
Big data clone detection using classical detectors: an
exploratory study

Jeffrey Svajlenko1,*,†, Iman Keivanloo2 and Chanchal K. Roy1

1Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
2Department of Electrical and Computer Engineering, Queen’s University, Kingston, Canada

ABSTRACT

Big data analysis is an emerging research topic in various domains, and clone detection is no exception. The
goal is to create ultra-large inter-project clone corpora across open-source or corporate-source code repositories.
Such corpora can be used to study developer behavior and to reduce engineering costs by extracting globally
duplicated efforts into new APIs and as a basis for code completion and API usage support. However, building
scalable clone detection tools is challenging. It is often impractical to use existing state-of-the-art tools to ana-
lyze big data because the memory and execution time required exceed the average user’s resources. Some tools
have inherent limitations in their data structures and algorithms that prevent the analysis of big data even when
extraordinary resources are available. These limitations are impossible to overcome if the source code of the tool
is unavailable or if the user lacks the time or expertise to modify the tool without harming its performance or
accuracy. In this research, we have investigated the use of our shuffling framework for scaling classical clone
detection tools to big data. The framework achieves scalability on commodity hardware by partitioning the in-
put dataset into subsets manageable by the tool and computing resources. A non-deterministic process is used to
randomly ‘shuffle’ the contents of the dataset into a series of subsets. The tool is executed for each subset, and
its output for each is merged into a single report. This approach does not require modification to the subject
tools, allowing their individual strengths and precision to be captured at an acceptable loss of recall. In our
study, we explored the performance and applicability of the framework for the ultra-large dataset, IJaDataset
2.0, which consists of 356 million lines of code from 25,000 open-source Java projects. We begin with a com-
putationally inexpensive version of our framework based on pure random shuffling. This versionwas successful
at scaling the tools to IJaDataset but required many subsets to achieve a desirable recall. Using our findings, we
incrementally improved the framework to achieve a satisfactory recall using fewer resources. We investigated
the use of efficient file tracking and file-similarity heuristics to bias the shuffling algorithm toward subsets of the
dataset that contain undetected clone pairs. These changes were successful in improving the recall performance
of the framework. Our study shows that the framework is able to achieve up to 90–95% of a tool’s native recall
using standard hardware. Copyright © 2014 John Wiley & Sons, Ltd.

Received 9 October 2013; Revised 20 March 2014; Accepted 28 May 2014

KEY WORDS: shuffling framework; clone detection; scalability; big data; clone corpus

1. INTRODUCTION

Scalable clone detection is among the most active topics in the clone community. One of its primary
goals is the creation of clone corpora from ultra-large inter-project datasets that often contain in the
order of thousands of open-source systems. However, building scalable tools is challenging, and it is
often impossible to use existing state-of-the-art tools for big data analysis, except for emerging tools
that are built for extreme scalability. Reasons for their failure include insufficient memory,
impractical computation time, and/or limitations in their underlying algorithms.

*Correspondence to: Jeffrey Svajlenko, Department of Computer Science, University of Saskatchewan, Saskatoon, S7N
5C9, Canada.
†E-mail: jeff.svajlenko@usask.ca

Copyright © 2014 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1662

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

In our research, we develop and evaluate a scalability heuristic that we call the shuffling framework
[1, 2]. Our technique allows classical clone detection tools (i.e., those not specifically designed for big
data) to be scaled to big data on standard workstation-class hardware without modification. The
framework achieves scalability by executing the classical tool for subsets of the dataset. The subset
size is kept small enough that the tool does not encounter scalability issues when executed on a
standard workstation. The subsets are chosen by a non-deterministic process that ‘shuffles’ the
dataset’s files into inputs for the classical tool. Using the tools in their original state ensures that
their native precision and detection characteristics are maintained when executed through the
framework. By executing the tool for a sufficient number of subsets, an acceptable ratio of the tool’s
native recall is achieved for a dataset outside of its native scalability. The key to the performance of
the framework is the design of the non-deterministic strategies used to choose the subsets.

This research is motivated by the richness of inter-project clone corpora for software mining
experiments and applications. Inter-project datasets of interest include public open-source
repositories (e.g., SourceForge and GitHub) as well as private corporate repositories. Clone corpora
may be mined to study developer behavior both globally (e.g., across open-source repositories) and
within an organization (e.g., across a company’s private repository). They can be used to discover
frequently re-implemented functionalities that should be extracted into new software libraries to
remove duplicated engineering costs. A corpus may also be used as a basis for Internet-scale clone
search [3], which has applications including API recommendation and usage support. Scalability in
detection is achieved by either using novel scalable detection techniques (general or domain
specific) or mixing classical approaches with scalability heuristics.

One of our goals is to allow classical tools to contribute toward inter-project clone corpora (e.g., [3]).
It is not sufficient to only consult scalable clone detectors when creating a clone corpus as classical
tools have their own unique strengths and detection characteristics. While general-purpose scalable
detection techniques exist in the literature, most have not been publicly released as user-friendly
tools. Additionally, scalable tools are still novel, and their recall and precision have not been
proven. Classical tools have matured, and there is more understanding and confidence in their
abilities and detection quality. In order to build a truly comprehensive inter-project clone corpus, a
variety of detection tools need to be consulted, including both scalable and classical tools.

In our earlier research [1, 2]. we proposed a shuffling framework based on input partitioning. This
strategy completely partitions the dataset into disjoint subsets. The tool is then executed for each subset
to locate the clones within these partitions. Because it is likely that files containing clones will be
assigned to different partitions, the contents of the partitions are randomly shuffled over a number of
rounds. Rounds are executed until either the framework user has met their time constraints or the
cost of executing an additional round exceeds the expected benefit (as judged from the previous
rounds) in terms of the number of new clones detected. This strategy relies upon randomization to
shuffle clones together. It assumes that while a large number of clones remain to be found, there is a
good chance random selection will shuffle files containing clones into the same partitions. The
technique should reach a point of diminishing returns when a significant portion of the tool’s native
recall has been found. This shuffling strategy is computationally cheap, and the creation of the subsets
is negligible compared with the cost of executing the clone detection tool.

In this research, we evaluate this partition strategy for the ultra-large inter-project dataset IJaDataset 2.0
[4, 20] using a selection of classical clone detection tools, including Deckard [5], NiCad [6], iClones [7],
Simian [8], SimCad [9], and CCFinderX [10]. We measure the framework’s detection performance as the
ratio of a tool’s native recall that it is able to capture. This study reports our observations and the challenges
faced in executing our framework for these tools and dataset. In order to gauge the expected performance of
the framework for these tools, we also executed it for standard-size datasets, which allowed us to compare
clone detection with and without the framework. We developed and evaluated a heuristic for estimating
framework performance when the clone output was too large to process on available hardware.

From our performance observations, we identified the strengths and deficiencies of the partitioning
approach. Generating the subsets by randomly partitioning the dataset over a number of shuffling
rounds is computationally inexpensive and ensures the tool is exposed to every file in the dataset.
However, we found that a large number of rounds were required to obtain an acceptable ratio of a
tool’s native recall. We identified two attributes of random partitioning that limits its performance.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

First, when shuffling the partitions, the framework does not consider which files have been shuffled
together previously. It is possible, especially as more rounds are executed, that pairs of files will be
randomly shuffled together more than once. Executing the tool for the same pairs of files repeatedly
costs computation time and resources without discovering new clones (i.e., improving recall).
Computing rounds of partitions that never shuffle the same files together more than once is neither
simple nor cheap. However, minimizing the reshuffling of the same files together repeatedly would
improve the performance of the framework.

Second, this strategy does not consider the similarity of the files it shuffles together. A significant
portion of a clone detector’s computation time is spent searching for clones between files that do not
contain clones. Shuffling together only those files that contain clones would reduce the amount of
wasted time. Of course, determining if two files contain a clone has the same cost as clone
detection. However, a cheap (i.e.,O(n), where n is the combined length of the files) heuristic to
estimate if two files contain enough similar code to possibly contain a clone could be used to
prevent files too dissimilar to contain a clone (as judged by the tool) from being shuffled into the
same subsets.

Using these observations, we improved our framework’s subset generation and file shuffling
strategy. Specifically, we explored methods of efficiently tracking seen file pairs and efficient
heuristics to measure source file similarity. By tracking the seen file pairs, we can guarantee that
each new subset contains a minimum number of new detection experiences. By measuring file
similarity, we can avoid shuffling together files that are unlikely to contain a clone as judged by the
specific classic tool. The goal of these two heuristics is to maximize the number of clones found per
subset the tool is executed for, which minimizes the number of subsets needed to obtain an
acceptable ratio of the tool’s native recall. This improves the scalability of our framework. We
incrementally introduced these heuristics to the framework and measured their performance in an
experiment mimicking a real big data scenario.

Using our findings of the computational cost and recall performance of the added heuristics, we
specified a final shuffling algorithm that merged the best features of the partitioning method and the
heuristics. We used this final version of the shuffling algorithm to analyze the IJaDataset. We
compared the improved algorithm against the original core algorithm (the original shuffling
framework [1, 2]). While the heuristics increased the cost of generating the subsets of the dataset to
analyze, it greatly reduced the number of subsets the classical tool needed to be executed for it to
achieve a satisfactory ratio of its native recall, while of course retaining the tool’s original precision.

In summary, this work answers the following research questions:

RQ#1 What is the accuracy of our heuristic for measuring the recall performance of the shuffling
framework?

RQ#2 What is the expected recall performance of the core shuffling framework for these selected
clone detection tools with respect to their native recall performance?

RQ#3 Is our shuffling framework successful in scaling classical detection tools to big data?
RQ#4 By observing the behavior of the shuffling framework, can we modify it to improve its recall

performance in terms of recall and execution time?
RQ#5 Does the improved shuffling framework perform better for big data?

We begin with a short survey of related work in Section 2. Section 3 provides essential background
information, including key definitions. The procedure of our core shuffling framework as proposed in
previous work [1, 2] is outlined in Section 4. Section 5 overviews our experimental setup and defines
our metrics, including the recall evaluation heuristic (RQ#1). We evaluate the expected performance of
our core algorithm (RQ#2) in the preliminary experiments detailed in Section 6. Section 7 discusses
our experiences in applying our core shuffling framework to big data (IJaDataset) and reports our
observations regarding the framework’s clone detection performance (RQ#3). In Section 8, we
analyze the performance and deficiencies of our core shuffling algorithm. In Section 9, we develop
shuffling heuristics to address the deficiencies in the core approach and incrementally integrate them
into the core shuffling algorithm. Using a test dataset (a sample of the IJaDataset), we measure the
effectiveness of these improvements versus the costs the heuristics added to the shuffling algorithm.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
classical clone detection

Jeffrey
Cross-Out

Jeffrey
Cross-Out

Jeffrey
Inserted Text
,

Jeffrey
Cross-Out

Jeffrey
Inserted Text
,

From these experiments, we specify an improved shuffling framework in Section 10. In Section 11, we
revisit the IJaDataset with the improved framework and compare our experiences against the core
framework in terms of recall performance and tool scalability improvements (RQ#5). We conclude
our research in Section 12 and outline our future work in Section 13.

2. RELATED WORK

Scalable clone detection research can be summarized as five unique approaches: (1) deterministic novel
general-purpose detection (e.g., [11]); (2) deterministic novel domain-specific approaches (e.g., [12]); (3)
deterministic approaches for achieving scalability by altering available tools (e.g., [13]); (4) deterministic
approaches for achieving scalability using an available clone detection tool as is (e.g., [14]); and (5) non-
deterministic approaches for scaling an available tool (e.g., [1]). A variety of use cases can be addressed
using each family based on their unique features. Our shuffling framework is an implementation of
approach (5).

Deterministic novel general-purpose approaches, (1), are designed specifically for scalability. A
number of such techniques for big data have been explored in clone literature; however, public tool
availability remains rare. Approaches that achieve scalability on a single machine may require
compromises in granularity, recall, and/or precision in order to reduce computational complexity or
clone search space. Other approaches achieve scalability by targeting scalable hardware, such as
cloud-based computing clusters, which can be costly to purchase or rent.

Deterministic novel domain-specific approaches, (2), achieve scalability by optimizing for a
particular use case. By exploiting domain knowledge of a particular use case, computational
complexity can be lowered without significant compromise to detection features, recall, or precision.
However, the approach’s performance is strongly specific to its domain of study. The approach may
be ineffective in other use cases.

Existing classical tools may be modified for scalability, (3). These approaches exploit the proven
existing clone detection technique with modifications to improve its scalability. For example, an
existing tool may be modified to distribute its computation. Or a heuristic may be used to reduce the
search space the classical approach must be executed for. Improving the scalability of an existing
tool may scale its hardware requirements or reduce its recall and/or precision. To implement such an
approach, the original tool’s source code and expert knowledge of its implementation are required.
Many tools are closed source or are released without extensive design documentation.

