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Abstract—The domain of plant genotyping and phenotyping
presents a number of challenges in the area of large data com-
putation. Various tools and systems have been developed to au-
tomate the scientific workflows and support the computational
needs of this domain. In this paper, we review a number of the
popular systems (i.e., Galaxy, iPlant, GenAp and LemnaTec)
in the domain of plant genotyping and phenotyping using
the scenario-based architectural analysis method (SAAM). In
particular, we focus on how different stakeholders are using
these systems in a variety of scenarios and to what extent
the systems support their needs. Our SAAM analysis shows
that the existing systems have shortcomings. For example, they
are limited in their support for high throughput processing
of large amounts of heterogeneous types of data. Based on
our findings we propose a reference architecture along with a
preliminary evaluation in the subject domain. The reference
architecture and its evaluation is aimed at helping develop-
ers/architects create suitable architectural designs and select
appropriate technologies when developing plant phenotyping
and genotyping systems.

Keywords-Heterogeneous data; genotype; phenotype; soft-
ware architecture; SAAM

I. INTRODUCTION

Plant genotyping and phenotyping (PGP) are important

for ensuring global food security. Plant genotyping and

image-based plant phenotyping involves the generation and

management of large amounts of data [11]. Genotyping

involves the generation of DNA sequencing applying different

methods (such as next generation sequencing) resulting

in a huge volume of data from around the globe. Plant

phenotyping is the appraisal of complex plant traits includ-

ing growth, development, tolerance, resistance, architecture,

physiology, ecology, yield and the basic measurement of

individual quantitative parameters that form the basis for

the more complex traits. Plant genotype and phenotype

analyses involve numerous steps including physical plant

sample collections, data curation, data conversion into

different steps for generating users’ expected end results,

and making analysis results available to researchers and

practitioners if needed. There are a number of challenges

involved in automating the process of plant genotyping

and phenotyping, e.g. reproducibility of experiments, high

throughput processing of large amounts of data in various

formats (e.g. structured, semi-structured and unstructured),

identification of appropriate meta-data for the diverse uses of

the data, collecting, abstracting, and loading data into easily

accessible structures. Fortunately, several frameworks such

as Galaxy [17], GenAp [21], iPlant Collaborative (or iPlant)

[27], and LemnaTec [2] are already available to tackle many

of the challenges. These technologies also attempt to tackle

other problems, such as security, workflow management and

accessibility of public datasets.

In this paper, we investigate and analyze the architectures

of the candidate frameworks by combining a reverse engi-

neering process (using various tools and manual analysis) and

SAAM [19], a scenario-based architecture analysis method.

Both software architectures and scenarios are important tools

for understanding a system’s behaviour. In our investigation,

we attempt to understand the four candidate frameworks

and determine their strengths and weaknesses by doing a

comparison analysis with a set of scenarios using SAAM.

We realized that there are three high-level requirements

such as scalability, reusability and composability should

be satisfied by a PGP system. In order to address these

three requirements the PGP system should support (i) a data-

centric model [7] capable of handling large and heterogenous

data with support for high throughput data processing, (ii) a

software component model [23] supporting loosely coupled

interactions among different independent components of the

system via message queuing, and (iii) an infrastructure model

[5] defining services of the system across various machines

in the cloud. However, our SAAM analysis reveals that

none of the candidate architectures fully support these three

models. For example, GenAp only partially supports the

data-centric model and the infrastructure model, services of

Galaxy are not separated into independent modules that are

easily replaceable and pluggable without redeploying the

entire system, and core subsystems of iPlant run on different

machines that causes performance degradation. Consequently,

the candidate systems are not flexible enough to support some

advanced features necessary for plant phenotyping, such as

high-throughput image analysis, geo-spatial data analysis,

scientific and intelligent workflow management, and virtual

plant modeling and simulation.

Realizing the shortcomings of the candidate architectures,

we provide design recommendations in the form of a refer-

ence architecture that supports a wide range of requirements

for the scientific research community of plant genotyping and

phenotyping. Our conceptual architecture is a combination of

the three models discussed above. These models are adopted
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from recent paradigms [5, 7, 14, 15, 23, 25] of designing

cloud-based massive data computation systems. To the best of

our knowledge no cloud-based reference architecture exists in

the subject domain that can handle the data centric, software

component and infrastructure models.

Along with discovering the capabilities of the candidate

frameworks, we also discuss our experience with SAAM. For

example, while applying SAAM to four different architectures

supporting similar functionalities, we realized that when

SAAM is applied to pre-built systems, product analysis is a

particularly important step. It increases an evaluation team’s

insights and understanding of the systems.

In short, there are four major contributions of the paper:

• Scenario based architectural analysis of four popular

systems for plant genotyping and phenotyping

• Product analysis identified as an important/explicit step

in SAAM

• The design of a conceptual reference architecture

• A proof of concept subsystem implementation based on

the reference architecture

II. RELATED WORK

Software architectural evaluation provides assurance to

developers that their chosen architecture will meet both

functional and non-functional quality requirements [31].

