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Improving IR-Based Bug Localization with Context-Aware
�ery Reformulation
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ABSTRACT
Recent �ndings suggest that Information Retrieval (IR)-based bug

localization techniques do not perform well if the bug report lacks

rich structured information (e.g., relevant program entity names).

Conversely, excessive structured information (e.g., stack traces) in

the bug report might not always help the automated localization ei-

ther. In this paper, we propose a novel technique–BLIZZARD– that

automatically localizes buggy entities from project source using

appropriate query reformulation and e�ective information retrieval.

In particular, our technique determines whether there are excessive

program entities or not in a bug report (query), and then applies

appropriate reformulations to the query for bug localization. Ex-

periments using 5,139 bug reports show that our technique can

localize the buggy source entities with 8%–56% higher Hit@10,

8%–62% higher MAP@10 and 8%–62% higher MRR@10 than the

baseline technique. Comparison with the state-of-the-art tech-

niques and their variants report that our technique can improve

19% in MAP@10 and 20% in MRR@10 over the state-of-the-art, and

can improve 59% of the noisy queries and 39% of the poor queries.

CCS CONCEPTS
•So�ware and its engineering → So�ware veri�cation and
validation; So�ware testing and debugging; So�ware defect
analysis; So�ware maintenance tools;
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1 INTRODUCTION
Despite numerous a�empts for automation [5, 15, 19, 35, 67], so�-

ware debugging is still largely a manual process which costs a signif-

icant amount of development time and e�orts [4, 37, 60]. One of the

three steps of debugging is the identi�cation of the location of a bug

in the source code, i.e., bug localization [37, 55]. Recent bug local-

ization techniques can be classi�ed into two broad families–spectra
based and information retrieval (IR) based [29]. While spectra-based

techniques rely on execution traces of a so�ware system, IR-based

techniques analyse shared vocabulary between a bug report (i.e.,

query) and the project source for bug localization [34, 65]. Perfor-

mances of IR-based techniques are reported to be as good as that

of spectra-based techniques, and such performances are achieved
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using a low cost text analysis [44, 55]. Unfortunately, recent quali-

tative and empirical studies [43, 55] have reported two major limi-

tations. First, IR-based techniques cannot perform well without the

presence of rich structured information (e.g., program entity names

pointing to defects) in the bug reports. Second, they also might not

perform well with a bug report that contains excessive structured

information (e.g., stack traces, Table 1) [55]. One possible explana-

tion of these limitations could be that most of the contemporary

IR-based techniques [29, 36, 44, 49, 50, 56, 65] use almost verbatim

texts from a bug report as a query for bug localization. �at is, they

do not perform any meaningful modi�cation to the query except a

limited natural language pre-processing (e.g., stop word removal,

token spli�ing, stemming). As a result, their query could be either

noisy due to excessive structured information (e.g., stack traces) or

poor due to the lack of relevant structured information (e.g., Table 2).

One way to overcome the above challenges is to (a) re�ne the noisy

query (e.g., Table 1) using appropriate �lters and (b) complement

the poor query (e.g., Table 2) with relevant search terms. Existing

studies [28, 56, 57, 62] that a�empt to complement basic IR-based lo-

calization with costly data mining or machine learning alternatives

can also equally bene�t from such query reformulations.

In this paper, we propose a novel technique –BLIZZARD– that

locates so�ware bugs from source code by employing context-aware
query reformulation and information retrieval. Our technique (1)

�rst determines the quality (i.e., prevalence of structured entities

or lack thereof) of a bug report (i.e., query) and classi�es it as

either noisy, rich or poor, (2) then applies appropriate reformulation

to the query, and (3) �nally uses the improved query for the bug

localization with information retrieval. Unlike earlier approaches

[48, 49, 56, 65], it either re�nes a noisy query or complements a

poor query for e�ective information retrieval. �us, BLIZZARD

has a high potential for improving IR-based bug localization.

Our best performing baseline technique that uses all terms except

punctuation marks, stop words and digits from a bug report, returns

its �rst correct result for the noisy query containing stack traces in

Table 1 at the 53
rd

position. On the contrary, our technique re�nes

the same noisy query, and returns the �rst correct result at the �rst

position of the ranked list which is a signi�cant improvement over

the baseline. Similarly, when we use a poor query containing no

structured entities such as in Table 2, the baseline technique returns

the correct result at the 30
th

position. On the other hand, our tech-

nique improves the same poor query, and returns the result again at

the �rst position. BugLocator [65], one of the high performing and

well cited IR-based techniques, returns such results at the 19
th

and

26
th

positions respectively for the noisy and poor queries which

are far from ideal. �us, our proposed technique clearly has a high

potential for improving the IR-based bug localization.

We evaluate our technique in several di�erent dimensions using

four widely used performance metrics and 5,139 bug reports (i.e.,

queries) from six Java-based subject systems. First, we evaluate
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Table 1: A Noisy Bug Report (#31637, eclipse.jdt.debug)
Field Content
Title should be able to cast “null”
Description When trying to debug an application the variables

tab is empty. Also when I try to inspect or display a variable,

I get following error logged in the eclipse log �le:

java.lang.NullPointerException

at org.eclipse.jdt.internal.debug.core.

model.JDIValue.toString(JDIValue.java:362)

at org.eclipse.jdt.internal.debug.eval.ast.

instructions.Cast.execute(Cast.java:88)
at org.eclipse.jdt.internal.debug.eval.ast.engine.

Interpreter.execute(Interpreter.java:44)

at org.eclipse.jdt.internal.debug.eval.ast.engine.

…………………………………. (8 more)…………………………………

in terms of the performance metrics, contrast with the baseline,

and BLIZZARD localizes bugs with 8%–56% higher accuracy (i.e.,

Hit@10), 8%–62% higher precision (i.e., MAP@10) and and 8%–62%

higher result ranks (i.e., MRR@10) than the baseline (Section 4.3).

Second, we compare our technique with three bug localization tech-

niques [49, 57, 65], and our technique can improve 19% in MAP@10

and 20% in MRR@10 over the state-of-the-art [57] (Section 4.4).

�ird, we also compare our approach with four state-of-the-art

query reformulations techniques, and BLIZZARD improves the

result ranks of 59% of the noisy queries and 39% of the poor queries

which are 22% and 28% higher respectively than that of the state-

of-the-art [42] (Section 4.4). By incorporating report quality aspect
and query reformulation into IR-based bug localization, we resolve

an important issue which was either not addressed properly or

otherwise overlooked by earlier studies, which makes our work

novel. �us, the paper makes the following contributions:

• A novel query reformulation technique that �lters noise

from and adds complementary information to the bug re-

port, and suggests improved queries for bug localization.

• A novel bug localization technique that locates bugs from

the project source by employing quality paradigm of bug

reports, query reformulation, and information retrieval.

• Comprehensive evaluation of the technique using 5,139

bug reports from six open source systems and validation

against seven techniques including the state-of-the-art.

• A working prototype with detailed experimental data for

replication and third party reuses.

2 GRAPH-BASED TERMWEIGHTING
Term weighting is a process of determining relative importance

of a term within a body of texts (e.g., document). Jones [25] �rst

introduced TF-IDF (i.e., term frequency × inverse document fre-

quency) as a proxy to term importance which had been widely used

by information retrieval community for the last couple of decades.

Unfortunately, TF-IDF does not consider semantic dependencies

among the terms in their importance estimation. Mihalcea and

Tarau [31] later proposed TextRank as a proxy of term importance

which was adapted from Google’s PageRank [11] and was reported

to perform be�er than TF-IDF. In TextRank, a textual document is

encoded into a text graph where unique words from the document

are denoted as nodes, and meaningful relations among the words

are denoted as connecting edges [31]. Such relationships could be

Table 2: A Poor Bug Report (#187316, eclipse.jdt.ui)
Field Content
Title [preferences] Mark Occurences Pref Page

Description �ere should be a link to the pref page on which you can change

the color. Namely: General/Editors/Text Editors/Annotations.

It’s a pain in the a** to �nd the pref if you do not know Eclipse’s

preference structure well.

statistical (e.g., co-occurrence), syntactic (e.g., grammatical modi-

�cation) or semantic (i.e., conceptual relevance) in nature [10]. In

this research, we identify important terms using graph-based term

weighting from a bug report that might contain structured elements

(e.g., stack traces) and unstructured regular texts.

