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Abstract—Developers often prefer dynamically typed program-
ming languages, such as JavaScript, because such languages do
not require explicit type declarations. However, such a feature
hinders software engineering tasks, such as code completion, type
related bug fixes and so on. Deep learning-based techniques are
proposed in the literature to infer the types of code elements
in JavaScript snippets. These techniques are computationally
expensive. While several type inference techniques have been
developed to detect types in code snippets written in statically
typed languages, it is not clear how effective those techniques
are for inferring types in dynamically typed languages, such
as JavaScript. In this paper, we investigate the type inference
techniques of JavaScript to understand the above two issues
further. While doing that we propose a new technique that
considers the locally specific code tokens as the context to
infer the types of code elements. The evaluation result shows
that the proposed technique is 20-47% more accurate than the
statically typed language-based techniques and 5-14 times faster
than the deep learning techniques without sacrificing accuracy.
Our analysis of sensitivity, overlapping of predicted types and
the number of training examples justify the importance of our
technique.

Index Terms—type inference, word embedding, localness, dy-
namically typed language

I. INTRODUCTION

Dynamically typed programming languages enable devel-
opers to write less verbose code by removing the burden
of specifying types in code, thus support quick prototyping.
Such dynamic type systems allow language designers to avoid
spending considerable time developing a type system to ensure
the completeness of the program at compile time. However, the
development and usages of TypeScript1, Flow2 and Closure3

indicate that leading software companies are now considering
static typing as an important part of developing code. Recent
research results also show the benefits of static typing. For
example, Gao et al. [1] find that adding type annotations
in JavaScript can help to avoid 15% of the reported bugs.
Prior studies [2], [3] also show that static type systems help
in understanding undocumented code, fixing type issues and
solving semantic errors, thus have a positive impact on the
maintenance of software. Finally, building code completion
tools also requires type information. For example, method
completion tools remove irrelevant method names based on the

1https://www.typescriptlang.org/
2https://flow.org/
3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

type of receiver variable [4]. The lack of type information thus
makes the dynamically typed languages difficult to provide
precise completion proposals. Therefore, it is important to add
type information to dynamically typed languages.

Existing type inference techniques that learn from code
examples can be divided into two broad categories. First,
there are techniques [5]–[9] that are designed to resolve the
types of online code snippets. These techniques are developed
and tested for the code snippets written in statically typed
languages (such as Java). While the language is statically
typed, those online code snippets often do not contain type
declarations [7]. This makes it difficult to determine which
libraries need to be imported to compile the code correctly.
Techniques such as StatType [8] and COSTER [9] fall un-
der this category. For example, StatType [8] uses statistical
machine translation whereas COSTER [9] leverages a combi-
nation of three similarity measures for inferring types. While
both techniques achieve high precision and recall, they are
only tested for code snippets written in Java. However, it is not
clear whether such techniques can provide similar performance
for dynamically typed languages, such as JavaScript.

The other group of techniques are specifically designed
and tested for dynamically typed programming languages (i.e.,
JavaScript). For example, Raychev et al. [10] developed the
technique JSNice that predicts the type of a code element
based on the types of the surrounding code elements that
are connected with the target code element through the de-
pendency graph. Malik et al. [11] developed a technique,
called NL2Type, that leverages JSDoc, comments, the formal
signatures of the functions, and a recurrent neural network
model to infer the types of the functions and its parameters.
DeepTyper [12] uses a neural machine translation-based ap-
proach to infer the types of JavaScript code elements. Type
inference techniques for JavaScript receive significant perfor-
mance gain from using a deep learning technique. However,
a problem with deep learning techniques is that they require
considerable training time. While training often considers a
one-time operation, supporting a new library or adding more
training examples require retraining the model. This motivates
us to investigate the type inference of JavaScript further.

In this paper, we first conduct an empirical study to un-
derstand how the type inference techniques developed for the
statically typed language (i.e, Java) perform for the dynami-
cally typed language (i.e, JavaScript). To answer the question,



we apply two state-of-the-art techniques developed for Java to
predict the types of JavaScript code elements. While doing the
empirical study, we find code elements specific to a type usage
are closely located to it, also known as locally specific. Thus,
we investigate how to capture such localness property more
accurately. We use a combination of word embedding, context
similarity, and local model to infer the types of code elements.
Finally, we compare the proposed technique with not only the
techniques developed for Java but also the deep learning based
type inference techniques developed for JavaScript. Thus, our
study is based on the following research questions.

RQ1: How do the techniques developed for Java perform
for type inference of code written in JavaScript?

The results of the empirical study show that the performance
of both competing techniques drops significantly when applied
to source code written in JavaScript.

RQ2: Can we develop a type inference technique that can
address the limitations of techniques discussed in RQ1?

We observe 20-47% performance gain for our proposed
technique than the techniques developed for inferring types
in Java code snippets.

RQ3: How do the deep learning techniques developed for
JavaScript perform in comparison with the proposed tech-
nique?

Findings from the study are aligned with prior studies [13]–
[16], indicating that our proposed technique can significantly
reduce the training time with comparable performance.

Thus, we make the following three contributions.
1) Conduct an empirical study to evaluate the performance

of type inference techniques that are developed for Java
code snippets for JavaScript code snippets.

2) Propose a technique that uses local specific code to-
kens as context, Word2Vec, context similarity, and a
local model to infer the types of the code elements of
JavaScript.

3) Conduct a comparative study of the proposed technique
with the deep learning-based state-of-the-art techniques
along with the extensive analysis of the result.

