
BigCloneEval: A Clone Detection Tool Evaluation
Framework with BigCloneBench

Jeffrey Svajlenko
Department of Computer Science

University of Saskatchewan

Saskatoon, Canada

jeff.svajlenko@usask.ca

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan

Saskatoon, Canada

chanchal.roy@usask.ca

Abstract—Many clone detection tools have been proposed in
the literature. However, our knowledge of their performance in
real software systems is limited, particularly their recall. We pre-
viously introduced our BigCloneBench, a big clone benchmark of
over 8 million clones within a large inter-project Java repository
containing 25,000 open-source Java systems. In this paper we
present BigCloneEval, a framework for evaluating clone detection
tools with BigCloneBench. BigCloneEval makes it very easy
for clone detection researchers to evaluate and compare clone
detection tools. It automates the execution and evaluation of clone
detection tools against the reference clones of BigCloneBench, and
summarizes recall performance from a variety of perspectives,
including per clone type, and per syntactical similarity regions.

I. INTRODUCTION

Clone detection tools locate similar source code within or

between software systems. Instances of similar code fragments

are called clones. Developers create clones when they reuse

code using copy, paste and modify, either within a software

system or between software projects, although clones may

arise for a variety of other reasons [1]. By managing or

refactoring their clones, developers can maintain and improve

software quality, reduce development costs and risks, prevent

and detect bugs, and more [1]. Clone management and re-

search studies depend on clone detection tools. In 2013, Rattan

et al. [2] found at least 70 tools in the literature. Despite this,

there is a lack of frameworks for evaluating and comparing

the performance of clone detection tools.

Clone detection tools are evaluated by their recall and

precision. Recall is the ratio of the clones within a software

system or repository that a tool is able to detect, and precision

is the ratio of the clones reported by a tool that are true

clones, not false positives. Precision can be measured by

manually validating a sample of the tool’s output. On the other

hand, recall has been challenging to measure as it requires a

benchmark of known reference clones [1].

We previously introduced BigCloneBench [3], a real-world

benchmark of manually validated clones in the inter-project

Java repository IJaDataset-2.0 [4] (25,000 Java systems).

It was built by mining IJaDataset for clones of common

functionalities. BigCloneBench was built independently of

the clone detection tools themselves, thereby avoiding the

biases in previous benchmarks [5], [6]. The current version

of the benchmark contains over 8 million clone pairs across

43 functionalities. Each clone pair is semantically similar

by its functionality. It contains both intra and inter-project

clones spanning the four primary clone types, including the

entire range of syntactical similarity. We have shown that

BigCloneBench is effective in measuring and comparing the

recall performance of modern clone detection tools [7], [8].

While BigCloneBench’s primary use-case is measuring the

recall of clone detection tools, it can also be used as a basis

for other clone and software studies.

In order to make BigCloneBench more accessible, we

introduce BigCloneEval, a framework for evaluating clone

detection tools using BigCloneBench. It is based on the

tool evaluation procedure we have used in our previous tool

comparison studies [7], [8]. BigCloneEval makes it very easy

for users to evaluate and compare the recall of clone detection

tools with BigCloneBench. The user does not have to write

any evaluation code beyond configuring their candidate tools

for execution and converting clone detection reports to a

standard format. BigCloneEval handles the execution of the

candidate clone detector for IJaDataset, including managing

possible scalability constraints of the tool using deterministic

input partitioning. BigCloneEval tracks the detected clones,

and efficiently determines which of the reference clones in

BigCloneBench the tool was able to detect. The evaluation

experiment is highly configurable. The user can specify con-

straints on the reference clones considered when measuring

recall, can customize the clone matching algorithm, or can

provide their own clone matching algorithm by a plug-in archi-

tecture. BigCloneEval produces a tool evaluation report which

summarizes recall per clone type, for both intra-project and

inter-project clones, for different syntactical clone similarity

regions, and for clones implementing different functionalities.

II. DEFINITIONS

Code Fragment: A continuous segment of source code.

Specified by the triple (l, s, e), including the source file l, the

start line, s and the end line, e.

