
SemanticCloneBench: A Semantic Code Clone
Benchmark Using Crowd-Source Knowledge

1st Farouq Al-omari
Department of Computer Science

University of Saskatchewan
Saskatoon, CA

faa634@mail.usask.ca

2nd Chanchal Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, CA

chanchal.roy@usask.ca

3rd Tonghao Chen
Department of Computer Science

University of Saskatchewan
Saskatoon, CA

tonghao.chen@usask.ca

Abstract—Not only do newly proposed code clone detection
techniques, but existing techniques and tools also need to be
evaluated and compared. This evaluation process could be done
by assessing the reported clones manually or by using bench-
marks. The main limitations of available benchmarks include:
they are restricted to one programming language; they have
a limited number of clone pairs that are confined within the
selected system(s); they require manual validation. To overcome
these limitations, we proposed a methodology to generate a
wide range of clone benchmark(s) for different programming
languages with minimal human validation. Our technique is
based on the knowledge provided by developers who participate
in the crowd-sourced information website, Stack Overflow. We
applied automatic filtering, selection and validation to the source
code in Stack Overflow answers. Finally, we build a semantic
code clone of 4000 clones pairs for the languages java, C, C#
and Python.

Index Terms—Semantic clone, Functional equivalent, Stack
Overflow, Benchmark.

I. INTRODUCTION

Software clones are defined as identical or similar (near-
miss) code fragments in terms of syntax or semantic. Usually,
syntax clones result from the practice of copying, pasting,
and modifying by programmers. The case of having major
modifications to these clones will result in their disappearance.
On the other hand, some clones are unintentionally introduced
to software systems. Sometimes, developers implement the
same functionality using different programming approaches
or constructs (different syntactic constructs), which results in
what is called semantic clones.

Cloning is an essential practice by programmers for the
benefits it offers in the development process [17]. Identifying
clones is necessary for it’s bad impact on software quality for
later life cycle of the software. Therefore, there is a great many
clone detectors have been proposed to detect both types of
clones, syntax [2], [5], [18] and semantic [4], [10], [12], [20].
Practitioners need to know the accuracy of clone detection tool
for each type of clones [2], [15], [24]. Thus, these tools need
to be evaluated in term of recall and precision.

There are two primary measurements used to evaluate the
accuracy of detection tools, precision, and recall. First, validate
tool results as true positive and false positive manually. This
evaluation can measure the actual precision (results accuracy)
of the tool. However, it is time-consuming and dependent

on the individual’s understanding of code clone definition.
Besides, it does not reflect the actual clones detected in the
target system (Recall). Measuring Recall of tools is more
challenging since there is a need to know all true clones
in the target system, i.e., clone benchmark. Building a clone
benchmark is a challenging task since it needs to be accurate,
large enough, includes all types of clones and represents real
clones that occur at the development process.

Available benchmarks have the following issues: First, they
are not large enough or not enough references for all types
of clones (Both syntax and semantic); for example, Bellon’s
benchmark [2] does not have type-4 clones, Krutz’s benchmark
[11] has only 66 clones without any type-1 clones, Yuki’s
benchmark [29] has 19 unclassified clones and Wanger’s
benchmark [26] has only 29 type-4 clones. Second, they are
the resulted clones of one or more detection tools [2]. That
means only a subset of real clones in the systems that are
detected by selected tools. Third, they follow the definition of
the creator [15], which do not represent real clones generated
by developers. Fourth, existing benchmarks supports one or
two languages only. For example, BigCloneBench [23] sup-
ports Java only and Krutz’s benchmark [11] is for C language.
Still there is no bench march specialized for semantic clones.

The two primary challenges in building a clone benchmark
are candidate selection and manual validation. Candidates
should be real clones that are occurred in the development
process. Also, selection should be objective and includes all
types of clones, i.e, not author’s defined clones or some tool’s
results. Manual validation is a nontrivial process and time
consuming [27]. For example, Jeffery et al. [23] spent 600
working hours to validate their benchmark.