There have been different architectural evaluation methods

proposed [13, 30] including surveys and comparison frame-

works [10, 22, 31]. Among the different methods, SAAM

as proposed by Kazman et al. [19], is one of the most used

methods. SAAM has been applied to numerous case studies:

global information systems, air traffic control, and so on

[4, 13]. SAAM identified different design problems in these

systems and provided guidelines for fixing them.

In general, architectural evaluation is a central element

during the entire software life cycle [28] and has been used

for identifying architecturally significant requirements [9],

for analyzing and evaluating architectures [13], for managing

architectural knowledge [8], for architecture documentation

[16], for architecture design [31], and for checking architec-

ture/implementation conformance [32]. There is also recent

work that use architectural evaluation methods for improving

software product line management [28], for ensuring security

of a software system [20], understanding sustainability

of software architecture [22], and even early architecture

evaluation for large-scale distributed systems [35]. Given that

genotyping and phenotyping domains deal with terabytes of

data, the architectures of the frameworks in these domains

should be evaluated whether they meet not only the relevant

quality attributes but also the challenges of Big Data and the

specific requirements of the problem domain.

Unfortunately, to the best of our knowledge, there are

no studies that evaluate the architectures or model a

common reference architecture of Big Data frameworks

in the subject domain. However, in recent years, studies

of some advanced reference architectures for other cross-

domain systems that handle mixed and large data are

available [5, 6, 7, 14, 15, 23, 25, 29]. Highlights of these

studies include standardizing on a data-centric model, an

infrastructure model, and a software-component model that

can adapt to the challenges of mixed data computation. We

adopted them to introduce a common reference architecture

for a cloud-based plant genotyping and phenotyping analysis

system (CGPAS). Undoubtedly, these systems work on large

and mixed data for diverse and varied sets of use cases.

Demchenko et al. [14] discuss a number of aspects of why a

data-centric model is necessary. Paakkonen et al. [29] define

some reference architectures partially based on a data-centric

model. Recently, Apache Beam (Google DataFlow) [7] has

been developed based on a strict data model for processing

massive-scale, unbounded, out-of-order data on the cloud.

Some studies [14, 23, 29] propose new reference architectures

for modular systems. We also include components to deal

with the data interface, virtual plant modeling, and generic,

semi-generic and customizable plugins integration on-the-

fly. It is also necessary to describe a cloud infrastructure

that fulfills the diverse requirements within the reference

architecture. We adopt a heterogeneous cloud infrastructure

[5, 15, 25, 26] for our conceptual architecture. Our analysis

study is helpful for illustrating the challenges of developing

a phenotyping system that handles Big Data, and developers

will be able to implement such a system in a more advanced

way by being more aware of the challenges.

III. ANALYSIS METHODOLOGY

We adapted the architectural evaluation methodologies

proposed by Kazman et al. [18, 19] and Roy et al [30]

to evaluate the state-of-the-art platforms for genotyping and

phenotyping. Our methodology combines different techniques

in order to find out differences among the candidate platforms’

architectures, including reverse engineering their software

architectures, and scenario-based architectural and dynamic

analysis. Reverse engineering software architectures [12, 34]

alone does not provide a deep understanding of architectures.

If the extracted architectures are refined with evaluation

methods, they become more understandable to developers

or architects [30]. Keeping this in mind, we extracted

architectures of the candidate frameworks using tools and

evaluated them using SAAM [19].

Steps of our developed methodology for evaluating candi-

date architectures is described as follows

Step 1. Product Analysis: In this step, we studied the

candidate frameworks by using their executables, source

code, online documentation, videos, asking questions of the

product developers, and presenting and demonstrating them to

various practitioners. As an outcome of the step, we devised a

question answer table to guide the comparative analysis of the

candidate products as shown in Table I. This table is helpful

to learn about the products and their important differences
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Table I
SOME IMPORTANT PROPERTIES OF THE CANDIDATE FRAMEWORKS

# Property Text Galaxy iPlant GenAp LemnaTec
1 What cloud API is used for allocating virtual resources? CloudMan Atmosphere Galaxy Cluster Scanalyzer3D
2 What is the name of the cloud service provider? Amazon Ec2 Atmosphere Server Canada HPC SUSE Linux
3 Does it provide Phenotype image analysis/ storage tools? No Yes, Bisque No Yes
4 Does it offer third party API support? Yes, BioBlend Agave API MUGQIC -
5 What kind of scheduling algorithm is used? SLRUM HTcondor PBS scheduler -
6 What is the underlying database? SQLite MongoDB Spark SQL SQLite
7 How large data files are stored? No BigData yet HPI-Cluster (IROD,FUSE) CVMFS LemnaBase
8 How meta data is stored? Simple XML Sematic Web(iRODS) ADAM(R) CSV/SQL
9 Does it support scientific workflow? Yes Yes (Taverna engine) Yes Yes
10 Access provided to publicly available datasets/analysis? Yes Yes Yes Yes
11 Does it support MapReduce for distributed computing? No No Yes with pipeline No
12 Does it support applications through web portals? Yes Yes Yes No
13 Does it fully dependent on third party developers? Yes No Yes No
14 What kind of visualization tools it offers? IGV+UCSC+IGB+ CoGe Same as Galaxy LemnaMiner
15 Does it support independent 3rd party tool integration? Cmd Line App Cmd Line App Cmd Line App No
16 Does it support role based security management? Admin Panel Admin Panel Admin Panel No

