
Recommending Relevant Sections from a Webpage about
Programming Errors and Exceptions

Mohammad Masudur Rahman
Department of Computer Science

University of Saskatchewan, Canada
masud.rahman@usask.ca

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan, Canada
chanchal.roy@usask.ca

ABSTRACT
Programming errors or exceptions are inherent in software
development and maintenance, and given today’s Internet
era, software developers often look at web for finding work-
ing solutions. They make use of a search engine for retrieving
relevant pages, and then look for the appropriate solutions
by manually going through the pages one by one. However,
both the manual checking of a page’s content against a given
exception (and its context) and then working an appropriate
solution out are non-trivial tasks. They are even more com-
plex and time-consuming with the bulk of irrelevant (i.e.,
off-topic) and noisy (e.g., advertisements) content in the web
page. In this paper, we propose an IDE-based and context-
aware page content recommendation technique that locates
and recommends relevant sections from a given web page by
exploiting the technical details, in particular, the context of
an encountered exception in the IDE. An evaluation with
250 web pages related to 80 programming exceptions, com-
parison with the only available closely related technique, and
a case study involving comparison with VSM and LSA tech-
niques show that the proposed technique is highly promising
in terms of precision, recall and F1-measure.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Techniques—relevant con-
tent mining, traceability

Keywords
Content relevance, Content recommendation, Traceability

1. INTRODUCTION
Studies show that about 80% of total effort is spent in soft-

ware maintenance [20]. During the development and main-
tenance of a software product, software developers deal with
different programming errors and exceptions, and they often

Copyright c© 2015 Mohammad Rahman and Chanchal Roy. Permission to
copy is hereby granted provided the original copyright notice is reproduced
in copies made.
.

search in the web for working solutions for solving them. Ac-
cording to Brandt et al. [5], developers spend about 19% of
their development time in web surfing. During the collection
of information using traditional web search, they first use a
search engine with a few keywords for retrieving relevant
pages. However, in order to locate the required informa-
tion, they need to go through the pages one by one, which
is challenging, and this paper focuses on this particular re-
search problem. Both manual checking of a web page for
relevant content against an error and working an appropri-
ate solution out are non-trivial tasks. These tasks get even
more complex and time-consuming with the bulk of irrele-
vant (i.e., off-topic) and noisy (e.g., advertisement) content
in the page. As early as 2005, Gibson et al. [11] estimated
that about 40%-50% of web data were simply noise. Thus,
the developers often spend a significant amount of time and
efforts in searching and then extracting the content of in-
terest from the web pages. Fortunately, automated support
in post-search content analysis can greatly benefit them in
this regard. For example, identification and then recom-
mendation of page sections relevant for the developers from
a selected web page can help them get rid of information
overload and locate the content of interest instantly, which
in turn reduces their overall problem-solving efforts.

A number of existing studies focus on extracting the noise-
free version of a web page by applying different techniques
[6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 22]. However, no stud-
ies target the extraction of relevant sections or sections of
one’s interest from the page. Thus, they fail to direct one
to the right (or relevant) sections, and do not help much
either in reducing information overload or in locating solu-
tion in the page. Furthermore, most of the techniques are
domain specific (i.e., applies domain knowledge) or template
specific (e.g., tabular structure) [6, 14], and they extract con-
tent from various domains such as news [8, 12, 13, 18, 22],
Wikipedia [6], and real estates [10]. However, none of them
deals with programming related web pages, which makes our
work unique and novel in this context.

In this paper, we propose a novel technique that identifies
and then recommends the relevant sections from a program-
ming related web page by exploiting the technical details
of an encountered exception in the IDE (i.e., context-aware
technique). Once a developer searches about an exception
using a few keywords, the search engine (e.g., in our case
Google) returns a number of pages. Then the real challenge
for her is to manually check those pages and collect mean-
ingful information for the encountered exception, where our
technique comes handy. For example, the code under devel-

181

Figure 1: An Example Relevant Section

Listing 1: Context code of an Exception
//more code goes here ...
FileInputStream fis = new FileInputStream(file);
ObjectInputStream ois = new ObjectInputStream(fis);
ArrayList<Record> currentList = new ArrayList<>();
int size = ois.readInt();
for (int i = 0; i < size; i++) {
Record current = (Record) ois.readObject();
currentList.add(current); }

opment (hereby we call it context code) in Listing 1 triggers
an EOFException, and the IDE reports the stack trace in
Listing 2. Our technique analyzes both the content of a re-
turned web page (e.g., Fig. 2) and the technical details of
the exception (e.g., Listing 1 and Listing 2), analyzes legiti-
macy (i.e., content purity) and relevance of different sections
from the page, and then identifies the most relevant section
(Fig. 1, boxed area from Fig. 2) in the page for the devel-
oper. We integrate Google search API into Eclipse IDE to
collect web pages for the developer provided search queries
about an exception, and then use those pages for the recom-
mendation of relevant sections from them one by one as the
developer wishes. In this way, even though Google search
may return a lot of web pages, our technique can reduce
the burden for the developer by recommending the relevant
sections or even indicating that some particular pages might
not have any relevant sections at all for the encountered ex-
ception. We package our recommendation solution into an
Eclipse plug-in prototype, called, ContentSuggest [1].

Our proposed technique also complements existing studies
in certain aspects. First, existing density metrics [13, 22] fall
short in extracting content from programming related web
pages, and we propose a novel density metric for program-
ming content– code density in order to complement them.
Second, our technique introduces a novel idea of leveraging
content relevance in the extraction and then recommenda-
tion of web page content. It should be noted that this work is
fundamentally different from our previous work–SurfClipse
[20] that returns a list of relevant pages for any exception.
On the other hand, this work returns the most relevant sec-
tions from a given web page for the exception of interest.