In this work, we propose a methodology for building a
semantic code clone oracle (functional clone database) with
the minimal need for manual validation. Our clone selection
process does not relate to any detection tool or clone definition.
We used the knowledge in Stack Overflow, a question and
answer website for computer programming [28]. We extracted
all programming answers that have code snippets. We con-
sidered the answers for the same programming question as
semantic clones to each other. To reduce the human efforts
in validating the clones, our process gone through a number
of steps of selection, syntax validation, functional validation,

and syntactic clone filtering. Finally, we build a semantic
code clone benchmark (SemanticCloneBench) that have 4,000
semantic code clone in four programming languages.

The remaining of the paper is organized as follows. Sec-
tion II provides the definition of semantic clone. Section III
presents our methodology of building semantic clone bench-
mark. Section IV describe the benchmark and it’s usage. In
section V we analyse the textual similarly holds by clones
in the benchmark. Section VI discusses related works and
section VII shows threats to validity, followed by conclusion
and future work in section VII.

II. SEMANTIC CLONE DEFINITION

A code fragment in the source code that identical or similar
to another code fragment in the code base is considered code
clone to the second and both called clone pair. This definition
is based on the concept of similarity. In the literature, the
following categorization of clone definition has been widely
acceptable [16]:

• Type 1: Identical code fragments except for variations
in whitespace (maybe also variations in layout) and
comments.

• Type 2: Structurally/syntactically identical fragments ex-
cept for variations in identifiers, literals, types, layout,
and comments.

• Type 3: Copied fragments with further modifications.
Statements can be changed, added or removed in addition
to variations in identifiers, literals, types, layout, and
comments.

• Type 4: Two or more code fragments that perform the
same computation but are implemented through different
syntactic variants.

Type 1, Type 2, and Type 3 clones are based on textual
similarity. Code fragments are considered clones if they are
textually similar even they are functionally different. Textual
clones are more common in software code base because they
are usually results of copy/paste practice. On the other hand,
semantic clones are harder to detect since they could be
implemented by different syntactics.

A number of definitions have been proposed in the literature
for semantic clones. The terms relative clones [21], redundant
code [14], [22], dependent clones [4], functional clones [9],
functionally similar clones [6], [13], [25] and type 4 clones
[17] are widely used to refer to semantic clones. Some of them
narrow the definition of semantic clone to one type of semantic
while others used a wider (non-specific) meaning of semantic.
However, all mentioned definition agree that (1) semantic
clones have the same functionality and (2) are implemented
through different syntax.

III. METHODOLOGY

Stack Overflow is a website that enables users to ask and
answer questions related to programming languages. It has
over 19 million questions, 28 million answers, 73 million
comments, and 11 million registered users1. For each question,

1https://data.stackexchange.com/stackoverflow/queries

participants submit different answers. We can be sure that
correct answers should be functionally equivalent. On the
other hand, some questions do not have multiple answers,
answers could be incomplete or erroneous, answers could
not represent a fully functional unit, or answers could be
syntactically similar which do not comply with the definition
of the semantic clone. Therefore, we design a selection process
that includes automatic validation, filtering, and selection to
overcome all the aforementioned challenges and reduce the
number of candidate clones that need manual validation. The
complete process construction of our semantic code clone
benchmark is summarized in Figure 1.

A. Data Extraction

Our process starts by collecting the Stack Overflow ques-
tions and answers for the selected programming languages
(Java, C, C#, and Python) from SOTorrent [1] database. Our
query retrieves all answers that solve programming language
problem (Contain source code) and grouped by question.
These answers create the initial clone class.

In the SOTorrent database, the Posts table contains all
the question, answer, and comment posts, and each of them
associates with an unique postType. Listing 1 shows our query
to retrieve all C answers. We limited our query for answers
only by specifying the PostTypeId to 2. The condition init.Body
like’%<code>%´ specifies answers that contain code snippet,
and the programming language is specified by parent.Tags
like’%<c>%’. In the Posts table, only the question posts
are associated with the programming language tags, and the
answers are not. Therefore, we used left join method to find
the programming language involved in the problem post.