Methods (4) and (5) use classical tools as is and scale them to big data. These approaches exploit the
known detection characteristics, recall, and precision of available tools. Many classical tools are
available, and users are confident in their abilities and correctness because of their widespread use in
clone research. By not requiring modification to the tools, these approaches can scale closed-source
tools. While open-source tools might be modifiable for increased scalability, this requires expert
knowledge in their algorithms and implementations. Our shuffling framework exploits the non-
deterministic method, (5).

Deterministic methods of scaling classical tools without modification, (4), are the most similar
approach to our shuffling framework. An implementation of the deterministic approach (e.g., [14])
begins by partitioning the input dataset into disjoint subsets half the size manageable by the classical
tool on workstation hardware. The tool is then executed for each pair of these subsets. If the tool’s
input scalability limit is 1/nth of the big dataset, then the deterministic method will partition the
input into 2n disjoint subsets and execute the tool for n(2n� 1) =O(n2) subset pairs. This strategy
maintains a classical tool’s native recall and precision while scaling it to big data by deterministic
exposure of the tool to every pair of files in the dataset. However, for a dataset containing thousands
of software systems, the deterministic method may require several weeks of execution time with a
classical tool. Therefore, to achieve scalability in execution time, the user must distribute the
analysis of the subset pairs across a cluster of workstations.

Our shuffling framework aims to scale classical tools using a single workstation, or a (small) handful
of available workstations, without modifications to the tool. It executes the tool for some number of
manageable subsets of the dataset. The subsets are chosen by a non-deterministic (random) process,

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

meaning that the tool is not exposed to every file pair in the dataset. The approach relies upon
randomization to allow an acceptable ratio of a tool’s native recall to be achieved in a
manageable number of subsets, at least far fewer than required by the deterministic method
(i.e., approach (4)). The probability of files containing clones ending up in the same subset is
higher when a large ratio of a tool’s native recall remains to be found. This approach maintains the
classical tool’s detection characteristics and precision but sacrifices its recall to achieve scalability on
commodity hardware. In this research, we develop and investigate non-deterministic methods of
choosing these subsets so as to reduce the number of subsets needed to achieve an acceptable ratio of a
tool’s native recall.

There are a few recent and similar studies to our research. Ishihara et al. [12] exploited inter-project
scalable clone detection to locate commonly used functionalities within 13K open-source projects in
order to generate a seed for future APIs and libraries. Schwarz et al. [15] studied cloning between
3K Smalltalk projects to deploy a database of clones that can be queried. Ossher et al. [16] observed
cloning at the file level using coarse-grained clone detection heuristics. Common to all these studies,
the detection approach is customized and optimized considering the research objectives and
requirements. This is contrary to our research where we show that a clone dataset can be generated
using available clone detection tools by coping with the scalability issue without altering the tools.

3. BACKGROUND

Similar source code within a software system, or some other collection of source code, are called code
clones or software clones. Developers and researchers are interested in clones that are similar either
textually, syntactically or functionally. The most common source of clones is copy-and-paste code
reuse. However, clones may arise from a number of other developer actions [17]. Clone detection tools
are used to locate clones in software systems. Clones are frequently reported as pairs of similar code
fragments, which can be summarized into clone classes.

Code fragment A continuous slice of source code in a single source file, specified by the triple (source
file, start line, end line).

Clone A pair of code fragments that are considered similar by some definition of similarity, also called
a clone pair.

Clone Class A set of code fragments that are considered similar by some definition of similarity. Each
code fragment in the set forms a clone pair with each of the other code fragments. For example, a
clone class of size 5 summarizes 10 distinct clone pairs.

Clones are frequently assigned a clone type that describes the nature of the similarity between its
code fragments. Researchers agree upon four fundamental clone types [18, 19].

Type 1 Code fragments that are syntactically identical with the exception of differences in comments,
white space, and layout.

Type 2 Code fragments that are syntactically identical with the exception of differences in identifier
names, literal values, comments, white space, and layout.

Type 3 Code fragments that are syntactically similar with differences occurring at the statement level.
Code fragments may have statements added, removed, or changed with respect to one another.

Type 4 Syntactically dissimilar code fragments that implement the same or similar functionality.

Type 3 and 4 clones lack precise definitions. Researchers do not agree upon the maximum
dissimilarity allowed between type 3 clones, or even how this dissimilarity should be measured [18].
Similarly, functional similarity is not well defined, and type 4 should probably be split into multiple
types of functional similarity. Currently, very few tools consider functional similarity. For this
reason, we focus only on the first three clone types in this work.

Clone detection performance is measured using the information retrieval metrics recall and
precision. Recall measures the tool’s proficiency at locating and reporting true-positive clones, while
precision measures its detection accuracy.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Recall The ratio of the clones within a software system or repository that a tool is able to detect.
Precision The ratio of the clones detected by a tool that are true clones and not false positives.

4. THE CORE SHUFFLING FRAMEWORK

The shuffling framework allows clone detection tools not designed for extreme scalability to scale to
ultra-large datasets without modification on standard hardware while achieving an acceptable overall
recall and retaining the tool’s native precision. Summarized in the following is our core shuffling
framework approach as proposed in our earlier work [1, 2]. We begin this research with the analysis
of the core approach’s performance for ultra-large datasets. We discuss improvements to this
approach starting in Section 10. The core framework executes the following procedure:

1. The source files of the dataset are randomly partitioned into n disjoint subsets of equal size.
Subset size is chosen such that the clone detection tool can handle a single subset within a single
execution on standard hardware without encountering scalability difficulties.

2. Each subset is searched independently by the clone detection tool. This can be performed serially,
in parallel, or in a distributed fashion over independent computers.

3. The detected clone pairs are merged into a clone repository.
4. Steps (1) through (3) are repeated for r rounds. Multiple rounds are required as a single round

achieves limited recall. There is a high chance that cloned contents are assigned to disjoint
subsets. Because the rounds are independent, they may be executed serially or in parallel on
common or independent computing resources.

The framework achieves scalability by partitioning the dataset into subsets individually manageable
by the clone detection tool. The tool’s recall is recovered by repeating detection after shuffling the
partition contents. The goal of this non-deterministic approach is to achieve an acceptable fraction of
the tool’s native recall within a manageable number of rounds (O(nr) tool executions).

To use this framework, the user must select an appropriate subset size for their clone detection tool.
Factors affecting this choice include how the tool’s memory requirements, computation time, and
algorithmic complexity scale with input size. Some tools may also have inherent input size
limitations in their algorithms and data structures.

A number of rounds to execute must also be chosen. The more rounds executed, the closer the
framework will come to the tool’s native recall. However, the number of rounds executed must be
manageable within available time and computing resource constraints. Preferably, rounds should be
executed until the number of new clones found (i.e., discovered in the most previous rounds) is no
longer worth the additional computation time. This decision depends on the individual use case.

Clones detected in each subset are added to a single clone repository. A clone may be detected in
multiple rounds if its files are randomly shuffled into the same partitions in multiple rounds.
Therefore the clone repository must handle the insertion of duplicate clones by retaining only one
copy of the clone. In our implementation of the framework we used a hash-based set as a clone
repository. This provides amortized O(1) clone insertion and lookup. Our clone pair equivalence
function is defined to ignore code fragment order, so the set will only retain one copy of a clone
pair even if the code fragment order is reversed.

5. STUDY SETUP—THE CORPUS, ENVIRONMENT, TOOLS, AND MEASURES

5.1. Corpus—IJaDataset 2.0

For our experiment, we used the second version of the IJaDataset, which was constructed using raw
data crawled in 2012 [4]. The dataset covers the source code of approximately 25,000 open-source
Java projects. This new version of the dataset contains up-to-date source code and is two times
larger than the first version, which we used in our earlier studies [1]. The dataset is based on source

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
As

Jeffrey
Cross-Out

Jeffrey
Inserted Text
Therefore,

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

files mined from SourceForge and Google Code in 2012. The dataset includes nearly 3 million Java
source files spanning 356 million lines of code (LOC). The dataset is publicly available [20].

Of the three million files in the IJaDataset, 6238 are greater than 2000 lines in length. While these
make up an insignificant portion of the dataset, they may contribute considerably to a clone detection
tool’s execution time. For this reason, we consider these files as outliers of the dataset and omitted them
from the experiments.

5.2. Hardware

Our framework aims to scale classical tools to ultra-large datasets using standard hardware. Clone
detection in big data is mostly of interest to researchers and professional developers. For this reason,
we used consumer-grade workstation-class desktop computers as our target for standard hardware.
We expect such machines to have four or more processing threads on a modern CPU architecture (e.
g., Intel Core i5) and 8–32GB of system memory. These machines should store active data on either
a performance hard drive or, ideally, a solid-state drive. At the time of publication, machines
meeting these specifications cost approximately $US800–1500.

The first IJaDataset experiment (Section 7) was executed in a distributed fashion on computing
instances provided by the Bugaboo cluster of the Western Canada Research Grid (WestGrid) and
Amazon EC2. These instances meet our definition of standard hardware, and multiple instances
were exploited in order to complete this study in a limited time frame. The average instance
included a 2.66 GHz quad-core processor, 12GB of memory, and two 10,000 RPM hard drives in
RAID0. All other experiments were executed on our local hardware, which includes a 3.6 GHz quad-
core processor, 16GB of memory, and a single consumer-grade solid-state drive. For particularly
demanding analysis of the experiment’s results (e.g., gold dataset creation and performance
measurement), an EC2 instance with 64GB of memory was utilized. This extraordinary instance was
never used for steps of the shuffling framework, only for analysis of the framework’s performance.

Upon completion of the first IJaDataset experiment, we realized that traditional hard-disk drives are
the bottleneck to the framework. Subset creation and clone detection were considerably faster on our
local machine using a consumer-grade solid-state drive. For the experiments using standard hard-
disk drives, we include estimates of what the execution time would have been on our local hardware
based upon our findings with later experiments.

5.3. Clone detection tools

For this study, we explored six clone detection tools. Being freely available and supporting Java source
code were our major deciding factors. Table I summarizes our selected tools and their chosen
configurations. When possible, we preferred the tools’ default settings. We used the same tool
versions and configurations across all experiments.

5.4. Measures

The performance of our framework is measured as total recall: the ratio of the clones from the target
tool’s gold standard that the framework is able to find. The gold standard is the clones the target
tool finds when run as is (i.e., without our framework). For the application of the shuffling
framework for r rounds and n subsets, total recall is calculated using Eqn. 1.

tr r; nð Þ ¼ ∪r
i¼1 ∪n

j¼1
detected clone pairs i; jð Þ

� �� �
\ clone pairs in gold standardð Þ

���
���

clone pairs in gold standardð Þj j (1)

The numerator is the number of clone pairs in the tool’s gold standard that it detected when executed
through the framework. The set on the left of the set intersection is the set of unique clone pairs
detected by the tool using the framework. The first union iterates over each round of the framework,
while the second iterates over each subset in a round. detected clone pairs(i, j) is the set of clone
pairs detected in subset j of round i. The denominator is the number of unique clones in the gold

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Highlight
Not an ideal line break.

standard. As this metric considers clone pairs, we also refer to it as clone recall or clone pair recall. It
measures the ratio of the tool’s native recall that the framework achieved.

We measure performance in terms of clone pairs instead of clone classes for a number of reasons.
All clone detection tools either support clone pair output, or their clone class output can be simply
converted into clone pairs. For tools that only report clone pairs, it is not trivial to convert their
output to clone classes. It would require either modification to the tool or implementation of a clone-
clustering algorithm that uses the same decision logic and clone metrics as the tool. Disabling clone
clustering in tools where it is an option may also reduce their computation time and memory
requirements. We disabled clone class output when possible to improve the native scalability of the tools.

Finally, considering clone pairs makes the calculation of total recall much more efficient. The clone
reports from a tool executed by the framework can be merged into a hash set. The complexity of
determining if a clone pair in the gold standard has been detected is then O(1). Because the number
of clones these tools detect in IJaDataset is very large, the O(1) complexity is essential. This way,
the evaluation of total recall is linear with respect to the size of the gold standard.