We evaluate and validate our technique in three ways. An
experiment using 250 programming related web pages, 80
programming exceptions, and their technical details shows
that our technique recommends relevant content from a web
page with a precision of 81.96%, a recall of 76.74%, and a
F1-measure of 76.30% on average, which are promising. We
compared against the only available closely related technique–
Sun et al. [22] and found that our technique outperformed

Listing 2: Stack Trace of the Exception
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(

ObjectInputStream.java:2325)
at java.io.ObjectInputStream$BlockDataInputStream.

readShort(ObjectInputStream.java:2794)
at java.io.ObjectInputStream.readStreamHeader(

ObjectInputStream.java:801)
at java.io.ObjectInputStream.<init>(ObjectInputStream.

java:299)
at core.MyEOFTest.main(MyEOFTest.java:40)

Figure 2: Relevant Section(s) in the Webpage

that technique in terms of all the performance metrics. A
case study using 35 StackOverflow web pages and comparing
with two state-of-the-art traceability link recovery techniques–
VSM [3] and LSA [17] reports that our technique performs
significantly well in identifying the page content marked as
relevant by a large technical crowd. Thus, the paper makes
the following technical contributions:

182

Listing 3: Example HTML Segment (taken from [2])
<div id="content">
<div id="question−header">
<h1 itemprop="name">
<a>How to instantiate inner class using reflection?
</h1></div>
<div class="post−text" itemprop="description">
<p>I get this exception:</p>
<pre class="lang−java prettyprint prettyprinted">
<code>java.lang.InstantiationException ..</code>
</pre></div></div>

Figure 3: DOM Tree of Example in Listing 3

• We propose a novel metric–code density that comple-
ments existing density metrics, and extracts content
from programming related web pages.

• We introduce content relevance in content extraction
from a web page, which in turn provides a mean for
supporting the developers in post-search content anal-
ysis through relevant section recommendation.

• We package the proposed solution into an Eclipse plug-
in prototype [1], that captures the technical details of
an encountered exception in the IDE, and then recom-
mends the relevant sections from a given web page.

The rest of the paper is organized as follows– Section 2 fo-
cuses on the background concepts required for the research
and Section 3 discusses the proposed technique including
working modules, metrics and algorithms. Section 4 de-
scribes the conducted experiments, results and validation
followed by a case study, Section 5 identifies the potential
threats to validity, Section 6 focuses on the related work,
and finally Section 7 concludes the paper.

2. BACKGROUND
Document Object Model (DOM): It is a cross-platform

and language independent convention to represent the con-
tent of an HTML or XML document. In this model, a doc-
ument is represented as a tree, where each of the tags is
represented as an inner node and textual or graphical ele-
ments are represented as leaf nodes. For example, the HTML
code segment in Listing 3 shows the title and body part of
a programming question posted on StackOverflow Q & A
site, and Fig. 3 shows the corresponding DOM tree. In our
research, we use Jsoup1, a popular Java library, for parsing
and analyzing the DOM tree of any web page.

Cosine Similarity: It is a measure that is frequently
used in information retrieval in order to determine the sim-
ilarity between two text documents. In our research, we use
cosine similarity measure for determining lexical similarity

1http://jsoup.org

between the context (e.g., stack trace, context code) of a
programming exception and the discussion text from a can-
didate section of a web page. We consider each of the prob-
lem context and discussion texts as a bag of tokens2, discard
the insignificant tokens (e.g., braces, semicolons, colons, dots
and other punctuations), and decompose each token having
a camel-case (e.g., StringBuffer) or dotted structure (e.g.,
java.io.IOException). We then prepare a combined set of
tokens, C, from the two sets and calculate cosine similarity,
Scos, as follows.

Scos =

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(1)

Here, Ai represents frequency of ith token from C in set A
(i.e., exception context), and Bi represents that frequency in
set B (i.e., candidate discussion text). This measure values
from zero (i.e., complete lexical dissimilarity) to one (i.e.,
complete lexical similarity), and helps to determine the lex-
ical relevance between the context of an exception and the
candidate section from a web page.

Logistic Regression: It is a probabilistic statistical clas-
sification model that predicts binary or dichotomous out-
comes based on a set of predictor variables (i.e., features).
It is widely used in medical and social science fields. In
our research, we use the regression model in association
with a machine learning technique for estimating the rel-
ative weights (i.e., predictive power) of different density and
relevance metrics for page content extraction (Section 3.5).
Logistic regression models the probabilities of different out-
comes for a single trial as a function of predictor variables
using a logistic function. The logistic function is a common
sigmoid function, F (t), as follows:

F (t) =
et

et + 1
, t = β0 + β1x1 + β2x2 (2)

where F (t) is a logistic function of a variable t, which is
again a function of the predictor variables x1 and x2. Here,
β1, β2 are coefficients, and β0 is the intercept in the regres-
sion equation. The function always returns a value between
zero and one, and thus, provides a probabilistic measure for
each type of the outcomes for the trial.

3. PROPOSED APPROACH

3.1 Working Modules
Our proposed technique exploits the technical details of

a programming exception encountered in the IDE, and rec-
ommends the relevant sections from a given web page. In
Fig. 4, the schematic diagram of the technique shows the
working modules, and explains different steps required for
relevant content identification, recommendation and visual-
ization. We package the whole solution as an Eclipse plug-in
prototype [1], and it has three modules as follows:

Content Collector: The collector module collects excep-
tion message and stack trace from the active Console View
(Fig. 4-(c)) and context code3 from the active text editor
(Fig. 4-(d)) once an exception occurs. It also collects the
HTML source of the selected web page (e.g., top one se-
lected in Fig. 4-(a)). Once the developer selects a web page
and requests for relevant page sections, the collector module
downloads HTML source of the page, and sends the source

2A collection of tokens with no fixed order
3A segment of the source code that generates the exception

183

Figure 4: Schematic Diagram of the Proposed Approach

and the previously collected exception details from the IDE
to the extractor module.

Content Extractor: The extractor module (i.e., dashed
rectangle, Fig. 4-(e)) analyzes the source of the selected
HTML page, parses each of the tags, and develops a DOM
tree. It then analyzes each of the tree nodes, calculates
their content density and content relevance (Section 3.2),
and assigns content scores. The module then discards the
noisy nodes based on their content scores, and identifies the
DOM tree nodes most relevant to the encountered exception
(Fig. 4-(c)) in the IDE for recommendation.