Listing 1. An example of SQL Query
SELECT i n i t . Body as Answer
, i n i t . ID as P o s t L i n k
, p a r e n t . ID as Id
, p a r e n t . T i t l e a s T i t l e

FROM [s o t o r r e n t −org :2018 12 09 . P o s t s] i n i t
LEFT JOIN [s o t o r r e n t −org :2018 12 09 . P o s t s]
p a r e n t on i n i t . P a r e n t i d = p a r e n t . Id
Where i n i t . Body l i k e ’%<code>%’
AND i n i t . Pos tTypeID = 2
AND p a r e n t . Tags l i k e ’%<c>%’

We only need to apply different filtering keywords to the last
line of the query, corresponding programming language related
answer posts can be queried easily. Finally, approximately
4 million answers were queried from SOTorrent by above
mentioned method. Table I column# 2 and 3 show the total
number of questions and answers in Stack Overflow. The
results of our query are shown in column# 4 and 5.

B. Syntax Validation

Answers in Stack Overflow contain both text and code
snippet. Fortunately, the code snippet in each answer on Stack
Overflow is surrounded by a < code > tag. This greatly

https://data.stackexchange.com/stackoverflow/queries

A4

Q

A1 A2 A3 …

Q

A1 A2 A6

A4

Q

A1 A2 A3 …

Q

A1 A3 A4

A1

A2

A6 A1

A2

A6

Q

A1

A3

A4 A1

A3

A4

Q

A1

A2

A2

A6

Q

A1

A6 A1

A2

Q

F1

F5

F4 F3

F2

F6

Benchmark

F7 Fn

C1

C2

C3

C4

Cn

Ex
tr

ac
ti

o
n

C
o

m
m

u
n

it
y

V
al

id
at

io
n

Se
le

ct
io

n

Fi
lt

er
in

g

M
an

u
al

 V
al

id
at

io
n

Fig. 1. A schematic diagram that shows the complete process for constructing a semantic code clone benchmark using data from Stack Overflow

TABLE I
NUMBER OF QUESTIONS AND ANSWERS IN STACK OVERFLOW AND EACH PROCESSING STEP

Filter No Filter (Total Number) >=2 answers contain source code Include methods >=10 lines Votes>0
Language Questions Answers Questions Answers Questions Answers Questions Answers Questions Answers
Java 1556189 2582119 432086 1183439 95837 435186 30153 92788 15320 60374
C 297405 602044 119990 338519 26597 90202 10435 30702 6972 21236
C# 1310182 2216152 375898 1025420 52827 176384 12180 33211 8615 26777
Python 1223511 1807837 359051 968235 57820 219632 23935 70485 15227 49886

reduces the difficulty of code extraction, as it only needs
to apply a regular expression to match the content between
< code > and < /code > and store them separately in the
code file.

Code snippets in answers come in different granularities.
Some are just a line of code or a few lines that show how
an API is used. Others come as a function or a full program.
Most of code snippets are not a complete program. Therefore,
a solid functional unit should be extracted that is error-free.

For the purpose of building a semantic code clone bench-
mark we have chosen method/function level granularity, that
is because the non-function code snippets are usually too
short to express the meaning behind it. On the contrary, the
method usually contains more information and the process of
the solution. Therefore, the method will be more helpful in
determining clones. TXL [3] is used in this step to extract
methods from the code snippets. TXL parser extracts syntac-
tically correct methods only. Also, we used TXL to normalize
the selected methods. This includes the removal of comments,
white spaces and a strict pretty printing. Table I column# 7
shows the number of answers that contain methods. In some
cases, some answers contain more than one method so we
saved all methods in the answers for further selection process.

We also performed a minimum-line-limit filter in this step
to make sure all extracted functions have at least 10 lines of
code [24]. This also helped us to filter out about 75% of the
candidate functions, and will reduce the manpower for manual
validation later. Look Table I column 9.

C. Functionality Validation

After all aforementioned selection processes, we still have a
large number of methods to validate (92K java methods, 30K C
methods, 10K C# methods, and 21K Python methods). In order

to reduce manual validation, we applied another filter as per
the quality of the answers by the Stack Overflow community.