3 BLIZZARD: PROPOSED TECHNIQUE
Fig. 1 shows the schematic diagram of our proposed technique–

BLIZZARD. Furthermore, Algorithm 1 shows the pseudo-code for

BLIZZARD.Wemake use of bug report quality, query reformulation,

and information retrieval for localizing bugs in source code from

bug reports of any quality as shown in the following sections:

3.1 Bug Report Classi�cation
Since our primary objective with this work is to overcome the

challenges posed by the di�erent kinds of information bug reports

may contain, we categorize the reports prior to bug localization. In

addition to having natural language texts, a bug report typically

may contain di�erent structured elements: (1) stack traces (reported

active stack frames during the occurrence of a bug, e.g., Table 1),

and (2) program elements such as method invocations, package

names, and source �le names. Having consulted with the relevant

literature [8, 9, 55], we classify the bug reports into three board

categories (Steps 1, 2a, 2b and 2c, Fig. 1) as follows:

BRST: ST stands for stack traces. If a bug report contains one or

more stack traces besides the regular texts or program elements, it

is classi�ed into BRST . Since trace entries contain too much struc-

tured information, query generated from such a report is generally

considered noisy. We apply the following regular expression [34]

to locate the trace entries from the report content.

(.*)?(.+)\.(.+)(\((.+)\.java:\d+\)|\(Unknown␣Source\)
|\(Native␣Method\))

BRPE: PE stands for program elements. If a bug report contains

one or more program elements (e.g., method invocations, package

names, source �le name) but no stack traces in the texts, it is classi-

�ed into BRPE . �eries generated from such report are considered

rich. We use the appropriate regular expressions [46] to identify

the program elements from the texts. For example, we use the

following one to identify method invocations.

((\w+)?\.[\s\n\r]*[\w]+)[\s\n\r]*(?=\(.*\))
|([A-Z][a-z0-9]+){2,}

BRNL: NL stands for natural language. If a bug report contains

neither any program elements nor any stack traces, it is classi�ed

into BRNL . �at is, it contains only unstructured natural language

description of the bug. �eries generated from such reports are

generally considered poor in this work.

We adopt a semi-automated approach in classifying the bug re-

ports (i.e., the queries). Once a bug report is provided, we employ
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Figure 1: Schematic diagram of the proposed technique: (A) Bug report classi�cation, (B)�ery reformulation, and (C) Bug localization

each of our regular expressions to determine its class. If the auto-

mated step fails due to ill-de�ned structures of the report, the class

is determined based on manual analysis. Given the explicit nature

of the structured entities, human developers can identify the class

easily. �e contents of each bug report are considered as the initial
queries which are reformulated in the next few steps.

3.2 �ery Reformulation
Once bug reports (i.e., queries) are classi�ed into three classes

above based on their structured elements or lack thereof, we apply

appropriate reformulations to them. In particular, we analyse either

bug report contents or the results retrieved by them, employ graph-

based term weighting, and then identify important keywords from

them for query reformulation as follows:

TraceGraphDevelopment fromBRST: According to existing
�ndings [43, 55], bug reports containing stack traces are potentially

noisy, and performances of the bug localization using such reports

(i.e., the queries) are below the average. Hence, important search
keywords should be extracted from the noisy queries for e�ective

bug localization. In this work, we transform the stack traces into a

trace graph (e.g., Fig. 2, Steps 3a, 4a, Fig. 1, Lines 8–10, Algorithm

1), and identify the important keywords using a graph-based term

weighting algorithm namely PageRank [10, 31].

To the best of our knowledge, to date, graph-based term weight-

ing has been employed only on unstructured regular texts [42] and

semi-structured source code [41]. On the contrary, we deal with

stack traces which are structured and should be analysed carefully.

Stack traces generally comprise of an error message containing the

encountered exception(s), and an ordered list of method invoca-

tion entries. Each invocation entry can be considered as a tuple

t{P ,C,M} that contains a package name P , a class name C , and
a method name M . While these entities are statically connected

within a tuple, they are o�en hierarchically connected (e.g., caller-

callee relationships) to other tuples from the traces as well. Hill

et al. [22] consider method signatures and �eld signatures as salient

entities from the source code, and suggest code search keywords

from them. Similarly, we consider class name and method name

from each of the N tuples as the salient items, and represent them

as the nodes and their dependencies as the connecting edges in

the graph. In stack traces, the topmost entry (i.e., i = 1) has the

highest degree of interest [16] which gradually decreases for the

entries at the lower positions in the list. �at is, if ti {Pi ,Ci ,Mi } is

Cast access

InterpreterJDIValue

toString run

runEvaluation

doEvaluation

Evaluation�read

execute

JDI�read

�read

Evaluation�read

toString

JDIValue

run

execute

Figure 2: Trace graph of stack traces in Table 1

a tuple under analysis, and tj {Pj ,Cj ,Mj } is a neighbouring tuple

with greater degree of interest, then the nodes Vi and edges Ei are
added to the trace graph GST as follows:

Vi = {Ci , Mi }, Ei = {Ci ↔ Mi } ∪ {Ci → Cj , Mi → Mj } | j = i − 1

V =
N⋃
i=1
{Vi }, E =

N⋃
i=1
{Ei }, GST = (V , E)

For the example stack traces in Table 1, the following connecting

edges: JDIValue↔toString, Cast↔execute, Cast→JDIValue,
execute→toString, Interpreter↔execute, and Interpreter
→Cast are added to the example trace graph in Fig. 2.

Text Graph Development from BRPE: Bug reports contain-

ing relevant program entities (e.g., method names) are found e�ec-

tive as queries for IR-based bug localization [43, 49, 55]. However,

we believe that appropriate keyword selection from such reports

can further boost up the localization performance. Existing studies

employ TextRank and POSRank on natural language texts, and

identify search keywords for concept location [42] and information

retrieval [10, 31]. Although bug reports (i.e., from BRPE ) might

contain certain structures such as program entity names (e.g., class

name, method name) and code snippets besides natural language

texts, the existing techniques could still be applied to them given

that these structures are treated appropriately. We thus remove

stop words [1] and programming keywords [2] from a bug report,

split the structured tokens using Samurai (i.e., a state-of-the-art to-
ken spli�ing tool [17]), and then transform the preprocessed report

(Rpp ) into a set of sentences (S ∈ Rpp ). We adopt Rahman and Roy

[42] that exploits co-occurrences and syntactic dependencies among

the terms for identifying important terms from a textual entity. We

thus develop two text graphs (Steps 3b, 4b, Fig. 1, Lines 10–11, Algo-

rithm 1) using co-occurrences and syntactic dependencies among

the words from each report as follows:
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(1) Text Graph using Word Co-occurrences: In natural language

texts, the semantics (i.e., senses) of a given word are o�en deter-

mined by its contexts (i.e., surrounding words) [30, 32, 62]. �at is,

co-occurring words complement the semantics of each other. We

thus consider a sliding window of size K (e.g., K = 2) [31], cap-

ture co-occurring words, and then encode the word co-occurrences

within each window into connecting edges E of a text graph [42].

�e individual words (∀wi ∈ V ) are denoted as nodes in the graph.

�us, for a target wordwi , the following node Vi and two edges Ei
will be added to the text graph GPE as follows:

Vi = {wi }, Ei = {wi ↔ wi−1,wi ↔ wi+1} | S = [w1..wi ..wN ]

V =
⋃

∀S ∈Rpp

⋃
wi ∈S
{Vi }, E =

⋃
∀S ∈Rpp

⋃
wi ∈S
{Ei }, GPE = (V ,E)

�us, the example phrase–“source code directory”–yields two edges,
“source”↔“code” and “code”↔“directory” while extending the text
graph with three distinct nodes– “source”, “code” and “directory”.

(2) Text Graph using POS Dependencies: According to Jespersen’s
Rank theory [10, 24, 42], parts of speech (POS) from a sentence

can be divided into three ranks– primary (i.e., noun), secondary
(i.e., verb, adjective) and tertiary (i.e., adverb)– where words from a

higher rank generally de�ne (i.e., modify) the words from the same

or lower ranks. �at is, a noun modi�es only another noun whereas

a verb modi�es another noun, verb or an adjective. We determine

POS tags using Stanford POS tagger [53], and encode such syntactic

dependencies among words into connecting edges and individual

words as nodes in a text graph. For example, the sentence anno-

tated using Penn Treebank tags [53]–“OpenV B theDT sourceNN
codeNN directoryNN ”–has the following syntactic dependencies:

“source”↔“code”, “code”↔“directory”, “source”↔“directory”,
“open”←“source”, “open”←“code” and “open”←“directory”, and thus
adds six connecting edges to the text graph.