Content Visualizer: The visualizer module consists of
two content visualization panels. First, the relevant content
panel (Fig. 4-(f)) displays the most relevant section from
a web page recommended by the extractor module, where
it highlights different program elements of interest such as
stack trace and code segment. The idea is to help a devel-
oper instantly decide if the page is worth browsing or not.
Thus, the developer can save time and effort in choosing the
appropriate solution for the exception at hand. Once she is
convinced by the most relevant section, she then can check
the whole page using the embedded browser (Fig. 4-(g)) for
in-depth analysis. Second, the result panel (Fig. 4-(a, b)) vi-
sualizes the estimated relevance of each result page against
the target exception by analyzing the meta description of
the page from the search engine. This visualization helps
the developer choose the prospective solution pages in the
first place during search.

3.2 Proposed Metrics
In this section, we discuss our proposed density and rele-

vance metrics that are used for extracting and recommend-

ing relevant section(s) from a given web page.

3.2.1 Content Density (CTD)
Existing studies [13, 22] propose two density metrics–text

density, and link density for noise-free content extraction
from a web page. However, these metrics are based on reg-
ular texts (e.g., news article), and they are neither prop-
erly applicable nor sufficient enough for content extraction
from programming related web pages. These pages contain
items other than regular texts such as stack traces, code
segments, and configuration information. We thus modify
existing metrics, introduce a new density metric, and then
finally propose a composite density metric.

Text Density (TD): Text Density represents the amount
of any textual content each of the HTML tags in the web
page contains on average. The metric roughly estimates the
content aspect of the page. Thus, in the DOM tree, text
density (TDi) of a node is calculated by capturing its num-
ber of child nodes (Ti) (i.e., inner nodes) and the amount of
texts (Ci) it contains in the leaf nodes as follows:

TDi =
Ci

Ti
(3)

Link Density (LD): Link Density represents the amount
of linked (i.e., noisy) texts each of the HTML tags contains
on average. The metric roughly estimates the noise aspect
of the page. Existing literature [13, 22] considers any linked
text in the web page as noise. However, in our research, we
make a careful choice about them. We analyze the relevance
of each linked text element against the exception of inter-
est, and consider the element as noise only if its relevance is
below a carefully chosen heuristic threshold (η=0.75). We
otherwise consider it as a legitimate textual element. Thus
in the DOM tree, the link density (LDi) of a node i is cal-

184

culated by capturing its number of child nodes (Ti) (i.e.,
inner nodes) and the amount of linked or noisy texts (LCi)
it contains in the leaf nodes as follows:

LDi =
LCi

Ti
(4)

We consider each <a> tag, and check its relevance before
considering it as noise. As Sun et al. [22] suggest, we also
consider <input> and <button> as linked elements, and
their content as linked texts.

Code Density (CD): Code Density represents the amount
of code related texts each of the HTML tags contains on
average. Programming related web pages generally contain
different program elements such as stack traces and code seg-
ments, and they are of great interest to the developers. The
developers often analyze or reuse (i.e., code segments) them
for solving their programming problems. We believe that
the code related elements complement the discussion texts
about programming, and thus code density can be consid-
ered as an important indicator of legitimacy of a program-
ming related web page. In the DOM tree, the code density
(CDi) of a node i is calculated by considering its number of
child nodes (Ti) (i.e., inner nodes) and the amount of code
related texts (CCi) it contains in the leaf nodes as follows:

CDi =
CCi

Ti
(5)

Previous studies [19, 20] suggest that code related elements
are generally posted in the page using <code>, <pre> and
<blockquote> HTML tags. We thus consider the texts from
those tags as code related texts in density calculation.

While text density metric represents a generalized form
of density for all kinds of text, both code density and link
density point to special types of text. Code density can be
considered as a heuristic measure of programming elements
in the text, whereas link density is a similar measure for
noise in the content. In our research, we consider all three
metrics of an HTML tag i, and propose a log-based composite
density metric called content density (CTDi). Our metric
is adapted from the Composite Text Density metric of Sun
et al. [22], and we choose the log-based metric in order to
better distinguish a legitimate section from a noisy section
of the page. Detailed rationale of log-based density can be
found elsewhere [22].

CTDi = (TDi +
CDi

TDi
)×

log
ln(

TDi×LDi
¬LDi

+
LDb×TDi

TDb
+e)

(
TDi

LDi
+
CDi

TDi
)

(6)

Here, TDi, CDi, LDi and ¬LDi represent text density, code
density, link density and non-link density of the HTML tag
i respectively. TDb and LDb represent the text density and
link density of body tag respectively. In Equation (6), TDi

LDi
is

a measure of the proportion of linked texts. When a tag has
higher link density, LDi

¬LDi
×TDi increases the log base, TDi

LDi

gets a lower value, and thus overall content density is pe-
nalized. However, LDb×TDi

TDb
maintains the balance between

these two interacting parts, and prevents a lengthy and ho-
mogeneous text block from getting an extremely higher value
or a single line text (e.g., page title) from getting an ex-
tremely lower value. Moreover, we introduce the program-
ming text proportion of a tag, CDi

TDi
, which improves the

overall content density metric for the HTML tag that con-
tains both programming texts and regular texts.

3.2.2 Content Relevance (CTR)
Existing studies [13, 22] apply different density metrics

in order to discard noisy sections (e.g., advertisements) and
extract legitimate sections from a web page. However, these
metrics are not sufficient enough for relevant content extrac-
tion from the web page, i.e., our research problem. We thus
leverage the technical details of an encountered exception in
the IDE, and propose three relevance metrics for determin-
ing relevance of different sections from a web page.

Text Relevance (TR): Text relevance estimates rele-
vance of the textual content from any HTML tag against
a given exception and its context. The context of an ex-
ception is represented as a list of keywords collected from
corresponding stack trace and context code (Section 3.6).
For example, Listing 4 shows the context of our showcase
exception–EOFException in Listing 1 and Listing 2. We cal-
culate cosine similarity between such keyword list and the
texts from each tag from the page. Cosine similarity mea-
sure represents the token overlap between two items. Since
the context of an encountered exception contains important
tokens such as class names and method names associated
with the exception, lexical similarity between an HTML tag
and the context suggests the tag’s relevance for the excep-
tion. The similarity measure values from zero to one, where
one refers to complete lexical relevance and vice versa.