quickly. The SAAM authors, Kazman et al. [18] used this

step in their architectural analysis implicitly. In this paper,

we make this step explicit in our proposed methodology. Our

understanding is that when SAAM is applied to an already

implemented system, it is an effective step to execute during

the architectural analysis. Moreover, this step is also helpful

for developing various usage scenarios.

Step 2. Candidate Architecture Extraction: In this step,

we extracted the architectures of candidate frameworks using

various tools such as PyDev, PyCharm, ObjectAid and Eclipse

since most of the tools are Python based. These tools generate

UML class diagrams based on the class relationship within

each module. However, class diagrams alone are not enough

to extract an architecture since it contains other scripts (such

as Linux shell scripts). Therefore, we also manually analyzed

the source code ourselves to mine crucial attributes and

used the built-in Python script ModuleGraph to identify

dependencies among different source code modules. Finally,

we obtained UML activity diagrams based on our analysis.

Step 3. Scenario Development: In this step, we elicited

scenarios. Each scenario is a representation of a particular

quality attribute and expresses tasks illustrating the kinds

of activities the system must support and the kinds of

anticipated changes to be made to the system over time.

These scenarios represent tasks relevant to different roles

such as end user/customer, marketing, system administrator,

maintainer and developer.

Step 4. Individual Scenario Evaluation: For each sce-

nario, we determine if it is direct or indirect. A direct scenario

describes behaviour that can be supported without any modi-

fication in the system whereas an indirect scenario describes

behaviour that is not supported by the system. In order to

support an indirect scenario, the system must undergo some

changes. We discuss changes that are required in different

modules/components of candidate systems to support the

elicited indirect scenarios. This allows to understand the

interactions between different modules of the systems.

Step 5. Candidate Architecture Comparison: In this

step, we compare different architectures by identifying their

outstanding properties along with their other strengths and

weaknesses.

IV. PRODUCT ANALYSIS

In this step we first explore the features of the candidate

frameworks. Our first candidate system, Galaxy, provides

support for biomedical research. One of the important

features of Galaxy is that it has History and Workflow

options which are unique to Galaxy compared to the other

tools. As well, Galaxy is recently able to be hosted in

a cloud environment, which helps a user use it through

the web. The second candidate system, GenAp [21] tried

to design a more interactive database analysis framework

over Galaxy. GenAp is a replication of Galaxy, but has a

datahub management pipeline and individual server instance

creating facilities. For dedicated plant phenotyping, potential

candidate frameworks include: iPlant [27], and LemnaTec

[2]. iPlant supports a number of applications related to

plant phenotyping. In addition, iPlant facilitates flexible app

creation, image annotation, Google map service for the image,

and HPC options, which are unique to iPlant. LemnaTec is

a desktop application which provides unique options for

non-invasive plant data collection and life cycle observation

of plant through imaging. This framework fails to provide

support for collaborative research as it is a standalone desktop

application.

As part of the product analysis step we did some dynamic

analysis to learn the products’ features and performance. For

example, for evaluating scenario S10 (Table II), we consider

the use case Import data from 3rd party tool and convert the
imported file into different format. For Galaxy and GenAp,

we imported a BED format genome file from the NCBI

database and converted it into BAM format. Although all of

them took < 2 minutes, Galaxy is faster than both iPlant

and GenAp. However, GenAp is faster than iPlant.
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Table II
SCENARIO-BASED COMPARISON OF THE CANDIDATE FRAMEWORKS

Properties # Scenarios Galaxy iPlant GenAp LemnaTec

Usability

S1 A biologist or clinician wants to explore
their data using tools available in the
web-based platform.

Direct, well structured Direct, well structured Direct, updated
and well struc-
tured

Mainly
desktop

S2 A computational biologist wants to use
state-of-the-art pipelines to analyze their
data without the burden of installing
and maintaining all of the associated
bioinformatics tools.

Direct, well structured Direct, well structured Complex initial
setup

Complex

S3 A sequencing centre pushes raw data into
a Web based project created by a user
to facilitate data access and analysis.

Indirect; Client, Scripts
and Lib need to be
changed

Indirect; Services,
Atmosphere, Models
need to be updated

Partial support;
use unified data
interface

Limited,
not web

S4 A computational agriculturist wants to
annotate an image (leaf, root) with paint
and brush (if possible), and also wants
to save and update the annotation.