The rest of the paper is organized as follows. Section II
presents a motivating example for the study. Section III
presents prior studies related to our work. Section IV in-
troduces the dataset and explains the evaluation procedure
followed by the answers of three research questions in Sec-
tion V, VI and VII. Section VIII provides further insights
about our proposed technique and Section IX summarizes the
key findings of the study. We discuss threats to the validity
of the study in Section X. Finally, Section XI concludes the
paper.

II. MOTIVATING EXAMPLE

Let us consider a JavaScript function as shown in Fig. 1 that
takes any physical body imposter, three dimensional force and
point as parameters, and applies impulse on the imposter by
the force at that point.

TypeScript enables optional types to be added to the
JavaScript code. While developers may benefit from such type

(a) JavaScript Code

(b) TypeScript Code

Fig. 1. An example of a JavaScript code and the corresponding code in
TypeScript.

annotations of code elements (see Fig. 1 (b)), annotating an
existing codebase is a time consuming operation, requires
expertise and often can be erroneous [12]. An automated
technique that can learn from existing type annotations of
codebases and can recommend types of JavaScript code el-
ements as a developer types code can be useful in this case.

Furthermore, software engineering tasks such as code com-
pletion can be difficult. For example, the parameter imposter
is annotated as any. Therefore, if a user requests for code
completion at Line 4 by typing a dot (.) after imposter, the
completion system will fail to recommend anything as it does
not have any type information.

Finally, the function does not have any JSDocs or line
comments. Thus, techniques that depend on JSDoc and line
comments, such as NL2Type [11], will not not work in this
case. On the other hand, since the function is very small in
size, COSTER [9] will not be able to collect any code tokens
outside the top and bottom four lines. This can impact the
performance of the technique.

III. RELATED STUDY

A. Empirical Studies on Type Inference

A number of studies explore the usefulness of type inference
in dynamically typed languages. Hackett and Guo [17] analyze
JavaScript snippets and show that a type inference engine
can increase the performance of different functionalities of
a website by 50%. Pradel et al. [18] analyze scripts in the
runtime, find inconsistencies of types, report them as bugs.
Gao et al. [1] investigate the TypeScript1 and Flow2 for
detecting buggy code and find that around 15% of bugs can
be detectable by both engines. Ray et al. [19] conduct a
large scale empirical study on GitHub projects and find that
statically typed languages are less defect prone than dynami-
cally typed languages. The above works either examine buggy
type annotations or the importance of a type inference engine
whereas we focus on investigating type inference techniques
of a dynamically typed language (i.e., JavaScript).

B. Type Inference in Statically Typed Languages

Techniques developed for statically typed language, such as
Java, can be divided into two groups: linking code from text
and linking code from code.

Linking code from text based techniques use documenta-
tion [5], [20], [21], bug reports [22], [23], emails [24] and



posts from online Q&A sites [6] to find appropriate types in
Java code snippets. However, these approaches suffer from
accuracy due to the lack of documentation [25] and informal
nature of bug reports and posts [9].

Baker [7] is the first to link code from the other code
tokens situated within the same scope and uses an iterative
deducing technique to infer types of code elements. However,
the technique fails to infer types of a number of code elements
due to strict scope rules [8], [9]. StatType [8] uses the original
code fragment as the source language and type resolved code
fragment as the target language. It leverages a statistical
machine translation technique to find mapping between them.
The technique performs poorly for the types having a lesser
number of examples [9]. COSTER [9] is another technique
that can infer types of code elements in Java code snippets
based on the type usage contexts and three different similarity
measures (i.e, occurrence likelihood, context similarity, and
name similarity scores). In our RQ1, we find that COSTER
is not applicable for dynamically typed languages (such as
JavaScript) since it cannot capture the differences in the
structure of languages.

C. Type Inference in Dynamically Typed Languages

Inferring types in case of dynamically typed languages such
as JavaScript, Python, Ruby and so on can be categorized
into three groups: type annotation, program analysis-based and
probabilistic type inference.

TypeScript1 developed by Microsoft and Flow2 developed
by Facebook are the type annotation based solutions. However,
developers need to manually annotate the type information,
which requires considerable time and effort [12].

Program analysis-based type inference techniques are
largely formal and static rule based [26]–[34]. Such ap-
proaches are unable to perform well for statistically uncom-
putable functions such as eval [11], [17].

JSNice [10] is the first work on probabilistic type infer-
ence that constructs a dependency network between the code
elements of known properties and unknown properties. The
unknown node of the dependency network is predicted using
the conditional random field. DeepTyper [12] is a neural
machine translation-based technique that considers the stream
of code tokens as the source language and the stream of types
as the target language. Based on the bidirectional Recurrent
Neural Network (RNN), the technique learns the mapping
between the source and target languages. The technique then
infers types based on the mapping. NL2Type [11] is another
deep learning-based type inference technique for JavaScript
that focuses on the parameters and return types of functions.
The technique creates contexts based on the JSDoc, comments
and the formal signatures of methods. Those natural texts
are preprocessed and passed through a Word2Vec and a
bidirectional Long Short Term Memory based neural network
to learn the nonlinear relations. Both NL2Type and DeepTyper
outperform JSNice whereas we develop a technique that
significantly reduce the training time without sacrificing the
accuracy (see Section VII).

IV. EXPERIMENTAL DESIGN

This section describes the dataset and the experimental
settings of our study.

