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Abstract—Many clone detection tools have been proposed in
the literature. However, our knowledge of their performance in
real software systems is limited, particularly their recall. In this
paper, we use our big data clone benchmark, BigCloneBench, to
evaluate the recall of ten clone detection tools. BigCloneBench is
a collection of eight million validated clones within IJaDataset-
2.0, a big data software repository containing 25,000 open-source
Java systems. BigCloneBench contains both intra-project and
inter-project clones of the four primary clone types. We use this
benchmark to evaluate the recall of the tools per clone type and
across the entire range of clone syntactical similarity. We evaluate
the tools for both single-system and cross-project detection
scenarios. Using multiple clone-matching metrics, we evaluate
the quality of the tools’ reporting of the benchmark clones with
respect to refactoring and automatic clone analysis use-cases.
We compare these real-world results against our Mutation and
Injection Framework, a synthetic benchmark, to reveal deeper
understanding of the tools. We found that the tools have strong
recall for Type-1 and Type-2 clones, as well as Type-3 clones
with high syntactical similarity. The tools have weaker detection
of clones with lower syntactical similarity.

I. INTRODUCTION

Clone detection tools locate similar source code within or
between software systems. Instances of similar code fragments
are called clones. Developers create clones when they reuse
code using copy, paste and modify, either within a software
system or between software projects, although clones may
arise for a variety of other reasons [1]. Studies have shown
that 7-23% of a software system is cloned code [2], [3]. By
managing or refactoring their clones, developers can improve
and maintain software quality, reduce development costs and
risks, prevent and detect bugs, and more [1]. Clone manage-
ment and research studies depend on clone detection tools. In
2013, Rattan et al. [4] found at least 70 tools in the literature, a
significant increase from the 40 tools found by Roy et al. [5] in
2009. Despite this interest in new clone detection tools, there
has been little evaluation of their performance.

Clone detection tools are typically evaluated using recall
and precision. Recall is the ratio of the clones within a
software system or repository that a tool is able to detect,
while precision is the ratio of the clones reported by a tool
that are true clones, not false positives. While time consuming,
precision can be measured by validating a random sample of a
tool’s output. This is typically done, at least informally, by the
tool’s author during development [1]. On the other hand, recall
has been challenging to measure as it requires a benchmark
of known reference clones [1].

Clone detection tools should be evaluated using both syn-
thetic and real-world clone benchmarking strategies. Our Mu-
tation and Injection Framework [6], [7] is a synthetic bench-
marking technique that uses artificially constructed clones
in a mutation-analysis procedure to precisely measure recall
at a finer granularity than clone type. While the Mutation
Framework can precisely evaluate the capabilities of a tool, it
should be complemented with a real-world benchmark. A real-
world benchmark evaluates how these capabilities translate
into real-world performance for complex clones produced by
real developers in real systems. The most widely accepted real-
world benchmark is Bellon’s Benchmark [8], which Bellon
built by manually validating 2% of the clones detected by
six contemporary (2002) tools for eight subject systems. We
previously showed that this benchmark, and its variants [9],
[10], are possibly not suitable for accurately evaluating modern
tools [10]. Many of its problems originate from it having been
built using tools that are now out of date.

For this reason, we introduced BigCloneBench [11], a real-
world benchmark of manually validated clones in the big data
IJaDataset-2.0 [12] (25,000 Java systems). It was built, without
using clone detectors, by mining IJaDataset for clones of
specific functionalities. The current version of the benchmark
contains 8 million clone pairs across 43 functionalities. Each
clone is semantically similar by its functionality. It contains
both intra and inter-project clones spanning the four primary
clone types, including the entire range of syntactical similarity.

In this paper, we evaluate the recall of ten clone detec-
tion tools using BigCloneBench. We compare these results
against our Mutation Framework to better understand the
tools, and to evaluate the accuracy of the benchmarks. With
BigCloneBench, we examine the differences in intra and inter-
project recall. We use multiple clone-matching metrics to
evaluate how well the tools capture the benchmark clones with
respect to usability in refactoring and clone-analysis use-cases.
In summary, we address the following research questions:

RQ1 What is the recall of these tools as measured by the
real-world benchmark BigCloneBench?

RQ2 How does real-world benchmarking compare to syn-
thetic? What do the similarities and differences tell
us about tool performance and benchmark accuracy?

RQ3 How does intra and inter-project clone recall differ,
in particular for the case of an ultra-large dataset?

RQ4 What is the clone capture quality of the tools for
refactoring and clone analysis use-cases?

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

131



II. RELATED WORK

Clone detection recall is essential to understanding the
effectiveness of clone detection tools in software development
and clone research studies. Accurately measuring recall has
been challenging because it requires a large, varied and
comprehensive benchmark of reference clones. Benchmarks
have been built by manually mining system(s) for clones [11],
[13], manually validating a sample of the output of various
tools for some subject systems [14], [8], [15], or injecting
known clones into a system [6], [7], [10].

The most widely accepted real-world clone benchmark has
been Bellon’s Benchmark. It is a product of Bellon et al.’s
benchmarking experiment [8], which measured the relative re-
call of six contemporary (2002) tools for four C and four Java
subject systems. Bellon created this benchmark by manually
validating 2% of the 325,935 candidate clones detected by the
tools. Only the true positives, per his judgment, were added
to the benchmark, possibly with modifications to their line
boundaries. Murakami et al. [9] supplemented the benchmark
by identifying the gap lines in the Type-3 reference clones. We
contributed improvements to its clone-matching metrics [10].

There are some limitations to Bellon’s Benchmark, or any
clone benchmark built using the clone detection tools them-
selves. Since it was built using contemporary (2002) tools, the
benchmark is biased and limited by their detection character-
istics. The clones these tools were unable to detect form a
gap in the benchmark. The effect of this gap has increased as
clone detection techniques have improved. Particularly, Type-
3 detection has been an area of significant improvement since
the benchmark was created. The tools used to construct the
benchmark have an advantage because their clones are in
the benchmark. This limit’s the benchmarks re-usability with
modern tools. Adding clones detected by new tools to the
benchmark is difficult because Bellon’s validation process is
not well documented [2], [8], [10]. The benchmark lacks clone
variety, as it only considers the clones in four subject systems
per language. Additionally, Baker [2] found clone validation
and clone-type classification errors in the benchmark.