5.4.1. Heuristic-based total recall measurement. In our experience, a clone detector’s output for big
data datasets may be too large for the calculation of total recall in a reasonable time frame, even when
extraordinary hardware is utilized (e.g., 244GB of random access memory (RAM)). Specifically, we
experienced this when attempting to measure total recall for the framework’s evaluation of the
IJaDataset using Simian. For this reason, a heuristic was devised to estimate total recall using
limited time and resources. This heuristic estimates total recall by measuring the ratio of the cloned
fragments, rather than clone pairs, from the gold standard that are found using the framework.
Heuristic recall is measured using Eqn. 2. The notation is the same as in Eqn. 1, except for cloned
code fragments. As this metric considers cloned fragments, we also referred to it as cloned fragment
recall or fragment recall.

hr r; nð Þ ¼ ∪r
i¼1 ∪n

j¼1
detected cloned fragments i; jð Þ

� �� �
\ cloned fragments in goldð Þ

���
���

cloned fragments in goldð Þj j (2)

This heuristic is based on the assumption that if two cloned fragments of a clone pair have been
found by our approach, then there is a good chance that the clone has also been detected or that the
clone could be recovered by applying the transitive property to all found clone pairs. For example, if
fragments f1, f2, and f3 have been found in clone pairs (f1, f2) and (f2, f3), then the missed clone pair
(f1, f3) can be recovered. A caveat of this approach is that while it holds true for all clones of types
1 and 2, it does not for all type 3 clones.

5.4.2. Evaluation of our heuristic-based recall measure. In this study, we tested the assumptions of
our heuristic-based recall measurement. We searched JDK1.7 using NiCad, Simian, and Deckard
both as they are and with our shuffling framework. The framework was parameterized to evaluate

Table I. Tool configurations.

Classical subject tools Configurations

Deckard [5] (version 1.2.3) Minimum fragment size of 50 tokens and a sliding window of five
tokens; minimum 90% clone similarity (tree-based metric)

NiCad [6] (version 3.4) Normalized fragment size of 10–2500 lines and minimum 70% clone
similarity (line-based metric)

iClones [7] (version 0.1.2) Minimum clone fragment size of 100 tokens and minimum cloned block
size of 20 tokens

Simian [8] (version 2.3.33) Code fragment sizes of six lines or greater, no identifier or literal
renaming

SimCad [9] (version 2.1) Detection of clone pairs of all types after consistent identifier normalizer
CCFinderX [10] (version 10.2.7.4) Minimum fragment size of 50 tokens, with a minimum unique token type

of 12

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
As

Jeffrey
Cross-Out

Jeffrey
Inserted Text
refer

Jeffrey
Cross-Out

Jeffrey
Inserted Text
gold standard

Jeffrey
Cross-Out

Jeffrey
Inserted Text
gold standard

Jeffrey
Sticky Note
ideally we should say "gold standard", but I am not sure if it will fit on the line. Probably "gold" is sufficiently clear in this case.

the dataset for 15 subsets over 30 rounds. Figure 1 compares the total recall and heuristic recall for the
tools after each round. For NiCad and Simian, the transitive property was applied to recover additional
clones. Recovered recall was then evaluated as in Eqn. 3 by including the recovered clones per round
as part of the tool’s detected clones. Recovered recall was not evaluated for Deckard because of the
size of its output.

rr r; nð Þ ¼ detected clone pairsð Þ∪ recovered clone pairsð Þð Þ \ clone pairs in goldð Þj j
clone pairs in gold standardj j (3)

As can be seen from these experiments, heuristic recall overestimates the total recall but follows a
similar trend. Both show logarithmic growth in recall across the rounds. Cloned fragment (heuristic)
recall starts higher but has a slower growth across the rounds. The recovered recall performance for
NiCad and Simian shows the correctness of the heuristic. For NiCad, the recovered recall
approximately matches the heuristic recall. For Simian, the recovered recall approaches heuristic
recall after half of the rounds have been executed. This shows us that our heuristic is effective in
estimating the recall of our shuffling framework (RQ#1).

In this study we applied the transitive property naively. We assumed it held for all type 3 clones.
This means we "recovered" false positive clones in the cases where transitivity did not hold between
type 3 clones. However, these false positives do not affect the measure of recovered recall.
Therefore, these results represent the ideal case where the recovery method successfully recovers all
transitive clone pairs. In practice, a recovery technique would need to check that transitivity held
before applying it to type 3 clones. It may not be possible to implement an efficient check that
accepts all true positive transitive clones and rejects all false positive transitive clones. We used
transitive clone recovery only in this evaluation of the heuristic recall measure. Creating an efficient

Figure 1. Comparison of the recall estimation approaches.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

transitive check with high recall (accepts most true positive transitive clones) and precision (rejects
most false positive transitive clones) is a topic of future work. In this paper we use our total recall
and heuristic recall measurements to comment on if a transitive clone recovery method is worth
perusing in future work.

6. PRELIMINARY EXPERIMENTS

We used the shuffling framework to evaluate three regular-sized subject systems. This allowed us to
evaluate the systems with the tools both natively (their gold standard) and with the framework. The
goal of this experiment was to observe the expected performance of the framework for the six
selected tools (RQ#2). We chose JHotDraw (20KLOC—285 files), ArgoUML (190KLOC—1845
files), and JDK1.7 (900KLOC—6916 files) as our regular-sized systems. The framework was
parameterized for 15 random subsets and 30 detection rounds.

The framework’s total recall performance for each tool’s detection of JHotDraw54b1 is shown in
Figure 2, that of ArgoUML in Figure 3, and that of JDK1.7 in Figure 4. The legends of these
graphs specify the gold standard size (number of clones) for each tool. The framework performed

Figure 2. Preliminary experiment—JHotDraw54b1.

Figure 3. Preliminary experiment—ArgoUML.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

very well with NiCad, iClones, and CCFinderX, obtaining a high total recall after 30 rounds. It
struggled more for Deckard and performed poorly with Simian for JDK1.7. Total recall started and
ended lower for JDK1.7 but increased faster than for ArgoUML and JHotDraw, likely because of
the differences in the sizes of the two systems (and gold standards). CCFinderX is omitted from the
JDK1.7 experiment because of failure during detection.

In all cases, we see approximately logarithmic growth in total recall across the rounds. As total recall
becomes larger, the increase in total recall from each round decreases. This is expected, as the smaller
the ratio of a tool’s native recall that is left to be found, the lower the probability the files containing
these undetected clones will be shuffled into the same subset. We saw the same trend with heuristic
and recovered recall in the heuristic study (Section 5.4.2).

An observation from this experiment is that the larger the gold standard, the lower the total recall
obtained by the framework across the same number of rounds and subsets. This is seen here for
both variation in detection tools and subject system size. The exception being Simian, for which the
framework achieves a lower total recall than for tools with larger gold standards. Perhaps Simian
has better precision for smaller inputs and is therefore not finding the false positives in its gold
standard, leading to a lowered total recall.

These results indicate that the framework can achieve an acceptable ratio (>70%) of a tool’s native
recall given an acceptable number of rounds. The plots here show the expected framework performance
for the tools, which answers RQ#2.

7. MOTIVATING STUDY—IJADATASET

In this experiment, the clone detection tools were executed through the core shuffling framework to
detect clones in IJaDataset 2.0. This experiment was used to evaluate the performance and
feasibility of the shuffling framework for clone detection in big data using classical tools (RQ#3).

Using a rented Amazon EC2 instance with 64GB of memory and 10,000 input/output operations per
second, we were able to obtain Simian’s gold standard for IJaDataset. This allowed us to compare native
versus framework recall in a big data scenario.Wewere unable to obtain gold standards for the other tools.
The required processing time and computer memory exceeded our available time and hardware rental
budget. Simian is atypical in that it was scalable to big data within a reasonable execution time when a
large amount of RAM was provided. However, Simian’s detection capabilities are not as sophisticated
as the other tools; for example, it only detects type 1 and 2 clones.

Of the six selected tools, only Simian, NiCad, and Deckard were used successfully for this
experiment. CCFinderX, iClones, and SimCad were omitted because of compatibility issues with the

Figure 4. Preliminary experiment—JDK1.7.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
type 2

dataset. These tools terminated with an error message if a parsing error was encountered instead of
skipping the offending file. Because we used the largest subset size these tools could handle, the
chance of a parsing error in a single subset is very high. This caused the tools to make very little
progress in a round of the shuffling framework, as they used execution time but produced no clone
reports for a large number of the subsets. The omitted tools are further discussed in Section 7.4.
Table II summarizes the shuffling experiments performed.

7.1. Simian

7.1.1. Setup. Simian was chosen for this experiment as it was possible to obtain its gold standard for
IJaDataset. This allowed us to compare our framework’s performance with Simian against its native
performance. For evaluation with the shuffling framework, a subset size of 50,000 files was
chosen (58 subsets per round). Simian’s fast execution allowed us to execute 30 rounds of the
shuffling framework. Simian reports clones as clone classes, which was exploited when analyzing
the results. We converted the clone classes into clone pairs to measure total recall.

Subset generation and round detection took approximately 8–12 and 4–10 h per round, respectively,
on Westgrid hardware. Based on our later experiments, we estimate that subset generation and
construction would take approximately 1.25 h, and detection approximately 1.25 h per round, on our
local machine with a solid-state drive. The bottleneck on the Westgrid systems was the input/output
performance. Specifically, copying many small files from the dataset into the subsets was much
slower on a spinning hard disk drive.

7.1.2. Analysis. Because Simian’s gold standard is extremely large (300 billion clone pairs), total
recall was estimated using the heuristic, which is shown in Figure 5. After 30 rounds of the
framework, 70% of the cloned fragments in Simian’s gold standard were detected. According to the
heuristic study (Section 5.4.2), total recall should be less than the heuristic, but with faster growth.

Table II. Summary of the IJaDataset clone detection experiments.

Tool Hardware (GB) Subset size (no. of files) No. of sets No. of rounds

Deckard 24 10K 289 10
NiCad 12 10K 289 20
Simian 12 50K 58 30

Figure 5. Simian heuristic (clone fragment) recall.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
As

Specifically, for Simian, the study showed that recovered recall quickly approached heuristic recall
when total recall was within 70–90%. From Simian’s heuristic recall trend for IJaDataset, we
estimate it would reach 80% in approximately 10–20 additional rounds. We therefore conclude that
Simian has achieved an acceptable recall for cloned fragments within 30 rounds. The heuristic recall
suggests that within 10–20 additional rounds, a transitive clone recovery technique could achieve an
equivalent total recall of clone pairs.

While the heuristic is a worthy approximation of total recall, it is still desirable to directly measure
total recall, which necessitated a reduction in Simian’s output. Investigation into the characteristics of
Simian’s gold standard found that 99.99% of Simian’s clones came from clone classes greater than 100
fragments in size. Manual investigation into these clone classes revealed that Simian suffered from what
we term the ‘sliding effect’. It reported some extremely large clone classes containing the same fragment(s)
repeated numerous times with small offsets in line numbers. These clone classes generate an extreme
number of self and overlapping clones and represent a significant threat to Simian’s precision. We
therefore reduced Simian’s output size by trimming clone classes over a certain maximum size. Its gold
standard was likewise trimmed. The remaining clone classes were converted to clone pairs to measure
total recall. This post-processing of the framework’s output for Simian was performed solely to aid the
evaluation of total recall on our hardware in a reasonable time frame and is not an expected post-
processing step for users of the framework.

Figure 6 shows our framework’s total recall with Simian for various maximum clone class sizes up
to 100 fragments (limitation of our hardware). The legend of this figure specifies the maximum class
size considered with the gold standard’s size in parenthesis. Total recall was higher and increased
faster for lower maximum clone class size. This suggests that the framework works best for
specialized clone detection (i.e., focusing on detecting interesting/unique clones rather than all
clones). This is due to larger classes requiring more rounds (on average) to be completely found as
they contain more clone pairs that need to be shuffled together.

For the smaller class sizes a respectable total recall was achievable within 30 rounds (2: 52%, 5:
44%, 10: 40%). This total recall may be acceptable in cases where only a sample of the clones is
required. For example, when building an inter-project clone corpus using many tools, 50% of a
tools’ native recall is likely sufficient for the corpus to benefit from the tool’s unique detection
characteristics. Consulting multiple tools may make up for individual tools’ diminished recall. While
this total recall is low, in each case it increases nearly linearly, with very little decay in slope.
Additional rounds could bring these to an acceptable level. As can be seen, a 7–10% increase in
total recall is gained per additional 10 rounds. A transitive recovery method could also help boost
total recall achieved. In our preliminary studies, we found that the framework performed the worst
with Simian. Therefore we expect the other tools to achieve a higher total recall than Simian.

Figure 6. Simian total recall for maximum-class-size trimmed output.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Figure 7 shows heuristic recall for the same trimmed output. As can be seen, the shuffling
framework is finding the cloned fragments very fast, with 52–62% heuristic recall after only 30
rounds. Heuristic recall increases faster for larger maximum clone class size, meaning that the
fragments in large clone classes are more easily found. This is expected as fragments in large clone
classes have a higher chance of being shuffled into a partition with another fragment from the clone
class. This suggests that a transitive recovery method may work especially well for the clones of
large clone classes. This is particularly beneficial as it was for the clone pairs in larger classes that
the framework had a slower increase in total recall (Figure 6).