TABLE I
DATASET OVERVIEW

Total Training Testing
No. of Projects 774 697 77
No. of Files 100,805 90,724 10,081
No. of Tokens 25,997,343 23,455,632 2,541,711

A. Dataset Description

For evaluating the performance of type inference techniques,
we use the dataset developed by Hellendoorn et al. [12]. The
dataset consists of the top 1000 open source JavaScript projects
selected based on the star count whose code elements are
annotated by developers using TypeScript (ts). We successfully
retrieve 774 projects in September 2019 out of those 1000
projects. The rest of the projects are either deleted or made
private. Thus, we cannot include them in our study. Table I
shows an overview of the dataset we used for our experiments.
The dataset contains more than 100K files. All projects are
parsed using the TypeScript compiler1. The compiler returns
a type for each variable, class object, literal, function’s return
type, and parameter. The type of a code token represents an
instance in our dataset.

We use the ten-fold cross-validation technique where the
collected projects are divided into ten different folds. Nine out
of those ten folds are used to train, and the remaining fold is
used for testing. We repeat the process ten times by changing
the test fold and record the performance of each competing
technique. The final result is calculated by taking the average
performance of all ten folds.

B. Evaluation Procedure

We use the precision, recall, and F1 score to measure the
performance of compared techniques. We present the code
example for each instance in the test dataset to a technique
for inferring the type of that code element. We consider the
recommendation is relevant if the actual type is present in the
top-k recommendations. The precision, recall, and F1 score
are defined as follows.

Precision =
recommendations made ∩ relevant

recommendations made
(1)

Recall =
recommendations made ∩ relevant

recommendations requested
(2)

F1Score =
2 · Precision · Recall

Precision + Recall
(3)

Here, recommendations requested refers to the total number
of instances in the test set. Recommendations made is the
number of instances for which a technique infers types. Rec-
ommendations requested is the number of instances required
inference. We use a two-tailed Wilcoxon signed-rank test [35]
to determine whether the difference between the performance



of two compared techniques are statistically significant or not.
For each evaluation metric (i.e., precision, recall and F1 score),
we collect the result of each competing technique for each fold
as one data point and compare ten data points obtained from
ten different folds with that of the compared technique.

V. RQ1: HOW DO THE TECHNIQUES DEVELOPED TO
INFER TYPES IN JAVA CODE SNIPPETS PERFORM FOR

JAVASCRIPT CODE SNIPPETS?

A. Motivation

Techniques that infer types in online Java code snippets
showed great performance [8], [9]. Prior studies of those
techniques also argued that such techniques can easily be
adapted to dynamically typed programming languages (such
as JavaScript). We are interested in learning the effectiveness
of those techniques to detect types in JavaScript code snippets.
Results from the study can help us to decide whether we can
reuse those techniques for JavaScript code snippets or further
modification is required.

B. Approach

We choose two state-of-the-art techniques, StatType [8]
and COSTER [9], that are developed to detect types in code
snippets written in Java language. We made necessary changes
to adapt those techniques for JavaScript language. COSTER
collects both local and global contexts to capture the type
usage context of code elements. The technique collects any
types, keywords, function calls and operators that appear
within the top and bottom four lines as the local context. The
global context consists of methods outside of the local contexts
that are invoked on the receiver variable and that use the code
element or the receiver variable as the parameter. To adapt the
technique for JavaScript, we leverage the TypeScript compiler
to collect both contexts. We then leverage a combination of
three different similarity measures to predict types of code
elements. In case of StatType, we collect the stream of the
resolved code elements as the source language and the stream
of types of the code elements as the target language. For
the target language, similar to COSTER, we collect the type
of code elements such as variables, class objects, literals,
function’s return type and parameter. Next, we use the same
Phrasal [36] tool used by the authors to train and test the
statistical machine translation model. We then collect the
precision, recall and F1 score (F1) for top-1, top-3 and top-5
recommendations. We summarize the results in Table II.

TABLE II
PERFORMANCE COMPARISON OF STATICALLY TYPED LANGUAGE BASED

TECHNIQUES STATTYPE AND COSTER FOR JAVASCRIPT SNIPPET

Technique Recc. Prec. Rec. F1

StatType
Top-1 28.69 25.73 27.13
Top-3 37.29 35.25 36.24
Top-5 49.36 47.28 48.30

COSTER
Top-1 17.34 12.84 14.75
Top-3 27.39 24.18 25.69
Top-5 32.61 28.41 30.37

Fig. 2. Comparing between Java and JavaScript datasets in terms of the length
of methods, identifiers and two types of contexts.

C. Evaluation

Both StatType and COSTER did not perform well for
detecting types in JavaScript files, as shown in Table II.
For the top-1 recommendation, the precision and recall of
StatType are 28.69% and 25.73%, respectively. Performance
improves as we consider more recommendations but can only
be considered as mediocre. For example, the precision and
recall reach to 49.36% and 47.28% for the top-5 recommen-
dations,respectively. COSTER performs comparatively worse
than the StatType. The precision and recall of COSTER
are 9.9-16.75% and 11.07-18.87%, respectively, lower than
StatType for all recommendations. However, both techniques
performed remarkably well when applied for code snippets
written in Java [8], [9].

D. Discussion

To understand the reasons that contributed to such poor
performance, we determined the differences between Java and
JavaScript languages considering the length of methods, iden-
tifiers, and the contexts (i.e., local and global context) collected
by COSTER. We used the GitHub dataset of COSTER [9]
for Java and our dataset for JavaScript. For both datasets, we
consider the number of lines as the length of a method, the
number of characters as the length of an identifier, and the
number of tokens as the length of the local and global contexts.
Fig. 2 summarizes the results. The reasons behind COSTER’s
poor performance can be derived as follows.

