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ABSTRACT
Despite the great number of clone detection approaches proposed
in the literature, few have the scalability and speed to analyze
large inter-project source datasets, where clone detection has many
potential applications. Furthermore, because of the many uses of
clone detection, an approach is needed that can adapt to the needs
of the user to detect any kind of clone. We propose a clone detection
approach designed for user-guided clone detection by exploiting the
power of source transformation in a plugin based source processing
pipeline. Clones are detected using a simple Jaccard-based clone
similarity metric, and users customize the representation of their
source code as sets of terms to target particular types or kinds of
clones. Fast and scalable clone detection is achieved with indexing,
sub-block filtering and input partitioning.
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1 INTRODUCTION
Clone detection locates instances of similar code, called clones,
within or between software systems. One of the most active top-
ics in clone research is the detection of clones within large inter-
project source code datasets containing on the order of thousands
of software projects or more. This has applications in software
research [11], license violation detection [8], building new software
libraries [4], API recommendation [6], code completion [3], code
search [5, 9], and so on. However, few detection approaches are able
to scale to large inter-project source code datasets [13], and none
of the existing approaches are user-guided in their configuration,
which is needed by researchers and practitioners to explore the
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emerging applications of inter-project clone detection. To overcome
these challenges, we propose a fast, scalable and user-guided clone
detection approach.

2 CORE APPROACH
Our approach represents code fragments (blocks, functions, files,
and so on) as the unordered set of code terms (e.g. tokens, lines)
they contain. Clones are detected using a Jaccard-based [7, 12, 13,
16] clone similarity metric (Eq. 1). Code fragments f1 and f2 are
reported as a clone if their minimum set overlap exceeds a given
threshold (e.g., 70%). We use this metric as it is fast, language-
independent, scalable, simple to understand and customizable.

sim(f1, f2) =
| f1 ∩ f2 |

max(| f1 | , | f2 |)
=min(

| f1 ∩ f2 |

| f1 |
,
| f1 ∩ f2 |

| f2 |)
) (1)

By customizing the representation of the code fragments as sets
of terms, this simple approach can target any kind clone. Classi-
cal clones can be detected by representing the code fragments as
the sets of source tokens, lines or statements they contain. Nor-
malization and filtering of the terms can be used to target clones
with particular types of differences. Transformations can be used
to customize the term definition to detect novel kinds of clones. For
example, code fragments could be represented by their set of topics
using topic modeling to detect semantically similar clones, while
extracting normalized API calls as terms could be used to detect
cloned API usage patterns.

3 USER-GUIDED INPUT BUILDER
Our user-guided approach enables the user to easily customize
how their code fragments are represented as sets of terms for clone
detection. To achieve this we designed a source-code parsing and
processing pipeline for extracting the code fragments as sets of
terms for chosen term definition. The pipeline uses a plugin ar-
chitecture so that users can modify any aspect including injecting
custom source transformation, normalization and filtering. We call
this pipeline the input builder.

The pipeline is executed as in Figure 1. Each source file is parsed
and the code fragments of a specified granularity are extracted
and pretty-printed. Then, for each code fragment in that file, the
following processing occurs. First, a number of user-specified code-
fragment processors are applied to the code fragment, which can
apply normalizations and transformations to the source syntax.
Then, the terms are extracted by term splitting, which outputs the
code fragment as a list of the terms it contains, including duplicates,
in the order of their occurrence. The term list is then processed by
a user-specified sequence of term processors, which take a term list
as input and output the same list with some specified modifications,
such as term filtering, splitting, combining, transformation, and so
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Figure 1: The Input Builder
on. The term list is then reformatted to a set of terms, including
duplicates, for clone detection.

Extraction: Language specific extractor plugins parse the source
files and output code fragments at the desired granularity (e.g.
block, function, file). Extractor plugins can leverage existing parser
technology (e.g., TXL [1]).

Pretty-Printing: A strict pretty-printing plugin is used to lay-
out the code fragments for eventually splitting (by newline) into
code terms.

Code-Fragment Processing: Code fragment processors are
plugins used to apply source-code normalization, abstractions, fil-
terings and transformations. Normalizations such as identifier name
and literal value normalizations are common in clone detection.
Abstractions can normalize any syntactic structure, and can be
used to detect clones with particular kinds of edits. Filtering can
remove syntax elements that cause mismatch of otherwise similar
source code during clone detection. Transformations can be used
to customize the code term definition for clone detection.

Term Processors: These can be used to refine the code terms
before clone detection. For example, an n-gram term processor can
be used to preserve some syntax order information during clone
detection with the Jaccard metric.

4 FAST AND SCALABLE CLONE DETECTION
Jaccard-based clone similarity metrics are commonly used in clone
detection for their linear complexity [7, 12, 13]. To scale the Jaccard
approach we use Sajnani et al.’s sub-block filtering heuristic [12, 13],
which avoids comparing code fragments that cannot satisfy the
chosen minimum similarity threshold, and partial indexing ap-
proach [13]. Clone indexing [2, 13] is used to quickly identify the
potential clones for comparison, as determined by the filter [13]. We
have found this approach is exceptionally fast when the code frag-
ments and index are kept in-memory in computationally efficient
but memory intensive datastructures [17]. To scale within memory
constraints we use determinsitic input partitioning over the clone
index and input code fragments. Further details are available in our
CloneWorks tool paper [17].

5 RELATEDWORK
Livieri et al. [10] used deterministic input partitioning to scale
clone detection using a compute cluster. With Keivanloo, we used
non-determinsitic partitioning with heuristics to scale existing non-
scalable clone detectors to large inter-project datasets [14]. Hummel
et al. [2] proposed the use of indexes for scalable clone detection.
Koschke et al. [8] scale clone detection with suffix trees for the
purpose of license violation detection, but detects only Type-1 and
Type-2 clones. Ishihara et al. [4] used hashing with clone index to
find Type-1 and Type-2 cloned methods to build new libraries.

A number of works have used a Jaccard-based clone similarity
metric [7, 13, 14, 17]. Sajnani et al. showed how this could be scaled
using their sub-block filtering heuristic [12] and implemented it
with a partial clone index in SourcererCC [13]. We reuse this ap-
proach here to scale our user-guided clone detection. We improved
the execution time of this approach using computational efficient
but memory intensive data-structures, and improved scalability
even within limited memory using input partitioning over the code
fragments and clone index [15]. We released this implementation
as CloneWorks, and demonstrated its performance [17]. Unique to
this work is the user-guided approach which can target any kind of
clone detection.We initially explored this concept with CloneWorks,
and provide a number of fragment and term processors [15, 17]
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