
Fast and Flexible Large-Scale
Clone Detection with CloneWorks

Jeffrey Svajlenko Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

jeff.svajlenko@usask.ca chanchal.roy@usask.ca

Abstract—Clone detection in very-large inter-project repos-
itories has numerous applications in software research and
development. However, existing tools do not provide the flexibility
researchers need to explore this emerging domain. We introduce
CloneWorks, a fast and flexible clone detector for large-scale
clone detection experiments. CloneWorks gives the user full
control over the representation of the source code before clone
detection, including easy plug-in of custom source transfor-
mation, normalization and filtering logic. The user can then
perform targeted clone detection for any type or kind of clone
of interest. CloneWorks uses our fast and scalable partitioned
partial indexes approach, which can handle any input size on an
average workstation using input partitioning. CloneWorks can
detect Type-3 clones in an input as large as 250 million lines of
code in just four hours on an average workstation, with good
recall and precision as measured by our BigCloneBench.

Keywords-code clone, clone detection, flexible, scalable, fast

I. INTRODUCTION

Clone detection tools locate code clones, exact or similar
code fragments, within or between software systems. Devel-
opers create clones when they reuse code using copy-paste and
modify, although clones can arise for a variety of reasons [1].
By managing or refactoring their clones, developers can im-
prove and maintain software quality, reduce development costs
and risks, prevent and detect bugs and more [1].

One of the most active topics in clone research is the detec-
tion of clones within very-large inter-project source reposito-
ries containing on the order of thousands of software projects
or more. This has many applications, including: studying
global open-source developer behavior, mining the seeds of
new APIs [2], license violation detection [3], similar mobile
app detection [4], inter-scale clone search [5], and so on.

In order to achieve these emerging applications, fast, scal-
able and flexible clone detection tools are needed. While
a small number of scalable tools and techniques are avail-
able [2]–[4], [6]–[10], they have limitations. Most of the
techniques in the literature do not support the most important
and most common Type-3 clones [2], [3], [8], [9]. Some
require extraordinary hardware, in particular large amounts of
memory, or distribution across a cluster [8], [9], which can
be costly and difficult to setup. Others are domain-specific
detectors designed for specific use-cases only [3], [4], [7].

The existing tools are also not very flexible, and customizing
their clone detection beyond simple clone similarity thresholds
and clone size parameters is difficult or not supported. Users
need to be able to customize the detection process in order to

target specific clones types, or to target new kinds of clones
for novel clone detection use-cases and studies. In particular,
the large-scale inter-project clone detection domain is rich in
new opportunities for study. It is beneficial if the user can
customize an existing tool rather than develop a new tool from
scratch to achieve their goals, including how the source-code
is processed before clone detection.

We introduce CloneWorks, a fast and flexible clone detector
for large-scale clone detection experiments. CloneWorks gives
the user full control over the representation of the source-
code for clone detection, by allowing the user to specify the
normalizations, transformations, filtering and other processing
performed on the source-code, including custom processing
by a plug-in architecture. Fast and scalable clone detection
is achieved using a modified Jaccard similarity metric [11]
and the sub-block filtering heuristic [6] with clone indexes.
Input partitioning is used to scale within memory constraints,
regardless of the input size. CloneWorks scales to 250MLOC
in just four hours on an average workstation, with recall and
precision competitive with the state of the art tools, including
for the important Type-3 clones which are challenging and
time-consuming to detect. CloneWorks supports the detection
of Java, C and C# clones at the block, function and file
granularity. CloneWorks is publicly available at http://jeff.
svajlenko.com/cloneworks, including a demo video.

II. DEFINITIONS

Code Fragment: A continuous region of source code specified
by its source file, start and end line numbers.
Code Clone: A pair, (f1, f2), of similar code fragments.
Type-1 Clone: Identical code fragments, except for differences
in white space, layout and comments [1].
Type-2 Clone: Identical code fragments, except for differences
in identifiers and literals, as well as Type-1 differences [1].
Type-3 Clone: Similar code fragments that differ at the state-
ment level; statements are added, modified and/or removed [1].