First, the global context does not play a significant role in
JavaScript. This is because functions in JavaScript are typically
small in lengths compared to that of Java. Therefore, globally
related tokens are difficult to find in JavaScript. While the
median function length of Java is 6 lines, the number drops
to 3 for JavaScript, as shown in Figure 2(a). Moreover, the
median length of global context in Java is 2.5 times higher than
that of JavaScript (see Figure 2(d)). However, the differences
drops significantly when we compare the length of local



Collect	context	along	with
code	elements	and	true	types

CBOW	based
Word2VecCodebase

Word2Vec	
Model1

2

Inverted
Index fileLucene	Search	Engine

3

Fig. 3. Overview of the training step of the proposed technique.

contexts between Java and JavaScript datasets, as shown in
Figure 2(c)). The median values are 9 and 10 respectively.
Thus, COSTER has a hard time collecting globally related
tokens for JavaScript comparing to Java and fails to show
similar performance.

Second, the name of identifiers in JavaScript is compar-
atively shorter than that of Java, as shown in Figure 2(b).
While the median identifier length in JavaScript is 2 , the
value reaches to 4 for Java. Thus the name similarity measure
in COSTER do not perform well when tested for JavaScript
code snippets.

StatType fails to infer types that are less popular. Our
dataset for JavaScript is dominated by any type (46.62%). Such
dominance in the dataset causes StatType to be biased to the
any type. Thus, we can conclude that type inference techniques
developed for Java code snippets are not equally effective for
JavaScript code snippets. All these motivate us to investigate
the problem further.

VI. RQ2: CAN WE DEVELOP A TYPE INFERENCE
TECHNIQUE THAT CAN ADDRESS THE LIMITATIONS OF

TECHNIQUES DISCUSSED IN RQ1?

A. Motivation

Previously we observe that source code elements in
JavaScript are also locally specific, meaning code elements
that are related to a type usage are closely located. COSTER
already attempted to capture such localness property of the
source code by considering tokens that appear within the
top and bottom four lines of a code element whose type
needs to be inferred. However, COSTER did not perform
well for JavaScript that made us interested in investigating
other approaches (such as word embedding) to capture code
elements that are related to a type usage context.

B. Technique Description

In this section, we describe our proposed technique that
infers the types of JavaScript code elements (i.e., variables,
class objects, literals, function’s return types and parameters).
The steps of the technique are discussed below.

1) Collect Type Usage Context: We parse each JavaScript
file using the TypeScript compiler, create the Abstract Syntax
Tree (AST) and collect the type usage context for each
variable, class object, literal, function’s return type and pa-
rameter. We refer to them as the code element unless spec-
ified otherwise. The type usage context of a code element
consists of tokens that include the types of identifiers, key-
words, function calls, class objects, and operators within

the top and bottom four lines of that code element. Our
selection of four lines is based on the fact that we obtain
the best result using this setting. For example, the context
for class object impulse at line 3 would be function, any,
V ector3, V ector3, var, V ector3, =, new, BJSCANNON ,
V ec3, V ector3.x, V ector3.y, V ector3.z, var, =, new,
BJSCANNON , V ec3, V ector3.x, V ector3.y, V ector3.z,
applyImpulse, V ector3, V ector3. The primary motivation
for choosing such a context is two-folded. First, the context
contains locally specific code tokens which are inspired by the
principle of naturalness [37] and localness [38] properties of
the source code. Second, we consider the type information
of code elements (i.e., identifiers) rather than their lexical
information. Such context showed good performance in prior
studies [8], [12].

We use an inverted index structure to organize type usage
contexts along with their associated types. Each type usage
context appears as a document and tokens of those documents
are used to index those sets of documents. Such an index
structure allows us to quickly retrieve types whose usage
context matches with that of a query context. Instead of
implementing the inverted index structure from the scratch,
we use the implementation available in the Lucene search
engine [39].

2) Train Model: Next, we apply the Continuous Bag of
Word (CBOW) architecture of Word2Vec [40] technique on
the training dataset (2 in Fig. 3). Word2Vec [40] is a word
embedding technique that takes words/tokens from the training
contexts as input and creates a d-dimensional continuous
vector space. Each word/token is then represented by a vector
in such a way that, if plotted in a vector space, semantically
similar words/tokens appear close to each other [41]. There
are two ways to create such a word vector. The first one
is the Continuous Bag of Word (CBOW) architecture where
words/tokens are embedded into the vectors based on their
context. The other one is the Skim-gram architecture where
the context is embedded based on the word/token. We used
the former one since it considers the whole context as one
observation and predicts the type based on the context during
the inference step. For example, if contexts having tokens such
as Identifier and ImportKeyword are found frequently for the
type String, the Word2Vec model will learn that context with
these tokens are very closely related to the type String. During
inference, if any context with such tokens are found, the model
will predict the type String with a higher probability value.

3) Infer Types: To infer the type of a code element, we
follow the following sequence of steps. First, our proposed
technique collects the type usage context of a target code
element that can be a variable, a class object, a literal, return
type of a function or a parameter. We use the term query
element to refer to the target code element, the associated
type usage context as the query context and the actual type
of the code element as the true type. For our example shown
in Fig. 4, code element resolved at line 10 is the query code
element, ResolvedUrl is the true type and the code tokens
within 6-14 formulate the query context.
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Fig. 4. Overview of the inference steps with an example of the proposed technique.

Second, we pass the query context (Cq) to the Inverted Index
File (2 in Fig. 4) and it returns a ranked list of all contexts with
associated types that are stored during the training time. We
then collect the top 500 usage contexts and their associated
types. We use the term candidate context to refer to any
element of the list of contexts returned by the search engine.
The types associated with those contexts are referred to as the
candidate types. Next, we calculate the context similarity score
between the query and each candidate context. To do that,
we apply the Cosine [42] similarity method that use Eqn. 4
to calculate the context similarity (Simcon(Cq, Cci)) between
query context (Cq) and each candidate context (Cci).

