
CroLSim: Cross Language Software Similarity
Detector using API documentation
Kawser Wazed Nafi, Banani Roy, Chanchal K. Roy and Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Email: {kawser.nafi, banani.roy, chanchal.roy, kevin.schneider} @usask.ca

Abstract—In today’s open source era, developers look for
similar software applications in source code repositories for a
number of reasons, including, exploring alternative implementa-
tions, reusing source code, or looking for a better application.
However, while there are a great many studies for finding similar
applications written in the same programming language, there is
a marked lack of studies for finding similar software applications
written in different languages. In this paper, we fill the gap
by proposing a novel model CroLSim which is able to detect
similar software applications across different programming lan-
guages. In our approach, we use the API documentation to
find relationships among the API calls used by the different
programming languages. We adopt a deep learning based word-
vector learning method to identify semantic relationships among
the API documentation which we then use to detect cross-
language similar software applications. For evaluating CroLSim,
we formed a repository consisting of 8,956 Java, 7,658 C#,
and 10,232 Python applications collected from GitHub. We
observed that CroLSim can successfully detect similar software
applications across different programming languages with a mean
average precision rate of 0.65, an average confidence rate of
3.6 (out of 5) with 75% high rated successful queries, which
outperforms all related existing approaches with a significant
performance improvement.

Index Terms—API Calls, Paragraph2Vec, Cross-Language
Software Similarity Detection, Singular Value Decomposition

I. INTRODUCTION

Research into source code mining and development of
software applications to solve existing computational problems
has played an important role for a long time with software
researchers and developers. As a result, the number of soft-
ware applications solving the same problem is increasing
substantively in open-source software repositories. A report
from October 2017 [15] shows that GitHub consists of 24M
users with 67M repositories written in different programming
languages. As a result it is helpful to group software ap-
plications performing the same tasks together so that users
can more easily select a software application to solve their
problem. In addition, it can help when open source repositories
automatically recommend similar code examples or software
applications within a short time with little overhead [8].
Managing and providing services in big software repositories
like GitHub, SourceForge, BitBucket and so on are considered
a big data management problem. Recently software researchers
are developing common platforms for users and researchers
working in different areas that can combine a variety of
software applications and tools in workflows [1], [2] to satisfy
their needs. By executing the workflows, researchers perform

TABLE I: SOURCE CODE SIMILARITY SCORE FOR THE
APPLICATIONS IN FIGURE 1

Programming Language Java C# Python

Java 1 .062 0.021

C# .0621 1 .075

Python 0.021 .075 1

different analytic jobs and get useful research insights effi-
ciently. Some examples of this type of platform are Galaxy
[3], iPlantCollaborative [4], and ensemble plants [5]. If a good
number of software applications performing similar kinds of
functionality are present in a common repository, it can help
users to check and select the best suited one as per their
requirements (e.g., diversity in the functionality of a software
application, a specific API, the number of times an application
or API is used by other users in the repository, and so on). In
addition, detecting similar software applications also is useful
for addressing other computer science research problems, such
as re-usability of software applications, rapid prototyping [6],
detecting source code plagiarism [7], code clones detection
[45], and so on.

Detecting similar software applications based on source
code similarity within the same programming language is
relatively straightforward and there are already promising
approaches [8], [9], [45]. Usually for source code similarity
detection each word (i.e., API names, Class names, used Li-
brary Method names, syntactic information, etc.) in the source
code is considered a semantic anchor which helps to define the
semantic characteristics of that document [9]. Let us consider
the Java applications in Figure 1a and Figure 1b which add two
integer numbers. Using the Vector Space Model (VSM)1 [16]
we found that, these two applications have a 76% match based
on their source code semantic anchors. Unfortunately, for
different programming languages the API names, identifiers,
code structure, syntactic information and so on are often
different. We applied VSM on the code examples in Figures
1a, 1c and 1d and the semantic anchor similarity results are
given in Table I. From this table we see an almost zero
semantic relationship among the API names and the identifiers
used by Java, Python and C# programming languages. As a
consequence, none of the source code similarity approaches
focus on cross language software application similarity de-

1https://media.readthedocs.org/pdf/gensim/stable/gensim.pdf



(a) Java code one (b) Java code two

(c) python code

(d) C# code

Fig. 1: Code examples for adding two integers from the console written in four different programming languages

tection. There are some other challenges too. For example,
the third party APIs used for developing software applications
differ among programming languages. As well, the byte code
generated by different programming language compilers is also
different considering their semantic and syntactic aspects [13].
Considering all these challenges it can be said that software
similarity detection across different programming languages is
a challenging problem to solve. But with the increase of open
source software applications, detecting cross-language similar
software applications is indisputably an important need.

Although recent studies [10], [12] indicated that their ap-
proaches could be extended to detect cross-language similar
software applications, both works have a good number of
restrictions. For example, Thung et al. [12] used collabo-
rative tags for similarity detection which are hardly found
associated with software applications in a repository. Very
often collaborative tags give the wrong impression about
software applications as these tags are provided by a user’s
experience which may vary from user to user and may cover
a small part of the whole application [37]. Thus, figuring out a
universal solution for detecting and searching similar software
applications across different programming languages for any
open source software repositories is still a challenge to solve.