Clone: A pair of code fragments that are similar: (f1, f2).
Type-1 (T1): Syntactically identical code fragments, except

for differences in white space, layout and comments [5].

Type-2 (T2): Syntactically identical code fragments, except

for differences in identifier names, literal values, white space,

TABLE I
BIGCLONEBENCH CLONE SUMMARY

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Number of Clone Pairs
47146 4609 4191 9516 38894 5818503

8375313

layout and comments [5].

Type-3 (T3): Syntactically similar code fragments that differ

at the statement level. Fragments have statements added,

modified and/or removed with respect to each other [5].

Type-4 (T4): Syntactically dissimilar code fragments that

implement the same functionality [1].

III. BIGCLONEBENCH

BigCloneBench [3] is a clone detection benchmark consist-

ing of manually validated clones in IJaDataset 2.0 [4], a large

inter-project Java repository consisting of 2.3 million Java

source files (365MLOC) from 25,000 open-source projects.

The current version of BigCloneBench contains over 8 million

validated clone pairs, including both intra-project and inter-

project clones, spanning the four primary clone types, and the

full range of clone syntactical similarity.

BigCloneBench was created, without the use of clone detec-

tion tools, by mining for functions in IJaDataset implementing

specific functionalities. Functions that might implement a

target functionality were identified using keyword and source-

code pattern heuristics. The identified functions were manually

tagged as true or false positives of the target functionality by

judges. All true positive functions of a functionality form a

large clone class of semantically similar functions. A clone

class of size n contains
n(n−1)

2 clone pairs. Post-processing

identified the clone types and syntactical similarity of these

clone pairs. Further details can be found in our publication [3].

The current version of BigCloneBench contains clones

mined for 43 distinct functionalities. We summarize its con-

tents per clone type in Table I. As there is no consensus on the

minimum syntactical similarity of a Type-3 clone, it is difficult

to separate the Type-3 and Type-4 clone pairs that implement

the same functionality. Instead we separate the clones into four

categories based on their syntactical similarity.

We define Very-Strongly Type-3 (VST3) clones as those

with a similarity in range 90% (inclusive) to 100%, Strongly
Type-3 (ST3): 70-90%, Moderately Type-3 (MT3): 50-70%,

and Weakly Type-3 or Type-4 (WT3/4): 0-50%. Syntactical

similarity is measured for each reference clone as the ratio

of the lines or tokens a code fragment shares with another

after Type-1 and Type-2 normalizations. Shared lines or tokens

are identified by unix-diff [9]. We classify the clones into

these categories using the smaller of their line and token-based

clone similarity measures. Further details on BigCloneBench

are found in its publication [3].

IV. FRAMEWORK

BigCloneEval makes it easy to measure the recall of clone

detection tools using our clone benchmark, BigCloneBench.

It implements an experimental procedure similar to the one

TABLE II
BIGCLONEEVAL COMMANDS

Command Description

registerTool Registers a tool with the framework.
listTools Lists the tool(s) registered with the framework.

deleteTool Removes a tool, and its detected clones, from the framework.
partitionInput Partitions a clone detection input given a maximum input size.
detectClones Automates the execution of a tool for IJaDataset.
importClones Imports a tool’s detected clones into the framework.
clearClones Removes the imported clones of a tool from the framework.
evaluateTool Measures the recall of a tool and produces the tool evaluation report.

we have used in our previous clone detection tool evaluation

experiments [7], [8]. BigCloneEval automates the major steps

of the experiment, and allows the recall evaluation to be

customized. It produces an extensive recall evaluation report

that fully highlights the capabilities of a candidate clone

detection tool.

BigCloneEval has four primary components. (1) The Big-

CloneBench database, which documents the reference clones

of BigCloneBench. (2) IJaDataset, the inter-project Java repos-

itory containing the reference clones. (3) A tools database,

which tracks the clone detection tools being evaluated by the

framework, and their detected clones. (4) A set of command-

line tools for interacting with the framework, including the

registering of clone detection tools, performing clone detection

for IJaDataset, importing the detected clones, and performing

the recall evaluation experiments. Table II lists the commands,

which we describe further in the following sections.