7.2. NiCad

7.2.1. Setup. NiCad was included in this experiment for its ability to restrict clone detection to
function clones. This is a beneficial for big data clone detection as line level clones may be too
numerous to process. Function clones are fewer and may be more interesting as they occur at a
higher level of software design. Function clone corpora built from big data inter-project datasets
may be especially useful for mining new APIs.

Through experimentation, it was found that NiCad could consistently handle datasets of 10,000 files. It
occasionally failed for larger input (e.g., 25K and 50K) because of hard-coded limits in the sizes of its
internal data structures. These internal limits appear to be intentional and designed to prevent users
from beginning executions that are likely to fail or never complete on standard workstations. The
internal data structure sizes cannot be specified by the user without source code modification and
recompilation. We left NiCad as is for our goal is to scale the tools without modifications.

Based on these observations, a subset size of 10,000 files was chosen for running the shuffling
framework (289 subsets per round). As the framework achieved better total recall with NiCad than
with Simian in the preliminary experiments and previous work [1], 20 rounds were deemed sufficient
for demonstration of the framework. Subset generation and detection took 7–15 and 23–31 h per round,
respectively, on shared computing resources. Based on our later experiments, we estimate that
generating and building the subsets would require 1 h per round, and detection 17 h per round, on a
solid-state drive.

7.2.2. Analysis. Creating a gold standard for NiCad was not possible, so we could not evaluate total
recall. Internal data structure limits prevent NiCad from being executed on such a large input. Even if
we modified these limits, NiCad would have required more RAM than we had available and likely
months of execution time. We investigated using a deterministic partitioning technique (Section 2)
to build NiCad’s gold standard, but our estimates found that this would have required 2months of

Figure 7. Simian heuristic recall for maximum-class-size trimmed output.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

jeff.svajlenko@outlook.com
Cross-Out

Jeffrey
Cross-Out

Jeffrey
Inserted Text
as

execution time on our available hardware, even with four NiCad instances executing in parallel.
Instead, we investigated the growth of the cumulative number of unique clones and cloned
fragments found after each round of the framework. This information is plotted in Figure 8. In total,
5.66 million unique clone pairs containing 875,000 unique cloned code fragments were found.

The growth of unique detected clone pairs (Figure 8, diamond line) is linear across the 20 rounds.
This tells us that the framework has not detected a large ratio of NiCad’s native recall; the
probability of undetected clones being shuffled together has remained constant over the rounds. Had
a considerable ratio of NiCad’s native recall been found, this probability should have also
considerably decreased. Our preliminary study (Section 6) with small systems showed that the
growth would appear logarithmic as the framework approaches a considerable ratio of the tool’s
native recall. Therefore, we require more rounds of the shuffling framework to achieve an acceptable
ratio of NiCad’s native recall.

In contrast, we do see logarithmic growth in the detection of unique cloned fragments (Figure 8,
square line). Per round, the number of new cloned fragments found is decreasing noticeably. It is
becoming less probable that a clone (in NiCad’s native recall) that contains an undetected cloned
fragment is randomly shuffled into a partition. This can only happen if a considerable ratio of
NiCad’s native cloned fragment recall is achieved per round. The growth has considerably declined
after 20 rounds, suggesting that a considerable heuristic recall has been achieved.

These plots suggest that the framework is achieving a good heuristic recall with NiCad (the cloned
fragments are being round quickly) but that the clone relationships between them (total recall) are still
being detected. Applying a transitive clone recovery technique could recover some of the remaining
clones without executing further rounds. As seen in the heuristic study (Section 5.4.2), clone
recovery is very successful for NiCad. However, in that study, we applied transitivity naively to see
the ideal results. To apply it in practice, an efficient and accurate method for checking the validity
of transitivity for type 3 clones would need to be designed and implemented.

7.3. Deckard

7.3.1. Setup. Experimentation found that Deckard worked for our approach with a subset size of
50,000 files and could possibly work for larger subsets up to the entire dataset (untested). However,
its execution time for large inputs was prohibitive (scaling limitation), so a subset size of 10,000
files was used to match NiCad (289 subsets per round). As Deckard has a lengthy execution time,
the shuffling framework was executed over only 10 rounds. Detection was ran on Amazon EC2 and
took approximately 5–7 days per round. While this execution time is very long, it is practical
compared with Deckard’s native execution time for the IJaDataset input.

7.3.2. Caveat. One disadvantage of Deckard is that it only supports up to Java 1.4 syntax. Its
documentation specifies that it is able to skip unsupported syntax without error. In our experience, it
found plenty of clones despite this limitation.

Figure 8. Growth of NiCad’s found clones and cloned fragments.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
for

7.3.3. Analysis. Creating a gold standard for Deckard was not possible because of the computation
time required, so we could not investigate total recall. Instead, we investigated the number of unique
clones and cloned fragments detected across the rounds as we did for NiCad.

Figure 9 shows the growth of the number of unique detected cloned fragments. As can be seen, the
growth of detected cloned fragments follows roughly a logarithmic trend. The probability that the
random partitioning shuffles a clone (in Deckard’s recall) containing an undetected cloned fragment
into the same partition decreases as heuristic recall increases. The considerable decrease in the number
of new cloned fragments detected per round suggests that this probability is also considerably
decreasing, and thus, a considerable heuristic recall has been found. Unfortunately, we could not
measure the detected clone pairs across the rounds because of the size of Deckard’s output. We can
infer from NiCad’s and Simian’s results that it would likely be increasing linearly over these rounds.

In order to confirm our inference, we measured found clone pairs and fragments on a reduction of
Deckard’s output. We reduced the output sized by considering only the clone classes with a
maximum size of 10 fragments (limitation of our hardware). The growth of detected clones and
fragments for this reduced output is shown in Figure 10. As expected, we found very similar results
to NiCad. The detected clones increase linearly, while the detected fragments show logarithmic

Figure 9. Growth of Deckard’s detected cloned fragments.

Figure 10. Deckard’s clone and fragment detection for trimmed output.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
 number of unique

Jeffrey
Cross-Out

Jeffrey
Inserted Text
the number of unique detected

Jeffrey
Cross-Out

Jeffrey
Inserted Text
size

growth. This suggests that the cloned code fragments are being found before the clone pairs
between them and that a transitive clone recovery method could be successful in detecting these
clone pairs.

7.4. Other tools—SimCad, iClones, and CCFinderX

Our intention was to include SimCad, iClones, and CCFinderX in this experiment as they showed
promise in the preliminary experiment. During evaluation of a sample from the dataset, these tools
terminated without producing a clone report. SimCad and iClones reported encountering an invalid
Unicode character. CCFinderX failed silently, but we believe this is because the dataset contains
Java syntax of a newer specification than CCFinderX can parse.

These problems do not indicate special scalability issues with these tools or with our framework.
However, the framework cannot make progress with tools that abandon detection when parsing
errors are found, instead of trimming the offending file(s). Because we are executing these tools for
partitions of the IJaDataset near the limits of their scalability, there is a high chance that they
encounter at least one parsing error. The tools fail upon the first parsing error detected, so it is not
practical to compile a list of offending files in order to trim the dataset.

Communication with the iClones developers revealed that this problem was fixed in a development
branch, so we included iClones in our experiments in improving the shuffling framework (Section 9).
SimCad was also corrected upon communication with the developer, but not in time to be used in this
publication. We plan to revisit SimCad in future work. CCFinderX is no longer under active
development, so we do not anticipate improvements in its parsing or error handling.

7.5. Summary

From these experiments, we found that the clones found by the framework increased nearly linearly,
with a slight decay in slope, across the rounds. This shows that additional rounds would continue to
see a healthy increase in found cloned pairs, and thus an increased total recall. For Simian and
considering only clone pairs originating from smaller clone classes (2–100 fragments), 25–52% total
recall was achieved over 30 rounds, with a (decaying) continued increase of 7–10% per 10 rounds
(Figure 6). Further rounds could bring total recall to an acceptable value.

However, the framework was able to find the clone fragments much faster. For each tool, found
cloned fragments experienced logarithmic growth across the rounds. The decay in detection rate
indicates that the probability of a clone containing an undetected clone fragment randomly shuffled
into a partition is decreasing noticeably. This indicates that the number of remaining undetected
clone fragments is decreasing considerably. With Simian, 70% of the cloned fragments were found
within 30 rounds (Figure 5).

These findings suggest that our framework finds most of the cloned fragments in few rounds but
may require a large number of rounds to find all of the clone relationships between them. This
suggests that a transitive-based clone recovery process could improve total recall achieved. This is
supported by our heuristic study (Section 5.4.2), which showed that a strong heuristic (clone
fragment) recall can be translated into a strong total (clone) recall by transitive recovery.
Implementing an efficient and precise recovery process is therefore a priority for our future work.

From our experiment, we conclude that the shuffling framework is successful in scaling classical
clone detection tools to ultra-large datasets (RQ#3), but many rounds may be needed to achieve a
high total recall. The framework is best suited for applications that accept partial clone detection
tool recall as sufficient. For example, when building a comprehensive inter-project clone corpus
(e.g., for IJaDataset) using a variety of both classical and scalable detection tools, 60–80% of a
classical tool’s native recall is likely sufficient to ensure the clone corpus benefits from its diverse
strengths and detection characteristics.

The framework is very suitable for applications that only require knowledge of the cloned fragments
within an ultra-large dataset, and not the pairs. Given that we encountered scalability limits (memory
and time) in processing the clone pairs found by this experiment, it is likely that studies on inter-
project clone corpora of similar scale may need to be carried out on cloned fragments. Analyzing
the clone pairs presents an additional big data challenge.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
a

8. SHUFFLING FRAMEWORK PERFORMANCE ANALYSIS

As seen in the IJaDataset experiment, the shuffling framework is able to scale classical tools to large
datasets. It is able to tackle various scalability issues, including memory requirements, computation
complexity, computation time, and internal tool limitations. However, we observed some inefficiencies
in the original algorithm.

In the IJaDataset experiments with the core shuffling framework, a suitable clone fragment recall
was obtained (e.g., Figure 5). However, clone pair recall was much lower (Figure 6). To obtain a
higher clone pair recall, many more rounds would need to be executed, which would require
considerable computation time. Alternatively, post-processing could be used to recover some of the
missed clone relationships between the detected cloned fragments. Previously, we showed that clone
transitivity is effective at clone recovery (Section 5.4.2). However, transitivity is only certain for
type 1 and 2 clones. Type 3 clones recovered by transitivity would need to be verified before
accepted. Our experiences with the IJaDataset experiment indicate that post-processing may be
computation and memory intensive. We had considerable difficulties processing the detection results
for statistical reporting. A novel and efficient approach and considerable computer resources are
likely required to apply transitive clone recovery with both high recall and precision.

We decided that the best way to improve the performance of the shuffling framework was to
improve the shuffling algorithm itself (RQ#4). Our goal was to decrease the number of subsets of
the dataset a tool had to be executed for to obtain an acceptable total recall. Looking at the tools’
clone pair detection performance for IJaDataset (Figures 6, 8, and 10), we notice a common trend. A
large number of clones are detected in the first round, followed by a lesser but steady increase in
subsequent rounds. We studied this behavior and found that the large increase in the first round is
due to the successful detection of all the intra-file clones in the tool’s gold standard. This occurs
because the first round exposes the clone detector to every file in the dataset. The remaining rounds
advance the detection of the inter-file clone pairs in a tool’s gold standard. Fewer subsets would be
required if the shuffling algorithm focused on the detection of the inter-file clones in rounds 2
through n.

We identified two major characteristics of the core shuffling framework that slow the rate of inter-
file clone detection. First, the shuffling framework has no sense of history. There is nothing to stop it
from repeatedly shuffling the same files into the same subsets. The clone detector will find any inter-file
clones between a pair of files (that it is able to detect) the first time they are shuffled together. Repeated
shuffling of previously seen file pairs does not advance inter-file clone detection but uses computation
time. An improved shuffling framework should discourage repeated shuffling of the same file pairs.

Secondly, the shuffling framework does not consider the contents of the files it shuffles together.
Likely only a small ratio of the dataset contains inter-file clones. It is wasteful to shuffle dissimilar
files together. The framework would require fewer subsets if it preferred to shuffle together files that
are similar enough to likely contain a clone as judged by the classical tool. In the following section,
we explore incremental improvements to the shuffling algorithm that address these two limiting
characteristics.

