
CloneWorks: A Fast and Flexible Large-Scale
Near-Miss Clone Detection Tool

Jeffrey Svajlenko Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

jeff.svajlenko@usask.ca chanchal.roy@usask.ca

Abstract—Clone detection within large inter-project source-
code repositories has numerous rich applications. CloneWorks is
a fast and flexible clone detector for large-scale near-miss clone
detection experiments. CloneWorks gives the user full control
over the processing of the source code before clone detection,
enabling the user to target any clone type or perform custom
clone detection experiments. Scalable clone detection is achieved,
even on commodity hardware, using our partitioned partial
indexes approach. CloneWorks scales to 250MLOC in just four
on an average workstation with good recall and precision.

Keywords-code clone, clone detection, flexible, scalable, fast

I. INTRODUCTION

Clone detection tools locate exact or similar source code
within or between software systems. An instance of similar
code is called a clone, and multiple types of clones have been
identified. Of interest is the detection of clones within very-
large inter-project source repositories, containing hundreds of
millions of lines of code (MLOC) or more. This is motivated
by the exciting applications, such as: studying global open-
source developer behavior [1], mining the seeds of new
APIs [2], license violation detection [3], large-scale clone
and code search [4], similar application detection [5], code
completion [6], API recommendation and usage support [7],
and so on. While a small number of scalable techniques have
been published [2], [3], [5], [8]–[12], most do not support
the important Type-3 clones [2], [3], [10], [11], some require
distribution over a compute cluster [10], [11], while others
are designed for domain-specific uses [3], [5], [9]. None of
the existing tools provide researchers the flexibility they need
to explore new applications of large-scale clone detection.

We introduce CloneWorks, a fast and flexible clone detector
for large-scale clone detection experiments. CloneWorks gives
the user full control over the processing of their source code
before clone detection. Specifically, users can specify the nor-
malizations, transformations, filtering and any other processing
performed on the source-code, including custom processing by
a simple plug-in architecture. By customizing the representa-
tion of their source code, users can target any clone type,
or perform novel clone detection experiments. Very fast clone
detection is achieved using efficient metrics and heuristics, par-
allelism, and prioritizing speed over efficient memory usage.
An efficient input partitioning scheme is used to keep peak
memory usage within even commodity memory constraints.
CloneWorks executes for an input as large as 250MLOC in
just four hours on an average workstation (quad-core, 10GB

memory). CloneWorks supports the detection of Java, C and
C# clones at the block, function and file granularity. It is
available for download at www.jeff.svajlenko.com/cloneworks.

The CloneWorks approach is shown in Figure 1. It is split
into two distinct tools: the flexible input builder, and the fast
and scalable clone detector. Clone detection is achieved using
a modified Jaccard similarity metric, which represents code
fragments as the set of code terms they contain and measures
similarity as their minimum overlap ratio. The input builder is
used to extract the code fragments from the input source files
and convert them to this set representation of clone detection.
The user specifies the source-code processing with the input
builder to customize this representation for their use-case. The
clone detector then evaluates each pair of code fragments with
the modified Jaccard metric. This is scaled using the sub-
block filtering heuristic [8] with our partitioned partial indexes
approach. We describe these details in the following sections.
Further details are found in our tool demonstration paper [13].

II. MODIFIED JACCARD CLONE SIMILARITY

CloneWorks detects clones using the Jaccard similarity
metric, with the denominator modified for clone detection, as
shown in Eq. 1. The metric takes a pair of code fragments,
f1 and f2, as the set of code terms (e.g. tokens) they contain,
including duplicates. Similarity is measured as the minimum
ratio of their intersection. A pair of code fragments is reported
as a clone if their similarity satisfies a given minimum
threshold (e.g. 70%). The metric can be evaluated in linear
time when the code fragment set representations are stored in
hash tables. Since the metric is language independent, the set
representation of a code fragment can be anything imaginable.
It can be the set of language tokens within the code fragment,
or code statements, or normalized code statements, or API call
patterns, etc. The user uses the input builder to customize the
set representation to target specific kinds of clones.

s(f1, f2) =
|f1 ∩ f2|

max(|f1| , |f2|)
= min(

|f1 ∩ f2|
|f1|

,
|f1 ∩ f2|
|f2|)

) (1)