BigCloneEval is distributed as a git repository, so that

users can easily pull updates. BigCloneBench and IJaDataset

are downloaded separately, and added to the distribution.

BigCloneEval uses fast and efficient embedded databases so

that the user does not have to install and setup a database

server. The BigCloneBench database [10] and IJaDataset [4]

repository are very large, so BigCloneEval uses special ver-

sions of these that contain only the data and source files needed

to perform the recall measurement, reducing their storage

requirements.

V. EVALUATION PROCEDURE

The tool evaluation procedure is shown in Figure 1. First the

clone detection tool is registered with the framework, which

assigns it a unique tool ID. Next, the tool is executed for

IJaDataset, and its detected clones are collected. As a speedup,

the tool only needs to be executed for the files in IJaDataset

that contain clones in BigCloneBench. Clone detection can be

executed manually by the user, or the framework can auto-

mate this process, including overcoming possible scalability

limits of the clone detection tool using deterministic input

partitioning. Then, the detected clones are imported into the

tools database for the given tool. Lastly, the tool is evaluated

against the clones in BigCloneBench. The evaluation is highly

configurable, and the output tool evaluation report summarizes

the tool’s recall per clone type, per syntactical similarity region

and per functionality in BigCloneBench. These individual

steps, the output, and the framework commands are detailed

in the remaining sections.

1. Register Tool 2. Detect Clones 3. Import Clones 4. Evaluate Tool

BigCloneBenchDBIJaDataset Clone
Detection Tool

Detected
Clones

Tool Evaluation
Report

Tool
ID

ToolsDB

Config.

Clone
Detection

Tool

Fig. 1. BigCloneEval Evaluation Procedure

VI. REGISTER TOOL

The candidate clone detection tool is registered with the

framework using the registerTool command, which requires

the name of the tool and a description of its configuration for

the experiment. These are stored in the database for reference,

and a unique identifier is provided to the user for specifying

this tool with the commands of the proceeding steps. The

registered tools, their IDs, names and descriptions, can be

listed using the listTools command. Tools can be removed from

the framework using the deleteTool command.

VII. DETECT CLONES

Next the user must execute their candidate tool for IJa-

Dataset and collect the detected clones. IJaDataset is very

large, and outside the scalability limits of most clone detec-

tion tools. However, the clone detection tools do not need

to be executed for the entire IJaDataset, only for the files

containing reference clones in BigCloneBench. We provide a

reduced version of IJaDataset which contains only the relevant

source files and is split into a number of smaller subsets

for clone detection. There is one subset per functionality

in BigCloneBench. Each functionality’s subset includes all

the files which contain a function tagged as a true or false

positive of that functionality in the creation of BigCloneBench.

Therefore each subset is a realistic subject system, containing

both true and false positive clones. The tool must be executed

for each subset of IJaDataset, and the clones collected. This

is equivalent to executing the tool for the entire IJaDataset, in

terms of measuring recall for the reference clones.

A couple of these subsets may still be too large for some

clone detection tools, specifically those that do not scale well

in memory. This can be overcome using a deterministic input

partitioning approach [11]. This involves partitioning the input

and executing the tool for each unique pair of partitions.

Partition size is chosen such that a pair of partitions does not

exceed the scalability limits of the tool and available hardware.

To perform deterministic input partitioning we provide a

partitionInput command. This takes a directory of source

files, a maximum input size in source files, and an output

directory. Within the output directory it creates a subdirectory

of source files for each unique pair of partitions given the

maximum input size. Executing the tool for each subdirectory

is equivalent to executing it for the original input.

While the user can perform the above manually with

their clone detection tool, we also provide the detectClones
command which automates the detection procedure. The user

provides a script that configures and runs their tool, and the

maximum input size considering their tool and available hard-

ware, if required. The framework will automatically execute

the tool for each subset of IJaDataset, using partitioning when

needed, and collect the detected clones into a single output.

VIII. IMPORT CLONES

Now the user imports the clones detected by their clone

detection tool into the tools database. This is done using the

importClones command, which takes the ID of the registered

tool and a file containing the clones to import. The clone file

must list the clone pairs detected by the clone detection tool

in a simple CSV format.