9. IMPROVING THE SHUFFLING FRAMEWORK

We identified in the previous section that the shuffling framework’s performance suffers from the
shuffling together of the same files repeatedly and the shuffling together of dissimilar files unlikely
to contain clones. Addressing these problems is non-trivial as optimal solutions are not practical for
big data due to the high complexities of the required algorithms. Even sub-optimal solutions can
quickly increase the complexity and execution time of the shuffling algorithm. Our goal is to trade
detection execution time (i.e., fewer subsets) for shuffling execution time (i.e., more valuable
subsets). For this to provide a performance gain, the shuffling algorithm needs to maintain a lower
complexity and execution time than that of the clone detection tools. That is, the cost of building
subsets that provide a larger increase in total recall must be less than the cost of simply executing
the tool for more subsets.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
type 2

We investigated three new shuffling algorithms that incrementally address the issues of the core
algorithm. These include the unseen-pair, the unseen-similar-pair, and inverted-index shuffling
algorithms. We now term our original algorithm the blind partitioning shuffling algorithm, because
it builds its subsets by blind random partitioning of the dataset.

The three new algorithms use two rounds of shuffling. In the first round, the framework completely
partitions the dataset into disjoint subsets, and the tool is executed for each of these subsets. This is the
same as a round generated by the original core algorithm (Section 4). This first round exposes the tool
to every file in the dataset, which ensures that the framework does not miss any of the intra-file clones
the tool is able to detect. In the second round, the framework pursues the inter-file clones the tool is
able to detect. Because the intra-file clones should have been detected in the first round, it is no
longer important to expose the tool to every file in the dataset in round 2. Therefore, the new
algorithms drop the partitioning strategy in round 2. Instead, they execute the tool for a series of
subsets that prioritize the exposure of the tool to new inter-file clone detection experiences. These
subsets may not completely partition the dataset, they may overlap, and round 2 may contain any
number of subsets. The subsets of round 2 are the same size as those of round 1, and non-
determinism is still exploited in their selection. The difference between the algorithms is in how
they choose these subsets. Their goal is to require fewer subsets (fewer executions of the tool) than
the blind partitioning algorithm to achieve some target total recall.

We evaluated these algorithms for three clone detection tools: NiCad, iClones, and Simian. NiCad
and Simian were used in our previous experiments. We now include iClones, which had been fixed
after our IJaDataset experiment (Section 7) had been conducted. The shuffling framework performed
very well with iClones in the preliminary experiments (Section 6), so it was ideal to include it as a
subject tool in this experiment. We decided to skip Deckard because while the shuffling framework
was able to improve its scalability, it still required long execution times.

We evaluated the algorithms using random samples of the IJaDataset. We choose sample
sizes large enough to be more representative of a big data than the systems used in the
preliminary experiments (Section 6), while still small enough that we could obtain each tool’s
gold standard for measuring total recall. For NiCad and Simian, we used a dataset of 50,000
files randomly selected from the IJaDataset. For iClones ,we randomly selected 10,000
IJaDataset files. For the 50,000-file sample, a subset size of 250 files was used, and 50-file
subsets were used for the 10,000-file dataset. This is the same ratio between subset size and
dataset size as used in the IJaDataset experiment (Section 7) for NiCad and Deckard. This
way, the evaluation of the algorithms approximates their usage with IJaDataset, or another a
big data dataset.

Performance was measured as total recall, the ratio of the clone pairs that the shuffling algorithm
was able to find in a tool’s gold standard (Section 5, Eqn. 1). In order to save time, we simulated
the execution of the tools. We assumed that for a particular subset, the tool would output the clones
from its gold standard that are within or between files in the subset. For these deterministic code
clone detection algorithms, this is a reasonable assumption.

By simulating the clone detection, we are able to measure the framework’s performance more
accurately. Ideally, a clone detection tool reports the same clones between a pair of files
regardless of the number and particular files also included in the input. In practice, the clone
detector may not report clones consistently. It may report the same clones but with slightly
different start/end lines, or it may miss some clones or find additional clones. Its precision
(the number of false positives reported) may also vary. This may be caused by bugs in the
clone detector. By simulating the detection using the clone detector’s gold standard, we avoid
these issues.

The total recall performance of these four algorithms are shown in Figures 11–13. Their subset
generation time is shown in Figures 14 and 15. The generation time includes only the time required
to generate the list of files to be included in each subset. It does not include the time needed to copy
the files into a temporary directory and execute the tool.

In the following subsections, the algorithms are outlined, and their performance discussed. The
algorithms are presented in the order in which they were created so as to emphasize our design
process and decisions.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
a big data input

Jeffrey
Cross-Out

Jeffrey
Inserted Text
IJaDataset experiment

Jeffrey
Highlight

Jeffrey
Highlight
Missing space after comma. Should not be space between iClones and comma.

9.1. Blind partitioning shuffling algorithm

The blind partitioning shuffling algorithm is the original shuffling algorithm as presented in Section 4.
It is the cheapest shuffling algorithm in terms of subset generation processing time and complexity. Its
performance is the baseline against which the other algorithms are compared. For both the 10,000-file
and 50,000-file datasets, the blind shuffling algorithm partitioned the dataset into 200 subsets per round
for 10 rounds. Remember that for each round, this algorithm partitions the dataset into mutually
exclusive subsets that together span the entire dataset. The result of its application for NiCad,
Simian, and iClones can be seen in Figures 11–13, respectively. Because the new algorithms do not
use the same number of rounds, the total recall is plotted after each subset. The tick marks of the x-
axis correspond to the rounds of the blind shuffling algorithm. The first round (in which all
algorithms use the blind partitioning strategy) is labeled.

This algorithm achieves a large total recall increase for all tools within the first round. Because the
first round exposes the clone detector to every file in the dataset, all the intra-file clones in the gold
standard should be detected in this round. In the remaining rounds, we see linear growth in total
recall as the inter-file clones in the gold standard are located by chance owing to blind random file
shuffling. Linear growth was expected as the algorithm applies the same random dataset partitioning
in each round. This linear growth should experience a decay in its slope as more clones are

Figure 11. Shuffling algorithm performance comparison: NiCad, 50,000-file dataset, 250-file subsets.

Figure 12. Shuffling algorithm performance comparison: Simian, 50,000-file dataset, 250-file subsets.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

detected, and it becomes increasingly less likely that the random partitioning will shuffle the files
containing the undetected clones into the same subset.

The increase in total recall due to inter-file clone detection in rounds 2 through 10 is much smaller
than the increase due to inter-file and intra-file clone detection in round 1. Because the growth is linear
across rounds 2 through 10, we expect that roughly the same number of inter-file clones was detected
in round 1. Therefore, the larger increase in total recall in round 1 must be dominated by the detection
of the intra-file clones.

9.2. Unseen-pair shuffling algorithm

The first problem we identified with the blind shuffling algorithm is that it does not discourage the
repeated shuffling together of the same files. Our efficient solution is to fill the subsets with
randomly selected pairs of files from the dataset that have not been shuffled into the same subset
previously. This solution guarantees that each subset includes n/2 new inter-clone detection
experiences (i.e., unseen file pairs), where n is the number of files in the subset. This is the same
number guaranteed by a deterministic approach (Section 2). However, in this non-deterministic case,

Figure 13. Shuffling algorithm performance comparison: iClones, 10,000-file dataset, 50-file subsets.

Figure 14. Shuffling algorithm computational comparison: subset generation time (ms), 50,000-file dataset
(NiCad/Simian).

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

it is likely that the files in a subset form many additional unseen pairs other than those specifically
chosen. The worst case of only n/2 unseen pairs in a subset should only occur once most of the file
pairs in the dataset have been seen in earlier subsets.

The first round of this algorithm uses blind shuffling to partition the dataset into subsets. This is
needed as the unseen-pair strategy does not guarantee nor encourage the detection of all intra-file
clones in the dataset. By the end of the first round, every file has been seen by the clone detector.
This first round does not detract from the unseen-pair strategy as all subsets of the first round are
made up completely of unseen pairs.

For round 2, the algorithm fills a user-specified number of subsets with unseen file pairs. Specifically,
for each subset, the algorithm performs the following steps:

1. Two files are randomly chosen from the dataset.
2. The algorithm efficiently checks if the pair has been seen in a previous subset.
3. If not previously seen, the files are added to the current subset.
4. If the subset is not full, the algorithm repeats from step 1. Otherwise, the subset is complete.
5. The specification (file list) of the subset is saved.
6. The algorithm repeats from step 1 for some number of subsets.

This subset-filling technique is efficient until most of the pairs have been seen, at which time, the algorithm
may cycle extensively until an unseen pair is found. For this reason, the algorithm is parameterized with a
stopping condition: the number of times to cycle before giving up on being able to fill the subset.
However, for a big data dataset, it is unlikely that this will occur for a practical number of subsets.

This algorithm needs to be able to efficiently check if two files have been seen together in a previous
subset, step (2). This is accomplished by assigning each file in the dataset an id and tracking the
contents of each subset using a bit vector. Vector[i](id) is 1 if the file with the specified id is in the
ith subset. Shuffling a big data dataset like IJaDataset, which contains approximately three million
files, requires only 0.35MB of memory per subset. The algorithm can determine if a file pair is
unseen, in the worst case, in O(b) time, where b is the number of previously generated subsets.
Examining a bit vector is very fast, so this linear search is acceptable. There are ways to structure
the seen-pair data to make O(1) possible, but it requires too much memory for the data structure to
fit in RAM. We use this linear approach to avoid disk access times.

The unseen-pair shuffling algorithm’s total recall for the three tools is shown in Figures 11–13, and
its subset generation time is shown in Figures 14 and 15. Remember that the first 200 subsets (round 1)
are built using the blind partitioning strategy to ensure intra-file clone detection. This algorithm
performed a little worse than the blind shuffling algorithm for the NiCad experiment, equally for the

Figure 15. Shuffling algorithm computational comparison: subset generation time (ms), 10,000-file dataset
(iClones).

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Simian experiment, and a little better for the iClones experiment. Its generation time is also essentially
equivalent to that of blind shuffling.

Overall, the unseen-pair shuffling algorithm does not perform any better or worse than blind shuffling.
The reason for this is quite simple: the number of pairs in these datasets is so numerous that the blind
shuffling technique is not shuffling the same files together repeatedly as frequently as we feared.
However, the unseen-pair strategy would be required if the number of potential file pairs was reduced.
We decided to extend this algorithm to consider the second problem with blind shuffling: we should
only shuffle together files that are similar. As this will likely reduce the number of potential file pairs
considerably, we maintain the unseen-pair selection strategy in the next algorithms.

9.3. Unseen-similar-pair shuffling algorithm

The unseen-similar-pair algorithm extends the unseen-pair algorithm to also address the second
problem with the blind shuffling algorithm: it does not consider the contents of the files it shuffles
together. Similar files are more likely to contain clones, so total recall obtained per subset could be
achieved by prioritizing the shuffling together of similar files. Specifically, our goal was to
parameterize the unseen-pair algorithm with a file-similarity heuristic. Under this scheme, unseen
file pairs are added to a subset only if the heuristic decides the files are similar enough to possibly
contain a clone as judged by the classical clone detection tool.

The challenge was in designing a suitable heuristic that can make a smart decision without
significantly adding to the shuffling algorithm’s complexity and execution time. Most clone
detectors report a clone between two files if they share a sequence of similar source code lines of
some minimum size. Therefore, if two files contain this minimum number of similar lines, then it is
possible the tool will find a clone between them. However, searching for similar line sequences
between two files has polynomial complexity, which is also the complexity of most clone detectors.
We needed a linear heuristic to ensure the improved shuffling algorithm was a performance gain.

Our heuristic accepts a file pair if the files share a minimum number of similar source lines. To do
this, in linear time, we dropped the requirement that the similar lines need to be sequential. The
disadvantage of this speedup is that the heuristic will accept file pairs with similar lines too sparsely
distributed to be a clone. As source line (string) comparison is costly, we pre-computed hash code
(integer) values for each source line in the dataset. The number of shared lines between two files can
then be calculated by measuring the size of the intersection of the hash codes they contain.

To improve the heuristic’s clone presence detection and accuracy, we normalized and filtered the
source code during the hash coding process. First, the source code was pretty-printed to normalize
formatting. Identifiers were normalized (blind renaming) such that two source lines that differ only
by identifier names will hash to the same value. Inconsequential, but common, source lines (e.g., ‘}’)
were removed to reduce the heuristic’s false-positive rate. Comments were also removed before
hashing as most clone definitions and detection tools ignore them.

The heuristic is parameterized with the minimum clone size (in identical lines) of the target tool’s
configuration. For example, if the tool is set to report clones 10 lines or larger with a minimum of
70% similar lines, then the heuristic should be configured for seven identical lines. Specifically, this
is the minimum number of identical lines in a type 3 clone as judged by this tool. The heuristic will
then accept file pairs that could contain a clone as judged by the tool and reject those that do not
contain sufficient similar lines for the tool to report a clone.