Source Term Graph Development for BRNL: Bug reports

containing only natural language texts and no structured entities

are found not e�ective for IR-based bug localization [43, 55]. We

believe that such bug reports possibly miss the right keywords

for bug localization. Hence, they need to be complemented with

appropriate keywords before using. A recent study [41] provides

improved reformulations to a poor natural language query for

concept location by �rst collecting pseudo-relevance feedback and

then employing graph-based term weighting. In pseudo-relevance

feedback, Top-K result documents, returned by a given query, are

naively considered as relevant and hence, are selected for query

reformulation [12, 20]. Since bug reports from BRNL class contain

only natural language texts, the above study might directly be

applicable to them. We thus adopt their approach for our query

reformulation, collect Top-K (e.g., K = 10) source code documents

retrieved by a BRNL-based query, and develop a source term graph

(Steps 3c, 4c, Fig. 1, Lines 13–15, Algorithm 1).

Hill et al. [22] consider method signatures and �elds signatures

from source code as the salient items, and suggest keywords for code

search from them. In the same vein, we also collect these signatures

from each of the K feedback documents for query reformulation.

In particular, we extract structured tokens from each signature,

split them using Samurai, and then generate a natural language

Algorithm 1 IR-Based Bug Localization with�ery Reformulation

1: procedure BLIZZARD(R) . R: a given bug report

2: Q ′ ← {} . reformulated query terms

3: . Classifying and preprocessing the bug report R
4: CR ← getBugReportClass(R)
5: Rpp ← preprocess (R)
6: . Representing the bug report as a graph

7: switch CR do
8: case BRST
9: ST ← getStackTraces (R)
10: GST ← getTraceGraph (ST )
11: case BRPE
12: GPE ← getTextGraphs (Rpp )

13: case BRNL
14: RF ← getPseudoRelevanceFeedback (Rpp )
15: GNL ← getSourceTermGraph (RF )
16: . Ge�ing term weights and search keywords

17: if ClassKey CK ∈ {ST , PE, NL} then
18: PRCK ← getPageRank (GCK )

19: Q [CR ] ← getTopKTerm(sortByWeight(PRCK ))

20: end if
21: . Constructing the reformulated query Q ′

22: switch CR do
23: case BRST
24: NE ← getExceptionName(R)
25: ME ← getErrorMessage(R)
26: Q ′ ← {NE ∪ME ∪Q [CR ]}
27: case BRPE
28: Q ′ ← Q [CR ]
29: case BRNL
30: Q ′ ← {Rpp ∪Q [CR ]}
31: . Bug localization with Q ′ from codebase corpus
32: return Lucene(corpus , Q ′)
33: end procedure

phrase from each token [22]. For example, the method signature–

getContextClassLoader()–can be represented as a verbal phrase–
“get Context Class Loader”. We then analyze such phrases across all

the feedback documents, capture co-occurrences of terms within a

�xed window (i.e., K = 2) from each phrase, and develop a source

term graph. �us, the above phrase adds four distinct nodes and

three connecting edges – “get”↔“context”, “context”↔“class” and
“class”↔“loader” – to the source term graph.

Term Weighting using PageRank: Once each body of texts

(e.g., stack traces, regular texts, source document) is transformed

into a graph, we apply PageRank [11, 31, 41, 42] to the graph for

identifying important keywords. PageRank was originally designed

for web link analysis, and it determines the reputation of a web

page based on the votes or recommendations (i.e., hyperlinks) from

other reputed pages on the web [11]. Similarly, in the context of

our developed graphs, the algorithm determines importance of a

node (i.e., term) based on incoming links from other important

nodes of the graph. In particular, it analyses the connectivity (i.e.,

connected neighbours and their weights) of each term Vi in the

graph recursively, and then calculates the node’s weight TW (Vi ),
i.e., term’s importance as follows:

TW (Vi ) = (1 − ϕ) + ϕ
∑

jϵ In(Vi )

TW (Vj )

|Out(Vj )|
(0 ≤ ϕ ≤ 1)
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Here, In(Vi ) refers to nodes providing incoming links toVi ,Out(Vj )
refers to nodes that Vj is connected to through outgoing links,

and ϕ is the damping factor. Brin and Page [11] consider ϕ as the

probability of staying on the web page and 1 − ϕ as the probability

of jumping o� the page by a random surfer. �ey use ϕ = 0.85

which was adopted by later studies [10, 31, 42], and we also do the

same. We initialize each node in the graph with a value of 0.25 [31],

and recursively calculate their weights unless they converge below

a certain threshold (i.e., 0.0001) or the iteration count reaches the

maximum (i.e., 100) [31]. Once the calculation is over, we end up

with an accumulated weight for each node (Step 5, Fig. 1, Lines

16–20, Algorithm 1). Such weight of a node is considered as an

estimation of relative importance of corresponding term among all

the terms (i.e., nodes) from the document (i.e., graph).

Reformulation of the Initial�ery: Once term weights are

calculated, we rank the terms based on their weights, and select the

Top-K (8≤ K ≤30, Fig. 4) terms for query reformulations. Since bug

reports (i.e., initial queries) from three classes have di�erent degrees

of structured information (or lack thereof), we carefully apply our

reformulations to them (Steps 6, 7, Fig. 1, Lines 21–30, Algorithm

1). In case of BRST (i.e., noisy query), we replace trace entries with

the reformulation terms, extract the error message(s) containing

exception name(s), and combine them as the reformulated query.

For BRNL (i.e., poor query), we combine preprocessed report texts

with the highly weighted source terms as the reformulated query.

In the case of BRPE , only Top-K weighted terms from the bug report

are used as a reformulated query for bug localization.

3.3 Bug Localization
Code Search: Once a reformulated query is constructed, we submit

the query to Lucene [20, 33]. Lucene is a widely adopted search

engine for document search that combines Boolean search and

VSM-based search methodologies (e.g., TF-IDF [25]). In particular,

we employ the Okapi BM25 similarity from the engine, use the

reformulated query for the code search, and then collect the results

(Step 8, Fig. 1, Lines 31–32, Algorithm 1). �ese resultant and

potentially buggy source code documents are then presented as a

ranked list to the developer for manual analysis.

Working Examples: Table 3 shows our reformulated queries

for the showcase bug reports in Table 1 (i.e., BRST ) and Table 2

(i.e., BRNL ), and another example report from BRPE class. Baseline

queries from these reports return their �rst correct results at the

53
rd

(for BRST ), 27
th

(for BRPE ) and 30
th

(for BRNL) positions of

their corresponding ranked lists. On the contrary, BLIZZARD re-

�nes the noisy query from BRST report, selects important keywords

from BRPE report, and enriches the poor query from BRNL report

by adding complementary terms from relevant source code. As a re-

sult, all three reformulated queries return their �rst correct results

(i.e., buggy source �les) at the topmost (i.e., �rst) positions, which

demonstrate the potential of our technique for bug localization.

4 EXPERIMENT
We evaluate our proposed technique in several di�erent dimensions

using four widely used performance metrics and more than 5K bug

reports (the queries) from six di�erent subject systems. First, we

evaluate in terms of the performance metrics and contrast with the

Table 3: Working Examples
Technique Group �ery Terms QE
Baseline

BRST
127 terms from Table 1 a�er preprocessing,

Bug ID# 31637, eclipse.jdt.debug
53

BLIZZARD NullPointerException + “Bug should be
able to cast null” + {JDIValue toString
execute EvaluationThread run}

01

Baseline

BRPE
195 terms (a�er preprocessing) from Bug
ID# 15036, eclipse.jdt.core

27

BLIZZARD {astvisitor post postvisit previsit pre �le post
pre astnode visitor}

01

Baseline

BRNL
32 terms from Table 2 a�er preprocessing,

Bug ID# 475855, eclipse.jdt.ui
30

BLIZZARD Preprocessed report texts + {compliance
create preference add configuration
field dialog annotation}

01

QE = �ery E�ectiveness, rank of the �rst returned correct result

baseline for di�erent classes of bug reports/queries (Section 4.3).

Second, we compare our approach with three state-of-the-art bug

localization techniques (Section 4.4). �ird, and possibly the most

importantly, we also compare our approach with four state-of-the-

art query reformulations techniques (Section 4.4). In particular, we

answer four research questions using our experiments as follows:

• RQ1: (a) How does BLIZZARD perform in bug localization,

and (b) how do various parameters a�ect its performance?

• RQ2: Do our reformulated queries perform be�er than the

baseline search queries from the bug reports?

• RQ3: Can BLIZZARD outperform the existing bug local-

ization techniques including the state-of-the-art?

• RQ4: Can BLIZZARD outperform the existing query re-

formulation techniques targeting concept/feature location

and bug localization?