IX. EVALUATE TOOL

The evaluateTool command is used to measure the recall

of the clone detection tool, and produce its tool evaluation

report. This command requires the ID of the registered tool to

evaluate, whose detected clones have already been imported,

and a file to output the recall measurements to. It iterates

through each reference clone in BigCloneBench and uses a

clone matching algorithm to determine if the candidate tool

was able to detect them. Recall is summarized for strategic

subsets of the benchmark (e.g., per clone type) in the tool

evaluation report (discussed further in Section X). The user

can configure the evaluation procedure with a number of

constraints on the clones considered when measuring recall.

They can also customize or provide their own clone matching

algorithm. We describe these further in the following subsec-

tions. By default, a configuration matching our previous clone

benchmark experiments is used [7], [8].

A. Reference Clone Selection

The user can specify a number of constraints on the ref-

erence clones considered when measuring recall. Users can

select clones for consideration by minimum and maximum

clone size as measured by language-tokens, pretty-printed

source lines, and/or original source lines. These options can

be used to measure recall for clones within particular clone

size ranges. They are also useful for reducing bias when

measuring and comparing the recall of multiple tools. Clone

detection tools typically require at least a minimum clone size

configuration, and most tools measure clone size by token or

by source line (original or pretty-printed). By selecting a strict

minimum and maximum clone size by each measure, the tools

can be appropriately configured for BigCloneBench, and their

recall results can be compared without bias due to clone size

configuration. Users can also select reference clones by the

total number of judges that have examined the code fragments

of a reference clone, and their collective confidence in their

judgment of those code fragments (the difference of true and

false positive votes).

B. Clone Matching Algorithm

Recall is measured using a clone matching algorithm,

which judges whether a reference clone in BigCloneBench

is successfully detected by a candidate tool. BigCloneEval

includes our coverage-based clone matcher, which we have

used successfully in our previous work [7], [8], and is based on

our covers metric. A code fragment f1 covers code fragment

f2 if it intersects a ratio t of the source lines of f2, as

shown in Eq. 1, given that the code fragments are in the

same source file. A reference clone R in BigCloneBench is

considered detected by the candidate clone detector if there

exists a candidate clone C reported by the candidate tool that

satisfies the clone matcher. The coverage matcher is shown in

Eq. 2, and requires the code fragments of C to cover the code

fragments of R given a minimum coverage threshold t. Both

orderings of the candidate clone’s code fragments are tested.

The coverage clone matcher is implemented as a database

query over the tool’s imported clones. Database indexes are

used to make this query efficient, as the number of reference

clones in BigCloneBench is very large.

covers(f1, f2, t) =
min(f1.e, f2.e)−max(f1.s, f2.s) + 1

f2.e− f2.s+ 1
≥ t (1)

c–match(C,R, t) = covers(C.f1, R.f1, t) ∧ covers(C.f2, R.f2, t) (2)

The user can choose the coverage threshold of the coverage

matcher (the default is 70%), as well as set a number of

advanced configurations. The user can also provide their own

custom clone matcher by a plug-in architecture. The user

specifies the the name of the clone matcher and a configuration

string. The clone matcher is discovered and configured at

runtime. The existing coverage clone matcher can be used as a

template by the user when implementing their own algorithm.

X. TOOL EVALUATION REPORT

The tool evaluation report summarizes the tool’s recall

performance for BigCloneBench given the configuration of

the evaluateTool experiment. Recall is summarized per clone

type, including the Type-3/Type-4 categories discussed in

Section III. Recall is also measured for different minimum

syntactical similarity thresholds, as well as for different re-

gions of syntactical similarity. Recall is summarized for all

clones, for just the intra-project clones, and for just the inter-

project clones. It is also summarized for all clones, and for

each of the individual functionalities in BigCloneBench. The

report also summarizes the reference clones of BigCloneBench

considered given the configuration of the experiment (e.g.,

clone size). The report names the versions of BigCloneBench

and BigCloneEval used to measure recall, as well as the

configurations of the experiment, including the clone matcher,

for future reference.