Stack Overflow users participate in asking questions, an-
swering, commenting, and voting in order to get rewards.
Stack Overflow employs a voting mechanism for questions
and answers to help users to identify trustworthy answers [7].
Answers are posts that have up-votes and down-votes with the
best answers receiving more up votes. For the purpose of our
benchmark we considered only up-voted methods and ignored
non-voted and the down-voted methods. Up-voted methods
represent 60% of total methods so this step reduces the total
number of methods by 40%, see Table I (last two columns).

D. Syntactic clone filtering

The main goal of this study is to build a real semantic
clone benchmark. Therefore, we reviewed all the definitions
of semantic clone in the lecture and we found that most
definitions agree that semantic clones are code fragments that
perform the same computation but are implemented through
different syntactic variants [17]. Therefore, we identified syn-
tactically similar fragments using NiCad [18] and eliminate
them. NiCad has a high precision and recall in detecting
syntactic clones [24]. It is true that the eliminated answers are
functionally equivalent. But, they are not considered semantic
clones according to the definition of semantic clones.

Before using NiCad to detect syntactic clones we build all
possible clone pairs. For each question, all answers combina-
tions are candidate clones. However, some answers have more
than one method. We used two heuristics to select between
methods. First, we chose the biggest method in the answer.
Table II, the second column shows the number of candidate
clone pairs. Second, we selected methods in answers that have
the same name. Column #5 shows the number of candidate
clones that have the same name.

TABLE II
NUMBER OF CLONE PAIRS AFTER SYNTACTIC FILTERING

Language Clone pairs
(biggest method)

Detected By NiCad Candidate clones Clone pairs
(same name)

Detected By NiCad Candidate clones

Java 18146 3141 15049 7,627 2,019 5,944
C 6210 312 5898 3,383 372 3,011
C# 7404 488 6916 1,986 523 1,507
Python 15103 2773 12343 7,322 2,451 5,320

TABLE III
NUMBER OF VALIDATED CLONE PAIRS

Language Number of val-
idated clones

True semantic
clones

Validation
time(hours)

Java 1775 1000 26
C 1742 1000 32
C# 1894 1000 26
Python 2020 1000 30
Total 7431 4000 114

Table II shows the number of syntactic clone pairs detected
by NiCad. Clones that are detected by NiCad represent syntac-
tic clones (around 18%) are filtered out for the purpose of the
semantic clone benchmark. It is evident that there is a good
number of syntactic clones exist in Stack Overflow answers.
These clones are perfect to construct a syntactic benchmark. To
avoid the bias of using clone detector, we can select a random
set of answers and validate them manually or we can select
answers that are textually similar and validate them manually.

E. Manual Validation

Manual validation is the last task for building benchmarks.
We hire two judges to mark all method pairs as true positive or
false positive according to their functionality. We gave them
a third option ”Undecided” for confusing pairs. The judges
are summer students who did not involve in the research.
Rather, they introduced to the topic of semantic clones and
read a number of related papers. Our final goal to have 1000
clone pairs for each programming language. Table III shows
the number of candidate clones are needed to be validated
to reach 1000 semantic clone pairs for each language. Also,
it shows the time needed to finish validation. A total of 114
hours spent by two judges to validate 7432 clone pairs.

Manual validation proves the feasibility of our selection
process in finding semantic clones candidates. 54% of selected
candidates are true semantic clone. Unlike Krutz and Le [11],
they examine 1536 candidate clones to identify 66 clone
pairs, only 9 semantic semantic clones for one programming
language. Also, the selection and filtering process helped to
reduce the effort in building a benchmark of 4000 clone
pairs. Only 114 hours are needed by two judges to finish
the validation load. Finally, Figure 3 shows an example of
a semantic clone that is tagged as true by the judges.