We introduced a synthetic clone benchmark, the Mutation
and Injection Framework [6], [16]. This framework synthe-
sizes customizable benchmarks of artificial copy and paste
clones using a mutation-analysis procedure. Clone synthesis
is based on an empirically validated taxonomy of the types of
edits developers make on copy-pasted code. The framework
can measure recall per edit type, a finer granularity than clone
type, which enables it to pin point the strengths and weak-
nesses of a tool. As a synthetic benchmark, it can provide bias-
free, controlled and fine granularity benchmarking of a tool’s
capabilities. We have shown it provides good results with
modern tools, and reveals insights into their clone recall [10].
However, benchmarking with real clones is also important.
Ideally, both synthetic and real-world benchmarks should be
used to gain the advantages of each benchmarking strategy.

In our previous work [10], we evaluated eleven tools using
Bellon’s Benchmark and our Mutation Framework. We com-

pared the recall measurements of the benchmarks, as well as
against our expectations for the tools. The expectations were
based on our knowledge and experiences with the tools, as
well as feedback from the tool developers, where available.
We found anomalies in Bellon’s Benchmark’s measurement
of recall, as well as strong disagreement with the Mutation
Framework and expectations. We suggested that Bellon’s
Benchmark is possibly not appropriate for modern tools.

For this reason, we introduced BigCloneBench [11], a
modern real-world clone benchmark of manually validated
clones. BigCloneBench was built by mining thousands of
software systems for clones of 43 functionalities, ensuring a
large variety of intra-project and inter-project clones. All of
the clones are semantically similar, and span the entire range
of syntactical similarity. Each of the four primary clone types
are well represented in the benchmark. It was built without the
use of clone detection tools, so it is not biased for or limited
to the detection abilities of a particular set of tools.

III. DEFINITIONS

Code Fragment: A continuous segment of source code,
specified by the triple (l, s, e), including the source file l, the
line the fragment starts on, s, and the line it ends on, e.

Clone Pair: A pair of code fragments that are similar,
specified by the triple (f1, f2, φ), including the similar code
fragments f1 and f2, and their clone type φ.

Clone Class: A set of code fragments that are similar.
Specified by the tuple (f1, f2, ..., fn, φ). Each pair of distinct
fragments is a clone pair: (fi, fj , φ), i, j ∈ 1..n, i 6= j.

Type-1 (T1): Syntactically identical code fragments, except
for differences in white space, layout and comments [1], [8].

Type-2 (T2): Syntactically identical code fragments, except
for differences in identifier names and literal values, in addi-
tion to Type-1 clone differences [1], [8].

Type-3 (T3): Syntactically similar code fragments that
differ at the statement level. The fragments have statements
added, modified and/or removed with respect to each other, in
addition to Type-1 and Type-2 clone differences [1], [8].

Type-4 (T4): Syntactically dissimilar code fragments that
implement the same functionality [1].

Since there is no consensus on the minimum syntactical
similarity of a Type-3 clone, it is difficult to separate Type-3
and Type-4 clone pairs that implement the same functionality,
as in our BigCloneBench. Instead, we divide the Type-3 and
Type-4 clones into four categories based on their syntactical
similarity. We define Very-Strongly Type-3 clones (VST3) as
those with a similarity in range 90% (inclusive) to 100% (ex-
clusive), Strongly Type-3 (ST3): 70-90%, Moderately Type-
3 (MT3): 50-70%, and Weakly Type-3/Type-4 (WT3/4): 0-
50% [11]. We measure similarity as the minimum ratio of lines
or tokens a code fragment shares with another after Type-1 and
Type-2 normalization. Shared lines or tokens are identified by
diff [17]. Most tools measure similarity by line or by token.
We classify the clones into these categories using the smaller
of their line and token-based clone similarity measures.
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TABLE I
BIGCLONEBENCH CLONE SUMMARY

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Number of Clone Pairs 35787 4573 4156 14997 79756 7729291

7868560

IV. BIGCLONEBENCH

BigCloneBench [11] is a clone detection benchmark con-
sisting of manually validated clones in IJaDataset 2.0 [12], a
big data source code repository containing 2.3 million Java
source files (365MLOC) from 25,000 open-source projects.
The benchmark was created, without the use of clone detection
tools, by mining for functions implementing specific function-
alities. Functions that might implement a target functionality
were identified using keyword and source code pattern heuris-
tics. The identified functions were manually tagged as true
or false positives of the target functionality by judges. All
true positive functions of a functionality form a large clone
class of semantically similar functions. A clone class of size
O(n) contains O(n2) clone pairs. Post-procesing identified
the clone types and syntactical similarity of these clones. The
reference clones of BigCloneBench are semantically similar,
are of the first four clone types, and span the entire range
of syntactical similarity. The benchmark contains both intra-
project and inter-project clones. Further details about the
benchmark may be found elsewhere [11], [18].

The contents of the benchmark are summarized per clone
type in Table I. The first version of BigCloneBench targeted
10 functionalities, and was released [18] alongside its publi-
cation [11]. We use a snapshot of the in-progress expansion
of the benchmark, which contains clones of 43 functionalities.
We use only the clones that are at least 6 lines and 50 tokens
in length. This allows us to configure the tools appropriately
for clone size. This is a typical minimum clone size used
by tools [1] and previous benchmark experiments [8]. We
removed the source files that are 2000 lines in length or
longer and their clones. These files make up an insignificant
portion of IJaDataset (6238 files), but significantly impact the
execution requirements (time, memory) of the clone detectors.

V. THE MUTATION AND INJECTION FRAMEWORK

Our Mutation and Injection Framework [6] is a synthetic
benchmark for evaluating clone detection tools. It uses source-
code mutation and injection to generate a large and customiz-
able benchmark of artificial clones. Mutation analysis is a well
studied and accepted approach for evaluating software testing
quality [19], and we use a similar methodology to evaluate
clone detection tools. A code fragment is extracted from a
large repository of varied source code. It is duplicated and
mutated by a mutation operator that introduces a single random
code edit. The framework uses fifteen mutation operators
that are based on a comprehensive and empirically validated
taxonomy of the types of edits developers make on copy and
pasted code [5]. The mutation operators are shown in Table II,
and span the first three clone types. The original and mutant

TABLE II
CLONING MUTATION OPERATORS FROM CLONE EDITING TAXONOMY

ID Mutation (Edit) Description Clone Type

mCW A Addition of whitespace.