Simcon(Cq, Cci) =
No

Nm

× cosine(Cq, Cci) (4)

Here, No is the number of tokens of the candidate context
that appear in the same order of that of query context, and
Nmatched is the number of tokens that are matched. The equa-
tion returns a score between 0 to 1, signifying the similarity
between the query and each candidate context. In our example
in Fig. 4, the candidate context of type URLResolver has
the highest context similarity score of 0.62 followed by the
candidate context of type any and ResolvedUrl.

Third, we present the query context to the previously trained
Word2Vec model. Since the Word2Vec model is learned using
the entire training dataset, we refer to this as a global model.
The model returns a score for each type that represents how
similar the type is given the query context. We pick top-k types
based on the Word2Vec score (4 in Fig. 4) and refine the list
of candidate contexts based on these types (5 in Fig. 4). In
Fig. 4, Word2Vec score of ResolvedUrl becomes the highest
followed by UrlResolver, undefined, and so on.

Fourth, we present the query context to the local model (6
in Fig. 4). By local model we mean the contexts inferred so far
within the project associated by their types. To create the local
model, we save the context and the top-1 recommendation
result after each inference as long as we remain on the
same project. If we consider that the given JavaScript snippet
in Fig. 4 is the only code in the project, then the local
model for our example will consists of the contexts of all
code elements before line 10 that are inferred so far with
their top-1 types. Contexts of local models are referred to as
candidate local contexts and the top-1 types are referred to

as candidate local types. The motivation behind considering
the local model is two-folded. First, the global model can
be biased by the types that have a very large number of
examples, such as any. The local model can help to skip
such bias by capturing the project specific similarities. Second,
the use of a local model along with a global model is found
effective in literature [15]. We calculate the context similarity
between the query context and each candidate local context
using Eqn. 4 (7 in Fig. 4). In our example, candidate local
types such as ResolvedUrl are found having the highest local
score followed by PackageRelativeUrl, FileRelativeUrl
and so on.

Finally, we sort the list of candidate types based on three
scores: Word2Vec score, context similarity score and local
score (8 in Fig. 4). Word2Vec score (Simword2vec (Tci, Cq))
dictates how similar the ith candidate type (Tci) is
with the query context (Cq). Context similarity score
(Simcon (Cq, Cci)) tells how similar the ith candidate con-
text (Cci) is with the query context (Cq) and the local context
similarity score (Simlocal (Cq, Clci)) captures the localness
tendency of the query context (Cq) with respect to the ith
local candidate context (Clci). We use the Eqn. 5 to calculate
the score of the ith candidate type (Score(Tci)):

Score(Tci) = α× Simword2vec (Tci, Cq)

+ β × Simcon (Cq, Cci)

+ γ × Simlocal (Cq, Cci)

(5)

Here, α, β and γ are the coefficients of Word2Vec, context
similarity, and local context similarity scores, respectively. The
coefficients are tuned using Hill Climbing Adaptive Learning
algorithm [43]. The sorted list of candidate types is considered
as the top-k recommendations of the proposed technique. We
calculate the precision(Prec.), recall (Rec.) and F1 score (F1)
for top-1, top-3 and top-5 recommendation for the compared
techniques, as shown in Table III.

C. Evaluation

Our proposed technique outperforms both StatType and
COSTER with a big margin, as shown in Table III. The
precision of the proposed technique for the top-1 recommen-
dation is 24.45% higher than StatType and 35.77% higher than
COSTER. The recall of the proposed technique is 20.48% and



TABLE III
PERFORMANCE COMPARISON OF STATTYPE, COSTER AND THE

PROPOSED TECHNIQUE

Algorithm Recc. Prec. Rec. F1

StatType
Top-1 28.69 25.73 27.13
Top-3 37.29 35.25 36.24
Top-5 49.36 47.28 48.30

COSTER
Top-1 17.34 12.84 14.75
Top-3 27.39 24.18 25.69
Top-5 32.61 28.41 30.37

Proposed
Technique

Top-1 53.14 46.21 49.43
Top-3 65.27 60.11 62.58
Top-5 79.24 73.51 76.27

33.37% higher than that of StatType and COSTER respec-
tively. The differences increase as we increase the number
of recommendations. In case of the precision, the difference
increases from 24.45 to 29.88% for StatType and 35.8 to
46.63% for COSTER when we increase the number of recom-
mendation from 1 to 5. Similarly recall increases from 20.48
to 26.63% for StatType and 33.37 to 45.1% for COSTER. The
differences of performances are also statistically significant.

VII. RQ3: HOW DO THE DEEP LEARNING TECHNIQUES
DEVELOPED FOR JAVASCRIPT PERFORM IN COMPARISON

WITH THE PROPOSED TECHNIQUE?

A. Motivation

Despite having promising results in different problems, prior
studies [13]–[16] show that deep learning techniques are not
always the best solution for different software engineering
problems. Two state-of-the-art deep learning-based type infer-
ence techniques are developed for JavaScript programs [11],
[12]. This section compares our proposed technique with those
two state-of-the-art techniques to understand the importance of
using deep learning techniques.

B. Approach

We collected the publicly available code base of DeepTyper4

and NL2Type5. Similar to our approach, DeepTyper collects
the code elements and their types using TypeScript compiler.
The technique then feeds them into a bidirectional recurrent
neural network to map the source language (i.e., code ele-
ments) to the target language (i.e., types) using a sequence to
sequence learning architecture. On the other hand, NL2Type
collects the JSDoc6, line comments and the formal signatures
of the functions. Since the approach has no support for the
TypeScript, we implement an interface to collect the dataset
for NL2Type using TypeScript compiler.