2https://stackoverflow.com/questions/1019793/how-can-i-convert-string-to-
int

TABLE IV
SUBJECT SYSTEM TO INJECT CLONES

System Language Number of files Line of code
JHotDraw7 Java 711 130k
PostgreSQL-12.0 C 1343 1368k
Mono1.1.4 C# 9822 5518k
django Python 2031 240k

IV. SEMANTICCLONEBENCH IN USE

We designed our semantic code clone benchmark (Seman-
ticCLoneBench) into two forms, injected in a system form
and stand-alone clones form. SemanticCloneBench is available
online for use 3.

Injected in a system. We designed SemanticCloneBench as
a real software system that has clones. We selected 4 systems
(Table IV) and we inject the clones into random locations.
We considered medium size systems since we know not all
detection tools are scalable for large systems. We inject clones
into syntax-correct locations, where no clone pair are injected
in the same file. Each subject system is associated with the
clone references.

Stand alone clones. We also kept each clone pair in a single
text file for another usage. Practitioners could use a subset of
clones for other testing or could inject them into other systems.
Some clone detectors cannot scale for large systems and others
have certain limitations. For example, Oreo [19] detect clones
only in the second directory of the file structure.

A. Evaluating clone detectors using SemanticCloneBench

SemanticCloneBench can be used to measure the semantic
recall of clone detection tools. Recall is defined as the fraction
of the true clone detected by a clone detection tool (1), where
RecallSem is the measured semantic recall, Dclone is the set of
detected clones by the tool and Rclone is the set of reference
clones in SemanticCLoneBench.

RecallSem =
Dclone ∩RClone

RClone
(1)

We used SeomticCLoneBinch to measure semantic reall
for three clone detectors (See Table V). We used NiCad to
filter out syntax clones in an earlier stage of building the
benchmark. We are using it again with different configurations.
We increased the dissimilarity threshold (UPI) of NiCad from
0.3 to 0.35 and used blind renaming of identifiers to enable
NiCad to detect more gaped clones. We ran NiCad and SimCad

3https://drive.google.com/open?id=1KicfslV02p6GDPPBjZHNlmiXk-9IoGWl

https://drive.google.com/open?id=1KicfslV02p6GDPPBjZHNlmiXk-9IoGWl

 static int convertToInt(string a)
 {
 int x = 0;
 Char[] charArray = a.ToCharArray();
 int j = charArray.Length;

 for (int i = 0; i < charArray.Length; i++)
 {
 j--;
 int s = (int)Math.Pow(10, j);

 x += ((int)Char.GetNumericValue(charArray[i]) * s);
 }
 return x;
 }

static int convertToInt(string a)
{
 int x=0;
 for (int i = 0; i < a.Length; i++)
 {
 int temp=a[i] - '0';
 if (temp!=0)
 {
 x += temp * (int)Math.Pow(10, (a.Length - (i+1)));
 }
 }
 return x ;
}

Fig. 2. Semantic clone pair form Stack Overflow post ”How can I convert String to Int? ” 2

TABLE V
CLONE DETECTION TOOLS’ RECALL

Tool Granularity Target language Clone type Recall
NiCad Method Java,C,C#, and

Python
1,2,3 0.04

SimCad Method Java, C, C#, and
Python

1,2,3 0.025

Oreo Method Java 1,2,3 and 4 0.097

on the injected JhotDraw7 with the 1000 clones. NiCad was
able to detect 40 clones while SimCad detected 25 clones.
Oreo runs on source code in the second level of the file
structure only. Therefore, we had to inject the clones in certain
locations for Oreo. Oreo is able to detect only 97 clones.

We have not expected a good recall for clone detection tools
on SemanticCloneBench since most tools are based on mea-
suring similarity to identify code clones. SmanticCloneBench
represents the region where most detection tools are difficult to
perform. That is because it follows the definition of semantic
clones.

V. TEXTUAL SIMILARITY IN SEMANTICCLONEBENCH
CLONES

Semantic clones represent a challenge for most detection
tools where it is hard for most tools to reach a good recall since
semantic clones are not textually similar. Most tools that are
based on the similarity threshold, set up the threshold value at
the point where false positive started to produce. These tools
never attempt to detect clones with a lower threshold in order
to keep high precision. However, semantic clones carry some
textual similarity. But it is still not examined by detection
tools. In this section, we measured the textual similarity of
clones in SementicCloneBench.