Type-1

mCW R Removal of whitespace.
mCC BT Change in between token (/* */) commenting.
mCC BT Change in end of line (//) commenting.
mCF A Change in formatting (add newline).
mCF R Change in formatting (remove newline).

mSRI Systematic renaming of an identifier.

Type-2mARI Renaming of a single identifier instance.
mRL N Change in value of a numeric literal.
mRL S Change in value of a string literal.

mSIL Small insertion within a line.

Type-3
mSDL Small deletion within a line.
mIL Insertion of a line.
mDL Deletion of a line.
mML Modification of a line.

code fragments are injected into a copy of a subject system,
evolving the system by a single copy, paste and modify clone.
This is repeated thousands of times to build a large corpus of
mutant systems. The subject tools are then executed for these
mutant systems, and their recall is measured specifically for
the injected clones. The framework is fully automated. Further
details are in our previous publications [6], [16], [7].

VI. EXPERIMENT

Big Clone Bench. We executed the tools for IJaDataset 2.0,
and measured their recall for the clones in BigCloneBench.
These subject tools were generally designed for clone detec-
tion within a single software system, or a small collection of
software systems. None of these tools can scale to IJaDataset
on ordinary hardware. Our goal is to measure recall using
a large number of clones, not to evaluate the scalability of
the tools. We avoid the scalability issue by executing the
tools for smaller subsets of IJaDataset that expose the tools
to every clone in BigCloneBench. We executed the tools for
one subset per functionality in BigCloneBench. Each subset
includes every file that contains a function judged as a true or
false positive of the subset’s functionality during the mining
process. Therefore, each subset contains a mix of true and false
clones. If a subset was too large for a tool to evaluate within
memory constraints (12GB), we partitioned the subset into
smaller sets and executed the tool for each pair of partitions. A
tool’s clone detection reports were merged before evaluation.

With BigCloneBench, we use a coverage-based clone
matching metric to determine if a reference clone in the
benchmark is successfully detected by a candidate clone
reported by a tool. The coverage-match, or c-match for short,
is based on our covers metric. A code fragment f1 covers
code fragment f2 if it intersects a ratio t of the source lines
of f2, as shown in (1), given that the code fragments are
in the same source file. A candidate clone, C, matches a
reference clone, R, by the c-match if its code fragments cover
a ratio t of the reference clone’s code fragments, as shown
in (2). When the metric is evaluated, both orderings of the
candidate clone’s code fragments are tested. We configured
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the metric with a 70% minimum coverage threshold. This is a
conservative threshold, neither too strict nor too generous, that
has been used in previous benchmarking experiments [8], [10].
A tool’s recall is therefore the ratio of the reference clones in
the benchmark that are matched by candidate clones reported
by the tool, as judged by the c-match clone-matching metric.

covers(f1, f2, t) =
min(f1.e, f2.e)−max(f1.s, f2.s) + 1

f2.e− f2.s+ 1
≥ t (1)

c–match(C,R, t) = covers(C.f1, R.f1, t) ∧ covers(C.f2, R.f2, t) (2)

Mutation and Injection Framework. We set the frame-
work to randomly extract 250 functions from a source repos-
itory and, from each, create 15 mutant functions using the
15 mutation operators (3,750 clone pairs). Each clone was
randomly injected into 10 unique copies of a subject system
(37,500 mutant systems). We used IPScanner as our subject
system, and JDK6 and Apache Commons as our source
repository. We constrained the benchmark to the following
clone properties: (1) 15-200 lines in length, (2) 100-2000
tokens in length, and (3) mutations do not occur within the first
and last 15% of a code fragment by line. The 15% mutation
containment ensures that the introduced edits occur within
the clone, and not on its edges. Clone detection time often
scales with minimum clone size, so we used a larger minimum
clone size to make execution of the tools for 37,500 systems
practical. We measured the syntactical similarity of the Type-
3 clones and found that they correspond to the Very-Strongly
Type-3 similarity region. These are different clones than we
used in our comparison with Bellon’s Benchmark [10]. Here
we generated function clones for best comparison with Big-
CloneBench, whereas we previously generated block clones
for best comparison with Bellon’s Benchmark.

Recall is measured by a subsume-based clone-matching
metric that is parameterized with the mutation containment.
For a mutation containment of 15%, the metric considers a
candidate clone to subsume a reference clone even if the
candidate misses the first and/or last 15% of the reference
clone’s code fragments. This is essentially the c-match metric
with the added restriction that the candidate must cover the
inner 70% of the reference. This restriction ensures that
any candidate accepted as a match of a reference clone has
captured the clone-type specific edits added to the reference
by a mutation operator. Therefore, recall measured by the
Mutation Framework reflects a tool’s ability to handle the
specific clone edit types from the taxonomy (Table II).

Tool Configuration. The subject tools, the clone types they
can detect, and their configurations for the benchmarks, are
summarized in Table III. We wanted the recall measurements
to reflect what an experienced user can expect with their own
systems. An experienced user has explored a tool’s parameters
and documentation, and modifies the default settings for their
use-case. We configured the tools from a user-perspective by
considering: (1) the default settings, (2) the documentation,
and (3) the known properties of the target benchmark, which
include clone types, syntactical similarity, and clone size.
We also consulted the tool developers, where available. We

TABLE III
SUBJECT TOOLS AND CONFIGURATIONS

Tool Types BigCloneBench Mutation Framework

CCFinderX [21] 1,2 Min length 50 tokens, min
token types 12.

Min length 50 tokens, min
token types 12.

ConQat [22] 1,2,3 Min length 6 lines, max errors
5, gap ratio 30%.

Min length 15 lines, max
errors 3, gap ratio 30%.

CPD [23] 1,2 Min length 50 tokens, ignore
annotations/identifiers/literals,
skip parser errors.

Min length 100 tokens, ignore
annotations/identifiers/literals,
skip parser errors.