C. Evaluation

DeepTyper and our proposed technique can detect types of
variables, class objects, literals, function’s return types and
parameters. However, NL2Type focuses on detecting only the

4https://github.com/DeepTyper/DeepTyper
5https://github.com/sola-da/NL2Type
6https://devdocs.io/jsdoc/

function’s parameters and return type. Thus, we compare our
technique with DeepTyper for all code elements. We calculate
the precision (Prec.), recall (Rec.) and F1 score (F1). The
results of DeepTyper and our proposed technique are shown
in Table IV.

TABLE IV
PERFORMANCE COMPARISON OF DEEPTYPER AND THE PROPOSED

TECHNIQUE FOR ALL CODE ELEMENTS

Technique Recc. Prec. Rec. F1

DeepTyper
Top-1 54.21 45.29 49.35
Top-3 66.82 58.67 62.48
Top-5 80.19 68.24 73.73

Proposed
Technique

Top-1 53.14 46.21 49.43
Top-3 65.27 60.11 62.58
Top-5 79.24 73.51 76.27

As shown in Table IV, DeepTyper has higher precision than
our proposed technique. However, the difference is not much
significant, ranges between 1-1.5%. However, our technique
achieves better recall and F1 scores than the DeepTyper. The
differences become more noticeable as we increase the number
of recommendations. For example, our technique achieves
5.27% higher recall values than the DeepTyper for the top-5
recommendations. All differences are statistically significant.
We applied Choen’s d [44] to measure the effect size. We
found that the effect size is negligible (0.1) for precision.
Next, we collect the results of the function’s return type and
their parameters for the proposed technique and DeepTyper.
We compare the results with that of NL2Type.

TABLE V
PERFORMANCE COMPARISON OF DEEPTYPER, NL2TYPE AND THE
PROPOSED TECHNIQUE FOR FUNCTION’S RETURN TYPE AND THEIR

PARAMETERS

Technique Recc. Prec. Rec. F1

DeepTyper
Top-1 62.85 50.17 55.80
Top-3 75.28 61.28 67.56
Top-5 86.81 70.11 77.57

NL2Type
Top-1 63.57 52.17 57.31
Top-3 77.24 63.22 69.53
Top-5 85.22 71.28 77.63

Proposed
Technique

Top-1 61.35 55.72 58.40
Top-3 74.28 68.22 71.12
Top-5 84.83 75.81 80.07

Similar to the previous experiment, our proposed technique
lacks precision by 0.5-3% whereas achieves a better recall of
3-7% comparing with other techniques. Again, we observe
that all differences are statistically significant. However, we
observe a negligible effect size for precision.

D. Discussion

In our evaluation, we see that the proposed technique is
very competitive with the state-of-the-art deep learning-based
type inference techniques. However, deep learning techniques
require a significant amount of time and memory. Therefore,
we are interested to compare the time and memory requirement



with DeepTyper and NL2Type. We consider the time required
for extracting code tokens, training the technique and inferring
types. To compare the memory requirements, we consider two
different aspects. First, we calculate the size of models and
indexes. Second, we calculate both the random access memory
(RAM) and the video random access memory (VRAM) usages.
The time required to parse the JavaScript code into the desired
dataset is the code extraction time, time to train the neural
network or collecting Word2Vec and inverted index file is
the training time and the time to infer a code element is the
inference time. The size of the neural network or the word2vec
model is the model size, the size of the inverted index file is the
index size, and the amount of CPU memory consumed while
training is the RAM consumption and the amount of GPU
memory consumed while training is the VRAM consumption.
All the results are shown in Table VI. For fair comparison we
used the same server having 12 CPUs of Intel Xeon processor
with 2.10 GHz processing speed each, 32 GB of memory and
NVIDIA Tesla K20c with 4GB of memory.

TABLE VI
TIME AND MEMORY COMPARISON OF PROPOSED TECHNIQUE(PRO.

TECH.), DEEPTYPER AND NL2TYPE

Criteria Pro. Tech. DeepTyper NL2Type
Code Extraction time (Hr) 9.3 9.6 9.3
Training Time (Hr) 9.9 63.7 54.3
Taining Time w/o GPU (Hr) 9.9 134 103
Inference Time (ms) 7.29 12.73 10.52
Model Size (MB) 5.8 71 57.9
Index Size (MB) 42.6 - -
RAM consumed (MB) 482 1492 752
VRAM consumed (MB) - 761 398

Our proposed technique requires the lowest amount of
memory and time, as shown in Table VI. More importantly,
the proposed technique does not require any GPU support.
The compared techniques are time and memory efficient when
GPU is provided. However, the proposed technique is 5-7
times faster when all the techniques are executed with the
help of GPU and 10-14 times faster when run without GPU
in case of training. The difference in training time can have
a good impact, if a user wants to complete training on a
cloud server. For example, to complete the training in Amazon
EC2 instances7, the proposed technique will need 20-30 USD
whereas DeepTyper needs 100-150 USD based on GPU or
CPU instance, and NL2Type needs 80-120 USD. The above
results clearly show that the proposed technique is faster than
the compared techniques. In case of memory requirements,
the proposed technique takes 17-30% less memory to store
the model, 1.5 to 3 time less RAM consumption than the
compared techniques. Additionally, the proposed technique
does not require any VRAM. Thus, the proposed technique
outperforms all the compared techniques in terms of memory
requirements.

7https://aws.amazon.com/emr/pricing/

VIII. DISCUSSION

This section investigates our design decisions and provides
further insights about our proposed technique.