Indirect; Client, Tools,
Scripts and Lib need to
be updated

Direct, Well structured No tools found Support

Flexibility

S5 A developer wants to plug-in his image
analysis tool or pipeline for doing image
analysis, registration and segmentation.

Indirect; Config, Cron,
Tools and Scripts need
to be updated

Direct Less supportive,
difficult to inte-
grate

Difficult

S6 A developer wants to upload an inter-
mediate processed work flow data in the
system for further analysis.

Direct, updated and well
structured

Direct but needs to
be improved, not user
friendly

Direct, updated
and well struc-
tured

Not sup-
ported

S7 A computational biologist wants to add
a new RNA analysis tool HISAT in the
existing system.

Direct but not well struc-
tured

Direct and user
friendly

Direct but not
well structured

Not sup-
ported

S8 A phenotypic researcher wants to work
with a visual map interface to automati-
cally extract environmental information
(weather, soil info, landscape etc.) of a
certain region and integrate it with plant
traits analysis.

Indirect, Client, Config,
Lib and Scripts need to
be changed

Indirect, input param-
eter list needs to be
updated for Migration
and Model compo-
nents

Not supported
yet

Not sup-
ported
yet

Security S9 A user wants to share data from a project
with another scientist to do joint data
processing and exploration.

Secured Secured Secured Not
secured

Performance S10 A computational agriculturist wants to
convert a 8.6MB BAM file to a BED file
for visualization.

Fastest, 23 sec. Slower than Galaxy
and GenAp, 73 sec.

Slower than
Galaxy, 47 sec.

–

Modifiability S11 Get an update after execution of each
of the steps of a workflow or image
processing pipeline.

Indirect; Need to modify
Client, Config, Lib and
Workflow design

Indirect; Models and
Core functionality
need to be updated

Source Code
not analyzed

Not sup-
ported
yet

S12 A user wants to modify any part of code
base of an available workflow and wants
to save it in his private history as a new
version of the workflow.

Not Available; Need to
modify Config, Lib and
Workflow design

Not available; Models,
Core and Service de-
sign needs to change

Not available Not
available

We also developed a question answer framework (shown

in Table I) to summarize important features. The table helps

us to quickly determine important differences between the

candidate frameworks and helps us in our scenario-based

architectural analysis described in Section VI.

V. SCENARIO DEVELOPMENT

As discussed in Section III, we carefully selected 12

scenarios (shown in the third column of Table II). We selected

the scenarios based on our product analyses and discussions

with various bio-computation researchers, agriculturists and

image processing researchers who work with the agriculture

group at U of S. We also collected a few scenarios from

the GenAp website. These scenarios show important usages

of the system while reflecting various quality attributes

(e.g., usability, flexibility, security and performance) as

required by different stakeholders, such as computational

agriculturists, computational biologists and developers. For

example, scenario [S2:] A computational biologist wants to
use state-of-the-art pipelines to analyze their data without
the burden of installing and maintaining all of the associated
bioinformatics tools expresses a usability requirement of the

system for data analysis by a computer biologist. Additionally,

the scenario [S7:] A computational biologist wants to add
a new RNA analysis tool HISAT in the existing system is a

flexibility requirement of software developers.

VI. EXTRACTED CANDIDATE ARCHITECTURES AND

SCENARIO-BASED ANALYSIS

In this section, we briefly describe our extracted architec-

tures of the frameworks that handle plant genotyping and

phenotyping along with our scenario-based evaluation.
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Figure 1. Galaxy Cloud Architecture

A. Galaxy

The Galaxy [17] architecture consists of reusable software

components as shown in Figure 1 (extracted following

Section III, Step 2). Galaxy infrastructure is developed using

the Model View Controller pattern1 as shown in Figure 1.

The Model is responsible for adding and retrieving items

from the relational database SQLite. Data entities handling

workflow, datasets, and history are mapped on to SQLite

database tables. There is a controller for each of the main

entities handling workflow, histories and datasets. One of

the important controllers is the API enriched with libraries

for various programming languages helping the developers

in building different applications and tools in the Galaxy

platform, e.g., BioBlend [33] is developed using the Galaxy

API. The Job Manager is responsible for executing jobs with

allocation of resources and keeping track of jobs by adding

sequence number whereas the ToolBox collects and manages

all types of tools in a language independent manner using

the tool conf.xml registry file. In addition, Galaxy allows

third party visualization tools as plug-ins.

1) Individual Scenario Evaluation of Galaxy Architecture:
In this step (discussed in Section III), we executed the

scenarios onto the extracted Galaxy architectural artefacts

including the conceptual architecture (Figure 1) and on

derived UML diagrams (e.g. Figure 2). From different

scenarios discussed in Table II we noticed that scenarios

S1, S2, S6, S7 and S10 are directly supported by the Galaxy

architecture. The rest of the scenarios (such as S3, S4, S8,

S11 and S12) are indirect scenarios that are not supported

by Galaxy but can be integrated or updated with the present

architecture by modifying the system. The changes that

are required to support those scenarios with the present

architecture are stated in Table II.