III. THE CLONEWORKS APPROACH

The CloneWorks approach is summarized in Fig. 1. It
consists of two components: the flexible input builder and the
fast and scalable clone detector. The input builder is used to
extract the code fragments from the input source files and
transform them into a set of terms representation for clone
detection. The user has full control over the processing of
the source-code, including normalizations, transformations and

Sub-Block

Filter

For Each Pair of Code Fragments

Code

Fragments
Jaccard Clone

Similarity
if yes

Clone

Detection

Report

if t

Clone Detector

As Term Sets

Extractor

Code Fragment

Extraction

Code

Fragments

Code Fragment

Processors

Splitter

Term

Splitter

1 2 k...

Ordered

Term List

1 2 r

Term

Processors

Processed

Term List

For Each Code Fragment
For Each Source File

Input Builder

...

Input Builder Configuration

Source

File
Input

Source Files

Minimum Clone Similarity Threshold, t

Fig. 1. The CloneWorks Approach

filtering, applied at the code-fragment and term level. A variety
of processors are provided, and the user can provide their own
by a plug-in architecture.

Clone detection is performed by a modified Jaccard similar-
ity metric, with the denominator modified for clone detection,
as shown in Eq. 1. The metric takes a pair of code fragments,
f1 and f2, as the sets of terms they contain, including dupli-
cates, and computes their minimum term intersection ratio. A
pair of code fragments are reported as a clone if their similarity
satisfies a given minimum threshold, t. Clone detection is
scaled in execution time using the sub-block filtering heuris-
tic [6] with partial clone indexes, which efficiently skips the
comparison of many code fragment pairs that cannot satisfy
the threshold. Fast clone detection is achieved by keeping
the index and code fragments fully in memory in efficient
data-structures. Scalability in memory is achieved using input
partitioning with our partitioned partial clone indexes.

s(f1, f2) =
|f1 ∩ f2|

max(|f1| , |f2|)
= min(

|f1 ∩ f2|
|f1|

,
|f1 ∩ f2|
|f2|)

) (1)

IV. FLEXIBLE INPUT BUILDER

The input builder extracts and transforms the code fragments
into sets of terms, for any definition of a term. This can be
as simple as tokenizing the code fragments into the set of
language tokens they contain, or any imaginable representation
of the code fragments as term sets. Users customize their code
fragment representation by specifying the transformations,
normalizations and filtering to be applied at the code-fragment
and term levels. Users can add their own custom processing by
a plug-in architecture. This gives the user full control over the
representation of the code fragments for clone detection. The
set of terms representation ultimately determines the kinds of
detected clones, allowing the targeting of any clone type, or
any novel kind of clone needed for a task or study.

The input builder is shown as executed per source file in
Fig. 1. First, the source file is parsed and code fragments at a
specified granularity are extracted. Extraction also normalizes
the code fragments to remove Type-1 clone differences. The
code fragments are then processed by k user-specified code-
fragment processors. This includes the application of source
transformations and normalizations, and/or the filtering of
undesired code-fragments based on source analytics. Next, the
code fragments are split into terms. The term splitter can either
split the code fragments by language token, or by text line.
The user can produce a custom term definition by using code-
fragment processors to layout the code such that there is one
desired term per line, then split by line. The terms are kept in
their order of occurrence, and processed by r user-specified
term processors. Like the code-fragment processors, these can

apply transformations, normalizations and filtering, but at the
term level. For example, they may be used to transform, filter,
split, combine, and so on, the terms based on some conditions.
Lastly, the code fragments’ processed terms are converted into
unordered set representations, and written to a file for later use
with the clone detector. The input builder is multi-threaded,
and processes multiple source files in parallel.

Code-Fragment Processors: A number of code-fragment
processors for common source normalizations are provided,
including: consistent identifier renaming, identifier normaliza-
tion, literal normalization, conditional expression normaliza-
tion, abstraction or filtering of any non-terminal in the lan-
guage grammar, and so on. They are provided as stand-alone
executables implementing a particular input/output and call
behavior. They are called with the granularity and language of
the code fragments as input parameters, as well as any custom
input parameters, and are expected to take the code fragments
as input and output them after processing. Users can use their
own custom processors, implemented using any language or
technology, by providing an executable that adheres to this
behavior. The input builder sets up an execution chain of the
processors in their specified order, with the code fragments
exchanged in a simple standard format. The input builder
collects the final processed code fragments for term splitting.