In this paper, we propose a novel approach CroLSim
which is able to detect similar software applications across dif-
ferent programming languages. For establishing a connection
between different programming languages, we leveraged the
descriptions of APIs and their methods234 which briefly state
the purpose of a specific package and methods for the APIs
used in developing a software application. We observed that al-
though APIs and their method names are semantically different
across programming languages, the methods performing the
same operations usually have semantically similar descriptions
(as shown in Figure 2). Realizing this fact, we first collected
descriptions of all the APIs available for different languages
and built a Corpus with those descriptions. For each of the
programming languages, we maintained an individual XML
file in our Corpus. Second, we extracted all the API calls
(including the third party ones too) from the source code of
each of the software applications of our repository. Third,
for each of the applications, we queried the Corpus with the

2Java Docs: https://docs.oracle.com/Javase/8/docs/api/
3Python 2.7 Docs: https://docs.python.org/2/library/index.html
4C# docs:https://docs.microsoft.com/en-us/dotnet/api/?view=netcore-2.0

names of the extracted API calls and retrieved the related
descriptions. Then we combined all the descriptions in a
single file for a software application and considered this as
a descriptive representational document (in short DReP) for
that subject software. From our observations we noticed that
there are also not many similarities between the structures of
the descriptions of similar APIs across different programming
languages. In order to mitigate this challenge, we adapted the
distributed memory model of Paragraph Vectors (PV DM)
model [11] which is a deep convolutional neural network
based advanced Natural Language Processing (NLP) model
for predicting semantic information from the API descriptions.
We applied PV DM over DReP for each of the software
applications to find semantic similarity between them. To the
best of our knowledge, we are the first to have attempted
to design a generalized model (not dependent on any of the
specific open source repositories such as GitHub, SourceForge,
BitBucket and so on) for detecting cross-language similar
software applications by leveraging the semantic meaning
of API call descriptions. We also clustered similar software
applications with the help of the semantic weights that are
generated.

To evaluate our work, we performed an extensive number
of experiments supporting our claim that our model can detect
similar software applications across different programming
languages resulting in a mean average precision of 0.65, an
average confidence score of 3.6 (out of 5) and an average
of more than 72% in highly successful queries of the top-5
recommendations of software applications.

II. MOTIVATION

Let us assume a software developer, who is good with
C# but does not have good knowledge of Java and Python,
needs to develop a feasible software solution for adding two
different integer numbers in those programming languages.
They are good in C# and can easily build the application
given in Figure 1d. Now, to develop the same solution in
Python and Java, they start looking for help in GitHub, one
of the most popular and largest software repositories. They
search for a sample code in GitHub with the following two
queries, a. “Addition in Java” and b. “Addition in Python”.
They actually needs the code block given in Figure 1a for
the Java application and Figure 1c for the Python application.
Querying in GitHub with (a.) results in 168 Java applications
where the very related code example to Figure 1c pops up



(a) Methods Extraction and DReP creation for Java Program (b) Methods Extraction and DReP creation for C# Program

Fig. 2: DRePs created using source code analysis

after 21 software applications. For querying with (b.) 119
Python samples are found where the needed one appears after
35 recommendations. The reason behind this is that GitHub
recommends only those software repositories whose name or
short description matches most with the tokens of the query.
The developer needs to visit each of the software applications,
analyze each source code and needs to find out the required
sample code block for their work. As a novice developer
in Java and Python, it is really hard and time consuming
to manually evaluate and find out the required code blocks
given in Figure 1a and Figure 1c from these huge number of
recommended software applications. They might use the same
queries using Google but will still have the same challenges.
The most feasible solution would be the availability of a search
engine where they could search with the source code given in
Figure 1d or the availability of a cross-language categorized
software repository from which the developer can easily select
a software application similar to the one in Figure 1d, which
would be 1a in Java and 1c in Python. This scenario motivated
us to develop CroLSim.

Different cloud based scientific workflow management sys-
tems are available for researchers (e.g. Galaxy [3], iPlant [4],
and ClustEval [51]). In these systems, one can build workflows
with different available software. When building a workflow,
one may need to use different software applications which may
also involve alternative ones of a certain software application.
Our work will help such platforms effectively since CroLSim
will categorize the similar ones based on the source code of
the current one at hand.

III. CROLSIM - MODEL AND APPROACH

In this section, we discuss our approach to detect cross-
platform similar software applications from software reposi-
tories, provide background for the methods and terminologies
used in CroLSim, and present the model architecture and the
way it works.

A. Approach

CroLSim can be divided into four phases. In the first phase,
we try to establish a common connection among the API calls
performed in each of the programming languages. For this,
we use the API documentation available and maintained by
providers, e.g., programming language Java and its packages

and method descriptions are maintained by Oracle5, C# is
developed and maintained by Microsoft6, and Python is main-
tained by the Python Software Foundation7. We assume that, if
a single document of combined descriptions of all of the API
calls used in a software application is similar to the document
of the combined descriptions of API calls of another software
application, we can thereby say these two applications are
similar. We named these combined descriptions DrePs which
we considered as a continuous bag of words (CBOW) [20]
without any predefined semantic relation. Let us consider the
source code examples in Figure 2. Here, Figure 2a and 2b
are examples of DRePs generated from analyzing the source
code and getting the corresponding API descriptions from the
available sources/documentation.

In our second phase, we worked on reducing the effects of
“common and less effective” API calls [19]. Let us consider
the source code examples given in Figure 2. One of the
used methods in Java source code in Figure 2a is PRINTLN()
from the JDK package SYSTEM.OUT which is used to print
something to the console with a newline. If we look at the
C# source code in Figure 2b we see that the WRITE() method
along with the CONSOLE package used here does the same
thing. If we put the same importance to these methods along
with other dedicated and less frequently used methods in the
source code it will mislead us in Cross-Language similar
software detection. Collins et al. [9] in their work also found
this issue with API calls in Java source code. To deal with
this, they used Singular Value Decomposition (SVD) along
with Latent Semantic Indexing (LSI) to find out less used
but important methods in Java programs. In our work, we
adapted SVD to filter out less effective API calls in source
code from all of the software applications developed in the
different programming languages.