For scenario S3, our study shows that Galaxy does not yet

support processing of heterogeneous data. It mainly works on

a processed dataset which is already collected and manually

inserted in a SQLite database without having a unified data

1http://www.laputan.org/pub/papers/POSA-MVC.pdf

input mechanism. To add this feature, it would be necessary

to change Galaxy’s Client, Scripts and Lib modules. Or a

wrapper can be added to support a Unified Data Interface in

the Galaxy architecture. One of our candidate architectures,

GenAp, which incorporated their architecture with the Galaxy

public instance, already added this feature in their work.

Similarly, S4, which pertains to image processing be-

haviour is also not available in Galaxy. Galaxy is mainly

focused on searching for data in a flat file database (SQLite)

with a user friendly query. Galaxy developers focused

on manually extracted (by a researcher or a biologist)

genotype and phenotype information from different genes

and chromosomes. Thus, they did not focus much on the

image processing pipelines or analysis. But Galaxy supports

different options to adapt this behaviour. First, Galaxy

developers need to build a tool to support the functionality

of S4. Then they can add the tool to Galaxy’s Toolshed

or, like other available tools, they can integrate the tool in

their web version by changing the Galaxy Client, Scripts

and Lib modules. Or they can provide direct web-based

support for this scenario. S5 relates to the integration of

image processing pipelines and as with S4, the main Galaxy

instance would need to be modified. Galaxy’s Config, Cron

and Tools modules need to be changed. As Galaxy is an

open source project, a group of developers have developed

BioMina [1] based on Galaxy to support image analysis. But

they do not do image registration or segmentation which is

required for phenotyping analysis.

S6 focuses on workflow management and by analyzing

the source code of Galaxy, we noticed that its workflow

management system is well-structured and intelligent. S11

and S12 also deal with workflow or the image processing

pipeline. For S11, in Galaxy, all the submitted tasks and jobs

of a user developed workflow run as a background process

and the user gets an update only once the whole process

executes or fails. If it fails, Galaxy provides logs, which

is not particularly user friendly. To make it more usable, it

would be good to inform the user after execution of each

step as a flash message or as a notification. To provide this

feature Galaxy’s Client and Workflow code design needs to

be updated. For scenario S12, from our study, it is observed

that sometimes a researcher or a biologist needs to modify

steps or the number of time a tool is executed in an existing

fully developed workflow. To add this flexibility, Galaxy’s

workflow architecture and code should be updated.

In order to determine the coupling among different

components in Galaxy, we worked on the direct scenario

S7 where we look into how a tool can be added to Galaxy.

Basically, the same approaches discussed for S4 is needed

to add the tool. From the activity diagram of Figure 2 we

notice that tool integration involves many actions, such as

tool shed configuration, data, datatype and metadata handling

and loading utility library for tools from the toolbox. Each

of the actions interact with the various modules shown in

45



Figure 2. Activity diagram for tool integration in Galaxy.

Figure 3. Component interaction diagram for tool integration in Galaxy

Figure 3. For this scenario, it is clear that the Galaxy system

interchanges execution flow with numerous components, and

hence, we conclude it is a tightly coupled system.

S8 describes important parameters for phenotyping re-

search and analysis. Although Galaxy has a phenotype

association tool available, it does not support weather, climate

or soil information for phenotyping analysis. To support this,

Tools, Lib and Client modules, especially in the phenotyping

association tool, need to be updated.

In summary, our architectural analysis reveals that Galaxy’s

underlying architecture is modularized. The modules in

the architecture are tightly coupled as different modules

interact with each other in order to execute a scenario while

maintaining moderate separation of concerns. The public

instance of Galaxy does not support image-based phenotyping

as it does not offer an image processing pipeline. This can

be added through Toolbox with source code modification as

discussed above. However, we have noticed that the image

processing pipeline has been added in one of the galaxy

servers, called Image Analysis and Processing Toolkit1. At

present, one of the Galaxy instances, called BioMina [1]

supports image analysis.

1http://cloudimaging.net.au

Figure 4. iPlant Collaborative architecture

B. iPlant Collaborative

The iPlant [27] architecture is a combination of indepen-

dent applications as shown in Figure 4 and discussed below.

Atmosphere is a cloud service that allows users to launch

their own virtual machines, whereas Discovery Environment

(DE) is the primary web interface and platform to access

the powerful computing, storage, and analysis application

resources. DNA Subway makes high-level genome analysis

broadly available to students and educators, and Bisque is

the image analysis tool [24]. This platform provides links

to different scientific APIs, and users can go to a link to

access an API. For job scheduling, HTcondor is used and

for creating cloud VM machines, OpenStack is used. iPlant

has two approaches for storing data: a central database for

smaller datasets for meta data and some private datasets; and,

IRODS for storing images.