XI. LIMITATIONS

BigCloneEval performs our clone detection tool recall eval-

uation procedure [7], [8]. While it has a number of cus-

tomization options, including allowing custom clone matching

algorithms, it does not extend beyond this procedure. The

framework is open-source, so users can adapt the procedure if

needed. As well, the full BigCloneBench database is available

for users who are developing novel research studies and

evaluation procedures [10]. BigCloneEval does not measure

clone detection precision. There is no existing methodology

for measuring precision automatically, and is typically done

by manual clone validation. BigCloneEval measures recall in

terms of clone pairs, while some tools also report clones as

clone classes. There is not a standard for measuring recall

considering clone class reporting. It is an open topic we would

like to explore in future work, and integrate into BigCloneEval.

XII. RELATED WORK

Bellon et al. [5] provide a benchmark of four thousand

clones and a framework for evaluating clone detectors against

this benchmark. Bellon’s benchmark was built by manually

validating a small fraction of the clones detected by par-

ticipating tools in their benchmarking experiment [5]. As

such, it is limited by the clone detection capabilities of its

participating tools, which also introduces some biases [6].

Murakami et al. [12] extended Bellon’s benchmarking by

identifying the gap lines in Bellon’s benchmark. Charpentier

et al. [13] re-examined some of the clone validation efforts

in Bellon’s Benchmark and found disagreement in the results

when multiple judges are used. We previously found that

Bellon’s Benchmark may not be appropriate for evaluating

modern clone detection tools [14]. In contrast, BigCloneBench

is a much larger benchmark, and was built independently of

the clone detection tools in order to avoid bias. We introduced

the Mutation and Injection Framework, which automatically

measures the recall of clone detection tools in a mutation-

analysis procedure. Its synthetic benchmarking compliments

the real-world benchmarking strategy used by BigCloneEval.

XIII. CONCLUSION

In this paper, we introduced BigCloneEval, a framework

for measuring the recall of clone detection tools using our

BigCloneBench. BigCloneEval makes it very easy to perform

clone detection tool benchmarking experiments with the refer-

ence clones in BigCloneBench. It gives the user flexibility over

the configuration of the evaluation experiment, including the

clone matcher used. Recall can be measured for both inter-

project and intra-project clones, with recall summarized per

clone type, per syntactical similarity range, and per function-

ality in the benchmark. BigCloneEval, and a demonstration

video, is available at http://jeff.svajlenko.com/bigcloneeval.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s University, Tech. Rep. 2007-541, 2007, 115 pp.

[2] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165 – 1199, 2013.

[3] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,” in
ICSME, 2014, pp. 476–480.

[4] Ambient Software Evoluton Group, “IJaDataset 2.0,” http://secold.org/
projects/seclone, January 2013.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and evaluation of clone detection tools,” Softw. Eng., IEEE Trans.
on, vol. 33, no. 9, pp. 577–591, 2007.

[6] B. Baker, “Finding clones with dup: Analysis of an experiment,” Softw.
Eng., IEEE Trans. on, vol. 33, no. 9, pp. 608–621, 2007.

[7] J. Svajlenko and C. Roy, “Evaluating clone detection tools with big-
clonebench,” in ICSME, 2015, pp. 131–140.

[8] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big code,” in ICSE, 2016,
pp. 1157–1168.

[9] P. Eggert, M. Haertel, D. Hayes, R. Stallman, and L. Tower, “Diffutils
- gnu project - free software foundation,” http://www.gnu.org/software/
diffutils, 2016.

[10] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia, “Big-
clonebench (github),” https://github.com/clonebench/BigCloneBench,
2016.

[11] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed ccfinder: D-ccfinder,” in ICSE, 2007, pp. 106–115.

[12] H. Murakami, Y. Higo, and S. Kusumoto, “A dataset of clone references
with gaps,” in MSR’14, 2014, pp. 412–415.

[13] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère, “An empirical
assessment of bellon’s clone benchmark,” in Proceedings of the 19th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’15. ACM, 2015, pp. 20:1–20:10.

[14] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in ICSME, 2014, 10 pp.