We start by normalizing the code in the benchmark. This
includes removal of comments and white-spaces, normalizing
all literals and identifiers and pretty-printing of the code.
Then we used the Longest Common Subsequence (LCS) [8]

algorithm on the sequence of normalized lines to measure the
textual similarity between clones. We scale the similarity in
the range of 0 to 100, where 100 means textual identical and
0 means total-textual different. Fig. 3 shows the distribution
of clones in SemanticCloneBench over the similarity scale.

The figure shows that semantic code clones hold a low
textual similarity. The majority of Java, C, and C# semantic
clones are less than 50 textual similar. This means that clone
detection tools should set their threshold to a value less
than the range in order to detect clones in that range. The
figure shows that Python semantic clones have more textual
similarity. Most Python clones reside in the range of 30 to
60. But it is still very low comparing to the threshold used by
detection tools which justify the shortage of most detection
tools to detect semantic clones.

VI. RELATED WORK

The first clone benchmark was created by Bellon et al. [2]
in 2007. They verified 2% of clones reported by six clone
detection tools in four C systems and four Java systems. This
verification was performed by one judge. The main issue in
this benchmark is created by one author and all candidates are
clone reports by tools. Therefore, not all types of clones are
included in this benchmark.

Similarly, Krutz and Le [11], selected a random set of 1536
method pairs in three C open source programs, Apache, Python
and PostgreSQL. They hired three experts judges and four
students to evaluate these pairs manually. They found that only
66 clone pairs, out of the 1536 candidate clones, were real
clones. Their benchmark contains 43 type-2 clones, 14 type-3
clones and 9 type-4 clones (semantic clones).

Svajlenko at al. [23] hired 9 judges to manually tag candi-
date clones as true positive or false positive. They identified
44 common functionalities that are used widely in IJaDataset.
Unlike the aforementioned benchmarks, they used a search
heuristic to identify candidate clones, for these functionalities,
instead of using clone detection tools. They were able to build

-10

0

10

20

30

40

50

60

70

0 20 40 60 80 100

o

f
cl

o
n

es

Similarity

Java

-10

0

10

20

30

40

50

60

0 20 40 60 80 100

o

f
cl

o
n

es

Similarity

C

-10

0

10

20

30

40

50

60

0 20 40 60 80 100

o

f
cl

o
n

es

Similarity

C#

-10

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

o

f
cl

o
n

es

Similarity

Python

Fig. 3. Textual similarity between the clones of SemanticCloneBench

a large benchmark that contains all types of clones. However,
their benchmark is only for Java language.

Roy and Cordy [15] design various scenarios to create
different types of clones that are injected in the code base and
used in the evaluation process to measure recall and precision.
However, these scenarios have to be comprehensive (covering
all types of clones that could appear in real source code) and
not depend on any clone definition.

Recently, Yuki et al. [29] proposed a technique to build
a benchmark through mining software versions and identify
merged methods (merged cloned methods in the next version).
Two merged methods are considered clones if they are textu-
ally similar and called by the same methods in the next version.
Unfortunately, their technique is limited to only refactored
clones, which are a small portion of code clones. In more
than 15K versions they were able to identify 19 clones only.

Other studies [6], [21], [26] used Google Code Jam 4 as a
semantic clone benchmark.They considered solutions for the
same question semantic clones. The correct solutions that pass
judgments of the contest are truly semantic programs. But
the majority of clone detectors do not work on a file or a
program granularity. Therefore, benchmarks should be built
on a more fine grain granularities such as block or method.
Wanger et al. [26] used the main functions of the solutions as
semantic clones to be able to evaluate CCCD [12]. Then they

4https://codingcompetitions.withgoogle.com/codejam

build a semantic clone benchmark by considering the main
method only and excluding syntactically similar methods.
Their benchmark includes 29 clone pairs only (16 Java clones
and 13 C clones).