CtCompare [24] 1,2 Min length 50 tokens, max 6
isomorphic relations.

Min length 100 tokens, max 3
isomorphic relations.

Deckard [25] 1,2,3 Min length 50 tokens, 85%
similarity, 2 token stride.

Min length 100 tokens, 85%
similarity, 4 token stride.

Duplo [26] 1 Min length 6 lines. Min 1
character per line.

Min length 15 lines. Min 1
character per line.

iClones [27] 1,2,3 Min length 50 tokens, min
block 20 tokens.

Min length 100 tokens, min
block 20 tokens.

NiCad [28] 1,2,3 Min length 6 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

Min length 15 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

SimCad [29] 1,2,3 Greedy transformation,
unicode support, min 6 lines.

Greedy transformation,
unicode support, min 15 lines.

Simian [30] 1,2 Min length 6 lines, ignore
identifiers and literals.

Min length 15 lines, ignore
identifiers and literals.

enable any supported Type-1 and Type-2 normalizations. We
configured the tools with Type-3 sensitivity thresholds based
on their defaults and documentation. While greatly lowering
their syntactic similarity threshold may enable them to detect
more clones in BigCloneBench [20], which contains clones
across the entire spectrum of syntactical similarity, their lack
of semantic awareness would also cause them to detect a large
number of false positives. Users are most likely to follow
the recommended thresholds, so our results reflect standard
usage of the tools. If a setting was not well documented, we
experimented with it to observe its effect. We avoided over-
configuring or over-optimizing the tools for the benchmark,
as a user would not be able to do this for their own systems.
We also avoided configuring the tools in a way that would
increase recall at the expense of precision. The per benchmark
configurations are mostly the same, except for differences in
minimum clone size. Both benchmarks have a strict minimum
clone size, so the tools could be configured for clone size with
confidence. While different configurations may improve recall,
these configurations reflect usage by an experienced user.

VII. BENCHMARK RESULTS

In this section, we measure the recall of the tools using Big-
CloneBench (RQ1) and the Mutation Framework. We compare
these results, and interpret what the similarities and differences
between the benchmarks tell us about the tool performance and
benchmark accuracy (RQ2). The recall measurements by the
benchmarks, and their differences, are show in Table IV. Due
to space considerations, we do not show Mutation Framework
recall per mutation operator. Instead, we summarize recall
per clone type by averaging across the mutation operators
that produce a particular clone type (Table II). The Mutation
Framework’s Type-3 clones best match the syntactical simi-
larity of the Very-Strongly Type-3 clones in BigCloneBench,
so we compare using this Type-3 category.
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TABLE IV
BENCHMARK RECALL MEASUREMENTS AND DIFFERENCE PER CLONE TYPE

Tool BigCloneBench Mutation Framework Difference

T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ∆T1 ∆T2 ∆VST3

CCFinderX 100 93 62 15 1 0 99 70 0 1 23 62
ConQat 67 90 73 33 1 0 91 90 86 -24 0 -13

CPD 100 94 71 21 1 0 99 82 0 1 12 71
CtCompare 95 78 59 17 0 0 96 63 0 -1 15 59

Deckard 60 58 62 31 12 1 39 39 37 21 19 25
Duplo 89 74 46 8 0 0 38 0 0 51 74 46

iClones 100 82 82 24 0 0 100 92 96 0 -10 -14
NiCad 100 100 100 95 1 0 100 100 100 0 0 0

SimCad 100 98 91 48 8 0 100 94 89 0 4 2
Simian 95 78 53 13 0 0 81 90 0 14 -12 53

TABLE V
BIGCLONEBENCH: TYPE-3 RECALL

Tool Syntactical Similarity Interval, x% to x+5%

50 55 60 65 70 75 80 85 90 95

ConQat 0 0 2 3 8 18 41 62 85 56
Deckard 10 14 15 18 24 28 39 34 52 75
iClones 0 0 1 2 5 19 36 39 75 91
NiCad 0 0 1 10 85 99 100 100 100 100

SimCad 5 7 13 16 23 45 46 77 85 99

CCFinderX 0 2 2 1 5 8 23 25 51 77
CPD 0 0 2 2 5 20 22 35 73 68

CtCompare 0 0 1 2 4 19 15 29 62 54
Duplo 0 0 0 0 1 3 7 17 36 60
Simian 0 1 0 1 2 5 22 23 45 63

A. BigCloneBench

Type-1. CCFinderX, CPD, iClones, NiCad and SimCad
have perfect Type-1 recall. CtCompare and Simian also have
excellent recall at 95%. Duplo has good recall at 89%. Conqat
(67%) and Deckard (60%) fall behind the others.

Type-2. Only NiCad has perfect recall for the Type-2 clones.
CCFinderX, ConQat, CPD and SimCad have excellent recall,
all ≥ 90%. iClones maintains good recall at 82%. CtCompare,
Duplo and Simian have decent recall in the 70%s, while
Deckard has poor recall at 58%. Duplo performs well despite
not supporting Type-2 normalizations. These Type-2 clones
must contain a significant Type-1 region that Duplo detects and
which is accepted by the c-match’s 70% coverage requirement.

Type-2 detection reduces to Type-1 detection after Type-
2 normalizations are applied. Where Type-2 recall is lower
than Type-1, we expect the tool is missing or struggling with
particular Type-2 normalization(s). It is strange that ConQat
has a very strong Type-2 recall, but the weakest Type-1 recall
of these tools. Specifically, ConQat is not detecting Type-1
clones of a single particular functionality which contributed
a large number of Type-1 clones to the benchmark. We were
unable to determine why ConQat was missing these clones.
Re-configuring ConQat for them made no difference. Ignoring
these clones, ConQat has a Type-1 recall of 97%.

Type-3. For the Very-Strongly Type-3 clones, NiCad has
perfect recall and SimCad has excellent recall (91%). iClones
has good detection (82%), while ConQat (73%) and CPD
(71%) have decent recall. The remaining tools have poor recall
for these clones. NiCad has excellent (95%) detection for
the Strongly Type-3 clones, while the other tools have poor
detection. None perform well in the Moderately Type-3 or
Weakly Type-3/Type-4 regions. Semantic-awareness may be
needed to detect clones in these regions with good precision.