Term Processors: A number of term processors are pro-
vided, including: filter operator tokens, filter separator tokens,
term stemming, n-gram transformation, term-joiner, string
splitter, string normalizer, case normalizer, term hashing, and
so on. They are implemented as Java classes, and users can add
their own by implementing the term processor interface and
adding their class, and its dependencies, to the distribution.
They are discovered at runtime, and configured with the
parameters specified by the user. They receive an ordered list
of terms as input, and are expected to output that list after their
defined processing. The term processor can return an empty
list to filter the entire code fragment.

V. FAST AND SCALABLE CLONE DETECTION

CloneWork’s clone detection process is summarized in
Fig. 2. The modified Jaccard similarity metric is executed
for each pair of code fragments, and those that exceed the
minimum clone similarity threshold are reported as clones.
To scale this computation, we use the sub-block filtering
heuristic [6]. This heuristic computes a subset containing the
|f | − dt|f |e + 1 least common terms in a code fragment f
for a given similarity threshold t. The least common terms are
identified by computing the global-term-frequencies across all
of the code fragments. For two code fragments to possibly

Partial

Index

1

2

1

1+2

Index

Query
Potential

Clones

Compute

Jaccard

Similiarty

if t

Partitions

Compute

Sub-Block

Compute Global

Term Frequency

In
p

u
t

C
o

d
e

F
ra

gm
e

n
ts

O
ut

p
ut

 C
lo

ne
 P

ai
rs

For Each Partition

...

...

Fig. 2. Fast and Scalable Clone Detection

satisfy the modified Jaccard similarity threshold, their sub-
blocks must overlap by at least one term. Code fragments
whose sub-blocks do not overlap do not need to be checked
if they are a clone. The sub-block heuristic is efficiently
implemented using a partial clone index [6], where each code
fragment is indexed by only the terms that appear in their sub-
blocks. Querying the index with the terms in a code fragment’s
sub-block returns all potential clones of that code fragment to
be checked. This is done for each code fragment.

CloneWorks uses a very fast implementation of this partial
index approach. The index is implemented for constant-time
queries, and the indexed code fragments are kept in memory.
The code fragments are stored as hash-sets of their terms
for linear-time evaluation of the modified Jaccard metric. We
prioritize execution time at the cost of high memory usage.

To scale within available memory, we use input partitioning.
The code fragments are split into a number of partitions, and
clone detection is executed independently for each partition.
Only the code fragments within the current partitioned are
indexed and stored within memory. This partitioned partial
index is queried for the code fragments in all of the partitions,
returning all potential clones that involve a code fragment
from the current partition. The code fragments from the other
partitions are efficiently streamed into memory to query the
index and evaluate their potential clones, but are not retained
in memory. This is repeated for each partition to check
all of the potential clones in the system. The number of
partitions is chosen such that the available memory is not
exceeded, allowing scalability to any input size. We call this
the partitioned partial indexes approach. Multi-threading is
exploited in each step of the computation.

VI. USAGE

CloneWorks consists of three command-line tools,
cwbuild for running the input builder, cwdetect for
clone detection, and cwformat for formatting the clone
results. The user begins by preparing the source code
with cwbuild. They specify the directory or list of input
source files, the source language(s) and the code fragment
granularity. The user also provides a configuration file
listing the code-fragment processors, term splitting and term
processors to use. The processors are specified by name in the
order they are to be applied, as well as any parameters they
take. The processor plug-ins are discovered and configured
at runtime. The input builder outputs a manifest of the
source files and the code fragments as term-sets. The user
then uses cwdetect to run clone detection over the code
fragments. They specify the minimum similarity threshold

cfproc=rename-consistent # Rename identifiers
cfproc=abstract literal # Normalize literals
termsplit=line # Split into code statements
termproc=Joiner # Concatenate terms into single term
termproc=Hasher md5 # Perform md5 hashing on the terms