Code Relevance (CR): Code relevance estimates rel-
evance of a code segment or a stack trace block from an
HTML tag against corresponding context code or stack trace
of a given exception. In order to estimate code relevance of
a node from the DOM tree, we analyze three types of child
tags– <code>,<pre> and <blockquote> under that node. Ac-
cording to traditional heuristics [20], such tags generally con-
tain the program elements (e.g., code segments). We apply
two different techniques for stack traces and code segments
for estimating their relevance with their counterparts.

Stack trace of a programming exception contains an error
message followed by a list of method call references that
point to the possible error locations in the code. We develop
separate token list by collecting suitable tokens (e.g., class
name, method name) from each of the stack trace blocks of
an HTML tag and the stack trace in the IDE respectively.
We then calculate cosine similarity between the two token
lists, and consider the measure as an estimate of relevance
for the tag to the exception in the IDE.

In order to estimate relevance of a code segment from
the HTML tag against an exception of interest, we collect
the context code of the exception, and apply a state-of-the-
art code clone detection technique by Roy and Cordy [21].
The technique finds out the longest common subsequence of
source tokens (Slcs) between two code segments. We then
use it for determining similarity of the code segment from
the HTML tag with the context code as follows, where Stotal

refers to the sequence of all tokens collected from the context
code of the target exception.

Sccx =
|Slcs|
|Stotal|

(7)

Once the relevance of all the program elements– stack
traces and code segments under an HTML tag are estimated,
we find the maximum estimate, and consider it as the code
relevance for the tag. The metric helps in separating a highly
relevant HTML tag containing relevant code elements from
a less relevant tag in the web page.

185

Exception in thread "main" java.io.EOFException readInt
ObjectInputStream readStreamHeader BlockDataInputStream
readObject readShort add main readFully FileInputStream

Record ArrayList PeekInputStream init

Listing 4: Context of the Exception in Listing 1 and
Listing 2

While text relevance focuses on the relevance of any tex-
tual element within an HTML tag, code relevance estimates
the relevance of program elements within it. We combine
both relevance metrics in order to determine the composite
relevance metric called content relevance (CTR) as follows:

CTRi = α× TRi + β × CRi (8)

Here α and β are the relative weights (i.e., predictive power)
of the corresponding relevance metrics. We consider a heuris-
tic value of 1.00 for α and 0.59 for β, and they are estimated
using a machine learning based technique (Section 3.5).

3.3 Content Score (CTS)
We consider two different aspects–density and relevance

for each of the content sections in the page for extracting the
relevant ones. While the density metrics focus on the legiti-
macy (i.e., purity) of the content in the page, relevance met-
rics check the relevance of the same content section against
the programming problem (i.e., encountered exception) at
hand. The idea is to recommend such section of a page to
the developers that is both legitimate (i.e., noise-free) and
relevant (i.e., discusses similar problem). We thus combine
both aspects, normalize corresponding metrics from Section
3.2, and propose a composite score metric called content
score (CTSi) for each of the tags from the page as follows:

CTSi = γ × CTDi + δ × CTRi (9)

Here γ and δ are relative weights (i.e., predictive power)
of the corresponding density and relevance metrics–content
density (CTD) and content relevance (CTR). In our exper-
iments, we note that our technique performs the best when
the equal weight (γ = δ = 1.00) is assigned to both metrics.
The weight estimation process can be found in Section 3.5.

3.4 Extraction of Relevant Page Section(s)
An HTML page is generally divided into a set of identifi-

able sections (i.e., tags) that can be represented as the child
nodes under body node in the corresponding DOM tree. Our
contribution lies in identifying the most relevant section(s)
from that page. Once content score (Section 3.3) for each
of the tags (i.e., nodes) in the page (i.e., DOM tree) is cal-
culated, we filter the tree nodes using a heuristic threshold.
We consider the content score of body node as the thresh-
old score, as suggested by Sun et al. [22] for density-based
extraction. We preserve the child nodes under body node
in the tree having scores greater than the threshold while
discarding the others. We then explore each of the pre-
served child nodes, and find out the inner node with the
highest content score. The highest score of the node indi-
cates that the corresponding tag in the HTML page contains
the most salient content in terms of legitimacy and relevance
for the programming problem at hand. In order to discard
noisy or less important elements, we keep that highest scored
node along with its child nodes, and mark them as content
whereas the remaining siblings are marked as noise. We ap-
ply the same process recursively for each node in the DOM

tree, and finally we get each node in the tree annotated as
either content or noise. Then we discard the noisy nodes,
and extract the HTML tags corresponding to the remaining
nodes in the tree as the noise-free sections of the page [22].

Since the first step extracts several sections that might not
be equally relevant, we need further filtration for collecting
the highly relevant section(s) from the page. We thus focus
on content relevance (Section 3.2.2) of the preserved nodes,
and choose the node with the highest content relevance for
recommendation. This highest relevance score indicates that
the corresponding HTML tag is relevant both in terms of
programming content and discussion texts. We thus ensure
that the recommended sections from the page are not only
relevant to the problem at hand (i.e., exception) but also are
legitimate enough in content to survive the noise filtration.

For example, our proposed technique returns these met-
ric values– TD=32.74, LD=2.88, CD=24.29, CTD=0.02,
CR=0.84, TR=0.83, CTR=0.99, and CTS=1.0144, for the
page section in Fig. 1. This section outperforms other sec-
tions in Fig. 2 both in terms of legitimacy (i.e., purity) and
relevance with the target exception in Listing 2. Thus, our
technique marks the section as the highly relevant one, and
extracts it for recommendation.