4.1 Experimental Dataset
Data Collection: We collect a total of 5,139 bug reports from six

open source subject systems for our experiments. �e dataset was

taken from an earlier empirical study [43]. Table 4 shows our

dataset. First, all the resolved (i.e., marked as RESOLVED) bugs

of each subject system from BugZilla and JIRA repositories were

collected given that they were submi�ed within a speci�c time

interval. �en the version control history of each system at GitHub

was consulted to identify the bug-�xing commits [6]. Such approach

was regularly adopted by the relevant literature [7, 34, 65], and we

also follow the same. In order to ensure a fair evaluation, we also

discard such reports from our dataset for which no source code �les

(e.g., Java classes) were changed or no relevant source �les exist in

the collected system snapshot.

GoldsetDevelopment: We collect changeset (i.e., list of changed
�les) from each of our selected bug-�xing commits, and develop a

goldset. Multiple changesets for the same bug were merged together.

Replication Package: �e working prototype of our tool, ex-

perimental dataset and other associated materials are made publicly

available [3] for replication and third-party reuse.

4.2 Performance Metrics
We use four performance metrics for the evaluation and comparison

of our technique. Since these metrics were frequently used by
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Table 4: Experimental Dataset
System Time Period BRST BRPE BRNL BRAll System Time Period BRST BRPE BRNL BRAll Total
ecf Oct, 2001–Jan, 2017 71 319 163 553 eclipse.jdt.ui Oct, 2001–Jun, 2016 130 578 407 1,115 BRST = 826 (16.06%)

eclipse.jdt.core Oct, 2001–Sep, 2016 159 698 132 989 eclipse.pde.ui Oct, 2001–Jun, 2016 123 239 510 872 BRPE = 2,767 (53.81%)

eclipse.jdt.debug Oct, 2001–Jan, 2017 126 202 229 557 tomcat70 Sep, 2001–Aug, 2016 217 731 105 1,053 BRNL= 1,546 (30.08%)

Total: 5,139
BRST =Bug reports with stack traces, BRPE=Bug reports with only program entities, BRNL=Bug reports with only natural language texts

the relevant literature [34, 42, 49, 56, 62, 65], they are also highly

appropriate for our experiments in this work.

Hit@K: It is de�ned as the percentage of queries for which at

least one buggy �le (i.e., from the goldset) is correctly returned

within the Top-K results. It is also called Recall@Top-K [49] and

Top-K Accuracy [42] in the literature.

Mean Average Precision@K (MAP@K): Unlike regular pre-
cision, this metric considers the ranks of correct results within a

ranked list. Precision@K calculates precision at the occurrence of

each buggy �le in the list. Average Precision@K (AP@K) is de�ned

as the average of Precision@K for all the buggy �les in a ranked list

for a given query. �us, Mean Average Precision@K is de�ned as

the mean of Average Precision@K (AP@K) of all queries as follows:

AP@K =

∑D
k=1 Pk × buддy(k)

|S |
, MAP@K =

∑
qϵQ AP@K(q)

|Q |

Here, function buддy(k) determines whether kth �le (or result)

is buggy (i.e., returns 1) or not (i.e., returns 0), Pk provides the

precision at kth result, and D refers to the number of total results.

S is the gold set for a query, and Q is the set of all queries. �e

bigger the MAP@K value is, the be�er a technique is.

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K

is de�ned as the multiplicative inverse of the rank of �rst correctly

returned buggy �le (i.e., from gold set) within the Top-K results.

�us, Mean Reciprocal Rank@K (MRR@K) averages such measures

for all queries in the dataset as follows:

MRR@K(Q) =
1

|Q |

∑
q∈Q

1

f irstRank(q)

Here, f irstRank(q) provides the rank of �rst buggy �le within a

ranked list. MRR@K can take a maximum value of 1 and a mini-

mum value of 0. �e bigger the MRR@K value is, the be�er a bug

localization technique is.

E�ectiveness (E): It approximates a developer’s e�ort in locat-

ing the �rst buggy �le in the result list [34]. �at is, the measure

returns the rank of �rst buggy �le in the result list. �e lower the

e�ectiveness value is, the be�er a given query is, i.e., the developer

needs to check less amount of results from the top before reaching

the actual buggy �le in the list.

4.3 Experimental Results
We �rst show the performance of our technique in terms of ap-

propriate metrics (RQ1-(a)), then discuss the impacts of di�erent

adopted parameters upon the performance (RQ1-(b)), and �nally

show our comparison with the baseline queries (RQ2) as follows:

Selection of Baseline�eries, and Establishment of Base-
line Technique and Baseline Performance: Existing studies

suggest that text retrieval performances could be a�ected by query

quality [20], underlying retrieval engine [33] or even text prepro-

cessing steps [23, 26]. Hence, we choose the baseline queries and

baseline technique pragmatically for our experiments. We conduct

Table 5: Performance of BLIZZARD in Bug Localization
Dataset Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST
Baseline 21.67% 40.03% 48.25% 28.09% 0.29

BLIZZARD *34.42% *66.28% *75.21% *45.50% *0.47

BRPE
Baseline 39.85% 64.29% 72.09% 47.28% 0.50

BLIZZARD 44.31% *69.48% *77.84% *52.08% *0.55

BRNL
Baseline 28.24% 50.96% 61.23% 35.48% 0.38

BLIZZARD 29.89% 54.57% 66.18% *38.37% *0.41

All

Baseline 34.32% 57.83% 66.47% 41.66% 0.44

BLIZZARD *38.59% *65.08% *74.52% *47.14% *0.50
*=Signi�cantly higher than baseline, Emboldened= Comparatively higher

a detailed study where three independent variables– bug report

�eld (e.g., title, whole texts), retrieval engine (e.g., Lucene [20], Indri

[49]) and text preprocessing step (i.e., stemming, no stemming)–are

alternated, and then we choose the best performing con�guration

as the baseline approach. In particular, we chose the preprocessed

version (i.e., performed stop word and punctuation removal, split

complex tokens but avoided stemming) of the whole texts (i.e., title
+ description) from a bug report as a baseline query. Lucene was se-

lected as the baseline technique since it outperformed Indri on our

dataset. �e performance of Lucene with the baseline queries was

selected as the baseline performance (i.e., Table 5) for IR-based bug

localization in this study. In short, our baseline is: (preprocessed

whole texts + spli�ing of complex tokens + Lucerne search engine).

Answering RQ1(a) – Performance of BLIZZARD:As shown
in Table 5, on average, our technique–BLIZZARD–localizes 74.52%

of the bugs from a dataset of 5,139 bug reports with 47% mean av-

erage precision@10 and a mean reciprocal rank@10 of 0.50 which

are 12%, 13% and 14% higher respectively than the baseline perfor-

mance measures. �at is, on average, our technique can return the

�rst buggy �le at the second position of the ranked list, almost half

of returned �les are buggy (i.e., true positive) and it succeeds three

out of four times in localizing the bugs. Furthermore, while the

baseline technique is badly a�ected by the noisy (i.e., BRST ) and

poor queries (i.e., BRNL ), our technique overcomes such challenges

with appropriate query reformulations, and provides signi�cantly

higher performances. For example, the baseline technique can local-

ize 48% of the bugs from BRST dataset (i.e., noisy queries) with only

28% precision when Top-10 results are considered. On the contrary,

our technique localizes 75% of the bugs with 46% precision in the

same context which are 56% and 62% higher respectively than the

corresponding baseline measures. Such improvements are about 8%

for BRNL , i.e., poor queries. In the cases where bug reports contain

program entities, i.e., BRPE , and the baseline performance measures

are already pre�y high, our technique further re�nes the query

and provides even higher performances. For example, BLIZZARD

improves both baseline MRR@10 and baseline MAP@10 for BRPE
dataset by 10% which is promising.