As different developers and maintainers usually use different
sentence structures and formations for describing the function-
ality of different methods and libraries, it is worthless to work
with a direct word to word match of DRePs for calculating
software application similarity. Thus, in order to define seman-
tic similarity of the contents of the DRePs, we adapted Le and
Mikolov’s proposed model Paragraph2Vec [11] in the third

5https://www.oracle.com/Java/index.html
6https://docs.microsoft.com/en-us/dotnet/csharp/
7https://www.python.org/psf/



phase of our proposed model. One of the main features of the
Paragraph2Vec model is that it can predict semantic words
from a paragraph or document on the fly without any pre-
training. We considered these predicted semantic words as the
Semantic Anchors [17], [18] for the DRePs of the software
applications and later on we calculated Cosine similarity [21]
among the Semantic Anchors for calculating the semantic
similarities among cross-platform software applications.

B. Singular Value Decomposition

To reduce the impact of less effective API calls, which are
actually used in source code of almost all of the software
applications, we adapted the Singular Value Decomposition
(SVD) [22] model. SVD is normally applied on a matrix M
to factor that matrix into multiplication of three matrices such
that:

M = ADBT (1)

where A and B are orthogonal and D is diagonal where values
are positive real numbers. It is helpful to use a low rank matrix
as an approximation of the high dimensional matrix.

To incorporate SVD in our work we developed a m ∗ n
dimension Term-Document Matrix (TDM) [14] M with the
help of extracted API calls. In our matrix, each row m takes
the name of the API call and each column n takes the software
application as input. Each cell then represents the number
of times the specific API calls appear in the source code
of the related software application. For every programming
language l used in our work we developed an individual TDM
matrix Ml from the source code of the software applications.
Now, applying SVD on each of the Ml we have derived the
low rank matrix which consists of the less but effectively
used API calls in each of the software applications of the
software repository. To perform the whole process we used the
Information Retrieval (IR) technique Latent Semantic Indexing
(LSI) [23] which embeds both TDM and SVD.

C. ParaGraph to Vector

In recent years, Natural Language Processing (NLP) re-
search has had considerable success by utilizing deep learning
techniques, which provides the ability to analyze words from
a sentence to a full paragraph for identifying the semantics of
a word in a more accurate way [26]. Many recent NLP models
use neural networks [27], and especially Convolutional Neural
Network on Word embedding [26]. Word embedding, also
known as distributional vectors, represents the characteristics
of surrounding words of a specific work which helps to learn
the semantic meaning of a word [28], [29]. One of the recent
CNN based word vector representation models is Word2Vec
[30] where the convolution layer operation (the first layer in
the deep learning model) is applied on word embedding to
sub-sample the frequent words as a goal of training a large
unlabelled corpus in a faster way.

With the help of Word2Vec it is possible to learn word
vectors for a full phrase or a full sentence. That is, Word2Vec
can learn word vectors for a fixed length context. To extend
this work for learning word vectors from variable length

contexts, Le and Mikolov’s [11] proposed a new model,
called ’Paragraph Vector’ which is able to learn continuous
distributed vectors in an unsupervised learning way from a
paragraph or full document. This model predicted the vectors
for a paragraph by predicting multiple word vectors from the
paragraph itself.

Fig. 3: Word Vector learning architecture for paragraph to
vector. This Figure is adapted from [11]

Figure 3 represents the word vector learning mechanism for
a paragraph. Here we are trying to learn a word vector from
our Java program DReP example given in Figure 2a. Here,
in Figure 3, three words from our Java DReP, ‘scans’, ‘the’
and ‘next’ words are trained for predicting the next token.
All the words of a paragraph are embedded in a word matrix
W. Each paragraph is uniquely identified with a Paragraph ID
which is embedded in matrix D. At the training phase, the
Paragraph ID vector, represented by a column in matrix D
and vectors for training words, represented by the column in
matrix W are popped up and are averaged or concatenated
for predicting the token word of the context DReP. This
token is used to memorize the missing elements in the current
context. Paragraph vectors are shared among all the paragraphs
of a document where word vectors of each paragraph are
shared with other word vectors of that paragraph. The whole
training process is done with the help of stochastic gradient
decent which is usually obtained by back propagation in neural
network. This model is also called as ‘Paragraph Vector-
Distributed Memory (PV-DM)’.

D. CroLSim’s Architecture

The CroLSim architecture is shown in Figure 4. The main
elements of our architecture are software repositories, source
code scripts, Singular Value Decomposition (SVD), Corpus of
API calls description, configuring DReP, application of Para-
graph2Vec and finally an applied K-nearest neighbours (KNN)
[35] algorithm for clustering similar software applications. For
each of the language we maintained an individual repository.
We combined all the source code individually for each of the
software applications and kept them along with the software
application in our software repository.

As can be seen from the figure, first we detect the program-
ming language for each of the software applications from the
repository because of variations in API calls extraction process
for different languages. After extracting API calls from all
the software applications we run SVD on them to find out



Fig. 4: Schematic diagram for CroLSim

less frequently used API calls. We considered the top 400
less frequently used API calls. After performing SVD, for
each of the API calls, we queried the Corpus to get the API
documentation for the queried API call.

Once we queried the Corpus with the extracted API calls,
we retrieved the API documentation for each of the API calls
and added them to a single text file DReP. For a single
software application we observed that we extracted a lot of API
calls which had led us to a large size DReP. Processing larger
size word documents might increase computational complexity
as well as require extensive hardware support. In addition, we
observed that each DReP may contain repeated entries for a
single API call. To overcome these issues, for each API call we
kept only one entry even if it was called multiple times. In our
work this would not generate any problem as we only need an
informative description about the functionality of a software
application. Using multiple entries of a single API description
is redundant since the information provided by them altogether
are equivalent to that of a single entry. For each of the software
applications we generated a single DReP. There are some other
popular 3rd party APIs and Libraries which developers often
use inside the program for ease of software development,
such as OpenCV, Apache Log4j, and Jsoup for Java, and
Numpy and PyQt, for Python. To obtain documentation for
these APIs we first tried to collect descriptions from verified
sources. If we failed to find them, then we collected the source
code and generated their documentation with the help of
document generation APIs provided by different programming
languages, such as Javadoc [31] for Java, Pydoc8 for Python
and DocFX [32] for C#.