VII. THREATS TO VALIDITY

The clones in our benchmark may not be real clones.
However, these clones are provided as example solutions to
many problem by many real developers. Furthermore, we
considered the method level clones and those received high
votes by the stack Overflow users. Thus, the clones in our
benchmark might be real semantic clones to some extent.
In order to guarantee further accuracy, judges also validated
the clones. Of course, there might be errors in the manual
validation process and in future we plan to involve more judges
for cross validation. In filtering out syntactic clones (type-1,
type-2 and type-3 clones) we used the NiCad clone detector.
NiCad might not have filtered out all such clones. However,
NiCad has been widely used for detecting such types of clones.
Furthermore, even if there are some syntactic clones in the
semantic benchmark, they may not impact much in evaluating
the semantic clone detection tools. Of course, the presence
of more syntactic clones may wrongly promote some tools
for their capability of detecting semantic clones. We plan to
address this concern with a future release of the benchmark.

VIII. CONCLUSION AN FUTURE WORK

Semantic code clones are the most challenging type of
clones to detect. Also evaluating semantic clone results is
fuzzy according to the definition and understanding of seman-
tic clones. In this paper, we mine the knowledge of the Stack
Overflow to find semantic code clones with minimal human
effort. We considered the answers for the same programming
question are a functionally equivalent code and methods in
the answers are semantically similar answers. We extracted
methods from Stack Overflow answers. Then we filter out
small, incomplete and low-voted answers by Stack Overflow
community. We validated 7431 candidate pairs to build a
semantic clone benchmark of 4000 clone pairs in the languages
Java, C, C# and Python. These clone pairs could be used as
a piece of knowledge to understand how semantic clones are
syntactically different and would guide the research to enhance
the detection of semantic clones.

For the next release of semantic clone benchmark, we plan
to extend the benchmark with other languages and double
validate the clones with more judges. Also, we could extend
the benchmark with syntactic clones, that are extracted from
Stack Overflow by a similar procedure. In addition, there
are some interesting future work that will be performed. For
example, we will use the benchmark to evaluate existing
semantic clone detectors. Or, we plan to use the benchmark to
train a machine learning model to build an AI-based semantic
clone detector.

REFERENCES

[1] Sebastian Baltes, Christoph Treude, and Stephan Diehl. Sotorrent:
Studying the origin, evolution, and usage of stack overflow code
snippets. In Proceedings of the 16th International Conference on Mining
Software Repositories (MSR 2019), 2019.

[2] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 33(9):577–591, sep 2007.

[3] James R. Cordy. Source transformation, analysis and generation in txl.
In PEPM, 2006.

[4] Tim A D. Henderson and Andy Podgurski. Rethinking dependence
clones. In 2017 IEEE 11th International Workshop on Software Clones
(IWSC), pages 1–7. IEEE, Feb 2017.

[5] Florian Deissenboeck, Elmar Juergens, Benjamin Hummel, Stefan Wag-
ner, Benedikt Mas y Parareda, and Markus Pizka. Tool Support for
Continuous Quality Control. IEEE Software, 25(5):60–67, sep 2008.

[6] Fang-Hsiang Su, J. Bell, G. Kaiser, and S. Sethumadhavan. Identifying
functionally similar code in complex codebases. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), pages 1–
10, May 2016.

[7] Neelamadhav Gantayat, Pankaj Dhoolia, Rohan Padhye, Senthil Mani,
and Vibha Singhal Sinha. The synergy between voting and acceptance
of answers on stackoverflow, or the lack thereof. In Proceedings of the
12th Working Conference on Mining Software Repositories, MSR ’15,
pages 406–409, Piscataway, NJ, USA, 2015. IEEE Press.

[8] James W. Hunt and Thomas G. Szymanski. A fast algorithm for
computing longest common subsequences. Communications of the ACM,
20(5):350–353, May 1977.

[9] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally
equivalent code fragments via random testing. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ISSTA ’09, pages 81–92, New York, NY, USA, 2009. ACM.

[10] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. MeCC.
In Proceeding of the 33rd international conference on Software engi-
neering - ICSE ’11, page 301, New York, New York, USA, 2011. ACM
Press.

