentation, publications, literature surveys as well as their
developers, where available. To account for some degree of
inaccuracy, we allowed a ±12.5% range around the expec-
tation. Where disagreement was found, we investigated if
our expectation may be incorrect by also considering the
BigCloneBench results and Bellon’s benchmark.

Alternate tool configurations may result in better or
worse performance in the tool evaluations. This is referred
to as the confounding configuration choice problem by
Wang et al. [44]. We took steps to ensure the tool config-
urations were appropriate for our study. We used configu-
rations that target the known properties of the benchmark
corpora, such as clone types, size and similarity thresholds.
We consulted the default settings and documentation of
the tools to choose these configurations. We were careful
not to configure the tools in a way that would boost recall
at a significant reduction in precision. This is the process
an experienced user would use to configure these tools

for their own subject system. Therefore, our results reflect
what a user can expect from these tools. Furthermore, in
this work, our primary objective was not to evaluate the
clone detection tools in depth, rather to demonstrate that the
Mutation Framework is a handy vehicle for evaluating and
comparing the clone detection tools at a finer-granularity,
in particular during the development process of the clone
detection tools.

8 CONCLUSIONS

In this paper, we presented the Mutation and Injection
Framework: an automatic evaluation framework for mea-
suring the recall of clone detection tools. This framework
uses an editing taxonomy for cloning to synthesize a ref-
erence corpus of artificial but realistic clones. The clone
synthesis process mimics the copy, paste and modify cloning
behavior performed by real developers. The framework en-
ables a comprehensive reference corpus to be built without
the need for manual candidate clone validation. The frame-
work’s capabilities extent to different clone types at a finer
granularity (e.g., for different types of edit operations), two
clone granularities (function and block) and three popular
programming languages (Java, C, C#). The framework user
has many controls over the properties of the generated
reference corpus. The framework automates the execution
and evaluation of subject tools for the reference corpus. It
provides a full statistical report on the performance of the
participating subject tools. The framework is controlled by a
simple user interface, that allows users to control and share
their experiments and reference clone corpora. The frame-
work has also options where one could provide custom
real world clone pairs as input along with a codebase for
generating thousands of mutant codebases with those pairs
for evaluating the tools.

As a demonstration of this framework, we used it to
evaluate ten modern clone detection tools for the two
clone granularities and three programming languages. We
compared and evaluated these tools’ recall at a very fine
granularity. We compared these results against our expecta-
tions, and analyzed the cases of disagreement. Our findings
suggest we can have confidence in the accuracy of our
framework. In order to gain further confidence, we also
compared the results from framework with two real-world
benchmarks, our BigCloneBench and Bellon’s benchmark.
We found strong agreements with BigCloneBench which
shows confidence of the mutation framework. We analyzed
any disagreements, in particular with Bellon’s in depth and
showed that the the evaluation results of the Mutation
Framework are consistent with the recent studies, again
showing high confidence of the Mutation Framework. Over-
all, we found that synthetic and real-world benchmarks are
highly complimentary, and the advantages of each allow us
to fully explore clone-detection recall.

As future work, we plan to explore the use of higher-
order mutations to produce more complex clones in a pre-
dictable and natural manner. We also plan to explore the
creation of a comprehensive set of mutation operators for
synthesizing Type-4 clones. We are also motivated to explore
the extension of our mutation concept to the measurement
of clone-detection precision, perhaps by injecting intentional

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 27

and common false-positive clones. The framework is avail-
able for others as open source at the first author’s github
page1.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” School of Computing, Queen’s University, Tech. Rep.
TR 2007-541, 2007, 115 pp.

[2] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do
code clones matter?” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 485–495. [Online].
Available: http://dx.doi.org/10.1109/ICSE.2009.5070547

[3] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical
Software Engineering, vol. 13, no. 6, p. 645, Jul 2008. [Online].
Available: https://doi.org/10.1007/s10664-008-9076-6

[4] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are main-
tained: An empirical study,” in 11th European Conference on
Software Maintenance and Reengineering (CSMR’07), March 2007,
pp. 81–90.

[5] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of soft-
ware clone management: Past, present, and future (keynote pa-
per),” in 2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), Feb 2014, pp. 18–33.

[6] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evalu-
ation of code clone detection techniques and tools: A qualitative
approach,” Science of Computer Programing, vol. 74, no. 7, pp.
470–495, May 2009.

[7] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55,
no. 7, pp. 1165 – 1199, 2013.