Once we generated DReP for all the software applications
in the software repository, we used all these DRePs as input
to ‘Paragraph2Vec’. We adapted the library and structure of
‘Paragraph2Vec’ from Genism [33] with some small modi-
fication to the parameters. We set the parameters of ‘Para-
graph2Vec’ in the following way for our study: 50 epochs, 10
window size, 2000 dimensions, 0.25 learning rate and a sample
size equal to the number of software applications we are
considering. The reason behind considering high dimension in
word embedding is that our DRePs are a collection of retrieved

8https://docs.python.org/2/library/pydoc.html

Fig. 5: Workflow for detecting Similar Software Applications

API documentations instead of a regular paragraph. As a
result, most of the sentences are not related to each other. On
the other hand, DReP also depends on the appearance of API
calls which is also not fixed for all the software applications.
So, to learn the distributed representations of a word inside a
paragraph more accurately we used a high dimension vector
representation for each of our words. We executed our model
on the Tensorflow [34] deep learning platform. Finally, for
calculating similarity between two projects, we calculated
the Cosine similarity of vector representation of two DRePs
according to the following equation:

CosineSimilarity = cos(θ) =
A.B

‖A‖ . ‖B‖
(2)

where, A and B are word vectors of dimension D.
Using the cosine similarity, we generated a matrix where

both the row and column of the matrix represent names of
the software applications. Cells of the matrix represent the
cosine similarity scores between the indexed projects. After
performing the whole matrix, we applied the KNN algorithm
to cluster similar software applications

E. CroLSim’s Workflow

The working steps for CroLSim are listed in Figure 5. In
step (1) the user queries with a software application they
have along with the source code. Once the query is made,
in step (2), the search engine sends the query to CroLSim.
As shown in Figure 4 CroLSim first generates DReP for the
queried software application. After that, it compares the newly
generated DReP with the already generated DRePs of the
software applications in the repository. After completing all



the phases of the CroLSim architecture, in step (3) the recom-
mended similar software applications along with the Cosine
similarity scores are returned to the search engine. The search
engine categorizes all the resulting software applications in
step (4) based on their Programming Language and ranks
them according to their similarity scores in an ascending way.
Finally, in step (5) this page is returned to the user who sent
the query.

F. DataSet Collection

For collecting software applications from GitHub, we de-
veloped a crawler, named GitCrawl which crawls throughout
the GitHub repositories and downloads Java, Python and C#
software applications. With the help of the GitCrawl we
traversed more than 300K repositories and downloaded more
than 10k software applications for each of the programming
languages. Many of these downloaded repositories did not
include any software application or soure code except some
descriptions or PDF files or other documents. We manually
removed those repositories and finally selected 8,956 Java,
7,658 C#, 10,232 Python applications to proceed with the
CroLSim evaluation process.

IV. EXPERIMENTAL SETUP

We used an Intel(R) Core(TM) i7-2600 3.4 GHz CPU with
16GB RAM to run the experiments with CroLSim. As we
have seen that search and retrieval engine related tools and
models are usually evaluated by experts with manual relevance
judgments [9], [10], [36] we validated the results of CroLSim
with 9 participants who have all been engaged with software
development for at least 5 years. To evaluate our work, we
compared our model results with two of the baseline methods,
CLAN [9] and Repopal [10] as these two models are very
related to our work and state of the art solutions in detecting
software similarity.

A. Baseline Methods

From Yang et al.’s Repopal [10] we considered the Readme
files relevance calculation mechanism as the other two pa-
rameters, e.g: Stargazer similarity and time relevance of
giving a star by a single user are only workable with
GitHub which hinders universal acceptability of this work and
thus, we did not considered this work in our comparisions.
We also considered McMillan et al.’s CLAN [9] as this
model is closely related to our approach. Our evaluation with
Repopal(readme) and CLAN on our repository experienced
an average 2-3% error from the evaluation results shown in
the original publication which is acceptable for reproducing
any previous model. We did not compare with collaborative
tagging [12] because it requires manual tagging and at the
same time has a performance challenge [37]. Thus, finally we
ended up comparing with the two closely related state of the
art approaches with ours.

TABLE II: DEGREE OF RELEVANCE ASSIGNED BY PARTICI-
PANTS

Score Relevance Description

1 Highly Dis-
similar

Two software applications are entirely dif-
ferent

2 Dissimilar Two software applications are mostly dif-
ferent

3 Neural It is hard to say two software applications
are similar or not

4 Similar Two software application are somewhat
similar

5 Highly Sim-
ilar

Two tools are completely similar to each
other

B. Evaluation Methodologies

In this section, we we discuss how we evaluated CroLSim
with the help of nine participants and widely used performance
measurement metrics.

1) Confidence: Confidence level means the degrees of
relevance one participant can provide at time of validating
the results of already detected similar software applications
according to their own manual evaluation of the resulted
repositories. We asked our participants to evaluate our detected
similar software applications based on their query by giving
a confidence score ranges from 1 to 5 according to table
II. We built appropriate user interfaces to make it easier
for our participants and for collecting confidence scores for
each of the software applications ranked in the top-5 for a
query performed by each participant of our system. Once
we collected the scores, we calculated the mean and median
confidence levels for the recommended top-5 results for each
query. We allowed each of our participants to query twice with
two different software applications which generates 15∗2 = 30
recommendations for three programming languages in total.
As a result, we got 270 recommendations and related confi-
dence scores to evaluate our work. We could do more, but
as each of our participants needed to validate 15 software
applications for each of their queries, which was really time
consuming (>6hours/query) and required considerable manual
labour, we limited our validation process to 18 queries in total.
But as those queries were randomly selected and performed
on a collection of real software applications, the evaluation
process would not differ much with a higher number of
queries.