1) Individual Scenario Evaluation of iPlant Architecture:
For iPlant, scenarios S1, S2, S4, S5, S6 and S7 are directly

supported whereas the others are not without the architecture

being added to or updated (see Table II for details).

For S3, as of Galaxy, iPlant does not support raw data

input directly. IPlant developers work on a processed dataset.

To support S3, the source code of the Atmosphere, Models

and Services modules need to be changed. Moreover the DE

source code needs to be redesigned.

Scenarios S6 and S7 focus on the workflow management

and the tool integration process respectively. Workflow

and tools integration for iPlant are implemented in DE,

a Java project. We use a free tool ObjectAid to extract

class dependency diagrams then manually draw the module

interaction diagram (Figure 6) from the activity diagram

(Figure 5). DE uses Google GIN API for handling some

critical actions of app handling such as building and executing

an app. The interaction diagram in Figure 6 only presents

some abstract modules, but at the source code level each

of the modules has numerous sub-packages. However, from

the source code analysis and class dependency diagram we

did not find any reference class or package for workflow. It

appears that the workflow is implemented in an app (there
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Figure 5. Activity diagram for tool integration in iPlant DE

Figure 6. Interaction of components for tool integration in iPlant

is an option in DE for creating an app like workflow), and

there is no special module for workflow handling. A user

can upload a working workflow or create it inside the DE.

After careful observation of the architecture and source

code, we noticed that the DE of iPlant has complex module in-

teraction, thus imposing heavy coupling (it is even hard to find

the reference code for the workflow implementation). Apart

from this, iPlant uses third party APIs for managing tools and

apps. From our source code analysis of DE, Atmosphere and

Bisque, we observe that there is little interaction among these

components. Although this is convenient as a loosely coupled

system, they were developed with different technologies

which makes it more difficult for a developer to modify source

code and add new functionality. Besides, various application

servers need to be deployed for various technologies. There is

no separate module for workflow management which violates

the separation of concerns principle of system design.

C. GenAp

GenAp [21] integrates its whole system with one of the

Galaxy instances which is locally maintained with a focus on

Big Data handling. GenAp offers its own MUGQIC pipeline

tools which does not require any command-line knowledge.

For each project creation, they communicate with Galaxy over

HTTP which is a performance issue for GenAp. As discussed

in Section IV, our dynamic analysis reveals that GenAp

is much slower than other frameworks. They developed a

central database for storing smaller files and indexing data.

At the same time, GenAp communicates with an open source

Figure 7. GenAp architecture

Figure 8. Activity diagram of Illumina pipeline service

database for reference data. Their own large size files are

stored in a different large size database, and CVMFS is used

for managing their file system. Comparatively, it is an easy

architecture but is fully dependent on 3rd party developers1.

1) Individual Scenario Evaluation of GenAp Architecture:
The majority of the GenAp source code is based on the

Galaxy project, and workflow and tool integration are similar

to Galaxy. Therefore, most of the scenarios are similar

to Galaxy. However, GenAp has an additional data hub

pipeline MUGQIC. So for scenario S2 (details in Table II),

we evaluated the Illumina pipeline processing for workflow

execution. By following similar steps for Galaxy and iPlant,

we obtained an activity diagram for scenario S2 (Figure 8).

Running Illumina pipelines involves a number of actions

such as generating index files, fastaq conversion, metrics

calculation, and even blast tool execution. In summary, from

our source code analysis and the activity diagram analysis

of Illumina processing, we noticed that every step of all

the pipelines are executed through a job scheduler, therefore

the GenAp DataHub pipeline can be considered a loosely

coupled system. As GenAp is based on Galaxy, it also does

not support a message queuing architecture.

D. LemnaTec Software

LemnaTec OS [2] is a well-known plant phenotyping

system in the world. An integrated set of modules provides

1https://bitbucket.org/mugqic/mugqic pipelines/src
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Figure 9. LemnaTec image analysis base plant phenotyping architecture

rich functionality to control any hardware configuration and

then record and analyze the resulting sets of data. LemnaTec’s

modular architecture is shown in Figure 9.

1) Scenario-based analysis of LemnaTec Architecture:
As LemnaTec is commercial desktop software, its source

code is not available, so we studied their documentation

and explored only LemnaShare features and extracted the

abstract architectural view. Like other analysis, we tried to

evaluate the LemnaTec architecture based on our 12 scenarios

(mostly provided by the LemnaTec development team) which

is discussed in Table II.

VII. COMPARISON OF CANDIDATE ARCHITECTURES

We compared the four candidate architectures based on our

individual scenario evaluation and dynamic analysis findings.

Our comparison result is shown in Table II, along with a

mapping of the scenarios to different quality attributes, such

as usability, flexibility, security and performance. A summary

comparison with a number of advanced features are shown in

Table III. From the tables, we see that iPlant supports most of

the scenarios, except scenarios S3, S8, S11 and S12, whereas

Galaxy, GenAp and LemnaTec do not have support for many

scenarios. If we consider S3 and all kinds of data interchange

operations, none have fully supportive components. We

found that GenAp supports a heterogeneous and open cloud

infrastructure module for data-read write operations from

a user’s data-machine (distributed storage too); others do

not. For the performance scenario S10, we noticed that

Galaxy and iPlant are much faster than GenAp since GenAp

communicates with the Galaxy server via an HTTP request.