Fig. 3 further demonstrates the comparative analyses between

BLIZZARD and the baseline technique for various Top-K results in

terms of (a) precision and (b) reciprocal rank in the bug localization.
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Figure 3: Comparison of BLIZZARD with baseline technique in
terms of (a) MAP@K and (b) MRR@K

Figure 4: Impact of query reformulation length on performance

Table 6: �ery Improvement by BLIZZARD over Baseline�eries
Dataset �ery Pair Improved/MRD Worsened/MRD Preserved

BRST
BLIZZARD vs. BLT 484 (58.60%)/-82 206 (24.94%)/+34 136 (16.46%)

BLIZZARD vs. BL 485 (58.72%)/-122 174 (21.07%)/+72 167 (20.22%)

BRPE
BLIZZARD vs. BLT 1,397 (50.49%)/-60 600 (21.68%)/+38 770 (27.83%)

BLIZZARD vs. BL 865 (31.26%)/-34 616 (22.26%)/+24 1,286 (46.48%)

BRNL
BLIZZARD vs. BLT 869 (56.21%)/-27 355 (22.96%)/+29 322 (20.83%)

BLIZZARD vs. BL 597 (38.62%)/-16 455 (29.43%)/+31 494 (31.95%)

All

BLIZZARD vs. BLT 2,750 (53.51%) /-55 1,161 (22.59%)/+32 1,228 (23.90%)

BLIZZARD vs. BL 1,947 (37.89%)/-50 1,245 (24.22%)/+30 1,947 (37.89)%

* = Signi�cant di�erence, Preserved=�ery quality unchanged, MRD = Mean Rank Di�erence

between BLIZZARD and baseline queries, BLT = title, BL = title + description

From Fig. 3-(a), we see that precision reaches to themaximumpre�y

quickly (i.e., at K ≈ 4) for both techniques. While the baseline tech-

nique su�ers from noisy (i.e., from BRST ) and poor (i.e., from BRNL )

queries, BLIZZARD achieves signi�cantly higher precision than

the baseline. Our non-parametric statistical tests–Mann-Whitney
Wilcoxon and Cli�’s Delta–reported p-values< 0.05 with an e�ect

size of large (i.e., 0.85 ≤ ∆ ≤ 1.00). Although the baseline precision

for BRPE is higher, BLIZZARD o�ers even higher precision. From

Fig. 3-(b), we see that mean reciprocal ranks of BLIZZARD have

a logarithmic shape and whereas the baseline counterparts look

comparatively �at. �at is, as more Top-K results are considered,

more true positives are identi�ed by our technique than the baseline

technique does. Statistical tests also reported strong signi�cance

(i.e., p-values<0.001) and large e�ect size (i.e., 0.68≤∆≤1.00) of our
measures over the baseline counterparts. �at is, BLIZZARD per-

forms a good job in reformulating the noisy and poor queries, and

such reformulations contribute to a signi�cant improvement in the

bug localization performances.

Answering RQ1(b) –Impact of Method Parameters: We in-

vestigate the impacts of di�erent adopted parameters -query refor-
mulation length, word stemming, and retrieval engine - upon our

technique, and justify our choices. BLIZZARD reformulates a given

query (i.e., bug report) for bug localization, and hence, size of the

reformulated query is an important parameter. Fig. 4 demonstrates

how various reformulation lengths can a�ect the MAP@10 of our

technique. We see that precision reaches the maximum for three

report classes at di�erent query reformulation lengths (i.e., RL ). For

BRST , we achieve the maximum precision at RL=11, and for BRNL ,

such maximum is detected with RL ranging between 8 and 12. On

Figure 5: �ality improvement of (a) noisy and (b) poor baseline
queries by our technique–BLIZZARD
the contrary, precision increases in a logarithmic manner for BRPE
bug reports. We investigated up to 30 reformulation terms and

found the maximum precision. Given the above empirical �ndings,

we chose RL=11 for BRST , RL=30 for BRPE and RL=8 for RNL as the

adopted query reformulation lengths and our choices are justi�ed.

We also investigate the impact of stemming and text retrieval

engine on our technique. We found that stemming did not improve

the performance of BLIZZARD, i.e., reduced localization accuracy.

Similar �nding was reported by earlier studies as well [23, 26]. We

also found that Lucene performs be�er than Indri on our dataset.

Besides, Lucene has been widely used by relevant literature [20,

33, 34, 42]. Given the above �ndings and earlier suggestions, our

choices on stemming and retrieval engine are also justi�ed.

Our technique improves the baseline accuracy, precision and

reciprocal rank by 8%–56%, 8%–62% and 8%–62% respectively on

average, and our adopted parameters are also justi�ed.

AnsweringRQ2-ComparisonwithBaseline�eries: While

Table 5 contrasts BLIZZARD with the baseline approach for only

Top-10 results, we further investigate how BLIZZARD performs

compared to the baseline when all results returned by each query

are considered. We compare our queries with two baseline queries

–title (i.e., BLT ), title+description (i.e., BL) – from each of the bug

reports. When our query returns the �rst correct result at a higher

position in the result list than that of corresponding baseline query,

we call it query improvement and vice versa query worsening. When

result ranks of the reformulated query and the baseline query are

the same, then we call it query preserving. From Table 6, we see

that our applied reformulations improve the noisy (i.e., BRST ) and

poor (i.e., BRNL) queries by 59% and 39%–56% respectively with

≈ 25% worsening ratios. �at is, the improvements are more than

two times the worsening ratios. Fig. 5 further demonstrates the

potential of our reformulations where improvement, worsening

and preserving ratios are plo�ed for each of the six subject sys-

tems. We see that noisy queries get bene�ted greatly from our

reformulations, and on average, their query e�ectiveness improve

up to 122 positions (i.e., MRD of BRST , Table 6) in the result list.

Such improvement of ranks can de�nitely help the developers in

locating the buggy �les in the result list more easily. �e poor

queries also improve due to our reformulations signi�cantly (i.e.,

p-value=0.004<0.05, Cli�’s ∆=0.94 (large)), and the correct results

can be found 16 positions earlier (than the baseline) in the result

list starting from the top. �antile analysis in Table 9 also con�rms

that noisy and poor queries are signi�cantly improved by our pro-

vided reformulations. Besides, the bene�ts of query reformulations

are also demonstrated by our �ndings in Table 5 and Fig. 3.
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Table 7: Comparison with Existing Bug Localization Techniques
RG Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST

BugLocator 28.79% 55.08% 67.00% 38.49% 0.40

BLUiR 23.38% 44.34% 54.06% 30.96% 0.32

AmaLgam+BRO 45.33% 66.97% 73.29% 52.88% 0.55

BLIZZARD 34.42% 66.28% 75.21% 45.50% 0.47

BLIZZARDBRO 47.42% 73.74% 78.77% 56.22% 0.59
AmaLgam+ 50.51% 66.47% 71.66% 55.97% 0.58

BLIZZARD+ 53.39% *76.12% *80.03% 60.65% 0.63

BRPE

BugLocator 36.25% 61.37% 70.96% 44.24% 0.47

BLUiR 35.54% 62.93% 72.17% 43.67% 0.47

AmaLgamBRO 33.90% 60.48% 69.09% 42.00% 0.45

BLIZZARD *44.31% *69.48% 77.84% *52.08% *0.55
BLIZZARDBRO 47.16% 71.26% 78.25% 53.69% 0.57
Amalgam+ 52.00% 68.54% 72.93% 55.80% 0.59

BLIZZARD+ 56.84% 74.70% 80.09% 60.78% 0.65

BRNL

BugLocator 25.11% 48.52% 59.04% 32.19% 0.35

BLUiR 29.87% 56.63% 66.10% 38.07% 0.41

AmaLgam+BRO 29.40% 56.07% 65.01% 37.74% 0.40

BLIZZARD 29.89% 54.57% 66.18% 38.37% 0.41
BLIZZARDBRO 35.45% 58.75% 69.17% 42.26% 0.46
AmaLgam+ 49.72% 65.42% 71.49% 52.74% 0.57

BLIZZARD+ 47.97% 66.24% 74.49% 52.12% 0.56

All

BugLocator 31.85% 57.37% 67.87% 40.17% 0.43

BLUiR 32.45% 59.18% 68.65% 40.82% 0.44

Amalgam+BRO 35.03% 61.32% 69.89% 43.36% 0.46

BLIZZARD 38.59% 65.08% 74.52% 47.14% *0.50
BLIZZARDBRO 44.26% 69.15% 76.61% 51.41% *0.55
AmaLgam+ 52.29% 68.53% 73.58% 56.03% 0.59

BLIZZARD+ 54.78% 73.76% 79.66% 59.32% 0.63
RG=Report Group, BRO=Bug Report Only, *=Signi�cantly higher

Table 8: Components behind Existing IR-Based Bug Localization

Technique Bug Report Only External Resources MRR
BRT BRS ST QR BRH VCH AH

Baseline l 0.44

BugLocator l l 0.43

BLUiR l l 0.44

AmaLgam+BRO l l l 0.46

BLIZZARD l l *0.50
BLIZZARDBRO l l l l *0.55
AmaLgam+ l l l l l l 0.59

BLIZZARD+ l l l l l l l 0.63
BRT=Bug Report Texts, BRS=Bug Report Structures, ST=Stack Traces,

QR=�ery Reformulation, BRH=Bug Report History, VCH=Version Control

History, AH=Authoring History, BRO=Bug Report Only, l=Feature used

Our applied reformulations to the bug localization queries im-

prove 59% of the noisy queries and 39%–56% of the poor queries,

and return the buggy �les closer to the top of result list. Such

improvements can reduce a developer’s e�ort in locating bugs.

4.4 Comparison with Existing Techniques
Answering RQ3 –Comparison with Existing IR-Based Bug
Localization Techniques: Our evaluation of BLIZZARD with

four widely used performance metrics shows promising results.