2) SuccessRate@T: We adapted this performance analysis
parameter from Zhang et al.’s [10] work. According to their
definition, SuccessRate@T defines the proportion of success-
ful top-5 recommendations we found after performing a query
in our system. Here the value of T can be any value of our
defined confidence level. For example, if the top-5 recom-
mended software applications for a given query are evaluated
with confidence level 4, 3, 2, 1, 2 at time of SuccessRate@5,
this query will not be considered as a successful one. In
our work, we considered up to SuccessRate@4 as successful
recommendation for a query.

3) User Study: To cross validate our work, we divided our
participants randomly in two groups. Participants from each



group were asked to run CroLSim in their own way. For
each of the participants we defined a list of tasks needed to
be performed. Each of the participants were asked to select
one software application and perform a query with that. To
ensure the accuracy and adaptability of our cross validation
procedures, we did not provide any restriction on the par-
ticipants at the time of selecting software applications. Once
a user queried with a software application of one language,
related software applications for the other two programming
languages are listed on the CroLSim’s user interface. We
also listed recommended similar software applications from
the same programming languages. We limited the number of
software applications on the interface to 5 for each of the
programming languages. Once the queried results popped up,
we asked our participants to assign a confidence level, C, to
each of the resulting software applications according to the
Table II.

Finally, when both of the groups were done with their
queries and evaluation, we asked one group to validate the
evaluation results of the other group. At this time, we asked
the participants to check and comment regarding the already
evaluated queries and their results and finalize their decision of
accepting or rejecting the previous participants evaluation. We
collected all the accepted queries and results of confidence
level. For the rejected results, we performed those queries
again with other participants and collected the final results
once they were finally accepted by the validating participant.

4) Precision: For our evaluation we defined Precision as
the portion of similar and highly similar software applications
recommended by our top-5 position for a given software
application query. For the set of queries performed by our
participants we calculated mean and median precision for our
proposed model. As we are going to evaluate whether our
model can detect software similarity across different program-
ming languages, we calculated mean and median precision for
recommended similar software applications individually across
different programming languages. For example, we calculated
mean and median precision between Java and Python, Java and
C# and C# and Python. At time of calculating precision for a
recommendation system we also need to calculate Recall of the
system. But for our case, we could not calculate it as we did
not define and did not have any previous knowledge about our
repository regarding how many software applications are sim-
ilar in our experimental software repository. The main reason
to work with random and unlabeled software applications is
to evaluate the performance of CroLSim in a real life scenario
and with bias free experimental analysis.

5) Research Questions: For performing the evaluation
work, we designed our experiments to answer the following
three research questions:

RQ1 What are the SuccessRate@T scores of CroLSim, CLAN
and Repopal(Readme) for detecting software similarity?

RQ2 What are the Confidence Scores of CroLSim, CLAN and
Repopal(Readme) for detecting similar software applica-
tions?

TABLE III: SUCCESSRATE COMPARISION FOR CLAN, RE-
POPAL(README) AND CROLSIM

Programming
Language SuccessRate@4 SuccessRate@5

CLAN
Repopal

(Readme) CroLSim CLAN
Repopal

(Readme) CroLSim

Java 65% 25% 72% 32% 21% 68%
Python 62% 23% 78% 28% 25% 64%

C# 73% 21% 81% 44% 26% 75%
Java & Python N/A 19% 71% N/A 24 62%
Java & C# N/A 22% 82% N/A 29% 70%
Python & C# N/A 18% 76% N/A 28 65%

9N/A: Not Applicable

RQ3 What are the Precision Scores of CroLSim, CLAN and
Repopal(Readme) for detecting similar software applica-
tions?

V. EVALUATION

In this section, we discuss the answers to the research
questions defined in previous section for evaluating the per-
formance of our proposed model.

A. Answer to RQ1: SuccessRate@T

Our experimental study on success rates for three tools,
baseline methods: CLAN, Repopal(Readme) and our proposed
CroLSim are shown in Table III. From the table we can see
that CroLSim has a higher success rate than all other models
for both single programming language and cross-language
programming languages. For single programming language
such as Java, Python and C#, CroLSim can recommend
software applications for a given query with a SuccessRate@4
(contain at least 1 similar recommendation for the given query)
for a rate of 72%, 78% and 81% respectively where the
very related work CLAN has observed 65%, 62% and 73%
respectively at a rate of SuccessRate@4. For this scenario,
Repopal (Readme) application has been observed with very
poor performance, 25% for Java, 23% for Python and 21%
for C# programming language based software applications.
For SuccessRate@5 (contain at least 1 highly or fully similar
recommendation of software application for the given query)
CroLSim outperforms all other models with its success rate;
68%, 64% and 75% for Java, Python and C# programming
languages respectively. For this scenario, other models, CLAN
and Repopal (Readme) observed a considerably lower success
rates (lower than 45%) comparative to CroLSim.

For Cross language similar software application detection,
at SuccessRate@4, our experiments showed that CroLSim can
recommend software application tools with a success rate of
62% between Java and Python, 70% between Java and C#
and 65% between Python and C# programming language.
This result is much higher comparative to Repopal (Readme)
which showed a success rate lower than 30%. Thus, to answer
RQ1, we can confidently say that CroLSim outperforms the
other two state of the art tools in detecting similar software
applications of different programming languages in term of
SuccessRate@T.