Many of the tools that do not formally support Type-3 clone
detection (Tabel III) have recall in the Very-Strongly Type-
3 similarity region. In particular, CCFinderX and CPD have
similar recall to the Type-3 detectors Deckard and ConQat.
This is due to these tools detecting significant continuous
Type-1 or Type-2 regions that cover at least 70% of a Type-3
reference clone. It is more desirable for a tool to include the
Type-3 regions in its detection of these clones. Otherwise, the
user has to manually recognize the larger Type-3 clone.

The Type-3 detectors have lower Type-3 recall than we
expected. We therefore investigate Type-3 recall for finer
grained syntactical similarity regions. Table V shows Type-
3 recall per 5% interval of syntactical similarity. For example,
the 75% interval includes all Type-3 clones with similarity
in the range 75% (inclusive) to 80% (exclusive). We do not
show recall below 50% similarity as none of the tools have
noteworthy recall in that range. We split the tools in this
table based on formal Type-3 detection support. Only the tools
above the splitting line feature Type-3 detection.

ConQat has good recall (85%) for Type-3 clones in the
90% interval. Oddly, it has significantly poorer recall for the
more similar clones in the 95% interval, only 56%. It also
has poor (62%) recall for the 85% interval. Its recall drops as
expected for lower intervals. ConQat was configured with a
70% similarity threshold, and a maximum of 5 errors (Type-3
gaps). The error setting may be holding back ConQat’s Type-
3 detection. This setting has a strong impact on execution
time, and we are already using a value larger than default (3).
Deckard does not have high recall for any of the intervals,
with only decent (75%) recall for the 95% interval. It has
poor recall for the 85% and 90% intervals, despite being
configured with its default 85% similarity threshold. iClones
has excellent (91%) recall for the 95% interval, but only decent
(75%) recall for the 90% interval, with very low recall for the
lower intervals. iClones does not present a setting to increase
Type-3 sensitivity. NiCad has perfect recall for Type-3 clones
with at least 80% similarity. It has excellent recall for the 75%
interval, and good recall for the 70% interval. Its recall drops
sharply for intervals below 70%, which is expected as it was
configured for a 70% similarity threshold. SimCad has excel-
lent (99%) recall for the 95% interval, and good (85%) recall
for the 90% interval. Its recall drops below 50% for the 80%
interval and below. SimCad’s SimHash sensitivity threshold
was chosen empirically by the tool authors, so modification is
not recommended. Deckard and SimCad are the only tools to
have a notable, although small, recall for similarity intervals
below 65%. Their detection strategies (AST, SimHash) may
be more resilient to statement re-ordering.

Of the tools lacking formal Type-3 support, CCFinderX and
CPD have the best recall for Type-3 clones, specifically for
clones in the 90% and 95% intervals. Tools lacking Type-
3 detection are able to detect Type-3 clones, by the c-match,
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when the clones contain a continuous Type-1 or Type-2 region
covering at least 70% of the reference clone. These tools have
poor Type-3 recall below 90% similarity, showing this scenario
becomes rare for lower syntactical similarity.

Many of these tools have very strong Type-1 and Type-
2 recall. Many perform well for the Very-Strongly Type-3
clones. Only NiCad performs well for the Strongly Type-
3 clones. ConQat, Deckard and NiCad have Type-3 sensi-
tivity configurations, which we left at their default values.
Presumably these defaults were selected by the tool authors
considering precision. The default values are what tool users
are most likely to use, so these results reflect typical tool usage.
The tools could be improved with increased Type-3 sensitivity,
although this must be done while maintaining precision.

B. Mutation and Injection Framework

Type-1. Most of the tools have excellent Type-1 recall
(≥90%), with perfect detection by iClones, NiCad and Sim-
Cad. The exception is Deckard and Duplo which have poor
recall. Simian has good recall, but falls behind the other tools.

Type-2. ConQat, iClones, NiCad, SimCad and Simian have
excellent recall, ≥90%. CPD has good recall, CCFinderX and
CtCompare have decent recall, while Deckard again has poor
recall. The Mutation Framework correctly identifies that Duplo
does not support Type-2 normalizations and detection.

Type-3. The Mutation Framework correctly identifies that
CCFinderX, CPD, CtCompare, Duplo and Simian do not
support Type-3 detection. While they may be able to detect
Type-1 or Type-2 regions within the Type-3 references, they
are unable to capture the Type-3 regions. The Mutation Frame-
work requires the tool to capture the clone-type specific edit it
introduced to the synthesized clones. Most of the Type-3 tools
perform well. iClones and NiCad have excellent recall for the
Type-3 clones, both >95%. ConQat and SimCad also perform
well, with >85%. Only Deckard performs poorly, with only
37% recall. Deckard performs uniformly poor across the clone
types, suggesting that its weakness is not due to the handling
of any particular clone-type specific difference. We believe this
is due to it’s outdated Java parser (Java-1.4 only).

C. Comparing the Benchmarks

Here we compare the BigCloneBench and Mutation Frame-
work results for these tools (RQ2). These benchmarks use
very different, but complementary, benchmarking strategies.
The advantage of the Mutation Framework’s synthetic bench-
marking technique is it measures recall per clone type very
precisely. Since it synthesizes its reference clones, it is able to
determine if a tool successfully detected the clone-type specific
regions of a reference clone. For example, the Mutation
Framework will not accept a candidate clone as a match of a
Type-3 reference clone if the candidate clone does not capture
the Type-3 regions. Additionally, each reference clone contains
only one type-specific change from the taxonomy (Table II),
so clone-type-specific recall can be measured without bias
due to features from the other clone types. The advantage
of BigCloneBench’s real-world benchmarking technique is

it measures recall using real clones in real systems. The
distribution of the clone types and features of the reference
clones reflects what is found in real systems. BigCloneBench
has complex clones that contain mixed features of the clone
types. While the Mutation Framework can measure per clone-
type recall more precisely, BigCloneBench shows how the
tools perform for real clones. The advantages of both of these
benchmarks are essential for understanding clone detection
recall. We suggest that both benchmarking strategies are
needed to fully evaluate the tools.