3.5 Metric Weight Estimation
In order to determine relative weights of two relevance

metrics–text relevance and code relevance and two compos-
ite metrics–content density and content relevance, we choose
50 random web pages from the dataset. Details on dataset
preparation can be found in Section 4.1. We then collect
the corresponding metrics for 33,360 text blocks (i.e., tags)
from those pages using our technique. We identify whether
each of those blocks is included in the gold content or not
(Section 4.1), which provides a binary class label (i.e., ”0”
or ”1”) for the text block against its set of metrics (i.e., fea-
tures). We then apply machine learning on the collected
block samples using logistic regression that provides a re-
gression model [16] The model is developed on Weka4, and
it is validated using 10-fold cross-validation. The regression
model contains a coefficient for each of the features which
are tuned by Weka for classifying each sample with max-
imum accuracy. We believe that these coefficients are an
estimate of the predictive power for the features used in the
model, and we consider them as the weights of the individ-
ual relevance metrics [16]. For the sake of simplicity and for
reducing bias, we normalize those coefficients, and consider
a heuristic weight α=1.00 for text relevance and β=0.59 for
code relevance metrics. While β has an initial value of 0.86
from the regression model, we got the global maximum at
β = 0.59 for our dataset through iterative experiments [20].

In case of composite density and composite relevance met-
rics, we find that the proposed technique performs signifi-
cantly well with equal relative weights assigned. Thus, we
consider a heuristic weight of 1.00 for both of the composite
metrics, i.e., γ = δ = 1.00.

3.6 Exception Context Representation
In our research, we not only take the density metrics but

also the relevance estimate of each of the sections from the
web page into consideration. Each page in the dataset (Sec-
tion 4.1) is relevant to a particular exception, and we exploit
the details such as stack trace and context code of that ex-

4http://www.cs.waikato.ac.nz/ml/weka

186

ception in the dataset for relevance estimation of different
sections from the page. We analyze the stack trace (e.g.,
Listing 2) and extract different tokens such as package name,
class name and method name from each of the method call
references. We also analyze the context code (e.g., Listing 1)
of the exception and collect class and method name tokens.
We use Javaparser5 for compilable code and an island parser
for non-compilable code for extracting the tokens [20]. Then
we combine tokens from both the stack trace and the con-
text code, and append the exception name along with the
exception message (i.e., highlighted line of the stack trace
in Listing 2) to the combined set. We call this token set as
the context representation for the exception of interest. For
example, Listing 4 shows the context representation by our
technique for an EOFException with stack trace in Listing
2 and context code in Listing 1. We use such context repre-
sentation to estimate the relevance of any page sections to
the exception (Section 3.2.2).

4. EVALUATION & VALIDATION

4.1 Experimental Dataset
Data Collection: We use a dataset of 250 web pages and

80 programming exceptions associated with standard Java
platform and Eclipse plug-in framework for experiments. We
include the technical details of each exception such as stack
trace and context code in the dataset. For details on how
exceptions were collected, please consult our previous work
[20]. It should be noted that each of the pages is carefully
selected and taken from the dataset of the previous study
[20]. We also collect the HTML source of each of the pages,
and include in the dataset for the experiments.

Gold Set Development: We manually analyze each of
the 250 pages, and extract gold content from them for the
study. We consider the most relevant page section for a
given exception as the gold content from the page. We also
adopt a simplified definition for relevant sections in the page.
Programming sites focusing on errors and exceptions often
include code snippets and stack traces as a part of discus-
sion. We look for such page sections that contain relevant
stack traces or relevant code segments, and extract them as
the gold content through an extensive manual analysis of 20
to 25 working hours. One can wonder about the simplified
definition of relevance given that the concept of relevance
is mostly subjective. However, our goal in this work is to
present the presumably relevant sections to signal the rele-
vance of a selected page, and help the developers find the
solution with less information analyzed. Thus, the adoption
of simplified relevance for page sections is justified.

Cross-Validation: Since the concept of relevance is sub-
jective, in order to reduce the bias, we perform cross vali-
dation on the gold set with the help of peers. Two grad-
uate research students randomly checked a subset of ten
pages each, and submitted the most relevant sections from
the pages against the exceptions of interest. We found that
most of their choices match with our gold set selection which
provides us confidence on the data. We made this gold set
available online [1] for others to use.

Data from Stack Overflow: About 40% of the pages
came from StackOverflow (SO) site, and we thus divide the
pages into two subsets called SO-Pages and Non-SO Pages.

5http://code.google.com/p/javaparser/

Again all data are hosted online [1]. While both sets are used
for evaluation and validation, we additionally use SO-Pages
for a case study (Section 4.5) where our technique locates
the highest voted and the accepted answer posts from a given
StackOverflow page.

4.2 Performance Metrics
Our proposed technique is greatly aligned with the re-

search areas of information retrieval and recommendation
systems, and we use a list of performance metrics from those
areas for evaluating our technique as follows [20, 22]:

Mean Precision (MP): Precision determines the per-
centage of the retrieved content that is expected (i.e., in the
gold content) from a web page. In our evaluation, we com-
pare the retrieved content by our technique with the man-
ually extracted gold content. As Sun et al. [22] suggest, we
use longest common subsequence (LCS) of words between
retrieved content and gold content for precision calculation.
Thus, precision can be determined as follows, where a refers
to the word sequence of retrieved content and b refers to that
of the corresponding gold content.

P =
|LCS(a, b)|
|a| , MP =

∑N
i=1 Pi

N
(10)

Mean Precision (MP) averages the precision measures for
all web pages (N) in the dataset.

Mean Recall (MR): Recall determines the percentage
of the expected content (i.e., gold content) that is retrieved
from a web page by a technique. We calculate the recall of
a technique as follows:

R =
|LCS(a, b)|
|b| , MR =

∑N
i=1Ri

N
(11)

Mean Recall (MR) averages the recall measures for all pages
(N) in the dataset.

Mean F1-measure (MF): While each of precision and
recall focuses on a particular aspect of the performance of a
technique, F1-measure is a combined and more meaningful
metric for evaluation6. We calculate F1-measure from the
harmonic mean of precision and recall [22] as follows:

F1 =
2× P ×R
P +R

, MF =

∑N
i=1 F1i

N
(12)

Mean F1(MF) averages all such measures.