TABLE IV: CONFIDENCE SCORE COMPARISON FOR CLAN,
REPOPAL(README) AND CROLSIM

Programming
Language Mean Confidence Score Median Confidence Score

CLAN
Repopal

(Readme) CroLSim CLAN
Repopal

(Readme) CroLSim

Java 2.24 1.94 3.29 2.0 1.74 3.5
Python 1.72 1.75 3.62 1.8 1.7 3.7

C# 3.32 1.82 3.48 3.2 1.63 3.6
Java & Python N/A 1.78 3.24 N/A 1.6 3.6
Java & C# N/A 1.89 3.52 N/A 1.6 4.2
Python & C# N/A 1.74 3.35 N/A 1.4 4.0

10N/A: Not Applicable

B. Answer to RQ2: Confidence Score

The mean and median confidence scores we observed at
the time of our experiments for all three tools, e.g., CLAN,
Repopal (Readme) and CroLSim are stated in Table IV. From
the table we can see that, for a single programming language,
CroLSim has a mean and median confidence score of 3.29
and 3.5 respectively for Java, 3.62 and 3.7 respectively for
Python and 3.48 and 3.6 respectively for C#. On other hand,
CLAN has an observed mean and median confidence score of
2.24 and 2.0 respectively for Java, 1.72 and 1.8 respectively
for Python and 3.32 and 3.2 respectively for C#. For Repopal
(readme) we see that its recommendation based on readme files
similarity gets very low mean and median confidence scores
(less than 1.9 in most cases) which is not even acceptable as
a similar software recommendation method itself.

The reason for CLAN’s showing poor performance with
Python is that Python supports a lot of third party libraries
rather than depending only on the Python API itself. So, it false
positively detects a lot of similar software applications which
are not similar at all. So, the confidence scores deteriorates
considerably. C# development is mostly dependent on the .Net
framework provided APIs so CLAN performs good, almost
near to CroLSim.

For detecting cross language similar software applications
from a repository, we examined a good and acceptable perfor-
mance for CroLSim. For detecting similar software applica-
tions between Java and Python, it is found mean and median
confidence scores are 3.24 and 3.6 respectively. For similar
software detection between Python and C#, mean and median
confidence scores are observed 3.35 and 4.0 respectively and
for the case of Java and C#, these values are 3.52 and 4.2.
From this analysis we can say, CroLSim can detect similar
software applications across different programming language
with great accuracy.

C. Answer to RQ3: Precision Score

From Table V we can see that CroLSim has a higher mean
and median precision values than all other existing methods.
For single programming language software repositories like
Java, Python and C# we observed mean average precision
values 0.764, 0.798 and 0.725 respectively and median pre-
cision values 0.68, 0.7 and 0.64 respectively. For Java, CLAN
achieves a mean average precision of 0.284 and median
precision of 0.4 which is lower than CroLSim. For Python

TABLE V: PRECISION SCORE COMPARISON FOR CLAN,
REPOPAL(README) AND CROLSIM

Mean Precision Median Precision
Programming

Languages CLAN
Repopal

(Readme) CroLSim CLAN
Repopal

(Readme) CroLSim

Java 0.284 0.147 0.764 0.4 0.2 0.68
Python 0.178 0.158 0.798 0.24 0.19 0.7

C# 0.304 0.151 0.725 0.46 0.2 0.64
Java & Python N/A 0.168 0.652 N/A 0.22 0.57

Java & C# N/A 0.162 0.645 N/A 0.22 0.54
Python & C# N/A 0.158 0.671 N/A 0.2 0.58

11N/A: Not Applicable

and C#, CLAN’s mean and median precision achievements
are 0.178, 0.304 and 0.24, 0.46 respectively. Compared to
CroLSim, mean and median precision values achieved by
CLAN for all the programming languages are lower. For
another baseline method, Repopal(Readme) achieves very low
mean and median precision values (most of the cases lower
that 0.2) which actually confirms that CroLSim outperforms all
the existing methodologies and models in terms of detecting
similar software applications from software repository in terms
of accuracy.

For Cross-Language software similarity detection, we ex-
amined that CroLSim can detect similar software applications
with higher accuracy and precision value across different pro-
gramming languages. For Java and Python, the mean average
precision for CroLSim in 0.652 and median precision is 0.57.
For Java and C# the mean average precision is 0.645 and
median precision is 0.54 and for Python and C# we observed
mean and median precision values 0.671 and 0.58 respectively.
Compared to Repopal (Readme) CroLSim achieved much
higher precision as Repopal (readme) achieved a mean and
median precision rate of less than 0.2.

From the above analysis we come to a conclusion that,
CroLSim outperforms the existing methodologies of similar
software detection for repositories in terms of success rate,
confidence level and precision score achieved for single lan-
guage. For Cross-Platform software similarity detection, to the
best of our knowledge, as it is the first approach to detect
similar software applications across different programming
languages by performing semantic relationships among API
calls, a mean average precision of more than 0.65 is an
acceptable one for all respects.

VI. THREATS TO VALIDITY

Participants. Any study involving users may have potential
bias and we are not an exception. However, in this study we
were careful in selecting the users and only selected those who
have at least five years of experience with the programming
languages. Furthermore, we conducted cross-validations with
different groups of users until a consensus was reached.

Repositories. The sample size of our experiments may not
be enough to generalized the whole ecosystem of a software
repository. However, we used about 9K Java, 8K C#, and 10K
Python software applications from GitHub which is much large
in size compared to any of the subject systems. Since we were
able to directly use GitHub systems without any change or



fabrication, we can confidently say that CroLSim would be
able to work with other systems and repositories too.

Third party API documentation. Unavailability or poor
quality of API documentation is a potential threat for CroL-
Sim. However, we were able to limit this threat by using
the documentation which is made available by the providers
of the APIs. Of course, for third party ones, we relied on
developers’ documentations. We also made sure those are in
an understandable format.

Parameters for Evaluation. One might argue about our
selection of the evaluation metrics as well. In order to mitigate
those threats we adapted the widely used metrics for such
studies from previous work such as CLAN [9], Collaborative
Tagging [12] and Repopal [10]. Such evaluations were also
used in various other related studies too [8], [38], [39].