Since the benchmarks use very different methodologies, we
consider them to agree if their recall measurement has an ab-
solute difference no greater than 15%. This is the threshold we
have used in previous work when comparing benchmarks [10].
We have highlighted in gray the cases where the frameworks
disagree. The cases highlighted with light gray are cases where
we expected disagreement due to the Mutation Framework’s
precise clone-type recall measurements. The cases highlighted
with dark gray are the cases we did not anticipate.

The light gray highlighted cases are where the Mutation
Framework has measured no recall, while BigCloneBench has
measured a significant (>15%) recall. Neither benchmark is
incorrect in these cases. Rather, each benchmark is telling us
something different about the tools, as per their individual
benchmarking advantages. These are cases where a tool does
not formally support a clone type. For example, the light gray
highlighted tools under the ‘∆VST3’ header do not formally
support Type-3 detection. The Mutation Framework requires
the tools to detect the type-specific changes in the reference
clones, so it measures no Type-3 recall for these tools.
However, these tools may detect a significant (≥70%) Type-
1 or Type-2 region in the Type-3 clones, so BigCloneBench
measures a sizable recall. BigCloneBench tells us these tools
can detect significant portions of the Type-3 clones, but the
Mutation Framework tells us they cannot detect the portions
containing the Type-3 differences. The quality of these tools’
Type-3 detection is therefore very limited. They are not ap-
propriate for automatic clone analysis, as automated tools will
see these clones as Type-1 or Type-2, and provide incorrect
analysis. These tools may also be inconvenient for use-cases
involving manual inspection, as users will need to manually
recognize the Type-3 features missed by the tool. These
conclusions also hold for Duplo, which does not formally
support Type-2 detection.

The cases highlighted with dark gray were not expected.
The benchmarks disagree for Deckard for all clone types, with
the Mutation Framwork uniformly measuring lower recall.
We believe this is due to limitations in Deckard’s parser,
which only supports the Java-1.4 specification. The Mutation
Framework synthesized clones using code fragments from
JDK6 and Apache Commons, both of which make significant
use of generics (Java-1.5). Deckard may perform better for
BigCloneBench if Java-1.5+ features are less commonly used.
The Mutation Framework measures a significantly lower Type-
2 recall for CCFinderX. We investigated the per mutation-
operator recall of CCFinderX, and observed it only has low
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recall for Type-2 clones where a single instance of an identifier
is renamed, but has good recall for the other Type-2 edit types
(Table II). Perhaps this edit-type is rarer than the others in real-
world clones, which is why BigCloneBench measures a higher
recall. ConQat has significantly lower Type-1 recall measured
by BigCloneBench. This is its poor detection of Type-1 clones
from a particular functionality, as we mentioned earlier. We are
not sure why Duplo’s Type-1 recall is significantly lower with
the Mutation Framework.

Overall, the benchmarks agree for most recall measure-
ments. Ignoring the cases where the tools do not formally
support a clone type (light-gray highlight), the benchmarks
agree in 70% of the Type-1 cases, 78% of Type-2 cases, and
80% of Type-3 cases. Half of the cases of disagreement that
are not related to clone type support are from Deckard, which
is likely due to its parser limitations. This strong agreement
between two very different benchmarking strategies builds our
confidence that the measurements are accurate (RQ2).

VIII. INTRA-PROJECT VS. INTER-PROJECT PERFORMANCE

Traditionally, clone detectors have been designed to locate
clones within a single software system. However, applications
of clone detection extend to clones between distinct software
systems. Intra and inter-project clones may have different
properties, so the tools may have different recall for these
contexts. In this section, we compare the intra and inter-project
recall of the tools using BigCloneBench (RQ3). For intra-
project recall, we evaluate the tools only for the reference
clone pairs whose code fragments are located in the same
software system. This is the average recall of the tools in
a traditional single-system clone detection scenario. For ex-
ample, when a developer uses a clone detector to locate the
clones in their software project. For inter-project recall, we
consider only the reference clone pairs whose code fragments
are located in different software systems. This is the average
recall of the tools in a cross-project clone detection scenario.
For example, when a company uses clone detection to locate
code duplication across their products, or when a researcher
studies code duplication across the open-source community.

Table VI summarizes intra and inter-project recall per clone
type, as well as their absolute difference. We do not include the
MT3 and WT3/T4 categories as the tools have negligible recall
for these clone categories. We consider a tool’s difference in
recall to be significant if it exceeds 15%, and these cases
are highlighted in gray. We choose this threshold based on
the distribution of the difference across these 40 per tool,
per clone-type, cases. The average difference is ±13%. The
average is pulled up by a handful of cases with considerable
difference. Only 15 of the cases have a difference that meets or
exceeds the average. These 15 cases have an average difference
of ±28%, while the other 25 cases have a average difference
of ±4%. We use the average difference of the 40 cases,
rounded up to 15%, as our threshold. We believe we are being
sufficiently cautious with this threshold, and are confident
the cases exceeding the threshold are affected by differing
properties of intra and inter-project clones.

Most of these tools exhibit significant differences between
their intra-project and inter-project recall for at least one of
the clone types. Only NiCad exhibits no significant differ-
ences between these clone contexts. ConQat has significantly
different recall for four of the clone types. Generally, it has
better recall for inter-project clones, although it has better
intra-project recall for the ST3 clones. Duplo has considerably
better intra-project recall for Type-1 clones, yet considerably
better inter-project recall for Type-2 clones. CCFinderX, CPD,
CtCompare, Deckard, iClones, SimCad and Simian have a
difference in recall for only one of the clone types.

Many of the tools have significant differences in Type-2
recall, with better inter-project recall in each of these cases.
This difference is considerable, with a -35% difference on
average. Difference in Type-1 recall is not uniform, although
the difference is considerable for ConQat and Duplo. Similarly
for the VST3 recall, with ConQat and Deckard showing a
considerable difference. The differences in ST3 recall are not
as strong as for the other types. Perhaps intra and inter-project
Type-3 clones in this similarity range have similar properties,
or the tools are generally not sensitive to their differences.