Fig. 3. Example Input Builder Configuration File for Type-2 Detection

for the modified Jaccard metric, the minimum and maximum
sizes of the clones to detect, and the maximum partition
size if input partitioning is desired. Since CloneWorks is
designed for large-scale clone detection, it produces a very
compact clone results file ideal for programatic analysis.
cwformat is used to produce a clone result file ideal for
human inspection. It can produce an XML output with or
without source-code embeded, and is user-extensible to new
formats. By separating CloneWorks into separate tools, users
can add custom processing between each step, or replace any
component, as needed for their task.

VII. EXAMPLE CLONE DETECTION SCENARIOS

We show how CloneWorks can target the first three clone
types. CloneWorks includes these configurations as common
usages. Fig. 3 is an example cwbuild config file for Type-2.

Type-1: Code fragment extraction automatically normalizes
the code for Type-1 clone differences. The input builder can
then be configured to split the code fragment into terms by
line, with each line being a single code statement. A term-
processor can be used to join these code statements together
with uniform whitespace delimitation. A code fragment is
then represented by the set of a single term, which is its
Type-1 normalized source text. Clone detection with a 100%
threshold will yield all Type-1 clones. To reduce memory load,
the ‘Hash’ term processor can be used to replace the Type-1
normalized texts with their shorter hash-string.

Type-2: This extends the Type-1 configuration with the
addition of two code-fragment processors to perform Type-
2 normalizations. One processor to consistently rename the
identifiers, and one to normalize the literal values. Type-2
detection is then achieved with a 100% similarity threshold.

Type-3: We provide two configurations for Type-3 detec-
tion, one conservative and one aggressive. The conservative
configuration splits the code-fragments by language tokens,
and uses term processors to filter the separator and operator
type tokens. This represents code fragments as the set of
identifiers, literals, primitives and keywords they contain.
The aggressive configuration uses code-fragment processors to
normalize identifier names and literal values, before splitting
by line. This represents the code fragments as the set of
statement-level code patterns they contain. Clone detection is
then achieved with a similarity threshold such as 70%.

The following are some envisioned usages. These are neither
included in CloneWorks nor implemented, but show how
advanced novel clone detection experiments could be built on
top of CloneWorks using the flexible input builder.

Domain-Specific Clones: A researcher may want to study
only the clones within a particular programming domain (e.g.,
test code, database code, etc.). Using one of the type-specific

TABLE I
RECALL AND PRECISION MEASURED BY BIGCLONEBENCH

Tool T1 T2 VST3 ST3 Precision

CloneWorks (Conservative) 100 99 94 62 93
CloneWorks (Aggressive) 100 100 100 96 83

iClones [16] 100 82 82 24 93
NiCad [17] 100 100 100 95 80

SourcererCC [6] 100 98 93 61 86

configurations as a base, the researcher could add processors
to analyze the code fragments and filter those not part of
the target domain. Code-fragment processors could implement
regex patterns to look for indicative high level code patterns,
while term processors could examine API usages for filtering.

Semantic Clones: Suppose a researcher has created a topic
modeler for source code, which takes a code fragment as input
and returns a list of its semantic topics, in order to detect
semantic clones. They can accomplish this with CloneWorks
by developing a code fragment processor that integrates with
their topic modeler and transforms the code fragments into
their semantic topics for splitting into topics as terms. The
researcher can take advantage of CloneWork’s parsers, input
builder and fast clone detector without additional efforts.

VIII. PERFORMANCE EVALUATION

We evaluate CloneWork’s performance using our Big-
CloneBench [12]–[14]. We measure recall and precision for
the conservative and aggressive Type-3 configurations dis-
cussed in Section VII. The results are summarized in Table I
per clone type, including the Very-Strongly (≥90% similarity)
and Strongly Type-3 (70-90% similarity) categories from Big-
CloneBench [13]. For comparison, we also include the top
performing tools from our previous evaluation studies [6],
[13], [15]. With the aggressive configuration, CloneWorks
leads in recall performance alongside NiCad, while maintain-
ing competitive precision. With the conservative configuration,
CloneWorks leads in precision with the second best recall.