VII. RELATED WORK

Finding similar software applications is not a new research
topic. However, there is a marked lack in detecting similar
applications from systems of different languages. In the fol-
lowing we position our work with the state of the art:

A. Detecting Similar Software Applications

The work of Kawaguchi et al. [8], McMillan et al. [9],
Thung et al. [12] and Zhang et al. [10] are most closely related
to ours. In MudaBlue [8], the authors only considered the
identifiers of source code which requires manual investigation
to pick the informative one. McMillan et al. in their CLAN
[9] used JDK API calls similarity to detect similar Java based
software applications from the repository and evaluated with
more than 8K Java applications. Unfortunately, since API
calls across systems of different programming languages are
significantly different, their approach cannot be used for cross
language similarity detection. In another work, Thung et al.
[12] detected similar applications using manual collaborative
tagging of the applications. While this holds promise for cross
language similarity detection, applicability of this approach
is limited since it is solely dependent on manual evaluation
and user experience in tagging the applications. In a recent
work, Zhang et al. [10] extracted three pieces of information,
relevance of Readme files, Stargazer relevance and Time
relevance for each of the software applications from GitHub
and used those to detect similar software applications. While
this approach also has promise in cross language similarity
detection, its applicability is limited to GitHub repositories.
Other repositories may not have these pieces of information.
Even stargazer information and time relevance of putting the
stars by a stargazer are not available for many of the GitHub
repositories. This also possibly the primary reason why the
authors were restricted to use only 1K software applications.

In our proposed work, we attempted to overcome the
limitations of the existing state of the art approaches discussed
above. Our work is based on documentation of all API calls
and on Deep Convolutional Neural Network based Paragraph
Vector Model which were not used in such contexts in the past.
We also compared our approach with those of McMillan et al.

and Zhang et al. and demonstrated with rigorous experiments
that CroLSim outforms those approaches in detecting similar
software applications for both single and cross programming
languages.

B. Code Search and Clone Detection

Several studies exist to search code fragments from source
code, e.g. Exemplar [39], SNIFF [40], Portfolio [38], Parseweb
[42], Spotweb [41] and so on. These studies perform code
searching with the help of Natural Language Processing and
matching a certain amount of word queries. These are not
directly related to our work as we are recommending fully
functional software applications related to another fully func-
tional software application but our method can be applied
in these circumstances which is another future goal of our
ongoing study.

At present a lot of clone detection tools in source code
are available [43], [44], [45] which use various NLP and
Abstract Syntax Tree (AST) [52] based approaches to detect
similar behaving code fragments across different software
applications. Cross-language code clone detection has also
been studied using intermediate languages [46] and version
histories [47] with limited success. As with these models,
CroLSim also possibly has potential in cross language clone
detection, which we plan to explore in the future.

C. Software Categorization

Another related research area is categorizing software ap-
plications in a software repository. A good number of studies
have already been performed by Kawaguchi et al. (using their
tool MUDAblue) [8], Wang et al. [48], Xu. et al. [49], Zhang et
al. [50] and so on. The basics of categorizing software applica-
tions is part of detecting similar software applications. Once
one can detect similar software applications, with the help
of different clustering approaches, e.g. KNN, Random Forest,
SVM and so on. It is possible to cluster software applications
based on the similarity score. So we can say, CroLSim can
be easily extended to categorize software applications which
is discussed in our Architecture Section III-D. However, we
did not evaluate the performance of clustering the software
applications since our objective was to detect similar software
applications of different languages.

VIII. CONCLUSION

In this paper, we introduced CroLSim, which is able to
detect cross language similar software applications with an
average precision of more than 65%. To the best of our
knowledge, we are the first to explore a deep learning based
approach to detect semantic relationships among API calls
in order to identify similar applications written in different
programming languages. Our approach provides a general
solution for detecting software similarity and can detect sim-
ilar software applications written in the same programming
language as well as similar applications written in different
programming languages for any type of software repository.
We use the functional description of the APIs to identify



the semantic relationship among the APIs, which we use to
detect similar software applications in a source code repos-
itory. Our experimental evaluations show that CroLSim out-
performs available mechanisms for detecting similar software
applications with a significant performance improvement. In
the future, our plan is to extend this work to detect code
clones in software applications, searching for similar code
blocks from different software applications and automatically
categorizing software applications with meaningful names in
a cross-language environment. In addition, we plan to study
the benefits of using AST-based features along with CroLSim
for detecting similar software applications.

REFERENCES

[1] The Workflow Management, https://en.wikipedia.org/wiki/Workflow\
management\ system

[2] H. A. Reijers, I. Vanderfeesten, and W. M. P. van der Aalst, The effec-
tiveness of workflow management systems, Intl. J. of Info. Management
36:1 (February 2016), 126-141

[3] E. Afgan, D. Baker et al.,The Galaxy platform for accessible, repro-
ducible and collaborative biomedical analyses: 2016 update, Nucleic
Acids Research (2016) 44(W1):W3-W10 doi:10.1093/nar/gkw343

[4] S. A. Goff et al.,The iPlant Collaborative: Cyberinfrastructure for Plant
Biology, Frontiers in plant science 2 (2011): 34. PMC. Web. 31 Oct.
2017.

[5] D. Bolser, D. M. Staines, E. Pritchard and P. Kersey ,Ensembl Plants:
Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics
Data, Methods Mol Biol. 2016;1374:115-40.

[6] A. Michail and D. Notkin, Assessing software libraries by browsing
similar classes, functions and relationships, In Proc. ICSE, 1999, pp.
463-472.

[7] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, Detecting similar
Java classes using tree algorithms, In Proc. MSR, 2006, pp. 65-71.

[8] S. Kawaguchi, P. K. Garg, M. Matsushita and K. Inoue, MUDABlue: an
automatic categorization system for open source repositories, In Proc.
APSEC 2011, pp. 184-193.