III. FLEXIBLE INPUT BUILDER

The input builder is shown in Figure 1. It is used to extract
the code fragments from the input source files, and convert
them into a set of code terms format for clone detection
with the modified Jaccard metric. The code fragments are
prepared over a number of steps. First, a code fragment
is processed by k user-specified code-fragment processors.
These apply source transformations and normalizations to the

www.jeff.svajlenko.com/cloneworks

Sub-Block

Filter

For Each Pair of Code Fragments

Code

Fragments
Jaccard Clone

Similarity
if yes

Clone

Detection

Report

if t

Clone Detector

As Term Sets

Extractor

Code Fragment

Extraction

Code

Fragments

Code Fragment

Processors

Splitter

Term

Splitter

1 2 k...

Ordered

Term List

1 2 r

Term

Processors

Processed

Term List

For Each Code Fragment
For Each Source File

Input Builder

...

Input Builder Configuration

Source

File
Input

Source Files

Minimum Clone Similarity Threshold, t

Fig. 1. The CloneWorks Approach

code fragments, and/or filter undesired code fragments from
consideration. The code fragment is then split into terms by
the term splitter, either by token or by text line. Using the code
fragment processors to layout the code in a particular way then
splitting by line can produce a custom term definition. The
fragment’s list of terms is then processed by r user-specified
term processors. These are analogous to the code fragment
processors, except they apply transformations, normalizations
and filtering at the term level. Finally, the code fragment
is output as an unordered set of its terms, ready for clone
detection. The input builder processes multiple files in parallel,
up to the number of available processing cores.

CloneWorks includes a number of code fragment processors
including identifier renaming, literal normalization, condi-
tional expression normalization, and non-terminal abstraction
or filtering. It includes term processors for token filtering,
n-gram transformations, string-splitting, hashing, and so on.
Users can implement their own custom code fragment and
term processors by a simple plug-in architecture. The user
writes a configuration file that specifies the code fragment
and term processors to use and their order. The input builder
assembles this pipeline for processing the source-code. The
user only needs to implement their custom processing logic,
and can take advantage of the input builder’s structure and
multi-threaded processing. Further details and example usages
are available in our tool demonstration paper [13].

IV. FAST AND SCALABLE CLONE DETECTOR

Clone detection is shown at a high level in Figure 1. Every
pair of code fragments is examined by the modified Jaccard
similarity metric to determine if it is a clone, given a minimum
clone similarity threshold. This is very wasteful, as most pairs
of code fragments are not clones. We skip those pairs of code
fragments which cannot be clones using the sub-block filtering
heuristic [8]. Given code fragments f1 and f2 as term sets. If
we order their terms by increasing global-term-frequency, then
they can only be clones if the prefix of f1 of size |f1|−t|f1|+1
overlaps the prefix of f2 of size |f2|− t|f2|+1 by at least one
term [8], [13]. Potential clones can be efficiently identified
by indexing the code fragments by their prefix (sub-block)
terms (an partial clone index) [8]. Querying the index using
the prefix terms of a code fragment returns all of the potential
clones of that code fragment that need to be investigated fully
by the modified Jaccard metric. Querying the index with every
code fragment returns all potential clones in the input. The
sub-block filtering heuristic has been found to significantly
reduce the number of code fragment comparisons [8].

This clone detection technique is extremely fast when the
partial clone index is stored as a hash table for constant-
time lookup, the code fragment set representations are stored

Partial

Index

1

2

1

1+2

Index

Query
Potential

Clones

Compute

Jaccard

Similiarty

if t

Partitions

Compute

Sub-Block

Compute Global

Term Frequency

In
p

u
t

C
o

d
e

Fr
ag

m
en

ts

O
ut

p
ut

 C
lo

ne
 P

ai
rs

For Each Partition

...

...

Fig. 2. Fast and Scalable Clone Detection
as hash sets for linear-time computation of the modified
Jaccard metric, and the code fragments are kept in-memory
for immediate random access when queried. However, this is
very memory intensive, and quickly exceeds average memory
constraints for larger inputs. To overcome this, we use our
partitioned partial indexes approach. The code fragments are
split into a number of partitions, such that each partition can fit
within memory constraints. For each partition, a partial index
is constructed for just the code fragments in that partition, and
code fragments from each of the partitions are used to query
the index to identify the potential clones. This is repeated for
each partition to identify all of the potential clones. Only the
code fragments of the current partition need to be kept in
memory as they are being queried from the index. The other
code fragments can be efficiently streamed from disk as they
are used to query the index. This partitioned partial index
approach is shown in detail in Figure 2.