[8] A. Charpentier, J.-R. Falleri, F. Morandat, E. Ben Hadj Yahia, and
L. Réveillère, “Raters’ reliability in clone benchmarks construc-
tion,” Empirical Software Engineering, vol. 22, no. 1, pp. 235–258,
2017.

[9] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens University, Tech Report TR 2007-541, 2007.

[10] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data,” in WCRE,
2003, pp. 285–294.

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” Softw. Eng.,
IEEE Trans. on, vol. 33, no. 9, pp. 577–591, 2007.

[12] H. Murakami, Y. Higo, and S. Kusumoto, “A dataset of clone
references with gaps,” in MSR’14, 2014, pp. 412–415.

[13] J. Svajlenko and C. K. Roy, “Evaluating modern clone detec-
tion tools,” in The 30th International Conference on Software
Maintenance and Evolution, ser. ICSME 2014, 2014, p. 10.

[14] B. Baker, “Finding clones with dup: Analysis of an experiment,”
IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 608–
621, 2007.

[15] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère,
“An empirical assessment of bellon’s clone benchmark,” in
Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’15. New
York, NY, USA: ACM, 2015, pp. 20:1–20:10. [Online]. Available:
http://doi.acm.org/10.1145/2745802.2745821

[16] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code
clones,” in Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution, ser. ICSME ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 476–480.
[Online]. Available: http://dx.doi.org/10.1109/ICSME.2014.77

[17] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on, Sept 2015, pp. 131–140.

[18] Jeffrey Svajlenko and Chanchal K. Roy and Farouq Al-Omari,
“The Mutation and Injection Framework,” https://github.com/
jeffsvajlenko/MutationInjectionFramework, 2018.

[19] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in ICSE ’08. ACM, 2008, pp. 321–330.

1. https://github.com/jeffsvajlenko/MutationInjectionFramework

[20] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in ICSE ’07.
IEEE Computer Society, 2007, pp. 96–105.

[21] R. Komondoor and S. Horwitz, “Using slicing to identify duplica-
tion in source code,” in SAS ’01, 2001, pp. 40–56.

[22] J. Krinke, “Identifying similar code with program dependence
graphs,” in WCRE’01, 2001, pp. 301–309.

[23] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-
paste and related bugs in large-scale software code,” Software
Engineering, IEEE Transactions on, vol. 32, no. 3, pp. 176–192,
March 2006.

[24] E. Burd and J. Bailey, “Evaluating clone detection tools for
use during preventative maintenance,” in Source Code Analysis
and Manipulation, 2002. Proceedings. Second IEEE International
Workshop on, ser. SCAM’02, 2002, pp. 36–43.

[25] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of
clone detection using syntax suffix trees,” Empirical Software
Engineering, vol. 13, no. 6, pp. 601–643, 2008.

[26] F. Van Rysselberghe and S. Demeyer, “Evaluating clone detection
techniques from a refactoring perspective,” in ASE’04, Sept 2004,
pp. 336–339.

[27] E. Burd and J. Bailey, “Evaluating clone detection tools for use
during preventative maintenance,” in SCAM, 2002, pp. 36–43.

[28] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics,” in WCRE, 1997,
pp. 44–54.

[29] C. Roy and J. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normal-
ization,” in Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, June 2008, pp. 172–181.

[30] T. Lavoie and E. Merlo, “Automated type-3 clone oracle using
levenshtein metric,” in Proceedings of the 5th International
Workshop on Software Clones, ser. IWSC ’11. New York,
NY, USA: ACM, 2011, pp. 34–40. [Online]. Available: http:
//doi.acm.org/10.1145/1985404.1985411

[31] D. E. Krutz and W. Le, “A code clone oracle,” in Proceedings of
the 11th Working Conference on Mining Software Repositories,
ser. MSR 2014. New York, NY, USA: ACM, 2014, pp. 388–391.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597127

[32] Y. Yuki, Y. Higo, K. Hotta, and S. Kusumoto, “Generating clone
references with less human subjectivity,” in 2016 IEEE 24th
International Conference on Program Comprehension (ICPC),
May 2016, pp. 1–4.

[33] S. Schulze and D. Meyer, “On the robustness of clone detection
to code obfuscation,” in 2013 7th International Workshop on
Software Clones (IWSC), May 2013, pp. 62–68.

[34] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison
of code similarity analysers,” Empirical Software Engineering,
vol. 23, no. 4, pp. 2464–2519, Aug 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9564-7

[35] ——, “Similarity of source code in the presence of pervasive modi-
fications,” in 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), Oct 2016, pp.
117–126.