4.3 Experimental Results
We conduct experiments on the proposed technique using

our dataset, and evaluate the technique using three perfor-
mance metrics–precision, recall and F1-measure. Our tech-
nique extracts relevant content from the web pages with a
mean precision of 81.96%, a mean recall of 76.74%, and a
mean F1-measure of 76.30%. Table 1 investigates the effec-
tiveness of the two aspects–density and relevance associated
with the page content in extracting relevant sections. We
consider each of these aspects in isolation as well as in combi-
nation, and evaluate our technique with different sets of web
pages. In case of content density, the proposed technique
performs well in terms of recall and performs significantly
poor in terms of precision with all three sets–StackOverflow
pages, Non-StackOverflow pages and All pages. For exam-
ple, the technique can return only 50.07% relevant content
(i.e., precision) while it uses density metrics alone. In the
case of content relevance metric, our technique extracts rel-
evant content from a web page with relatively better preci-

6http://stats.stackexchange.com/questions/49226/

187

Table 1: Experimental Results for Different Metrics
Score Combination Metric SO Pages Non-SO Pages All Pages

{Content Density (CTD)}
MP 50.91% 49.50% 50.07%
MR 91.74% 75.71% 82.18%
MF 62.32% 53.76% 57.22%

{Content Relevance (CTR)}
MP 86.63% 69.17% 76.23%
MR 52.17% 57.66% 55.44%
MF 61.07% 55.88% 57.98%

{Content Density (CTD) &
MP 92.64% 74.60% 81.96%
MR 74.17% 78.51% 76.74%

Content Relevance (CTR)} MF 80.95% 73.09% 76.30%

MP=Mean Precision, MR=Mean Recall, MF=Mean F1-measure

sion (e.g., 76.23%), but the recall rates are still poor (e.g.,
55.44%). On the other hand, when we combine both the
density and relevance metrics, we experience significant im-
provements in all three performance metrics with each of
the sets of web pages. For example, our technique suc-
cessfully extracts 76.74% of the gold content with 81.96%
precision when both metrics are considered in combination.
This clearly shows the benefit of our introduced paradigm–
content relevance in the extraction of relevant content from
a web page, which is one of our primary objectives of this
work. The finding also justifies our use of various density
and relevance metrics since it demonstrates their isolated
and combined effectiveness in relevant content extraction.

Among the two subsets, our technique performs compara-
tively better for StackOverflow pages with the metrics both
in isolation and in combination. During gold set develop-
ment, we note that StackOverflow pages are structurally or-
ganized in the presentation of questions and answers, and
they contain relatively less noise. This might have helped
our technique perform better. However, we do further in-
vestigation with SO-Pages in Section 4.5.

4.4 Comparison with Existing Approaches
Since there is no existing study that addresses the same

research problem as ours, i.e., relevant section(s) extraction
from programming related web pages, we choose a closely
related existing technique– Sun et al. [22]. It applies a list
of density metrics for extracting noise-free content from a
given web page. We replicate their technique with minor ad-
justments in our working environment, and collect the most
legitimate (i.e., representative) section of the page extracted
by the technique. The idea is to investigate how closely the
legitimate section by Sun et al. [22] matches with the man-
ually extracted relevant section (i.e., gold content), and also
to validate the performance of our technique. We compare
with their technique for the same dataset, and find out that
our technique performs comparatively better in terms of all
performance metrics. Table 2 and Fig. 5 report our findings
from the comparative study.

Fig. 5 shows the comparative analysis between the two
techniques using box plots. We note that our technique
performs significantly better in terms of especially precision
and f-measure than Sun et al. [22]. Our technique provides
a median measure from 85% to 100% for all three metrics,
whereas their technique provides such measure from 40% to
50% with an exception in recall that ranges around 80%. Ta-
ble 2 further breaks down the results into different subsets–
SO-Pages and Non-SO Pages, and we experience the similar
findings. While all these findings demonstrate the potential
of our technique in locating relevant sections in the page,
one could still argue about the relevance of the extracted
section, in particular, because of the subjectivity involved.
This concern is addressed using a case study in Section 4.5.

Figure 5: Comparison with Existing Technique

Table 2: Comparison with an Existing Technique
Content Extractor Metric SO Pages Non-SO Pages All Pages (D)

Sun et al. [22]
MP 52.63% 38.89% 44.44%
MR 86.49% 41.84% 59.88%

(Density) MF 62.57% 34.49% 45.84%

Proposed Approach
MP 92.64% 74.60% 81.96%
MR 74.17% 78.51% 76.74%

{Density & Relevance} MF 80.95% 73.09% 76.30%

4.5 Case Study with StackOverflow Pages
Although our gold set for the experiments is carefully pre-

pared and validated by the peers, it may still contain sub-
jective bias. Thus, the evaluation and the validation results
might be biased. In order to mitigate this threat, we exploit
an alternative approach, and conduct a case study using
StackOverflow questions and answers. This section discusses
the details of the conducted case study.

Dataset Preparation: StackOverflow API7 provides ac-
cess to a rich dataset of questions and answers, and we ex-
ploit that API service in developing our dataset for the case
study. The goal is to investigate whether our proposed tech-
nique can actually locate the answer posts within the page
that are either accepted as solutions or highly voted by the
large user base of StackOverflow. In StackOverflow, each
of the posted answers is reviewed by thousands of technical
users, and we leverage that crowd knowledge (i.e., the eval-
uation by hundreds, if not thousands of users) in developing
the gold set for this case study. We chose 35 StackOverflow
questions related to 29 programming exceptions from our
dataset based on this condition– each of the questions should
have at least three answers with one answer accepted as so-
lution. We develop two gold sets– most-voted-gold-set (i.e.,
contains top-scored answers) and accepted-gold-set (i.e., con-
tains accepted answers) for the study. While the question
section is discarded from the StackOverflow page for reduc-
ing noise, we preserve the DOM structure of the page for
enabling our technique to operate conveniently and to lever-
age the structure for relevant section extraction.