V. EVALUATION

We evaluated two configurations of CloneWorks using our
BigCloneBench [14]–[16] clone benchmark. Our conservative
(C) configuration represents the code fragments as their sets
of tokens, with operator and separator tokens filtered. Our
aggressive (A) configuration represents the code fragments
as their set of code statements, after identifier and literal
normalization. Recall (per clone type) and precision are shown
below. These configuration match the best of the competing
tools, as per our previous benchmarking studies [8], [15], [17].
We evaluated the execution time and scalability of CloneWorks
by executing it for a IJaDataset [18], an inter-project repository
with 250MLOC. The conservative configuration completed af-
ter just four hours, while the aggressive configuration required
just ten hours, 1-2 orders of magnitude faster than the best
of the competing tools [8]. Detection was performed on a
workstation with a quad core processor and 10GB of RAM.

Config. T1 T2 VST3 ST3 Precision

CloneWorks-A 100 99 92 65 95
CloneWorks-C 100 99 98 92 86

VI. CONCLUSION

In this paper we over-viewed the major concepts of
CloneWorks, our fast and flexible clone detector for large-
scale near-miss clone detection experiments. Further details
can be found in our tool demonstration paper [13].

REFERENCES

[1] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source
java projects: The good, the bad, and the ugly,” in Proceedings of the
2011 27th IEEE International Conference on Software Maintenance, ser.
ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
283–292.

[2] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-
project functional clone detection toward building libraries - an empirical
study on 13,000 projects,” in 2012 19th Working Conference on Reverse
Engineering, Oct 2012, pp. 387–391.

[3] R. Koschke, “Large-scale inter-system clone detection using suffix trees
and hashing,” Journal of Software: Evolution and Process, vol. 26, no. 8,
pp. 747–769, 2014.

[4] I. Keivanloo, C. Forbes, and J. Rilling, “Similarity search plug-in: Clone
detection meets internet-scale code search,” in 2012 ICSE Workshop on
Search-Driven Development - Users, Infrastructure, Tools and Evalua-
tion (SUITE), June 2012, pp. 21–22.

[5] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 175–186.

[6] T. Ishihara, Y. Higo, and S. Kusumoto, “How often is necessary code
missing? a controlled experiment,” Software Reuse for Dynamic Systems
in the Cloud and Beyond, vol. 8919, pp. 156–163, 2014.

[7] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in Proceedings of the 36th International Conference on Software En-
gineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp.
664–675.

[8] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, ser. ICSE
’16. New York, NY, USA: ACM, 2016, pp. 1157–1168.

[9] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code
clone search via multi-level indexing,” in 2011 18th Working Conference
on Reverse Engineering, Oct 2011, pp. 23–27.

[10] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in 2010 IEEE
International Conference on Software Maintenance (ICSM), Sept 2010,
pp. 1–9.

[11] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed ccfinder: D-ccfinder,” in 29th International Conference on
Software Engineering (ICSE’07), May 2007, pp. 106–115.

[12] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Big data clone detection
using classical detectors: an exploratory study,” Journal of Software:
Evolution and Process, vol. 27, no. 6, pp. 430–464, 2015.

[13] J. Svajlenko and C. K. Roy, “Fast and flexible large-scale clone detection
with cloneworks,” in Proceedings of the 39th International Conference
on Software Engineering (Tool Demonstrations Track), 2017, 4 pp.

[14] J. Svajlenko and C. Roy, “Bigcloneeval: A clone detection tool eval-
uation framework with bigclonebench,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016,
to appear.

[15] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sept 2015, pp. 131–140.

[16] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution, ser. ICSME ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 476–480.

[17] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in Proceedings of the 30th International Conference on Software Main-
tenance and Evolution, 2014, pp. 321–330.

[18] Ambient Software Evoluton Group, “IJaDataset 2.0,” http://secold.org/
projects/seclone, January 2013.

http://secold.org/projects/seclone
http://secold.org/projects/seclone

	Introduction
	Modified Jaccard Clone Similarity
	Flexible Input Builder
	Fast and Scalable Clone Detector
	Evaluation
	Conclusion
	References