[36] S. Wagner, A. Abdulkhaleq, I. Bogicevic, J.-P. Ostberg, and
J. Ramadani, “How are functionally similar code clones
syntactically different? an empirical study and a benchmark,”
PeerJ Computer Science, vol. 2, p. e49, Mar. 2016. [Online].
Available: https://doi.org/10.7717/peerj-cs.49

[37] J. Bailey and E. Burd, “Evaluating clone detection tools for use
during preventative maintenance,” in SCAM, 2002, pp. 36 – 43.

[38] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics,” in WCRE, 1997,
pp. 44 –54.

[39] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data,” in WCRE.
IEEE Computer Society, 2003, pp. 285–294.

[40] C. K. Roy and J. R. Cordy, “Towards a mutation-based auto-
matic framework for evaluating code clone detection tools,” in
Proceedings of the 2008 C3S2E Conference, ser. C3S2E ’08. New
York, NY, USA: ACM, 2008, pp. 137–140.

[41] C. Roy and J. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in Software
Testing, Verification and Validation Workshops, 2009. ICSTW ’09.
International Conference on, April 2009, pp. 157–166.

[42] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based
benchmarking framework for clone detectors,” in Proceedings of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, ? ? 28

the 7th International Workshop on Software Clones, ser. IWSC ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 8–9.

[43] J. Cordy, “The txl programming language,” http://www.txl.ca/.

[44] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for bet-
ter configurations: A rigorous approach to clone evaluation,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2013. ACM, 2013, pp. 455–
465.

[45] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in
Proceedings of the 38th International Conference on Software
Engineering. ACM, 2016, pp. 1157–1168.

[46] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner:
A token based large-gap clone detector,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE
’18. New York, NY, USA: ACM, 2018, pp. 1066–1077. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180179

[47] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on, Sept 2015, pp. 131–140.

[48] ——, “Bigcloneeval: A clone detection tool evaluation framework
with bigclonebench,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2016.

[49] E. Kodhai and S. Kanmani, “Method-level code clone detection
through lwh (light weight hybrid) approach,” Journal of
Software Engineering Research and Development, vol. 2, no. 1,
p. 12, Oct 2014. [Online]. Available: https://doi.org/10.1186/
s40411-014-0012-8

[50] F. Calefato, F. Lanubile, and T. Mallardo, “Function clone
detection in web applications: A semiautomated approach,” J.
Web Eng., vol. 3, no. 1, pp. 3–21, May 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2011138.2011140

[51] H.-H. Wei and M. Li, “Supervised deep features for software
functional clone detection by exploiting lexical and syntactical
information in source code,” in Proceedings of the 26th
International Joint Conference on Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, pp. 3034–3040. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3172077.3172312

[52] M. Stephan and J. Cordy, “MuMonDE: A framework for eval-
uating model clone detectors using model mutation analysis,”
Software Testing, Verification & Reliability, p. 23 pp., 2018 (in
press).

[53] N. Göde and R. Koschke, “Incremental clone detection,” in
Software Maintenance and Reengineering, 2009. CSMR ’09. 13th
European Conference on, March 2009, pp. 219–228.

Jeffrey Svajlenko Jeff Svajlenko received his
Ph.D. from the University of Saskatchewan un-
der the supervision of Chanchal K. Roy in 2018.
He also holds a bachelor of science degree in
computer science (with high honors) and the
bachelor of science degree in Engineering: Engi-
neering Physics (with great distinction) from the
University of Saskatchewan. He is the recipient
of NSERC CGSM, PGSD and PDF awards. His
research interests include code clones, clone
detection and benchmarking.

Chanchal K. Roy Chanchal K. Roy is an
associate professor of Software Engineer-
ing/Computer Science at the University of
Saskatchewan, Canada. While he has been
working on a broad range of topics in Computer
Science, his chief research interest is Software
Engineering. In particular, he is interested in
software maintenance and evolution including
clone detection and analysis, program analy-
sis, reverse engineering, empirical software en-
gineering, and mining software repositories. He

served or has been serving in the organizing or program committee
of major software engineering conferences (e.g., ICSM, WCRE, ICPC,
SCAM, ICSE-tool, CASCON, and IWSC). He has been a reviewer
of major Computer Science journals including IEEE Transactions on
Software Engineering, International Journal of Software Maintenance
and Evolution, Science of Computer Programming, and Journal of In-
formation and Software Technology. He received his Ph.D. at Queen’s
University, advised by James R. Cordy, in August 2009.