Mismatch between how the framework and the tool count source lines may cause some file pairs
containing a clone detectable by the tool to be rejected. Mismatch may occur because of differences
in how the framework and the tool normalize and filter input source code. Also, when tools measure
minimum clone size by tokens, then minimum lines need to be estimated. Rejected file pairs that
contain a clone as judged by the tool will lead to additional false negatives. This should only occur
for small clones that are near the minimum clone size and whose files contain no other similar lines.
The latter because the heuristic does not consider the position of the lines when measuring the
number of lines shared between two files. This is acceptable as smaller clones are more likely to be
spurious or uninteresting. Compensating for mismatch by setting the minimum clone size lower than
that of the tool is a bad idea as it will cause the heuristic to accept more file pairs that do not

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Cross-Out

contain detectable clones, which lowers the effectiveness of the heuristic. With the heuristic, we trade
some of the tool’s recall for smaller clones in exchange for fewer subsets to meet a target portion of the
tool’s native recall (total recall).

For the evaluation of this algorithm, we parameterized the heuristic with a minimum similar-line
threshold of five lines. By default, Simian detects type 1 and 2 clones with a minimum of six lines,
iClones a minimum of 100 tokens (~5–10 lines) with gaps, and NiCad a minimum of 10 lines (30%
of which may be gap lines). The five-line threshold should be conservative enough to not skip too
many file pairs that contain clones as judged by these tools. The algorithm’s total recall performance
is shown in Figures 11–13, and its subset generation time is shown in Figures 14 and 15. Again, its
first 200 subsets are its first round of blind shuffling to allow full intra-file clone detection.

For our 50,000-file dataset, subset generation time begins at approximately 1.5 s and increases
linearly as more subsets are generated. The generation time increases as the number of remaining
unseen and similar file pairs in the dataset decreases. It takes longer to randomly locate an eligible
file pair as they become more rare. This is not a defect as the rarer the eligible pairs become, the
higher the total recall the shuffling algorithm has obtained. The number of subsets to generate is
therefore a balance between the total recall goal and available subset generation time.

For all three tools, the unseen-similar-pair algorithm achieves a higher total recall than both the blind
partitioning and unseen-pair shuffling algorithm within the same number of subsets. This increase is
most pronounced with NiCad and iClones, while only a small increase is achieved with Simian. The
algorithm’s total recall for Simian may be higher if a more conservative similar-line threshold were used.

Smaller gains with Simian might indicate the tool has worse precision. This shuffling algorithm only
encourages the shuffling together of file pairs that may contain a true-positive clone. The measurement
of total recall does not consider if the clones in the tool’s gold standard are true or false positives.
Precision deficiencies of the tool would manifest in this evaluation as poorer total recall measurement.
However, we do not have sufficient information about Simian’s precision to conclude this.

9.4. Inverted-index algorithm

The unseen-similar-pair algorithm successfully increases the performance of the shuffling framework.
However, we believed that considerably better performance could be achieved if the heuristic was
sensitive to the locations of the shared source code between the files. The heuristic needed to be
able to detect if two files had similar lines that were also closely located (e.g., subsequent). We were
able to achieve this without increasing the complexity of the heuristic by computing n-grams across
the hashed source lines of the dataset that were used with the previous algorithm.

The n-grams were calculated by summing each n subsequent hashed source lines using a sliding
window. For example, a file with the hashed source lines A, B, C, D, and E has a 3-gram
representation of (A+B+C), (B+C+D), and (C+D+E). The heuristic then approves a file pair if
they have a minimum number of similar n-grams between them. For our evaluation of this
algorithm, we used a 3-gram representation. We pre-computed this in linear time in a single pass
across the hashed version of the dataset.

The heuristic was parameterized to accept file pairs with at least three shared 3-grams. In effect, the
heuristic considers two files to contain a clone if they share at least three incidents of three similar and
subsequent original source lines, which may overlap. File pairs approved by the heuristic therefore
have at minimum between five (totally subsequent) and nine (three incidents of three subsequent)
similar source lines.

During our initial investigation of this algorithm, we found it had a very lengthy subset generation
time. It was spending a large amount of time randomly selecting file pairs from the dataset that did not
satisfy the heuristic. We minimized this problem by selecting the file pairs from an inverted file index
built for the n-grams. The index maps each n-gram value to the files that contain at least one incidence
of that n-gram. By randomly selecting file pairs from the index, we are guaranteed they share at least one
n-gram. This considerably reduces the selection space and allows the subsets to be built faster. The
inverted index was represented by a hash map and built in linear time by a single pass across the n-grams.

The inverted index can still be too large of a search space. Some n-grams appear very frequently within
the dataset. To counteract this, the index is trimmed of the n-grams that appear in over a maximum number

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

of files. Less common n-grams are more likely to denote a clone rather than common structural/stylistic
code (e.g., a series of declaration statements at the beginning of a function). For our evaluation, we set
the n-gram appearance threshold for our inverted index to 1000 files.

The evaluation of this algorithm with NiCad, iClones, and Simian for 3-grams, a minimum of three
shared 3-grams between file pairs, and an index n-gram appearance threshold of 1000 files are shown
in Figures 11–13. The subset generation times are shown in Figures 14 and 15.

Subset generation time increased exponentially as more subsets were created. We stopped the
generation after 397 subsets (the first 200 of which were the round 1 blind shuffling subsets)
because the subset generation time had increased by two orders of magnitude. The high generation
cost means that file pairs that both satisfy the n-gram similarity heuristic and remain unseen have
become rare in the search space (inverted index). It is taking a long time for the random selection
process to find a suitable pair. The fact that the algorithm is reaching a high generation cost so quickly
means that it is reaching its maximum total recall potential in fewer subsets than the other algorithms.

Not only does this algorithm exhaust its search space in fewer subsets, these subsets also provide
larger increases in total recall. With NiCad and iClones, this algorithm achieved a very high total
recall using far fewer subsets than the other algorithms. With these tools and given a sufficient
number of subsets, nearly 100% of the tool’s native recall was achieved. Considerable gains were
also seen with Simian compared with the other shuffling algorithms, but end total recall was much
lower. The heuristic settings may not have been conservative enough for the types of clones Simian
detects. Total recall would also be low if Simian has low precision. This shuffling algorithm avoids
shuffling together files that are not similar as judged by the file-similarity heuristic. An inter-file
false positive in Simian’s gold standard may never be shuffled together. However, we cannot
conclude this as we do not know Simian’s precision performance for large inputs.

Because subset generation time increases so rapidly, we decided to investigate how quickly it
increased with respect to total recall achieved. We plot this for NiCad and Simian (50,000-file
dataset) in Figure 16 and for iClones (10,000-file dataset) in Figure 17. With NiCad, subset
generation time had only increased by a single order of magnitude (1–10 s) by the time a 90% total
recall was achieved. This is up from 32%, the total recall after blind partitioning in round 1. To
reach a nearly 100% total recall, another order of magnitude increase in subset generation time was
required. The exponentially increasing cost of subset generation only becomes severe after most of
the total recall has been achieved, which is very acceptable.

We see a similar trend for iClones. Total recall increases from 88% to 98% within the first order of
magnitude increase in subset generation cost. We then see very little gains in total recall for the next
order of magnitude increase. The primary difference from NiCad is that the framework had a high
total recall with iClones after the first round (blind partitioning). This was because we had to use a

Figure 16. Inverted-index algorithm—subset generation time versus total recall (NiCad/Simian, 50,000-file
dataset).

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

dataset five times smaller for this experiment with iClones, owing to iClones memory requirements. A
smaller dataset will have a larger intra-file-to-inter-file clone ratio. The average incidence of intra-file
clones for samples of the IJaDataset will remain constant no matter the sample size. However, for
larger samples, the average incidence of inter-file clones will be higher because the number of file
pairs potentially containing clones increases polynomially with sample size.

9.5. Choosing an algorithm

Of the four algorithms proposed, the inverted-index shuffling algorithm achieves the highest total recall
in the fewest subsets. Its subset generation time is much longer because of its smaller search space, but
this is an advantage because it is converging to a high total recall quickly. This equates to far fewer
executions of the clone detection tools, which have higher complexities and longer execution times
than subset generation. Using our simulated experiments using smaller datasets, we have
demonstrated success for RQ#4: by observing the performance of the shuffling framework and
incrementally responding to our observations, we were able to significantly improve its performance.

10. THE IMPROVED SHUFFLING FRAMEWORK

In this section, we summarize the improved shuffling framework as developed in Section 9. The
improved shuffling framework executes a classic tool for two rounds of subsets of some big data
input source code dataset. The first round uses the blind partitioning shuffling algorithm, while the
second round uses the inverted-index shuffling algorithm. Consider the tool’s hypothetical gold
standard for the big data dataset. Round 1 will enable the tool to detect all of the intra-file clones in
the gold standard (in addition to some inter-file). Round 2 aims to enable the tool to detect a large
ratio of the remaining inter-file clones in the gold standard in as few subsets as possible. The steps
of the improved framework are summarized in Figure 18.

We demonstrated in Section 9 that this method can achieve up to 98% of a classical tool’s native
recall given a sufficient number of subsets. However, subset generation became very expensive
when 90% of the tool’s native recall was achieved. The improved shuffling framework must
generate the subsets serially as it needs to track which pairs of files have been seen in a previous
subset, necessitating a definite subset order. However, the clone detection tool can be executed as
soon as the first subset has been generated.

The improved framework guarantees that each subset contains at least m/2 unseen file pairs, where
m is the size of the subsets. However, until the majority of the search space has been investigated, the
subsets should contain far more unseen pairs. The similarity heuristic ensures that the guaranteed

Figure 17. Inverted-index algorithm—subset generation time versus total recall (iClones, 10,000-file dataset).

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text

Jeffrey
Cross-Out

Jeffrey
Inserted Text

Jeffrey
Cross-Out

unseen file pairs also contain enough similarity to possibly contain a clone. This is performed by
selecting an n-gram size, n, and minimum shared n-gram heuristic, s, with respect to the tool’s
minimum clone size in identical source lines. If two files contain exactly s n-grams in common, then
they share between n+ s (sequential) and n * s (s occurrences of n sequential) source lines. So n and s
should be picked with respect to the tool’s minimum clone size. We had good results using 3-grams. A
trim threshold for the inverted-index, t, must also be selected. We had good results trimming the index
of any n-gram that appears in over 1000 files.

10.1. Comparison with deterministic method

The improved shuffling framework is a non-deterministic method for scaling classical tools. The most
similar previous work to our framework was the deterministic method described in Section 2. The
deterministic method scales tools by doing the following: (1) partitioning the dataset into partitions
half the size of the tool’s maximum input and (2) executing the tool for each unique pair of

partitions. The deterministic method achieves 100% of a tool’s native recall after x x�1ð Þ
2 subsets. x is

the number of partitions and x ¼ r
0:5mð Þ , where r is the size of the dataset and m is the tool’s

maximum input size.
Consider if we split the deterministic method’s subsets into two rounds, as we did with our non-

deterministic shuffling framework. Both methods have r
m (or x

2) subsets in their first round, and each

of these subsets has m m�1ð Þ
2 , unseen file pairs. In the second round, the deterministic method has

exactly m
2 unseen file pairs per subset. Each of the deterministic method’s partitions has been seen in

round 1, so the only unseen pairs are those between the joined partitions. Our shuffling framework
guarantees that its subsets in round 2 contain at least m

2 unseen file pairs but should contain many
more until the majority of the search space has been explored. The shuffling framework’s similarity
heuristic means that its subsets will contain more clones on average than the deterministic method.

Figure 18. Improved shuffling framework procedure (summary).

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Sticky Note
This is incorrect. Please replace step 1 (e) with the following. Please italicize " t ". This is a high priority change."The n-grams that appear in more than t files are removed from the inverted index, in order to reduce the search space."

Jeffrey
Sticky Note
Please replace:"have not previously been in the same subset"with"have not been seen in the same subset previously"

Jeffrey
Sticky Note
Please replace"(e.g., hash set, indexed database table)"with"(e.g., hash set, indexed database table, etc.)"

Our shuffling framework is faster (i.e., using fewer subsets) than the deterministic method.
However, the deterministic method is better for some use cases. As seen in Section 9, the improved
shuffling framework hits a point of diminishing returns before 100% total recall is achieved. The
cost of generating the subsets becomes too costly. So the shuffling framework is appropriate for
cases where some sacrifice in a tool’s native recall is permissible. The deterministic method is
needed when 100% native recall is required. Note that no clone detector has perfect recall, so 100%
native recall does not mean perfect output.