While the participating tools were primarily designed for
single-system clone detection, our findings show that they do
not have a universal weakness in cross-project clone detection.
Per clone type, some of the tools perform better for inter-
project clones, some for intra-project clones, and in most cases
no significant difference is found. Of the thirteen cases of
significant difference, seven cases prefer inter-project recall,
while six prefer intra-project recall. Five of these cases show
significantly better inter-project recall for Type-2 clones, often
by a considerable amount. These results can be used by users
to decide which tool is best for their use-case.

IX. CLONE CAPTURE QUALITY

While high recall is important, it is also important that a tool
capture the clones in a way that is useful to a user’s clone-
related task (RQ4). We evaluated the recall of these tools using
BigCloneBench and our coverage clone-matching metric (c-
match). This metric accepts a candidate clone that covers 70%
of a reference clone’s source lines. This metric ignores any
additional lines the tool reports beyond the boundaries of the
reference clone. Since the reference clones of BigCloneBench
are function clones, additional lines reported by the tool are
external to the functions. These source lines may be from other
functions surrounding the function clone, or class-definition
syntax. Ideally, clone detection tools should respect function
boundaries when reporting clones. Tools that report clones that
extend beyond function boundaries have poorer clone capture
quality because these clones have poorer usability.

Some primary use-cases of clone detection include refactor-
ing, clone management and automatic clone analysis. Clones
that extend beyond function boundaries, or that intersect multi-
ple functions, do not imply any specific refactoring action [1],
[8]. This requires the developer to manually trim and/or split
the clone by functional boundaries before considering any
refactoring tasks. In clone management, developers need to
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TABLE VI
BIGCLONEBENCH: INTRA-PROJECT VS INTER-PROJECT RECALL

Tool Intra-Project Recall Inter-Project Recall Difference, ∆ = (Intra − Inter)

T1 T2 VST3 ST3 T1 T2 VST3 ST3 ∆T1 ∆T2 ∆VST3 ∆ST3

CCFinderX 100 89 70 10 98 94 53 17 2 -5 17 -7
ConQat 62 60 57 49 98 95 91 25 -36 -35 -34 24

CPD 100 80 67 18 100 96 76 22 0 -16 -9 -4
CtCompare 96 38 52 14 88 85 66 19 8 -47 -14 -5

Deckard 59 60 76 31 64 58 46 30 -5 2 30 1
Duplo 97 34 49 12 50 81 42 6 47 -47 7 6

iClones 100 57 84 33 100 86 78 20 0 -29 6 13
NiCad 100 100 100 99 100 100 100 93 0 0 0 6

SimCad 100 95 86 59 100 99 96 43 0 -4 -10 16
Simian 98 82 55 6 77 77 50 16 21 5 5 -10

reason about a large number of clones, and the appropriate
actions to prevent harm to software quality. Having to manu-
ally trim or split individual clones significantly increases the
difficulty and cost of reasoning about a large number of clones.

Automatic clone analysis is used by development tools
that aid clone refactoring and management, as well as by
researchers who study software using clones. An example of
automatic clone analysis is a development tool that monitors
the changes a developer makes to a function, and recommends
clones detected by a tool that the developer most likely wants
to propagate the changes to. A clone analyzer reasons about
clones for the developer or researcher when there are too
many clones for them to manually investigate. However, the
analyzer may behave incorrectly, or produce poor results, when
the clone spans multiple functions. The analysis algorithm
and metrics likely assume that the input clones are contained
within a single logical unit of code (e.g. function, block). In
general, it is not useful for a tool to report a clone that extends
beyond the boundaries of a function. Clones that span multiple
functions are not meaningful since the order and position of
functions in a class is not meaningful.

While respecting function boundaries is only one consider-
ation of clone capture (i.e., reporting) quality, we have shown
why it is important to the practical usability of the clones. In
this section, we evaluate how well the tools respect function
boundaries in their detection of the reference clones. We do
this using two extensions of our c-match metric.

The strict coverage metric, sc-match, extends the c-match
to also require the candidate clone to not extend more than
l lines beyond the reference function clone’s boundaries, as
shown in (3). For this evaluation, we use a tolerance of 3 lines.
This is a small enough extension beyond the boundaries of a
clone that even automatic analysis could trim the candidate
clone to the function boundaries without having to split the
additional lines into an independent clone. It is small enough
that a user should require minimal effort to visually recognize
and ignore the extraneous lines past the function boundary.
sc–match(C,R, t, l) = c–match(C,R, t) ∧

C.f1.s ≥ R.f1.s− l ∧ C.f2.s ≥ R.f2.s− l ∧
C.f1.e ≤ R.f1.e+ l ∧ C.f2.e ≤ R.f2.e+ l

(3)

Some tools may not respect function boundaries when
reporting clones. Such a tool is a poor choice for automatic
refactoring and analysis usages. However, as long as the target

reference clone is clearly featured in the reported candidate
clone, a user should be able to visually parse the reference
clone with an acceptable increase in effort. To evaluate the
tools from this perspective, we use the featured coverage
metric, or fc-match. This metric requires the candidate clone
to cover the reference clone, and for the covered portion of
the reference clone to be a significant feature of the candidate
clone. This is the c-match in both directions, as shown in
(4). We decided a 70% coverage of the candidate clone is the
minimum for the reference clone to be visually identifiable by
the user without a significantly burdensome examination.

fc–match(C,R, t) =c–match(C,R, t) ∧ c–match(R,C, t) (4)

If recall measured by the sc-match and the c-match is
similar, then we know that the tool respects function bound-
aries when reporting the reference clones, and is therefore a
good candidate for both manual and automatic refactoring and
analysis use-cases. If recall by the sc-match is much lower
than by the c-match, then the tool does not respect function
boundaries. Such a tool is not appropriate for use-cases that
use automatic analysis. However, if the tool has similar recall
measured by the fc-match and c-match, than the tool features
the function reference clones in its detection of them. Such
a tool is appropriate for use-cases that use manual analysis,
although with some increased effort compared to a tool that
respects function boundaries. A tool with significantly lower
sc-match and fc-match than c-match recall neither respects
function boundaries nor features the reference clones. Such
a tool is likely burdensome to use for most use-cases.