We evaluate the execution time of CloneWorks by executing
it for IJaDataset-2.0 [13], a large inter-project Java repository
(250MLOC). We use an average workstation with a 3.6GHz
quad-core i7-2600, 12GB of memory, and solid-state drive. For
comparison, we also execute SourcererCC [6], the only other
tool to scale on a single workstation. We execute both with a
minimum clone size of 10 lines, and a minimum similarity of
70%. CloneWorks with the conservative configuration requires
just 4.2 hours, and the aggressive configuration requires 10.2
hours, while SourcererCC requires 109.8 hours. CloneWorks
is one to two orders of magnitude faster, while matching the
recall and precision of the state of the art tools.

IX. RELATED WORK

Liveri et al. [9] distributed CCFinder over a large cluster
using input partitioning. We scaled existing tools without
modification using partitioning and filtering heuristics at a
cost of a reduction in recall [10]. Ishihara et al. [2] scaled
Type-1/2 detection using hashing. Hummel et al. [8] were
the first to use an index for scalable detection, but required a

cluster to hold the index. Others have scaled in domain-specific
ways [2]–[5], which cannot be used for general detection. With
Sajnani et al. [6], we introduced SourcererCC, the first tool
to use the sub-block filtering technique with a partial clone
index. CloneWorks is distinct in that it adds flexible source
transformation and processing with the input builder, extends
to our novel partitioned partial indexes approach, and an
efficient in-memory implementation, which reduces execution
time by up to two orders of magnitude. Our NiCad [17]
also provides flexible source transformations, but does not
scale to large inter-project repositories. CloneWorks provides
a finer granularity of control over the source-code processing,
including custom processing by a plug-in architecture.

X. CONCLUSION

CloneWorks is fast and flexible clone detector for large-
scale clone detection experiments. It allows the user to fully
customize the representation of the source code for clone
detection, to target specific clone types or to perform custom
clone detection experiments. It performs clone detection with
the modified Jaccard metric and sub-block filtering heuristic
implemented efficiently with our partitioned partial index
approach. It can scale Type-3 clone detection to an input of
250MLOC in just four hours with good recall and precision.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s University, Tech. Rep. 2007-541, 2007, 115 pp.

[2] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project
functional clone detection toward building libraries - an empirical study
on 13,000 projects,” in WCRE, 2012, pp. 387–391.

[3] R. Koschke, “Large-scale inter-system clone detection using suffix trees
and hashing,” J. Softw.: Evol. Process, vol. 26, no. 8, pp. 747–769, 2014.

[4] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,” in
ICSE, 2014, pp. 175–186.

[5] I. Keivanloo, C. Forbes, and J. Rilling, “Similarity search plug-in: Clone
detection meets internet-scale code search,” in ICSE-SUITE, 2012.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling code clone detection to big-code,” in ICSE, 2016.

[7] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” in WCRE, 2011, pp. 23–27.

[8] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in ICSM, 2010.

[9] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed ccfinder: D-ccfinder,” in ICSE, 2007, pp. 106–115.

[10] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Big data clone detection
using classical detectors: an exploratory study,” J. Softw.: Evol. Process,
vol. 27, no. 6, pp. 430–464, 2015.

[11] I. Keivanloo, C. K. Roy, and J. Rilling, “Sebyte: Scalable clone and
similarity search for bytecode,” Science of Computer Programming, vol.
95, Part 4, pp. 426 – 444, 2014.

[12] J. Svajlenko and C. Roy, “BigCloneEval: A clone detection tool evalu-
ation framework with BigCloneBench,” in ICSME, 2016.

[13] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
BigCloneBench,” in ICSME, 2015, pp. 131–140.

[14] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
ICSME, 2014, pp. 476–480.

[15] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in ICSME, 2014.

[16] N. Göde and R. Koschke, “Incremental clone detection,” in CSMR, 2009.
[17] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss

intentional clones using flexible pretty-printing and code normalization,”
in ICPC, 2008, pp. 172–181.