A. Sensitivity Analysis

The goal of this analysis is to validate different design
decisions that we make to build our proposed technique. Recall
that we consider all code elements within the top and the
bottom four lines of a code element to collect the type usage
context of that element. These include identifiers, keywords,
function calls, class objects, and operators. Our selection of
four lines is based on the fact that increasing the number of
lines beyond this point increases the execution time without
increasing the accuracy of the technique. To understand the
effect of different contexts, and similarity scores in case of the
performance of the proposed technique, we conduct a set of
studies. Our initial context, C0, contains all tokens from the top
four lines. We use Lucene search engine to index types based
on the associated contexts. To understand the effectiveness
of using the search engine and the context C0, we build a
model M0 with training examples. Given the context of a code
element as a query, we leverage Lucene to search for types
whose contexts match with the query context and to return a
ranked list of types. We build another model M1 where the
search engine uses all tokens from the top and bottom four
lines. Next, we include the context similarity score with M1

to predict the types and we refer to this model as the M2. We
then use CBOW based Word2Vec technique to build another
model, M3, to understand the importance of using the word
embedding technique. Finally, we leverage a local model with
M3 to understand the impact of using a local model. We train
and test our technique using precision, recall and F1 scores
for all of the above cases.

TABLE VII
SENSITIVITY ANALYSIS

Model Description Recc. Prec. Rec. F1

M0
C0+
Lucene

Top-1 21.43 11.86 15.27
Top-3 31.86 21.73 25.84
Top-5 42.86 30.73 35.80

M1
C1+
Lucene

Top-1 24.38 16.73 19.84
Top-3 35.72 29.77 32.47
Top-5 46.25 35.27 40.02

M2
M1+
Context Similarity

Top-1 31.83 22.51 26.37
Top-3 43.62 34.57 38.57
Top-5 53.72 40.82 46.39

M3
M2+
Word2Vec

Top-1 42.18 29.62 34.80
Top-3 64.28 42.17 50.93
Top-5 75.17 50.42 60.36

M4
M3+
Local model

Top-1 53.14 46.21 49.43
Top-3 65.27 60.11 62.58
Top-5 79.24 73.51 76.27

Considering only tokens in the top four lines and using
Lucene search engine, we obtain 21.43% of precision and
11.86% of recall for the top-1 position, respectively. Next, we
combine Lucene with tokens from the top and bottom four
lines. This helps to improve precision and recall by 2.95%
and 4.57%, respectively. The inclusion of the context similarity



score improves both precision and recall that reach to 31.83%
and 22.51%, respectively. The inclusion of the Word2Vec with
the previous model helps to obtain 42.18% precision and
29.62% recall. Finally, we obtain the best result when we
consider all sources of information and all similarity measures.
The precision and the recall reach to 53.14%, and 46.21% for
the top-1 recommendation. We also observe a similar scenario
for the top-3 and top-5 recommendations. Results from our
study show that the ranked list of types generated by only
using the Lucene search engine is not much effective. The
reason we use Lucene is to quickly find a list of types whose
usage contexts match with the query context. We employ
additional sources of information to further refine and rank
that list of types.

B. Analysis of Overlapping

We are interested in learning how different type inference
techniques complement each other. We consider DeepTyper,
NL2Type and our proposed technique for this analysis. For
this study, we consider the top-1 recommendation and we
refer to a test example as a data point. The overlapping of
correctly predicted types between DeepTyper and our proposed
technique is shown in Figure 5a. Since NL2Type only focus
on predicting the type of function’s parameters and the return
type, we use Figure 5b to show how many of the correctly
predicted types overlap between NL2Type and our proposed
technique.

(a) (b)

Fig. 5. Venn diagram showing the overlap of data points correctly predicted
by the porposed technique, DeepTyper and NL2Type.

Among all the data points that are correctly predicted by
either DeepTyper or our proposed technique, 77.2% of those
data points are common between both techniques. 11.9%
and 10.9% of those data points are by only our proposed
techniques and by DeepTyper, respectively. The percentage of
overlapping between our proposed technique and NL2Type
is 88.1% considering all the data points that are correctly
predicted by any of these two techniques. While 6.5% of those
data points are correctly predicted by our proposed technique
only, the value drops to 5.4% for NL2Type. The above findings
have two important implications. First, our proposed technique
can correctly predict types that cannot be detected by the
other two techniques, indicating the usefulness of our proposed
technique. Second, we see an opportunity to improve the

performance of type inference by combining recommendations
of DeepTyper or NL2Type with that of our proposed technique
in future.

C. Effect of the Number of Training Examples

We are interested in learning how our proposed technique
performs for types having a different number of examples in
the training dataset. We then compare the result with that of
DeepTyper. Two observations can be made from such an anal-
ysis. First, such an analysis can help us to understand whether
the competing techniques can able to predict rarely seen types.
Second, it evaluates the effectiveness of the techniques for
frequently occurred types. To do the analysis, we divide the
test cases into two groups: (a) cases belong to any type and
(b) cases belong to the remaining 2,666 types. We separate the
test cases of any types because it is very dominant (46.62%) in
the dataset. Next, we divide the test cases in the other group
into five sub-groups based on the usage frequency of those
types in the dataset. We refer to the first group as the very
unpopular types (VU). The usage frequency of the types in
this group is no more than 5% of the total examples. The
types whose usage frequency ranges between 6-25% fall under
the unpopular types (UP). The usage frequency of the next
two groups ranges between 26-50% and 51-75%. They are
referred to as the popular (P) and very popular types (VP),
respectively. The last group is called the extremely popular
types (EP) whose usage frequency ranges between 76-100%.
We report the performance of our proposed technique across
these five groups of types and we compare the result with
that of DeepTyper. We discard NL2Type from this analysis
because the technique cannot infer all types that are detected
by DeepTyper or by our proposed technique. Thus, no fair
comparison can be made possible.