Running of Study: One can essentially think of our re-
search problem as a standard traceability problem since our
technique basically links the encountered exception (and its
details) to the relevant sections in the web page. However,
there exist several important particulars which need to be
considered. First, our technique attempts to identify the
most relevant section(s) from within a single HTML page
rather than an entire page (i.e., document) from within a
large corpus. Second, automatically separating relevant sec-
tions from an HTML page is a non-trivial task, and our
technique exploits the DOM structure of the page for ex-

7http://data.stackexchange.com/stackoverflow

188

Table 3: Comparison with Existing IR Techniques
Content Extractor Metric Accepted Posts Most Voted Posts

Latent Sematic Analysis [17]
MP 19.98% 23.02%
MR 21.78% 23.17%
MF 18.43% 21.07%

Vector Space Model [3]
MP 22.50% 33.89%
MR 23.08% 31.90%
MF 19.77% 30.44%

Proposed Approach
MP 23.10% 31.36%
MR 45.15% 54.42%

{Density & Relevance} MF 26.99% 35.90%

MP=Mean Precision, MR=Mean Recall, MF=Mean F1-measure

Figure 6: Comparison with existing IR techniques

tracting such sections. We apply our technique on each
of 35 StackOverflow pages, extract the most relevant sec-
tions, and then compare them with the most voted and ac-
cepted answer posts from the gold set. Two state-of-the-art
information retrieval techniques– Latent Semantic Analysis
(LSA) and Vector Space Model (VSM) are successfully ap-
plied in traceability link recovery by several existing studies
[3, 4, 17], and we also contrast our technique with them.
Since those techniques require a corpus for information re-
trieval, we represent each of the answer posts from the page
as an individual document in the corpus for that page. We
then use the context (Section 3.6) of the exception related
to that page as the search query for retrieving the most rel-
evant document (i.e., answer post). For LSA, we use TML8,
a text mining library, and for VSM, we use Apache Lucene9,
a popular VSM-based search engine.

Results and Discussions: From Table 3, we note that
our technique performs comparably in terms of precision
and significantly better in terms of recall than the other
two techniques. For example, our technique returns 54.42%
of the gold content with a precision of 31.36%, which is
promising. One can argue that the results are relatively
poor compared to our previously reported results (Section
4.3), which is true. However, we would argue that these
results are still promising according to the relevant literature
[3, 17], and our technique actually performs better than the
two state-of-the-art information retrieval techniques– LSA
and VSM. They can retrieve at most 23.17% and 31.90%
of the gold content (i.e., most-voted-gold-set) respectively.
On the other hand, our technique is found more effective in
automatically locating the answer post within a given page
which is reported as the most helpful (i.e., most up-voted
post) by thousands of technical users from StackOverflow.
As shown in Table 3, our technique also locates the answer
post accepted as solution by the users from a given SO page
more effectively than the other two competing techniques.

8http://tml-java.sourceforge.net
9http://lucene.apache.org/core

Fig. 6 summarizes the comparative analysis among the
three techniques using box plots. We note that our tech-
nique is comparable to LSA and VSM in terms of precision
and significantly better in terms of recall. The median recall
of our technique ranges from 40% to 50% whereas its coun-
terparts in the remaining techniques range from 10% to 20%.
Since F-measure combines both precision and recall, we re-
port that our technique actually performs better as a whole
due to its improved recall rates. It also should be noted that
our technique automatically locates the gold answer sections
by exploiting the DOM structure of the whole page. On the
other hand, those techniques operate on already extracted
answer sections from the Stack Overflow page, which pro-
vides their comparable precision. Thus, despite of smaller
sample size and relatively lower performance than that of
first experiment (Section 4.3), the finding clearly demon-
strates the potential of our technique for relevant and useful
content recommendation.

5. THREATS TO VALIDITY
In our research, we note a few issues worthy of discussion.

First, the lack of a fully-fledged user study for evaluating
usability of the technique is a potential threat. However,
our objective was to focus on the technical aspects of the
approach. Furthermore, in order to at least partially evalu-
ate the usability, we conduct a limited user study with five
participants, where three of them have professional software
development experience. We ask them six questions about
our relevance visualization, highlighting of the artifacts of
interest, and IDE-based information search. Five out of
five participants responded and suggested that the proposed
technique is likely to be really helpful in extracting the de-
sired information from a web page. However, a fully-fledged
user study is required to explore the actual usability of our
technique that we consider as a scope of future study.

Second, the dataset (Section 4.1) prepared for evaluation
and validation may contain subjective bias. In order to re-
duce the bias, we perform cross-validation with the help of
peers, analyze their suggestions and then finalize the gold
set. More importantly, we conduct a case study with Stack-
Overflow pages, where gold sets are prepared by exploiting
the feedback from thousands of technical users. The study
also demonstrates the potential of our technique against two
traceability link recovery techniques– LSA and VSM.

Third, metric weights are estimated using a limited train-
ing dataset (Section 3.5) that might cause weight overfit-
ting. However, we also tune and test the weights signifi-
cantly against different set of pages to mitigate the threat.

6. RELATED WORK
A number of existing studies are conducted on web page

content extraction, and they apply different techniques such
as template or similar structure detection [6, 14], machine
learning [8, 9, 15], information retrieval, domain modeling
[10], and page segmentation and filtration [7, 8, 12, 13, 18,
22]. The last group of techniques using page segmentation
and noise filtration are closely related to our research in
terms of working methodologies although they are driven by
different goals. In order to extract noise-free content from
a web page, they apply several density metrics and link el-
ement based heuristics. On the other hand, we complement
those density metrics, introduce novel relevance metrics, and

189

then combine both metrics for relevant section extraction
from a web page. In particular, we recommend relevant
sections from the page for an encountered exception in the
IDE. Sun et al. [22] exploit link elements (e.g., <a>, <in-

put> tags) for the filtration of noisy sections in a web page.
This is probably ideal for news-based websites. However,
the idea may not be properly applicable for programming re-
lated web sites as our experimental results suggest (Section
4.4). The technique by Pinto et al. [18] is actually designed
with a table-based architecture of the web page in mind,
which may not be applicable for modern complex websites.
The two versions of Code Content Blurring by Gottron [12]
are only tested against the news-based websites containing
simple structures and homogeneous texts.