In addition, during our scenario analysis, we revealed that in

all the four candidate architectures, components are tightly

coupled as none of the architectures support message queuing

for component interactions. Also none of the architectures

support image bundling or grouping using MapReduce

technology for high performance. Moreover, for scenario

S4, we found that Galaxy and GenAp do not provide image

analysis pipelines to measure plant leaf growth, whereas

iPlant and LemnaTec do support this behaviour.

We were unable to identify a defined data flow model

interface or message queuing module at the architecture level

for any of the candidate architectures. However, all had com-

ponents to support a mixed data model, and an infrastructure

as service module (although Galaxy has a complex structure).

Table III
SUMMARY ARCHITECTURE COMPARISON W.R.T. ADVANCED FEATURES

Tools UDI MDM DFM MRDM MQM PIM HIOM ISM
GenAp ∼ ∼ � ⊕ � � ∼ ⊕
Galaxy ∼ ∼ � � � ∼ � ∼
iPlant ∼ ⊕ � � � � � ⊕

UDI - Unified data interface, MDM - Mixed data model
DFM- Data flow model component, MRDM- Map reduce module

MQM - Message Queuing module, PIM - Plugin integration module
HIOM - Heterogeneous and open cloud infrastructure module

ISM - Infrastructure as service module.
⊕ - Full, ∼ - Variant/partial, � - Doesn’t exist or not found

Nonetheless, some other advanced components presented in

Table III are not included in the architecture of all these

tools. Therefore, this analysis led us to define a common

architecture for advanced cloud-based plant phenotype and

genotype systems.

VIII. A CONCEPTUAL REFERENCE ARCHITECTURE

A cloud-based system facilitates reproducible science by

sharing datasets and high-throughput processing pipelines

with collaborators in the domain of genotype and phenotype

analysis. Galaxy, iPlant, GenAp and LemnaTec are the most

widely used systems for the subject domain. An off-the-shelf

reference architecture would be valuable for a variety of

stakeholders, including eScience developers, and researchers

involved with plant genotyping and phenotyping systems.

Unfortunately, no common reference architecture (RA) is

available that can serve as a design guideline considering

the wide-spread support of cloud-based genotyping and

phenotyping analysis (CGPA). As a result, we extracted the

design architectures of these systems using SAAM evaluation

techniques based on some use-cases and scenarios described

in previous sections. Adapting those use-cases, scenarios

and requirements of the P2IRC project of University of

Saskatchewan [3] we propose a conceptual RA. An RA can

be of two [29] types: (i) High Level, and (ii) Subset of

System Functionality Level. Here we consider the high-level

approach, and adapt reference architectures [23, 29] from

cross domain systems (those which handle heterogeneous and

large data). Additionally, we observed that providing only

a software component model of such cloud-based systems

is not sufficient to define a reference architecture; therefore,

we include other important aspects in our proposal. The

conceptual reference architecture diagram is presented in

Figures 10 and 11. In fact, our conceptual architecture is a

set of design guidelines described as follows:

Data-centric Model: Recently researchers have been

using a data-centric model [7, 14] for efficiently analyzing,

sharing, and handling a varied set of massive data in a cloud-

based system. Defining a standard model for the management,

processing and interchange of data for a cloud system is

one of the most important aspects of an RA. Cloud-based

genotyping and phenotyping analysis systems work with
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structured, unstructured and semistructured data, and with

various datasets, such as genome, geospatial, and image

datasets. These data are processed and analyzed with various

workflows and pipelines. Researchers recently have been fo-

cusing on specific data models [7] in order to provide a more

effective and collaborative workspace. As well, a common

data-flow model is useful for implementing discoverable and

sharable data processing logic. Thus, we recommend defining

a specific data-flow interface for each category of data so

that it can be easily inherited from common workflows and

pipelines in the system. Moreover, data may be input to the

cloud-based system from heterogeneous sources in the open

cloud. In our architecture, we recommend using a unified data

interface (Figure 10) for interchanging input and processed

data between the system and the user source. Various data-

storage mechanisms should be defined for the cloud system

based on the categories of data rather than a common storage

for all categories of data.