TABLE VIII
EFFECT OF NUMBER OF TRAINING EXAMPLES

Type (% of data) DeepTyper Proposed Technqiue
Prec. Rec. F1 Prec. Rec. F1

any (46.62%) 63.24 51.27 56.63 62.75 58.29 60.44
VU (1-5)% 18.43 9.43 12.48 24.83 18.62 21.28
UP (6-25)% 22.19 11.49 15.14 29.17 22.43 25.36
P (26-50)% 26.14 14.23 18.43 32.18 25.73 28.60
VP (51-75)% 44.76 30.75 36.46 43.35 36.82 39.82
EP (76-100)% 69.95 56.18 62.31 67.42 61.82 64.50

The recall of our proposed technique is higher than the
DeepTyper for all different groups of types by 5-12%, as
shown in Table VIII. Our proposed technique has lower pre-
cision in the case of any, very popular and extremely popular
types. However, the differences are very small, ranges between
0.5-2.5%. On the contrary, our proposed technique has 6.40%,
6.98%, and 6.04% higher precision than DeepTyper for the
very unpopular, popular and less popular types, respectively.

D. Limitations

This section discusses the limitations of our proposed tech-
nique.



First, the TypeScript compiler returns any type if it cannot
bind the type properly. We observe in some cases our tech-
nique disagrees with the compiler by returning types other than
the any. However the type returned from our technique in some
of these cases found to be more appropriate. For example, the
TypeScript compiler returns any as the type of the code token
isValidPrivKey (see line 2) as shown in Fig. 6 whereas our
technique finds it as a function that returns a boolean value.

Fig. 6. An example where TypeScript compiler extract wrong type.

Second, 2.4% of functions in our dataset contain only one
line of code. Our technique fails to detect types of code
elements in those cases because those code elements have very
little or no prior context to collect. For example, the proposed
technique fails to infer the types of arr and i as shown in
Fig. 7. One possible solution is to consider the documentation
in those cases to address such issues. However, such cases are
not very common.

Fig. 7. An example where the proposed technique failed to infer types.

IX. KEY FINDINGS

In our study, we find the following key findings that might
motive future research on type inference.

(a) Type inference techniques may not generalize across
different programming languages: In our RQ1, we found
that the type inference techniques developed for Java per-
formed poorly for the JavaScript language. This mostly con-
tributed by the differences in programming language struc-
tures. JavaScript methods tend to be small in size and develop-
ers typically use short names for identifiers compared to that of
Java. Furthermore, the any type is more popular is JavaScript
than any other types. Such an imbalance in type usages makes
it difficult to infer types in JavaScript. Thus, future research
should consider evaluating type inference techniques across
different programming languages to achieve generalizability.

(b) Understanding the differences between program-
ming languages needs a priority: While analyzing the
result in RQ1, we found several differences between Java
and JavaScript languages that affect the performance of type
inference techniques. Thus, it is important to understand
the differences between programming languages so that tool
developers can make informed decisions. While COSTER was
unable to find a global context in JavaScript code snippets
due to the short method length, that was not the case for the
local context. Such an understanding helped us to decide what
needs to be changed to address the limitations of COSTER.

Thus, future research should focus more on understanding how
programming languages are different from each other.

(c) Applications of deep learning techniques need to be
carefully justified: Prior studies [13]–[16] show that deep
learning techniques may not be the best choice for software
engineering problems. Our study also support their findings.
The deep neural network can find a nonlinear relation between
the data. However, such a relationship may not always exist
in the data. Furthermore, deep learning techniques are com-
putationally more expensive than traditional machine learning
techniques. It is thus important to apply alternative techniques
first to justify the need for deep learning techniques. Future
research should explain the need for deep learning techniques
for the problem first.

X. THREATS TO VALIDITY

This section discusses threats to the validity of this study.
First, the dataset we used in this study is created by

collecting JavaScript projects from GitHub. One can argue
that our findings may not generalize to a different dataset.
However, we would like to point to the fact that we considered
a large number of projects in our study. All these projects are
active in the development and have a long development history.
Thus, our results should largely carry forward.

Second, we choose the Word2Vec algorithm to determine
embedding of code tokens and the cosine similarity as the
string similarity measure. Other word embedding techniques or
string similarity measures can give different results. However,
we obtained the best results using the Word2Vec algorithm
and the cosine similarity measure.

Third, we re-implemented StatType and COSTER to work
with JavaScript code snippets. While we cannot guarantee that
our implementation do not contain any errors, we took great
care to avoid such errors.

XI. CONCLUSION

This paper explores different aspects of type inference tasks
for the dynamically typed programming languages, such as
JavaScript. We evaluate two state-of-the-art type inference
techniques developed for the statically typed programming
language (i.e., Java) to understand the effectiveness of those
techniques to detect types in JavaScript code. Results from
our analysis show that they could not infer more than 50%
code elements accurately for top-5 recommendations. Next,
we try to capture the localness property of JavaScript code and
propose a technique based on the same principle. The results of
the proposed technique are found 20-47% more accurate than
the statically typed language based type inference techniques.
Finally, we compare the proposed technique with state-of-
the-art deep learning techniques developed for inferring types
in JavaScript code. We find that our proposed technique is
5-14 times faster than the deep learning techniques without
sacrificing accuracy. We also achieve higher recall than deep
learning type inference techniques.

Acknowledgments: This research is supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).



REFERENCES

[1] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: quantifying
detectable bugs in javascript,” in Proceedings of the 39th International
Conference on Software Engineering, 2017, pp. 758–769.

[2] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik,
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