The other studies use different methodologies that are not
closely related to our work, and we do not compare against
them in our experiments. Furche et al. [10] analyze real
estate websites and extract property or price related infor-
mation. They exploit a domain-specific model for content
extraction which might not be applicable for programming
related websites. Chun et al. [8] analyze news-based web-
sites, extract different densitometric features, and apply a
machine learning classifier (C4.5) for classifying the legiti-
mate and noisy content sections. Their approach is subject
to the amount and quality of training data as well as the per-
formance of the classifier. Cafarella [6] focuses on Wikipedia
pages, identifies the special structures (e.g., tabular), and
mines different factual information (e.g., list of American
presidents) from the pages. Thus, while other techniques
focus on extracting the noise-free sections or mining the fac-
tual or commercial data from news, real estate or Wikipedia
pages, our technique attempts to support software develop-
ers in collecting relevant information for problem at hand
from the programming related web pages.

This work is to some extent similar to our previous work–
SurfClipse [20] since both of them analyze exceptions and
web pages. However, this work–ContentSuggest is also sig-
nificantly different from our previous work that returns a
list of relevant pages for any exception. On the other hand,
this work returns the most relevant section(s) from a given
web page for the exception of one’s interest. From technical
point of view, it proposes a novel metric–content relevance
for relevant section extraction, which was not considered by
any of the existing approaches. Our technique not only ex-
tracts the noise-free sections but also directs a developer to
the right (or relevant) sections in the page by exploiting the
details of an exception encountered in the IDE, which is a
novel idea of developer support, and is not provided by any
of the existing approaches.

There exist also several studies [3, 4, 17] in the literature
that use information retrieval techniques for traceability link
recovery, and they are also related to our work to some ex-
tent. While most of them focus on establishing links from
software artifacts such as source code to software documen-
tations or requirement documents, we attempt to link an
encountered exception (and its details) to the most relevant
or the most helpful section from a given web page. For de-
tailed comparison with information retrieval techniques, we
refer the readers to Section 4.5.

7. CONCLUSION
To summarize, we propose a novel recommendation tech-

nique that recommends the most relevant section(s) from a

given web page for an encountered exception in the IDE.
Experiments with 250 web pages and 80 programming ex-
ceptions show that our technique can extract relevant con-
tent with a precision of 81.96%, a recall of 76.74% and a
F1-measure of 76.30%, which are promising. Comparison
with the only available closely related technique also shows
that our technique performs significantly better in all per-
formance metrics. Finally, a case study with StackOverflow
pages, where we compare with two state-of-the-art trace-
ability link recovery techniques, shows that our technique is
highly promising in identifying the top-scored answer posts
from a StackOveflow Q & A page by using the proposed
metrics as well.

References
[1] ContentSuggest Web Portal. URL http://www.usask.ca/~mor543/

contentsuggest.
[2] Stackoverflow Post. URL http://stackoverflow.com/questions/

17485297.
[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.

Recovering traceability links between code and documentation.
TSE, 28(10):970–983, 2002.

[4] G. Bavota, A. De Lucia, R. Oliveto, A. Panichella, F. Ricci, and
G. Tortora. The Role of Artefact Corpus in LSI-based Traceabil-
ity Recovery. In Proc. TEFSE, pages 83–89, 2013.

[5] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
Klemmer. Two Studies of Opportunistic Programming: Inter-
leaving Web Foraging, Learning, and Writing Code. In Proc.
SIGCHI, pages 1589–1598, 2009.

[6] M.J. Cafarella. Extracting and Managing Structured Web Data.
PhD thesis, 2009.

[7] D. Cai, S. Yu, J. Wen, and W. Ma. Extracting Content Struc-
ture for Web Pages Based on Visual Representation. In Proc.
APWeb, pages 406–417, 2003.

[8] Y. Chun, L. Yazhou, and Q. Qiong. An Approach for News
Web-Pages Content Extraction Using Densitometric Features.
In Advances in Electric and Electronics, volume 155, pages 135–
139. 2012.

[9] B.D. Davison. Recognizing Nepotistic Links on the Web. In
Proc. AAAI, pages 23–28, 2000.

[10] T. Furche, G. Gottlob, G. Grasso, G. Orsi, C. Schallhart, and
C. Wang. Little Knowledge Rules the Web: Domain-centric Re-
sult Page Extraction. In Proc. RR, pages 61–76, 2011.

[11] D. Gibson, K. Punera, and A. Tomkins. The Volume and Evo-
lution of Web Page Templates. In Proc. WWW, pages 830–839,
2005.

[12] T. Gottron. Content Code Blurring: A New Approach to Content
Extraction. In Proc. DEXA, pages 29–33, 2008.

[13] M. Kim, Y. Kim, W. Song, and A. Khil. Main Content Extrac-
tion from Web Documents Using Text Block Context. In Proc.
DEXA, pages 81–93. 2013.

[14] C. Kohlschutter, P. Fankhauser, and W. Nejdl. Boilerplate De-
tection Using Shallow Text Features. In Proc. WSDM, pages
441–450, 2010.

[15] N. Kushmerick. Learning to Remove Internet Advertisements.
In Proc. AGENTS, pages 175–181, 1999.

[16] C. Le Goues and W. Weimer. Measuring Code Quality to Im-
prove Specification Mining. TSE, 38(1):175–190, 2012.

[17] A. Marcus and J.I. Maletic. Recovering Documentation-to-
Source-Code Traceability Links Using Latent Semantic Indexing.
In Proc. ICSE, pages 125–135, 2003.

[18] D. Pinto, M. Branstein, R. Coleman, W. B. Croft, M. King,
W. Li, and X. Wei. QuASM: A System for Question Answering
Using Semi-structured Data. In Proc. JCDL, pages 46–55, 2002.

[19] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Sea-
hawk: Stack Overflow in the IDE. In Proc. ICSE, pages 1295–
1298, 2013.

[20] M.M Rahman, S. Yeasmin, and C. Roy. Towards a Context-
Aware IDE-Based Meta Search Engine for Recommendation
about Programming Errors and Exceptions. In Proc. CSMR-
WCRE SEW, pages 194–203, 2014.

[21] C.K. Roy and J.R. Cordy. NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization. In Proc. ICPC, pages 172–181, 2008.

[22] F. Sun, D. Song, and L. Liao. DOM Based Content Extraction
via Text Density. In Proc. SIGIR, pages 245–254, 2011.

190