Software Component Model: The modular architectural

paradigm for designing a cloud system that handles large

and heterogeneous data has recently focused on a loosely

coupled message-based structure [6, 23, 29] in order to

support components and sub components of the system

being updated, replaced or plugged-in by an open community

during the lifetime of the product. To develop a flexible and

adaptable system with this dynamic context, the components

must be independent unlike a traditional MVC or three

tier architecture. In this case, independent means loosely

coupled, smoothly replaceable and pluggable. Along with

the common modules defined in the architecture model of the

candidate systems, our model includes some new components

which are presented in Figure 10. The new modules in our

architecture are: a cluster processing module for a big-data

platform, a unified data interface module, a high-throughput

plugin module, a web-based plant modeling module, a GIS

module, and a remote sensor module. Easily replaceable and

pluggable modules without redeploying the entire system are

represented with a dashed line in the figure. Apart from these,

we also recommend providing API libraries to easily develop

workflows, pipelines, and plugins integrable to the base

system. A module that automatically integrate dependable

libraries on-the-fly while uploading the plugins by the users

would make the system more extensible. The last but not least

principle is that multiple workflows, pipelines or data-analysis

job execution should be handled by a message-queuing [6]

module (MQM) irrespective of whether they run in the base

server or in the cloud-cluster.

Infrastructure Model: Cloud-based genotyping and phe-

notyping analysis systems (CGPAS) need to interact with

various machines including open cloud infrastructures. Thus,

the infrastructure model is an important part of designing

such systems [15, 25] to firmly define which parts of

the infrastructure serve which services, which parts are

public, which parts have restricted access, and what are the

Figure 10. Software component model

Figure 11. Heterogeneous cloud infrastructure model

communication protocols. We recommend a heterogeneous

cloud infrastructure model for CGPAS as presented in

Figure 11, where heterogeneous refers to supporting diverse

communication protocols and network models.

We developed a subsystem for plant phenotyping to

help prove our conceptual architecture. Since the studied

candidate systems do not support high-throughput image

analysis pipelines (HIAP), we designed a cloud-based system

to support that. In this paper, we briefly discuss a few

processing pipeline use cases in mapping with our conceptual

architecture (full analysis is beyond the scope of this paper).

First, we set up a heterogeneous cloud infrastructure as

defined in our architecture including a four-node Spark cluster.

Then, we defined a common data-flow model for image

processing pipelines. This model leverages the development

of HIAPs executed on a Big Data cluster. Additionally, we

developed an API library (based on PySpark) for developing

high-throughput plugins for our cloud system following the

defined data-model. Pre-built HIAPs in our subsystem inherit

the data-flow interface in the API. This data-model and API

library also leverages the effort of researchers to smoothly

work with image analysis pipelines/workflows for plant

phenotyping while ensuring flexible collaboration among

researchers. Furthermore, we designed a unified data access

module that can load large image datasets from any remote

data machine or other cloud sources (a test case of data

loading from a remote machine is presented in Table IV).

We test the high-throughput image analysis pipeline, plugin

integration, and remote data loading use-case with more than

10K images with our small Spark cluster (results are shown
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Table IV
EXECUTION TIME OF VARIOUS IMAGE PIPELINES IN OUR SYSTEM

Pipeline No. of Images Execution Time
Image Matching 10K 42 Mins
Clustering (5) 10K 1.6 Hrs
Image registration > 10K 1.9 Hrs

in Table IV). Thus, our subsystem follows both the data-

centric model, and heterogeneous infrastructure model. Apart

from these we introduce an independent module for plant

modeling and simulation based on WebGL. We compare the

web-graphics module with a traditional graphics library and

found that the web graphical library is more effective for

plant simulation and modelling. In the cloud-based system,

producing a plant model with the GL library is more flexible

on the server side but less-interactive with a bandwidth

bottleneck at the client side. The independent API, unified-

data access module, plant simulation module, HIAPs module,

and HIAP plugin uploading without re-deployment of the

system indicate that the design of our system supports a

software component model for plant phenotyping. Moreover,

our system is capable of MapReduce distributed processing

of large data with promising performance.

IX. CONCLUSION

Plant genotyping and phenotyping analysis (PGPA) is

required to handle large datasets and involves numerous

steps, from physical plant sample collection to sharing

analysis results and scientific workflows. Thus, it is a

challenge to develop an efficient and cost effective integrated

environment. In this paper, we described our analysis of some

existing popular tools for PGPA using SAAM, examined

weaknesses and strengths of those frameworks, and conducted

a comparative analysis (Table II and III). Our comparative

analysis determined that iPlant is a strong tool that, unlike

the others, provides support for image processing and, using

Google Maps, for geo-spatial data. Unfortunately, it is not as

flexible as Galaxy for workflow creation. GenAp is based on

Galaxy with an extra DataHub server. LemnaTec is a desktop-

based commercial tool dedicated for plant phenotyping.

Since each of these tools has limitations, we introduced

a conceptual reference architecture to better support the

broad range of requirements, and developed a subsystem

as a proof of concept. We believe that our study would

be helpful to overcome the challenges of developing a

cloud-based PGPA system that deals with large and mixed

datasets. As future work, we will update our conceptual

architecture with additional functionality detail, and test its

efficacy with various evaluation techniques and an upgraded

implementation.
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[28] F. G. Olumofin and V. B. Mišić. A holistic architecture assessment method for
software product lines. Inf. Softw. Technol., pp. 309–323, 2007.
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