[11] Daniel E. Krutz and Wei Le. A code clone oracle. In Proceedings of
the 11th Working Conference on Mining Software Repositories - MSR
2014, pages 388–391, New York, New York, USA, 2014. ACM Press.

[12] Daniel E Krutz and Emad Shihab. CCCD: Concolic code clone
detection. In 2013 20th Working Conference on Reverse Engineering
(WCRE), pages 489–490. IEEE, oct 2013.

[13] V. Käfer, S. Wagner, and R. Koschke. Are there functionally similar
code clones in practice? In 2018 IEEE 12th International Workshop on
Software Clones (IWSC), pages 2–8, March 2018.

[14] António Menezes Leitão. Detection of redundant code using r2d2.
Software Quality Journal, 12(4):361–382, December 2004.

[15] Chanchal K. Roy and James R. Cordy. A Mutation/Injection-Based
Automatic Framework for Evaluating Code Clone Detection Tools. In
2009 International Conference on Software Testing, Verification, and
Validation Workshops, pages 157–166. IEEE, 2009.

[16] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming, 74(7):470–495, May
2009.

[17] Chanchal Kumar Roy and James R Cordy. A Survey on Software Clone
Detection Research. Computing, 541:115, 2007.

[18] C.K. Roy and J.R. Cordy. NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normal-
ization. In 2008 16th IEEE International Conference on Program
Comprehension, pages 172–181. IEEE, jun 2008.

[19] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and
Cristina V. Lopes. Oreo: Detection of clones in the twilight zone. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 354–365, New York, NY, USA,
2018. ACM.

[20] Abdullah Sheneamer and Jugal Kalita. Semantic Clone Detection Using
Machine Learning. In 2016 15th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 1024–1028. IEEE,
dec 2016.

[21] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan,
Gail Kaiser, and Tony Jebara. Code relatives: Detecting similarly
behaving software. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, pages 702–714, New York, NY, USA, 2016. ACM.

[22] M. Suzuki, A. C. d. Paula, E. Guerra, C. V. Lopes, and O. A. L. Lemos.
An exploratory study of functional redundancy in code repositories.
In 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 31–40, Sep. 2017.

[23] J Svajlenko, JF Islam, and I Keivanloo. Towards a big data curated
benchmark of inter-project code clones. and Evolution (ICSME . . . ,
2014.

[24] Jeffrey Svajlenko and Chanchal K. Roy. Evaluating Modern Clone
Detection Tools. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 321–330. IEEE, sep 2014.

[25] Ryo Tajima, Masataka Nagura, and Shingo Takada. Detecting func-
tionally similar code within the same project. In 2018 IEEE 12th
International Workshop on Software Clones (IWSC), pages 51–57. IEEE,
Mar 2018.

[26] Stefan Wagner, Asim Abdulkhaleq, Ivan Bogicevic, Jan-Peter Ostberg,
and Jasmin Ramadani. How are functionally similar code clones
syntactically different? An empirical study and a benchmark. PeerJ
Computer Science, 2:e49, mar 2016.

[27] A. Walenstein, N. Jyoti, Junwei Li, Yun Yang, and A. Lakhotia.
Problems creating task-relevant clone detection reference data. In
10th Working Conference on Reverse Engineering, 2003. WCRE 2003.
Proceedings., pages 285–294. IEEE, 2003.

[28] S. Wang, T. P. Chen, and A. E. Hassan. How do users revise answers
on technical q a websites? a case study on stack overflow. IEEE
Transactions on Software Engineering, pages 1–1, 2018.

[29] Yusuke Yuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto.
Generating clone references with less human subjectivity. In 2016 IEEE
24th International Conference on Program Comprehension (ICPC),
pages 1–4. IEEE, may 2016.

	Introduction
	Semantic clone definition
	Methodology
	Data Extraction
	Syntax Validation
	Functionality Validation
	Syntactic clone filtering
	Manual Validation

	SemanticCLoneBench in use
	Evaluating clone detectors using SemanticCloneBench

	Textual similarity in SemanticCloneBench clones
	Related Work
	Threats to validity
	Conclusion an future work
	References