The subsets of the shuffling framework need to be generated sequentially. There is a limit to how many
computers the execution of the clone detection tool for the subsets can be distributed across before serial
subset generation becomes a bottleneck. In contrast, the deterministic methods have marginal subset
generation computation cost and could be distributed up to one computer per pair of partitions. So if a
large cluster of computers is available, the deterministic method may be the better option.

In summary, the shuffling framework is a better option than the deterministic method when partial
native recall is acceptable, and when computational resources are limited. The deterministic method is
a better option when 100% native recall is preferred, and a large cluster is available. Our goal was to
enable scalable clone detection with classical tools using a limited number of standard workstations.
Our shuffling framework satisfies this use case, which is not satisfied by a deterministic method.

11. IJADATASET REVISITED

In Section 7, we used the original ‘core’ shuffling framework (blind partitioning shuffling algorithm) to
evaluate the ultra-large IJaDataset. In Section 8, we discussed the deficiencies of the original technique,
and in Section 9, we incrementally designed a technique that addresses these problems. We
demonstrated the new technique’s superiority by evaluating it using samples of the IJaDataset where
it was possible to create gold standards for all of the tools.

In this section, we continue our primary experiment using our new inverted-index shuffling
algorithm to detect clones in IJaDataset. We compare the two algorithms for their intended use case:
big data clone detection. We limit our tool selection to Simian and NiCad. We include NiCad as the
new algorithm worked best with it in the simulated experiments (Section 9) and because it is fast for
function clone detection. We include Simian because the new algorithm showed the most
conservative improvements with it and because it is the only tool we have a gold standard for. We
omit Deckard because it requires long computation times, even for smaller datasets. We do not have
the computational resources to dedicate to it. We omit iClones because it did not participate in the
previous IJaDataset experiment, so we cannot compare the two versions of the framework with it.

Unfortunately, prohibitive memory and execution time requirements prevented us from building
gold standards for IJaDataset for any of the tools except Simian. Simian required a rented Amazon
EC2 instance with 64GB of RAM and days of execution time to evaluate the IJaDataset. Simian is
quite fast because it only considers type 1 and 2 clones. Renting this server for tools that have
similar memory requirements, but much longer execution times, was financially prohibitive.

For these experiments, we executed the inverted-index shuffling algorithm for a 3-gram
representation of the dataset. The similarity heuristic was parameterized to require selected file pairs
to share three 3-grams. The inverted index was trimmed of any 3-grams appearing in more than
1000 files. These are the same settings used in the evaluation of the algorithm for the small test
datasets. Because these settings produced good results in the test case (e.g., the framework achieved
98% total recall with NiCad), we are optimistic that they are good parameters for the IJaDataset. It
took 12 h to hash the IJaDataset and 40min to build the 3-grams. It took 15min to build the index
and 2.3min to trim it. The hashed dataset only needs to be produced once and can be used with
multiple executions of the shuffling framework with multiple subject tools. Changes to the dataset
only require re-hashing of new or changed files.

As per the previous IJaDataset experiment, we used a maximum subset size of 50,000 files for
Simian and a maximum subset size of 10,000 files for NiCad. While NiCad could handle the
50,000-file dataset used in the evaluation of the shuffling algorithm improvements, it does not
reliably in the general case, which is why a smaller subset size is used.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

Jeffrey
Cross-Out

Jeffrey
Inserted Text
type 2

Recall that the inverted-index algorithm executes two rounds of detection subsets. In the first round,
the dataset is fully partitioned into subsets using blind shuffling. The first round parallels the original
‘blind’ shuffling algorithm and ensures that the clone detector is exposed to all of the intra-file
clones in the dataset. The number of subsets in the first round is equal to the size of the dataset
divided by the subset size for the tool (rounded up). The second round of subsets is constructed
using the algorithm’s new selection criteria. Pairs of files in the index that share an n-gram are
selected at random and added to the subset if they satisfy the similarity heuristic and have not been
previously seen together. The second round can have any number of subsets.

11.1. Simian

Simian detects a very large number of clone pairs in IJaDataset, more than we can process on our
hardware. As with our previous IJaDataset experiment we instead measured our clone fragment
recall heuristic. The framework’s clone fragment recall for Simian is shown in Figure 19. For
comparison, we also plot the fragment recall when the blind shuffling algorithm was used. For the
first round (58 subsets), both algorithms use blind shuffling and obtain essentially identical recalls.
Once the inverted index switches to its inter-file detection strategy, there is a huge difference in
algorithm performance. The inverted-index algorithm obtains nearly the same fragment recall within
200 subsets as the blind algorithm does in 900 subsets. In this case, the inverted index reduces the
amount of required work by nearly 80%. It is interesting to note that the inverted-index algorithm
provides a very quick burst of recall growth across the initial subsets, but the rate of growth quickly
diminishes. It may be possible that it is beginning to reach an asymptote. This is not very desirable and
suggests that the framework may achieve a higher end recall with Simian with more relaxed file
selection parameters (n-gram length, minimum similar n-grams, and inverted-index trim threshold).
However, we had seen some strange behavior in previous experiments with Simian, for example, the
sliding effect we had previously mentioned, where Simian was reporting the same clones repeatedly
with small differences in start/end lines. If the sliding effect was more pronounced when the input size
was larger (e.g., the creation of the gold standard vs. the detection of the subsets), it would cause a low
total recall to be measured. For this reason, we also decided to simulate Simian’s detection of the subsets.

Also plotted in Figure 19 is the fragment recall results of our simulation of Simian’s execution for
the subsets. The simulation assumed that a clone pair in Simian’s gold standard was detected if the file(s)
containing the clone were seen within the same subset. For measuring clone fragment recall, the
cloned fragments of the detected clone pairs are also detected. In the simulated case, we see much
higher cloned fragment recall. This tells us that Simian fails to report some of the clone pairs in its
gold standard even when the files containing these clones are shuffled together. Simian may be
reporting clones inconsistently for a particular pair of files based on what other files they are input

Figure 19. Index versus blind shuffling algorithm for IJaDataset using Simian.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
,

with. Or Simian’s sliding effect defect may be more pronounced for a larger input size (e.g., large gold
standard vs. small subset). The discrepancy between the non-simulated and simulated Simian subset
detection occurs even within the first 58 subsets (round 1). During these subsets, both algorithms
partition the entire dataset using blind shuffling. This suggests that Simian is not reporting many of
the intra-file clones in its gold standard when it is analyzing the files in small subsets rather than all
in one input. Possibly, the sliding effect is more pronounced for larger input, specifically reporting
many slight variations on the same fragment as a large clone class. This is consistent with casual
observations we have made of Simian’s gold standard.

From our analysis of Simian, we wished to estimate the general performance of the shuffling
framework with the inverted-index algorithm with any clone detection tool. We imagine that the
performance lies somewhere between these two evaluations with Simian. The evaluation with real
detection data underestimates our framework’s performance as Simian is failing to detect, or is
reporting differently, clones in Simian’s gold standard that the shuffling framework has exposed
Simian to. However, the simulation may be overestimating the recall. If Simian’s sliding effect
produced a large number of intra-file clones, it may be overwhelming the number of inter-file clones
and boosting the recall within the 58 subsets higher than if Simian did not have this defect.

The framework was executed on a solid-state drive, which provided greatly improved execution
time of both the shuffling framework and Simian. Building the detection subsets from their
specification (i.e., assembling the files for detection) took less than 5min per subset. Choosing the
files for the subsets of round 1 (blind shuffling) took less than 1 s per subset. For round 2, subset
generation time started at 30 s per subset and increased as more subsets were generated up to 44min
per subset by the 142th subset in round 2 (200th subset in total), with a total generation time of
24 h. From the study of the inverted-index algorithm in Section 9, we saw that when subset
generation time had increased by two orders of magnitude, the framework had mostly exhausted its
search space and reached its maximum total recall. Subset assembly took on average 1.33min per
subset. Simian’s execution time per subset was 1.28min on average, with a range of 7 s to 12min
and a total execution time of 5 h. For Simian, subset generation time exceeds execution time. This is
expected as Simian’s scalability limit for big data is not execution time, but its memory requirements.

11.2. NiCad

Like the previous IJaDataset experiment, we evaluated the shuffling framework’s performance with
NiCad by measuring the number of unique detected clone pairs and cloned fragments across the
subsets. We could not measure total recall as NiCad cannot be scaled to IJaDataset even with
extraordinary hardware. It has internal limitations that restrict the size of the input in terms of the
number of source lines and the amount of cloned code. Even if these limitations are removed and
given sufficient RAM, it could take months of execution time to produce the gold standard.

In Figure 20, we show the shuffling framework’s cumulative detection of unique clone pairs across
the subsets using NiCad. We also show the detection performance using the blind shuffling algorithm for
comparison. The blind algorithm data are taken from the previous IJaDataset experiment (Section 7). The
detection rounds for both algorithms are indicated by the circle markers.

For the first round, both algorithms use blind shuffling and have nearly identical clone pair detection
performance. Once the index algorithm begins its second round, a considerably better clone pair
detection performance is observed. The index algorithm is able to detect approximately the same
number of clone pairs in 438 subsets as the blind algorithm does in 5780 subsets (20 ‘blind
shuffling’ rounds), a 92% reduction in subsets. The number of subsets needed to achieve the same
result is reduced by a whole order of magnitude. This is a considerable decrease in the number of
required clone detection tool executions.

In Figure 21, we show the shuffling framework’s cumulative detection of unique clone fragments
across the subsets using NiCad. Again, for the first round where both algorithms use blind shuffling,
the detection performance is essentially identical. Like with the clone pairs, we see a large
improvement in cloned fragment detection using the index algorithm over the blind algorithm. The
index algorithm detected approximately the same number of cloned fragments within 299 subsets as
the blind algorithm did in 5780 subsets, a 95% reduction in subsets. The index algorithm finds

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

nearly double the cloned fragments within 488 subsets as the blind algorithm does in 5780 subsets.
Considering only the clone pairs detected after the first round (where both use blind shuffling), the
index algorithm detects 3.5× the clone pairs in 200 subsets as the blind algorithm does in 5493 subsets.

The improvement in cloned fragment detection with the index algorithm is larger than that of the
improvement in clone pair detection. Unlike with the clone pairs, we see a noticeable decay in the
growth of detected cloned fragments. The average number of new cloned fragments detected per
subset is decreasing, suggesting that they are becoming rarer. This suggests that the cloned
fragments are being found faster than the clone relationships between them. A transitive clone
recovery technique could be used to recover these missing relationships without additional subsets.
Because the index algorithm is detecting the cloned fragments much faster than the blind algorithm
does, the transitive recovery technique would be even more valuable when used with the index
approach. Before this is possible, an efficient and precise way to apply transitivity to type 3 clones,
for which the validity of transitivity would need to be checked in each instance, needs to be devised.

The framework was executed on a solid-state drive, which greatly improved the execution time of
the shuffling framework and NiCad. Building the subsets after their file contents had been chosen
took 0.25min on average. Choosing the files for the subsets of the first round (blind partitioning,
subsets 1–258) took 60ms on average. For round 2 (inverted index, subsets >248) and consistent
with our framework improvement study, subset generation time started short (a few seconds) and

Figure 21. Index versus blind shuffling algorithm clone fragment detection for IJaDataset with NiCad.

Figure 20. Index versus blind shuffling algorithm clone pair detection for IJaDataset with NiCad.

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

grew as more subsets were generated to a couple of minutes by subset 1100. NiCad’s execution time
per subset was 3.5min on average, with a range of 1.3–15.6min.

Subset generation time is plotted in Figure 22. The gray line shows the subset we stopped executing
NiCad at for this experiment. Between subset 259 (the start of the inverted-index algorithm) and subset
1200, the subset generation time increases by an order of magnitude. When we tested the inverted-
index algorithm with NiCad and a dataset of 50,000 files, we found that total recall had reached
90% by the time that the subset generation time had increased by an order of magnitude. Because
we used a similar ratio between subset size and dataset size in the test experiment as we have used
in this IJaDataset experiment, perhaps the shuffling framework would achieve 90% total recall of
NiCad’s gold standard for the IJaDataset by subset 1200. Unfortunately, we cannot verify this as it
is not practical to compute NiCad’s gold standard for the IJaDataset.

With the inverted-index algorithm, the subsets must be generated serially, as the contents of a subset
depend on the contents of previous subsets. This is a potential bottleneck if the execution of the tool for
these subsets is distributed over a number of computers. In Figure 23, we plot the time at which each
subset is ready for evaluation. This is the cumulative subset generation time versus subset. Alongside

Figure 22. Subset generation time—10,000-file subsets of IJaDataset–NiCad.

Figure 23. Subset Generation Bottleneck - Comparing the Time When a Subset is Ready for Evaluation
Against the Time its Evaluation is Complete by Parallel Executions of NiCad for Various Compute Cluster

Sizes (1–32).