�e comparison with the best performing baseline shows that our

approach outperforms the baselines. However, in order to further

gain con�dence and to place our work in the literature, we also

compared our approach with three IR-based bug localization tech-

niques [49, 57, 65] including the state-of-the-art [57]. Zhou et al.

[65] �rst employ improved Vector Space Model (i.e., rVSM) and bug

report similarity for locating buggy source �les for a new bug report.

Saha et al. [49] employ structured information retrieval where (1) a

bug report is divided into two �elds–title, description and a source

document is divided into four �elds–class, method, variable and
comments, and then (2) eight similarity measures between these two

groups are accumulated to rank the source document. We collect

authors’ implementations of both techniques for our experiments.

While the above studies use bug report contents only, the later

approaches combine them [48] and add more internal [59] or ex-

ternal information sources such as version control history [56]

and author information [57]. In the same vein, Wang and Lo [57]

recently combine �ve internal and external information sources

- similar bug report, structured IR, stack traces, version control

history and document authoring history – for ranking a source doc-

ument, and outperform �ve earlier approaches which makes it the

state-of-the-art in IR-based bug localization. Given that authors’ im-

plementation is not publicly available, we implement this technique

ourselves by consulting with the original authors. Since BLIZZARD

does not incorporate any external information sources, to ensure a

fair comparison, we also implement a variant of the state-of-the-art

namely AmaLgam+BRO . It combines bug report texts, structured

IR and stack traces (i.e., Table 8) for source document ranking.

From Table 7, we see that AmaLgam+ performs the best among

the existing techniques. However, its performance comes at a

high cost of mining six information contents (i.e., Table 8). Be-

sides, for optimal performance, AmaLgam+ needs past bug reports,

version control history and author history which might always

not be available. �us, to ensure a fair comparison, we develop

two variants of our technique–BLIZZARDBRO and BLIZZARD+.

BLIZZARDBRO combines query reformulation with bug report

only features whereas BLIZZARD+ combines query reformulation

with all ranking components of AmaLgam+ (i.e., details in Table

8). We then compare both BLIZZARD and BLIZZARDBRO with

AmaLgam+BRO , and BLIZZARD+ with AmaLgam+.

As shown in Table 7, BLIZZARD outperforms AmaLgam+BRO in

terms of all three metrics especially for BRPE reports while perform-

ing moderately high with other report groups. For example, BLIZ-

ZARD provides 22% higherMRR@10 and 24% higherMAP@10 than

AmaLgam+BRO for BRPE . When all report only features are com-

plemented with appropriate query reformulations, our technique,

BLIZZARDBRO outperforms AmaLgam+BRO in terms of all three

metrics–Hit@K, MAP@10 and MRR@10– with each report groups.

Such �ndings suggest that BLIZZARDBRO can be�er exploit the

available resources (i.e., bug report contents) than the state-of-the-

art variant, and returns the buggy �les at relatively higher posi-

tions in the ranked list. Furthermore, BLIZZARD+ outperforms the

state-of-the-art, AmaLgam+, by introducing query reformulation

paradigm. For example, BLIZZARD+ improves Hit@5 and Hit@10

over AmaLgam+ for each of the three query types, e.g., 15% and

12% respectively for noisy queries (BRST ). It also should be noted

that none of the existing techniques is robust to all three report

groups simultaneously. We overcome such issue with appropriate

query reformulations, and deliver ≈75%–80% Hit@10 irrespective

of the bug report quality. From Table 8, we see that BLIZZARDPRO
provides 20% higher MRR@10 than AmaLgam+BRO by consuming

equal amount of resources, i.e., bug report only. All these �ndings

above suggest two important points. First, earlier studies might

have failed to exploit the report contents and structures properly for

bug localization. Second, query reformulation has a high potential

for improving the IR-based bug localization.
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Table 9: Comparison of�ery E�ectiveness with Existing Techniques

Technique RG Improvement Worsening Preserving
#Improved Mean Q1 Q2 Q3 Min. Max. #Worsened Mean Q1 Q2 Q3 Min. Max. #Preserved

Rocchio [47] 337 (40.80%) 68 4 12 60 1 1,245 264 (31.96%) 118 6 21 97 2 2,824 225 (27.24%)

RSV [20] 218 (26.39%) 163 10 43 158 1 2,103 236 (28.57%) 198 17 71 245 2 2,487 372 (45.04%)

Sisman and Kak [51] BRST 339 (41.04%) 66 4 12 53 1 1,245 265 (32.08%) 121 7 23 100 2 2,846 222 (26.88%)

STRICT [42] (826) 399 (48.30%) 35 1 4 17 1 1,538 318 (38.50%) 139 6 25 110 2 3,066 109 (13.20%)

Baseline 153 7 35 149 2 2,221 70 1 5 30 1 2,469

BLIZZARD 485 (58.72%) 22 1 3 9 1 932 174 (21.07%) 112 4 15 60 2 3,258 167 (20.22%)
Rocchio [47] 32 (2.07%) 33 4 8 19 1 365 24 (1.55%) 140 4 12 146 2 850 1,490 (96.38%)

RSV [20] 345 (22.27%) 112 3 9 38 1 6,564 751 (48.57%) 105 7 23 81 2 2,140 450 (29.11%)

Sisman and Kak [51] BRNL 499 (32.28%) 59 2 6 26 1 2,019 575 (37.19%) 98 5 15 64 2 2,204 472 (30.47%)

STRICT [42] (1,546) 467 (30.21%) 57 2 6 30 1 1,213 654 (42.30%) 112 5 18 63 2 4,933 425 (27.44%)

Baseline 91 5 15 57 2 2,434 61 2 8 30 1 1,894

BLIZZARD 597 (38.62%) 75 2 8 32 1 3,063 455 (29.43%) 92 5 15 54 2 2,024 494 (31.95%)

Figure 6: Comparison of (a) MAP@K and (b) Hit@K with the state-
of-the-art bug localization techniques

Figure 7: Comparison of Hit@10 across all subject systems

Figure 8: Comparison of (a) MRR@10 and (b) MAP@10 with exist-
ing techniques across subject systems

Fig. 6 demonstrates a comparison of BLIZZARD with the ex-

isting techniques in terms of (a) MAP@K and (b) Hit@K for var-

ious Top-K results. Our statistical tests report that BLIZZARD,

BLIZZARDBRO and BLIZZARD+ outperform AmaLgam+BRO and

AmaLgam+ respectively in MAP@K by a signi�cant margin (i.e.,

p-values≤0.001) and large e�ect size (i.e., 0.82≤∆≤1.00). Similar

�ndings were achieved for Hit@K measures as well.

Fig. 7 and Fig. 8 focus on subject system speci�c performances.

From Fig. 7, we see that BLIZZARD outperforms AmaLgam+BRO
with four systems inHit@10, and falls short with two systems. How-

ever, BLIZZARDBRO and BLIZZARD+ outperform AmaLgam+BRO
and AmaLgam+ respectively for all six systems. As shown in the

box plots of Fig. 8, BLIZZARD has a higher median in MRR@10 and

MAP@10 than AmaLgam+BRO across all subject systems. AmaL-

gam+ improves bothmeasures especially MAP@10. However, BLIZ-

ZARD+ provides even higher MRR@10 and MAP@10 than any of

the existing techniques including the state-of-the-art.

Our technique outperforms the state-of-the-art from IR-based

bug localization in various dimensions. It o�ers 20% higher preci-

sion and reciprocal rank than that of state-of-the-art variant (i.e.,

AmaLgam+BRO ) by using only query reformulation rather than

costly alternatives, e.g., mining of version control history

Answering RQ4 –Comparison with Existing�ery Refor-
mulation Techniques: While we have already showed that our

approach outperforms the baselines and the state-of-the-art IR-

based bug localization approaches, we also wanted to further eval-

uate our approach in the context of query reformulation. We thus

compared BLIZZARD with four query reformulation techniques

[20, 42, 47, 51] including the state-of-the-art [42] that were mostly

used for concept/feature location. We use authors’ implementation

of the state-of-the-art, STRICT, and re-implement the remaining

three techniques. We collect �ery E�ectiveness (i.e., rank of the

�rst correct result) of each of the reformulated queries provided

by each technique, and compare with ours using quantile analysis.