We compare the tools’ recall per clone type for the c-
match, sc-match and f-match in Table VII. We include only
the VST3 and ST3 Type-3 categories as the tools do not
have appreciable recall for the other Type-3/4 categories. We
observe trends in these results related to the clone types the
tools support, so we organize the tools with those that formally
support Type-3 detection above the splitting line. We consider
the sc-match or fc-match recall to be similar to the c-match
recall if the relative difference is no greater than 20%. We
use a relative difference because the tools all have different
base recall performances. We use a generous threshold to
favor the tools in this evaluation. We highlight in gray these
cases of similarity. A highlighted sc-match recall indicates the
tool respects function boundaries for that clone type, while
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TABLE VII
BIGCLONEBENCH: CLONE CAPTURE QUALITY - METRIC COMPARISON

Tool T1 T2 VST3 ST3

C SC FC C SC FC C SC FC C SC FC

ConQat 67 67 67 90 90 90 73 73 73 33 33 33
Deckard 60 59 59 58 58 58 62 57 57 31 25 26
iClones 100 100 100 82 82 82 82 82 82 24 24 24
NiCad 100 100 100 100 100 100 100 100 100 95 95 95

SimCad 100 100 100 98 98 98 91 91 91 48 48 48

CCFinderX 100 8 15 93 10 72 62 33 51 15 9 10
CPD 100 14 21 94 19 20 71 38 55 21 17 17

CtCompare 95 1 3 78 3 4 59 25 27 17 15 15
Duplo 89 1 5 74 70 72 46 26 26 8 7 7
Simian 95 12 19 78 51 52 53 25 47 13 11 11

a highlighted fc-match indicates the tool features clones of
that type when it detects them. The threshold indicates these
conclusions hold for at least 80% of the reference clones the
tool successfully detects by the c-match.

The results show that the Type-3 clone detection tools
have exceptional respect for function boundaries. Except for
Deckard, recall measured by the sc-match and fc-match is
identical to that measured by the c-match for these tools.
Deckard has only minor reduction in recall between the c-
match and sc-match. In our experiences with Deckard, it
occasionally has errors in its clone boundaries. However, the
effect seems to be minimal with respect to the reference
clones. The Type-3 clone detectors (ConQat, Deckard, iClones,
NiCad, SimCad) have excellent clone capture quality with
respect to function boundaries, and are good candidates for
any manual and automatic clone analysis use-cases (RQ4).

Conversely, for most of the clone types, the tools lacking
formal Type-3 detection capabilities do not respect function
boundaries, nor strongly feature their detection of the reference
clones. In most cases, particularly for the Type-1 and Type-2
clones, their recall by the sc-match and fc-match is signifi-
cantly lower than by the c-match. The exception is for the
Strongly Type-3 clones, and a couple other instances. These
tools do not support Type-3 detection. Their recall for Type-3
clones is due to the detection of a significant (70%) Type-1 or
Type-2 region within the Type-3 clones. Most of these tools
are respecting function boundaries for their detection of the
ST3 clones. This is not because these tools respect function
boundaries in general, but because the gaps in these clones
is bounding the Type-1 or Type-2 region detected by these
tools to within the function boundaries. This is lost with the
VST3, where there are fewer gaps, and therefore it is less
likely the the gaps will bound these tools detection within
the function boundaries. Similarly for Duplo, which does not
formally support Type-2 detection. Outliers are CCFinderX
and Simian, that feature only the VST3 reference clones in
their detection. These results show that the tools lacking Type-
3 detection (CCFinderX, CPD, CtCompare, Duplo, Simian)
neither respect function boundaries nor feature the function
clones in their detection of them. Therefore, these tools are
not appropriate for automatic analysis, and they may be
burdensome for use-cases with manual inspection (RQ4).

X. THREATS TO VALIDITY

Alternate configurations of the tools may result in better or
worse recall. Wang et al. [31] refer to this as the confounding
configuration choice problem, and it is a challenge in all clone
studies. We took steps to ensure the tool configurations were
appropriate for our study. We used configurations that target
the known properties of the benchmark, such as clone types
and clone size. Otherwise, we referred to the defaults and
recommendations of the tools with respect to our knowledge
of the benchmarks. This is the process a user would use to
configure a tool for their own system, so our results reflect
what a user should expect to receive. We did not execute the
tools for various settings until an optimal result is found, as it
is not possible for users to do this in practice. For the Type-3
clone detectors, lowering their thresholds would allow them
to detect more clones in BigCloneBench [20]. However, the
tools would have poor precision for low similarity thresholds.

XI. CONCLUSION AND FUTURE WORK

Recall is an important measure for understanding the ef-
fectiveness of clone detection tools in software development
and research studies. It has been challenging to measure as
it requires a varied and comprehensive benchmark of known
clones. Bellon’s Benchmark [8] is an influential clone bench-
mark in the research community, however its dependence on
clones detected by contemporary (2002) tools means it may
not be suitable for modern tools [10]. Our Mutation Frame-
work [6] synthesizes a benchmark of clones, and can precisely
measure recall at a granularity lower than clone-type. How-
ever, it is also important to measure recall using real clones
produced by developers. We introduced BigCloneBench [11]
as a big data, varied and comprehensive clone benchmark for
modern tools. In this study, we evaluated ten clone detection
tools using BigCloneBench (RQ1), and compared these results
against our Mutation Framework (RQ2). We found the tools
have strong detection of Type-1 and Type-2 clones, as well as
Type-3 clones with high syntactical similarity. Improvement is
needed in the detection of Type-3 clones with lower syntactical
similarity, as well as Type-4 clones, while maintaining high
precision, which may require semantic awareness. These real-
world and synthetic benchmarks have high agreement, so we
are confident in their accuracy (RQ2). Since BigCloneBench
contains both intra and inter-project clones, we were able to
evaluate the tools for these contexts. We found that while many
of the tools have different recall for single-system and cross-
project detection scenarios, neither context was universally
favored by the tools (RQ3). Using multiple clone-matching
metrics with BigCloneBench, we showed that only the Type-
3 tools respect function boundaries when reporting clones
(RQ4). Clones reported by the other tools may have poorer
usability in refactoring and automatic clone analysis use-cases.
With BigCloneBench and the Mutation Framework, we believe
we have created a solid foundation for measuring the recall of
clone detection tools.
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