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

this, we plot the time at which NiCad’s evaluation of a subset is complete when 1, 2, 4, 8, 16, or 32
computers are utilized. Time is counted in minutes from when the generation of the first subset of
round 1 began. For this calculation, we considered a computer occupied for 3.75min to evaluate a
subset, which includes the average NiCad execution time for a 10,000-file subset, and the average
time required to assemble a subset from its specification (a file list). We assume that IJaDataset is on
each computer and that it takes negligible time for a subset specification to be sent to a computer.
Because we are assuming a uniform NiCad execution time, we consider every nth subset to be sent
to a specific computer, where n is the number of computers. For example, with four computers in a
cluster, subsets 1, 5, 9, … go to computer 1; subsets 2, 6, and 10 go to computer 2; and so on.
Therefore, NiCad’s analysis of a subset is complete exactly 3.75min after the later of the following:
(1) the time the subset’s generation was complete or (2) the time at which the computer finished
analyzing its previous subset. Case (1) will only happen when a computer is waiting for its first
subset and once generation time becomes a bottleneck and the computer is idly waiting for its
next subset to be generated.

From this distributed execution estimate, we do not see one, two, or four computers becoming
bottlenecked by subset generation within the 1200 subsets we generated. Eight computers become
bottlenecked after 1080 subsets, after which at least one computer is idle. This occurs at subset 854
with 16 computers and subset 664 with 32 computers. The intention of this framework was to
enable the scaling of classical tools on standard hardware. This plot shows us that the shuffling
framework’s subset generation time will not bottleneck a budget compute cluster of two to four
computers. The bottleneck may occur at a later subset when the framework is used with other tools,
or even different configurations of NiCad, that require longer execution times. For this experiment,
we executed NiCad in its most basic configuration. Because NiCad was only looking for function
granularity clones and did not perform any normalization beyond pretty printing, its execution time
for the 10,000-file subsets was quite fast for type 3 detection. Tools that look for clones at lower
granularities will likely have longer execution time. NiCad’s execution time is longer when its
advanced features are enabled.

The bottleneck could be overcome by generating multiple subsets simultaneously when a computer
in the cluster is idle. When determining if a randomly selected pair of files (which satisfy the similarity
heuristics) is unseen, the algorithm would consult the contents of the previously generated subsets, but
not the contents of other subsets being generated simultaneously. As such, some of the same file pairs
may be selected for subsets generated at the same time. However, the probability of this would be low
unless total recall was close to 100%. This technique would ensure that all the computers in the cluster
are continuously utilized. We will explore such a scheme as part of our future work toward a publicly
released tool version of this framework.

11.3. Summary

In summary, we experienced considerable gains in detection performance with the inverted-index
shuffling algorithm over the blind shuffling algorithm when evaluating the IJaDataset using Simian and
NiCad. With Simian, we found that the index algorithm allows a higher cloned fragment recall to be
obtained with fewer subsets. With NiCad, we found that the index algorithm was able to match the
blind algorithm using an order of magnitude fewer subsets. From these results, we conclude that the
inverted-index algorithm greatly exceeds the performance of the blind shuffling algorithm (RQ#5).

12. CONCLUSION

In this research, we presented and demonstrated the shuffling framework for scaling classical clone
detection tools to big data on standard consumer-level (i.e., affordable) workstation-class hardware.
The shuffling framework scales classical tools by executing them for non-deterministically chosen
subsets of a big data source dataset. We began with the version of the shuffling framework we
proposed in previous work [1, 2], which we termed the ‘core shuffling framework’, which used the
‘blind partitioning shuffling algorithm’. We evaluated this version of the framework using ordinary-

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

sized systems (for comparison against gold standards) and for its application to real big data
(IJaDataset 2.0). While this version of the framework successfully scaled the classical tools to big
data, the execution time required to obtain a satisfactory ratio of a tool’s native recall was still high.
We used these experiments to identify the deficiencies in the approach. Specifically, the blind
partitioning algorithm did not prevent the same files from being randomly shuffled together
repeatedly, and it did not consider the similarity of the files it was shuffling together.

Considering these deficiencies, we iteratively improved the shuffling framework by modifying the
original shuffling algorithm. We explored methods of tracking files that have been seen by the tool
previously (to prevent shuffling them together repeatedly), as well as n-gram and inverted index-based
file-similarity heuristics (to prevent shuffling together dissimilar files). We evaluated the improvements
using a sample of the IJaDataset small enough to evaluate the subject clone detectors’ gold standards.
We evaluated the improvements using the same subset size to dataset size as used in the big data case
with the IJaDataset. We termed our final algorithm the ‘inverted-index shuffling algorithm’. We found
from our evaluations that this algorithm was able to scale clone detectors to big data while
capturing up to 90–95% of the a clone detector’s native recall without sacrificing its precision.
We then applied our new algorithm to the big data IJaDataset and found that it was able to
capture the detection performance of our original ‘blind partitioning shuffling algorithm’ using
90% fewer subsets of the IJaDataset, thereby improving our framework’s scalability by an
order of magnitude.

Using our approach, classical clone detectors can be used to detect clones in big data on commodity
hardware. Researchers and developers can use their familiar, available, proven, and well-understood
classical tools to build clone corpora for ultra-large inter-project software datasets. These corpora
may be used to study developer behavior within a corporation or globally (open source). Duplicated
engineering efforts in open source or within a corporation can be reduced by extracting the
duplication found into new software libraries. Large corpora can be used within Internet-scale clone
search to provide API recommendation and usage support. Our approach comes at the cost of a
fraction of a tool’s native recall. However, a good clone corpus is built using multiple scalable and
classical tools. In this intended use case, lower native recall is made up for by the consultation of
multiple and varied clone detectors.

13. FUTURE WORK

Our primary goal in future work is to create a tool version of the improved shuffling framework for use
by researchers and professionals. In this research, we used a prototype version of the shuffling
framework to analyze its effectiveness and performance. A tool version would automate the process
and provide ease of use to the user. At most, a framework user would need to implement a standard
communication protocol between their clone detection tool of choice and the framework. The tool
would provide flexibility in executing the tool for the subsets in series, in parallel, or in a distributed
fashion. For the implementation of a general shuffling framework tool, we would focus on reducing
the computation time required to choose the contents of the subsets of the second detection round
and the computation time required to hash the dataset.

We plan to revisit the transitive clone recovery technique. We demonstrated that the recovery
technique was effective in recovering the missed clone relationships between detected cloned
fragments. We also found that the framework locates the cloned fragments in big data faster than the
clone relationships between them. Therefore, the best time to execute clone recovery would be when
the framework reaches a point of diminishing returns in the number of new cloned fragments
detected per subset. To be practical, the clone recovery technique must discover the remaining clone
relationships between the known cloned fragments in less computation time than executing the
framework and classical tool for additional subsets. The recovery technique also needs to maintain
high precision. While transitivity always holds for clones of types 1 and 2, it may not for type 3.
Efficiently checking for type 3 transitivity is a key factor in a recovery algorithm’s performance. At
the very least, the recovery algorithm must meet the precision of the classical tool being used.

J. SVAJLENKO, I. KEIVANLOO AND C. K. ROY

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

Jeffrey
Cross-Out

Jeffrey
Inserted Text
big data

We are also interested in creating a clone detection tool benchmark for detection in big data. This
would allow us to better measure the performance of our shuffling framework for a variety of
classical clone detection tools. Using this benchmark, we could also compare the performance of our
framework against the other scalability tools and techniques listed in Section 2. Such a benchmark
would improve community confidence in scalable clone detection techniques and encourage
continued improvements in scalable clone detector recall and precision.

ACKNOWLEDGEMENTS

We thank the developers of the tools used in this study, as well as Dr. Rilling and the co-authors of our
earlier publications on the shuffling framework [1] and IJaDataset [4].

REFERENCES

1. Keivanloo I, Roy CK, Rilling J, Charland P. Shuffling and randomization for scalable source code clone detection.
6th International Workshop on Software Clones (IWSC): Zurich, Switzerland, 2012; 82–83.

2. Svajlenko J, Keivanloo I, Roy CK. Scaling classical clone detection tools for ultra-large datasets: an exploratory
study. Proceedings of the ICSE 7th International Workshop on Software Clones (IWSC): San Francisco, CA,
USA, 2013; 16–22.

3. Keivanloo I, Forbes C, Rilling J. Similarity search plug-in: clone detection meets internet-scale code search. ICSE
Workshop on Search-Driven Development—Users, Infrastructure, Tools and Evaluation (SUITE): Zurich,
Switerland, 2012; 21–22.

4. Keivanloo I, Forbes C, Hmood A, Erfani M, Neal C, Peristerakis G, Rilling J. A linked data platform for mining soft-
ware repositories. 9th IEEE Working Conference on Mining Software Repositories (MSR): Vancouver, BC, Canada,
2012; 32–35.

5. Jiang L, Misherghi G, Su Z, Glondu S. Deckard: scalable and accurate tree-based detection of code clones. 29th
International Conference on Software Engineering (ICSE): Minneapolis, MN, USA, 2007; 96–105.

6. Roy CK, Cordy JR. Nicad: accurate detection of near-miss intentional clones using flexible pretty-printing and code
normalization. The 16th IEEE International Conference on Program Comprehension (ICPC): Amsterdam, The
Netherlands, 2008; 172–181.

7. Gode N, Koschke R. Incremental clone detection. 13th European Conference on Software Maintenance and
Reengineering (CSMR’09): Kaiserslautern, Germany, 2009; 219–228.

8. Harris S. Simian—similarity analyzer. 2011. Available from: http://www.harukizaemon.com/simian/ [Accessed
1 January 2013].

9. Uddin MS, Roy CK, Schneider KA, Hindle A. On the effectiveness of simhash for detecting near-miss clones in
large scale software systems. 18th Working Conference on Reverse Engineering (WCRE): Limerick, Ireland, 2011;
13–22.

10. Kamiya T, Kusumoto S, Inoue K. CCFinder: a multilinguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineering 2002; 28(7):654–670.

11. Koschke R. Large-scale inter-system clone detection using suffix trees. 16th European Conference on Software
Maintenance and Reengineering (CSMR): Szeged, Hungary, 2012; 309–318.

12. Ishihara T, Hotta K, Higo Y, Igaki H, Kusumoto S. Inter-project functional clone detection toward building libraries—an
empirical study on 13,000 projects. 19th Working Conference on Reverse Engineering (WCRE): Kingston, ON, Canada,
2012; 387–391.

13. Sajnani H, Ossher J, Lopes C. Parallel code clone detection using MapReduce. IEEE 20th International Conference
on Program Comprehension (ICPC): Passau, Germany, 2012; 261–262.

14. Livieri S, Higo Y, Matushita M, Inoue K. Very-large scale code clone analysis and visualization of open source pro-
grams using distributed CCFinder: D-CCFinder. 29th International Conference on Software Engineering (ICSE):
Minneapolis, MN, USA, 2007; 106–115.

15. Schwarz N, Lungu M, Robbes R. On how often code is cloned across repositories. 34th International Conference on
Software Engineering (ICSE): Zurich, Switzerland, 2012; 1289–1292.

16. Ossher J, Sajnani H, Lopes C. File cloning in open source java projects: the good, the bad, and the ugly. 27th IEEE
International Conference on Software Maintenance (ICSM): Williamsburg, VA, USA, 2011; 283–292.

17. Roy CK, Cordy JR. A Survey on Software Clone Detection Research. School of Computing TR 2007-541, Queens
University: Kingston, ON, Canada, 2007; 115.

18. Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E. Comparison and evaluation of clone detection tools. IEEE
Transactions on Software Engineering 2007; 33(9):577–591.

19. Roy CK, Cordy JR, Koschke R. Comparison and evaluation of code clone detection techniques and tools: a qualitative
approach. Science of Computer Programming 2009; 74(7):470–495.

20. Ambient Software Evolution Group. SECold IJaDataset 2.0. January 2013. Available from: http://secold.org/projects/
seclone [Accessed 1 January 2013].

BIG DATA CLONE DETECTION USING CLASSICAL DETECTORS

Copyright © 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
DOI: 10.1002/smr

http://secold.org/projects/seclone
http://secold.org/projects/seclone

Big data clone detection using classical detectors: an
exploratory study

Jeffrey Svajlenko, Iman Keivanloo and Chanchal K. Roy

Big data clone detection across tens of thousands of software systems has several applications, including API usage recommen-
dation, code completion, and search driven development. However, the state-of-the-art tools are designed to scale to only single
software systems. We develop a scalability heuristic that scales these classical tools to tens of thousands of software systems
using commodity hardware and evaluate its performance experimentally.