From Table 9, we see that 48% of the noisy (i.e., BRST ) queries are

improved by STRICT, and 32% of the poor (i.e., BRNL) queries are

improved by Sisman and Kak [51]. Neither of these techniques con-

siders bug report quality (i.e., prevalence of structured information

or lack thereof) and each technique applies the same reformula-

tion strategy to all reports. On the contrary, BLIZZARD chooses

appropriate reformulation based on the class of a bug report, and

improves 59% of the noisy queries and 39% of the poor queries

which are 22% and 20% higher respectively. When compared using

quantile analysis, we see that our quantiles are highly promising

compared to the baseline. Our reformulations clearly improve the

noisy queries, and 75% of the improved queries return their �rst

correct results within Top-9 (i.e., Q3=9) positions whereas STRICT

needs Top-17 positions for the same. In the case of poor queries,

quantiles of BLIZZARD are comparable to that of Sisman and Kak.

However, BLIZZARD worsens less and preserves higher amount of

the baseline queries which demonstrate its high potential.

BLIZZARD outperforms the state-of-the-art in query reformula-

tion using context-aware (i.e., responsive to report quality) query

reformulation. Whatever improvements are o�ered to noisy and



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ESEC/FSE’18, November 2018, Florida, USA Anon.

poor queries by the state-of-the-art, our technique improves 22%

more of noisy queries and 20% more of the poor queries.

5 THREATS TO VALIDITY
�reats to internal validity relate to experimental errors and biases

[64]. Replication of existing studies and misclassi�cation of the

bug reports are possible sources of such threats. We use authors’

implementation of three techniques [42, 49, 65] and re-implement

the remaining four. While we cannot rule out the possibility of

any implementation errors, we re-implemented them by consult-

ing with the original authors [57] and their reported se�ings and

parameters [20, 47, 51]. While our technique employs appropriate

regular expressions for bug report classi�cation, they are limited

in certain contexts (e.g., ill-structured stack traces) which require

limited manual analysis currently. More sophisticated classi�cation

approaches [38, 52, 66] could be applied in the future work.

�reats to external validity relate to generalizability of a tech-

nique [64]. We conduct experiments using Java systems. However,

since we deal with mostly structured items (e.g., stack traces, pro-

gram entities) from a bug report, our technique can be adapted to

other OOP-based systems that have structured items.

6 RELATEDWORK
Bug Localization: Automated bug localization has been an active

research area for over two decades [49]. Existing studies from the lit-

erature can be roughly categorized into two broad families–spectra
based and information retrieval (IR) based [29, 55]. We deal with

IR-based bug localization in this work. Given that spectra based

techniques are costly and lack scalability [34, 55], several studies

adopt IR-basedmethods such as Latent Semantic Indexing (LSI) [39],

Latent Dirichlet Allocation (LDA) [36, 44] and Vector Space Model

(VSM) [27, 34, 49, 50, 59, 65] for bug localization. �ey leverage the

shared vocabulary between bug reports and source code entities

for bug localization. Unfortunately, as existing evidences [43, 55]

suggest, they are inherently subject to the quality of bug reports. A

number of recent studies complement traditional IR-based localiza-

tion with spectra based analysis [29], machine learning [28, 61] and

mining of various repositories– bug report history [48], version

control history [50, 56], code change history [58, 63] and document

authoring history [57]. Recently, Wang and Lo [57] combine bug

report contents and three external repositories, and outperform

six earlier IR-based bug localization techniques [48–50, 56, 59, 65]

which makes it the state-of-the-art. In short, the contemporary

studies advocate for combining (1) multiple localization approaches

(e.g., dynamic trace analysis [29], Deep learning [28], learning to

rank [61, 62]) and (2) multiple external information sources with

classic IR-based localization, and thus, improve the localization per-

formances. However, such solutions could be costly (i.e., multiple

repository mining) and less scalable (i.e., dependency on external

information sources), and hence, could be infeasible to use in prac-

tice. In this work, we approach the problem di�erently, and focus

on be�er leveraging the potential of the resources at hand (i.e., bug

report and source code) which might have been underestimated
by the earlier studies. In particular, we re�ne the noisy queries

(i.e., containing stack traces) and complement the poor queries (i.e.,

lacks structured items), and o�er an e�ective information retrieval

unlike the earlier studies. �us, issues raised by low quality bug

reports have been signi�cantly addressed by our technique, and

our experimental �ndings support such conjecture. We compare

with three existing studies including the state-of-the-art [57], and

the detailed comparison can be found in Section 4.4 (i.e., RQ3).

A few studies [34, 59] analyse stack traces from a bug report for

bug localization. However, they apply the trace entries to boost

up source document ranking, and super�uous trace entries were

not discarded from their stack traces. Learning-to-rank [61, 62]

and Deep learning [28] based approaches might also su�er from

noisy and poor queries since they adopt classic IR without query

reformulation in their document ranking. Recent studies [54, 62]

employ distributional semantics of words to address limitations of

VSM. Since noisy terms in the report could be an issue, our approach

can complement these approaches through query reformulation.

�ery Reformulation: �ere exist several studies [14, 18, 20–

22, 26, 40, 42, 45, 62] that support concept/feature/concern loca-

tion tasks using query reformulation. However, these approaches

mostly deal with unstructured natural language texts. �us, they

might not perform well with bug reports containing excessive struc-

tured information (e.g., stack traces), and our experimental �ndings

also support this conjecture (Table 9). Sisman and Kak [51] �rst

introduce query reformulation in the context of IR-based bug local-

ization. However, their approach cannot remove noise from a query.

Recently, Chaparro et al. [13] identify observed behaviour (OB),

expected behaviour (EB) and steps to reproduce (S2R) from a bug

report, and then use OB texts as a reformulated query for bug lo-

calization. However, they only analyze unstructured texts whereas

we deal with both structured and unstructured contents. Since we

apply query reformulation, we compare with four recent query

reformulation techniques employed for concept location–Rocchio

[47], RSV [20], STRICT [42] [41] and bug localization– SCP [51].

�e detailed comparison can be found in Section 4.4 (i.e., RQ4).

In short, existing IR-based techniques su�er from quality issues
of bug reports whereas traditional query reformulation techniques

are not well-adapted for the bug reports containing excessive struc-

tured information (e.g., stack traces). Our work �lls this gap of

the literature by incorporating context-aware (i.e., report quality

aware) query reformulation into the IR-based bug localization. Our

technique be�er exploits resources at hand and delivers equal or

higher performance than the state-of-the-art at a relatively lower

cost. To the best of our knowledge, such comprehensive solution

was not provided by any of the existing studies.

7 CONCLUSION AND FUTUREWORK
Traditional IR-based bug localization is inherently subject to the

quality of submi�ed bug reports. In this paper, we propose a novel

technique that leverages the quality aspect of bug reports, incorpo-

rates context-aware query reformulation into the bug localization,

and thus, overcomes the above limitation. Experiments using 5,139

bug reports from six open source systems report that BLIZZARD

can o�er up to 62% and 20% higher precision than the best baseline

technique and the state-of-the-art respectively. Our technique also

improves 22% more of noisy queries and 20% more of the poor

queries than that of state-of-the-art. In future, we plan to apply our

learned insights and our technique to further complex activities

during debugging such as automatic bug �xing.
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[8] N. Be�enburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. 2008. What

Makes a Good Bug Report?. In Proc. FSE. 308–318.
[9] N. Be�enburg, R. Premraj, T. Zimmermann, and S. Kim. 2008. Extracting Structural Informa-

tion from Bug Reports. In Proc. MSR. 27–30.
[10] R. Blanco and C. Lioma. 2012. Graph-based Term Weighting for Information Retrieval. Inf.

Retr. 15, 1 (2012), 54–92.
[11] S. Brin and L. Page. 1998. �e Anatomy of a Large-Scale Hypertextual Web Search Engine.

Comput. Netw. ISDN Syst. 30, 1-7 (1998), 107–117.
[12] C. Carpineto and G. Romano. 2012. A Survey of Automatic �ery Expansion in Information

Retrieval. ACM Comput. Surv. 44, 1 (2012), 1:1–1:50.
[13] O. Chaparro, J. M. Florez, and A Marcus. 2017. Using Observed Behavior to Reformulate

�eries during Text Retrieval-based Bug Localization. In Proc. ICSME. to appear.

[14] O. Chaparro and A. Marcus. 2016. On the Reduction of Verbose �eries in Text Retrieval

Based So�ware Maintenance. In Proc. ICSE-C. 716–718.
[15] F. Chen and S. Kim. 2015. Crowd Debugging. In Proc. ESEC/FSE. 320–332.
[16] J. Cordeiro, B. Antunes, and P. Gomes. 2012. Context-based Recommendation to Support

Problem Solving in So�ware Development. In Proc. RSSE. 85 –89.
[17] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. 2009. Mining source code to automatically

split identi�ers for so�ware analysis. In Proc. MSR. 71–80.
[18] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. 2009. On the Use of Relevance Feedback in

IR-based Concept Location. In Proc. ICSM. 351–360.