[9] C. McMillan, M. Grechanik and D. Poshyvanyk, Detecting Similar
Software Applications, In Proc. ICSE, 2012, pp. 364–374

[10] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li and J. Sun,Detecting
similar repositories on GitHub, In Proc. SANER, 2017, pp. 13-23.

[11] Q. Le and T. Mikolov, Distributed representations of sentences and
documents, In Proc. ICML, 2014,pp. II-1188-II-1196

[12] F. Thung, D. Lo and L. Jiang, Detecting similar applications with
collaborative tagging, In Proc. ICSME, 2012, pp. 600-603.

[13] I. Keivanloo, C. K. Roy and J. Rilling, SeByte: A semantic clone
detection tool for intermediate languages, In Proc. ICPC, 2012, pp. 247-
249.

[14] https://en.wikipedia.org/wiki/Document-term\ matrix
[15] https://octoverse.GitHub.com/
[16] S. K. M. Wong and V. V. Raghavan, Vector space model of information

retrieval: a reevaluation., In Proc. SIGIR, 1984, pp. 167-185.
[17] S. Mizzaro,How many relevances in information retrieval?, Interacting

with Computers, Volume 10, Issue 3, 1 June 1998, Pages 303–320
[18] Rapp R., Syntagmatic and Paradigmatic Associations in Information

Retrieval, In: Schader M., Gaul W., Vichi M. (eds) Between Data
Science and Applied Data Analysis, 2003, pp. 473-482.

[19] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, D.
Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi, An empirical investigation
into a large-scale Java open source code repository, In Proc. ESEM,
2010, pp. 11:1–11:10

[20] Z. S. Harris, Distributional Structure, In Proc. WORD, 10:2-3, pp. 146-
162, 1954

[21] A. Singhal, Modern Information Retrieval: A Brief Overview, IEEE
Data Eng. Bull., Vol: 24, pp. 35-43, 2001.

[22] J. Hopcroft and R. Kannan, Foundations of Data Science, chapter 4, pp:
115-146, 2013.

[23] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and
R. Harshman, Indexing by latent semantic analysis, Journal Of the
American Society for Info. Sci., 4(6), 1998, p: 391 - 407.

[24] Y. LeCun, Generalization and network design strategies, Technical
Report CRG-TR-89-4, U of T.

[25] M. Bates, Models of natural language understanding, Nat. Academy of
Sci., vol 95, pp 9977-9982,1995.

[26] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient Estimation of
Word Representations in Vector Space, arXiv 1301–3781, 2013.

[27] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A neural proba-
bilistic language model, Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[28] X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for large-
scale sentiment classification: A deep learning approach, in Proc. ICML,
2011, pp. 513–520.

[29] R. Collobert and J. Weston, A unified architecture for natural language
processing: Deep neural networks with multitask learning, in Proc.
ICML, 2008, pp. 160–167.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
Distributed representations of words and phrases and their composi-
tionality, in Proc. NIPS, 2013, pp. 3111–3119.

[31] Javadoc by Oracle: \http://www.oracle.com/technetwork/articles/Java/
index-jsp-135444.html

[32] DocFx: https://dotnet.GitHub.io/docfx/tutorial/docfx getting started.
html

[33] R. Rehurek and P. Sojka, Software framework for topic modelling with
large corpora, In LREC Workshop, 2010.

[34] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard and M. Kudlur, TensorFlow: A System
for Large-Scale Machine Learning, In Proc. OSDI, Vol. 16, pp. 265-283,
2016.

[35] N. S. Altman, An introduction to kernel and nearest-neighbor nonpara-
metric regression, The American Statistician 46.3, pp. 175-185, 1992.

[36] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval, In Cambridge University Press, New York, NY, USA, 2008

[37] G. Macgregor, E. McCulloch, Collaborative tagging as a knowledge
organisation and resource discovery tool, In Library Review, Vol. 55
Issue: 5, pp.291-300, https://doi.org/10.1108/00242530610667558

[38] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
Portfolio: finding relevant functions and their usage In Proc. ICSE, 2011,
pp. 111-120.

[39] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu and Q. Xie,
Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications, In TSE, vol. 38, no. 5, pp. 1069-1087, 2012.

[40] S. Chatterjee, S. Juvekar, and K. Sen, Sniff: A search engine for Java
using free-form queries, in Proc. FASE, pp. 385–400, 2009.

[41] S. Thummalapenta and T. Xie, Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web, in Proc. ASE,
pp. 327–336, 2008.

[42] S. Thummalapenta and T. Xie, Parseweb: A programmer assistant for
reusing open source code on the web, in Proc. ASE, pp. 204–213, 2007.

[43] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
SourcererCC: scaling code clone detection to big-code, In Proc. ICSE,
2016, pp. 1157-1168.

[44] C. K. Roy and J. R. Cordy, NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion, In Proc. ICPC, 2008, pp. 172-181.

[45] C. K. Roy, J. R. Cordy, and R. Koschke, Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,In
Sci. Comput. Program. 74, 7, pp. 470-495.

[46] N. A. Kraft, B. W. Bonds and R. K. Smith, Cross-language clone
detection, In SEKE 2008, pp. 54–59.

[47] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu and J. Zhao, Mining
revision histories to detect cross-language clones without intermediates,
In Proc. ASE, 2016, pp. 696-701.

[48] T. Wang, H. Wang, G. Yin, C. Ling, X. Li, and P. Zou, Mining software
profile across multiple repositories for hierarchical categorization, in
Proc. ICSM, pp. 240–249, 2013.

[49] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network, in Proc. ASE, 2016, pp. 51–62.

[50] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li, Combining software
metrics and text features for vulnerable file prediction, in Proc. ICECCS,
2015, pp. 40–49.

[51] C. Wiwie, R. Rottger and J. Baumbach, Comparing the performance of
biomedical clustering methods, In Nature Methods, 2015.

[52] https://en.wikipedia.org/wiki/Abstract\ syntax\ tree