[19] Z. Gu, E.T. Barr, D. Schleck, and Z. Su. 2012. Reusing Debugging Knowledge via Trace-based

Bug Search. In Proc. OOPSLA. 927–942.
[20] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies. 2013. Automatic

Query Reformulations for Text Retrieval in So�ware Engineering. In Proc. ICSE. 842–851.
[21] S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, and A. Marcus. 2012. Automatic �ery Perfor-

mance Assessment During the Retrieval of So�ware Artifacts. In Proc. ASE. 90–99.
[22] E. Hill, L. Pollock, and K. Vijay-Shanker. 2009. Automatically Capturing Source Code Context

of NL-queries for So�ware Maintenance and Reuse. In Proc. ICSE. 232–242.
[23] E Hill, S Rao, and A Kak. 2012. On the Use of Stemming for Concern Location and Bug

Localization in Java. In Proc. SCAM. 184–193.

[24] O�o Jespersen. 1929. �e Philosophy of Grammar. (1929).

[25] K S Jones. 1972. A Statistical Interpretation Of Term Speci�city And Its Application In Re-

trieval. Journal of Documentation 28, 1 (1972), 11–21.

[26] K. Kevic and T. Fritz. 2014. Automatic Search Term Identi�cation for Change Tasks. In Proc.
ICSE. 468–471.

[27] D. Kim, Y. Tao, S. Kim, and A. Zeller. 2013. Where Should We Fix �is Bug? A Two-Phase

Recommendation Model. TSE 39, 11 (2013), 1597–1610.

[28] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. 2017. Bug Localization with

Combination of Deep Learning and Information Retrieval. In Proc. ICPC. 218–229.
[29] Tien-Duy B. Le, R. J. Oentaryo, and D. Lo. 2015. Information Retrieval and Spectrum Based

Bug Localization: Be�er Together. In Proc. ESEC/FSE. 579–590.
[30] R. Mihalcea. 2005. Unsupervised Large-vocabulary Word Sense Disambiguation with Graph-

based Algorithms for Sequence Data Labeling. In Proc. HLT. 411–418.
[31] R. Mihalcea and P. Tarau. 2004. TextRank: Bringing Order into Texts. In Proc. EMNLP. 404–

411.

[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed Representations

of Words and Phrases and their Compositionality. In Proc. NIPS. 3111–3119.
[33] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta, R. Oliveto, B. Russo, and A.Marcus. 2015. �ery-

based Con�guration of Text Retrieval Solutions for So�ware Engineering Tasks. In Proc. ES-
EC/FSE. 567–578.

[34] L.Moreno, J. J. Treadway, A.Marcus, andW. Shen. 2014. On the Use of Stack Traces to Improve

Text Retrieval-Based Bug Localization. In Proc. ICSME. 151–160.
[35] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann. 2011. Crowdsourcing Suggestions to

Programming Problems for Dynamic Web Development Languages. In Proc. CHI. 1525–1530.

[36] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. 2011. A Topic-

based Approach for Narrowing the Search Space of Buggy Files from a Bug Report. In Proc.
ASE. 263–272.

[37] C. Parnin and A. Orso. 2011. Are Automated Debugging Techniques Actually Helping Pro-

grammers?. In Proc. ISSTA. 199–209.
[38] N. Pingclasai, H. Hata, and K. i. Matsumoto. 2013. Classifying Bug Reports to Bugs and Other

Requests Using Topic Modeling. In Proc. APSEC, Vol. 2. 13–18.
[39] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. 2007. Feature Loca-

tion Using Probabilistic Ranking of Methods Based on Execution Scenarios and Information

Retrieval. TSE 33, 6 (2007), 420–432.

[40] M. M. Rahman and C. K. Roy. 2016. QUICKAR: Automatic �ery Reformulation for Concept

Location Using Crowdsourced Knowledge. In Proc. ASE. 220–225.
[41] M. M. Rahman and C. K. Roy. 2017. Improved �ery Reformulation for Concept Location

using CodeRank and Document Structures. In Proc. PeerJ Preprints, Vol. 5. h�ps://doi.org/10.
7287/peerj.preprints.3186v1

[42] M. M. Rahman and C. K. Roy. 2017. STRICT: Information Retrieval Based Search Term Iden-

ti�cation for Concept Location. In Proc. SANER. 79–90.
[43] M.M. Rahman andC. K. Roy. 2018. Improving Bug Localizationwith Report�ality Dynamics

and�ery Reformulation. In Proc. ICSE-C. to appear.

[44] S. Rao and A. Kak. 2011. Retrieval from So�ware Libraries for Bug Localization: A Compara-

tive Study of Generic and Composite Text Models. In Proc. MSR. 43–52.
[45] S. Rastkar, G. C. Murphy, and G. Murray. 2010. Summarizing So�ware Artifacts: A Case Study

of Bug Reports. In Proc. ICSE. 505–514.
[46] P. C. Rigby and M.P. Robillard. 2013. Discovering Essential Code Elements in Informal Docu-

mentation. In Proc. ICSE. 832–841.
[47] J.J. Rocchio. �e SMART Retrieval System—Experiments in Automatic Document Processing.

Prentice-Hall, Inc. 313–323 pages.

[48] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. 2014. On the E�ectiveness of Information

Retrieval Based Bug Localization for C Programs. In Proc. ICSME. 161–170.
[49] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. 2013. Improving bug localization using

structured information retrieval. In Proc. ASE. 345–355.
[50] B. Sisman and A. C. Kak. 2012. Incorporating Version Histories in Information Retrieval Based

Bug Localization. In Proc. MSR. 50–59.
[51] B. Sisman and A. C. Kak. 2013. Assisting code search with automatic �ery Reformulation

for bug localization. In Proc. MSR. 309–318.
[52] F.�ung, D. Lo, and L. Jiang. 2012. Automatic Defect Categorization. In Proc. WCRE. 205–214.
[53] K. Toutanova, D. Klein, C.D. Manning, and Y. Singer. 2003. Feature-Rich Part-of-Speech Tag-

ging with a Cyclic Dependency Network. In Proc. HLT-NAACL. 252–259.
[54] Y. Uneno, O. Mizuno, and E. H. Choi. 2016. Using a Distributed Representation of Words in

Localizing Relevant Files for Bug Reports. In Proc. QRS. 183–190.
[55] Q. Wang, C. Parnin, and A. Orso. 2015. Evaluating the Usefulness of IR-based Fault Localiza-

tion Techniques. In Proc. ISSTA. 1–11.
[56] S. Wang and D. Lo. 2014. Version History, Similar Report, and Structure: Pu�ing �em To-

gether for Improved Bug Localization. In Proc. ICPC. 53–63.
[57] S. Wang and D. Lo. 2016. AmaLgam+: Composing Rich Information Sources for Accurate Bug

Localization. JSEP 28, 10 (2016), 921–942.

[58] M. Wen, R. Wu, and S. C. Cheung. 2016. Locus: Locating bugs from so�ware changes. In Proc.
ASE. 262–273.

[59] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. 2014. Boosting Bug-Report-

Oriented Fault Localization with Segmentation and Stack-Trace Analysis. In Proc. ICSME. 181–
190.

[60] X. Xia, L. Bao, D. Lo, and S. Li. 2016. “Automated Debugging Considered Harmful” Con-

sidered Harmful: A User Study Revisiting the Usefulness of Spectra-Based Fault Localization

Techniques with Professionals Using Real Bugs from Large Systems. In Proc. ICSME. 267–278.
[61] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant Files for Bug Reports

Using Domain Knowledge. In Proc. FSE. 689–699.
[62] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. 2016. From Word Embeddings to Document

Similarities for Improved Information Retrieval in So�ware Engineering. In Proc. ICSE. 404–
415.

[63] K. C. Youm, J. Ahn, J. Kim, and E. Lee. 2015. Bug Localization Based on Code Change Histories

and Bug Reports. In Proc. APSEC. 190–197.
[64] T. Yuan, D. Lo, and J. Lawall. 2014. Automated Construction of a So�ware-Speci�c Word

Similarity Database. In Proc. CSMR-WCRE. 44–53.
[65] J. Zhou, H. Zhang, and D. Lo. 2012. Where should the bugs be �xed? More accurate informa-

tion retrieval-based bug localization based on bug reports. In Proc. ICSE. 14–24.
[66] Y. Zhou, Y. Tong, R. Gu, and H. Gall. 2014. Combining Text Mining and Data Mining for Bug

Report Classi�cation. In Proc. ICSME. 311–320.
[67] T. Zimmermann, N. Nagappan, and A. Zeller. 2008. Predicting Bugs from History. In So�ware

Evolution. Springer, 69–88.


