
A Universal Cross Language Software Similarity
Detector for Open Source Software Categorization

Kawser Wazed Nafi, Banani Roy, Chanchal K. Roy and Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Email: {kawser.nafi, banani.roy, chanchal.roy, kevin.schneider} @usask.ca

Abstract—While there are novel approaches for detecting
and categorizing similar software applications, previous research
focused on detecting similarity in applications written in the
same programming language and not on detecting similarity
in applications written in different programming languages.
Cross-language software similarity detection is inherently more
challenging due to variations in language, application structures,
support libraries used, and naming conventions. In this paper
we propose a novel model, CroLSim, to detect similar software
applications across different programming languages. We define
a semantic relationship among cross-language libraries and API
methods (both local and third party) using functional descriptions
and a word-vector learning model. Our experiments show that
CroLSim can successfully detect cross-language similar software
applications, which outperforms all existing approaches (mean
average precision rate of 0.65, confidence rate of 3.6, and
75% highly rated successful queries). Furthermore, we applied
CroLSim to a source code repository to see whether our model
can recommend cross-language source code fragments if queried
directly with source code. From our experiments we found
that CroLSim can recommend cross-language functional similar
source code when source code is directly used as a query (average
precision=0.28, recall=0.85, and F-Measure=0.40).

Index Terms—API Calls, Doc2Vec, Cross-Language Software
Similarity Detection, Singular Value Decomposition

I. INTRODUCTION

Software researchers and developers are often developing
similar applications, whether it is to make them faster, more
reliable, more feature-rich, or to improve their design, algo-
rithms, maintainability, sustainability, or user-friendliness. As
a result of this activity, a great many software applications have
been developed for solving the same problems. Consequently,
similar applications are common in both open and closed
source software repositories. With the growth of the open
source community this has taken on a new momentum. It is
often desirable to classify and group software applications that
are similar so that users can more easily select the specific ap-
plication with the functionality and qualities they need to best
address their problem. Now a days, software researchers and
users from different disciplines work on common platforms
that support combining a variety of software applications and
tools into scientific workflows. Some examples of this type
of platform include Galaxy [1], IPlantCollaborative [2], and
ensemble plants [3]. When a good number of similar software
applications or tools are present in a common repository, it
benefits users as they can choose the one best related to their
need and a comparative result may also help ensure they select

the most appropriate application or tool. Furthermore, identify-
ing similarity among applications might help foster reusability,
support source code understanding, speed up the development
process [4], and perhaps help identify software plagiarism [5].
Unfortunately, detecting software similarity is a challenging
task because of the diversity of software applications. This is
even more challenging when the applications are developed
in different programming languages since there are further
variations in their structure, support libraries, function names,
and so on.

A number of approaches have been proposed for categoriz-
ing software applications. Mudablue [6], an early approach,
categorize software applications according to important iden-
tifiers used during development. This work requires manually
selecting identifiers and its accuracy is very low. Collins et al.
[7] developed a tool called ‘CLAN’ that mainly considered
third party Application Programming Interface (API) classes
and packages used in the software to determine related appli-
cations from an application corpus. Thung et al. [11] extracted
collaborative tags for each software application and used these
tags as a semantic feature for software application similarity
detection. A combination of these three models works better
than each individual one for predicting software similarity. Un-
fortunately, the approaches are limited to software similarity
detection for a single programming language as these models
were not designed to detect similar software applications
across different programming languages. Although Thung et
al. [11] claim that their model could be extended to cross-
language similar software detection. However, their model is
fully dependent on third party collaborative tagging, which is
dependent on the user’s experience and therefore limited to the
user’s knowledge of specific programming languages. Zhang
et al. [8] proposed ‘Repopal’ and claim that their model can be
extended to detecting cross-language similar software applica-
tions. They extracted three language independent features from
Github repositories to determine similar software applications.
They considered readme files with similar content, applications
that are bookmarked (starred) by users with similar interests,
and applications starred within a short period of time by the
same user. As these features are solely GitHub features and
not even available for all GitHub repositories, in practice their
model is not able to detect cross-language similar software
applications for any software repository.

Detecting similar software applications across different pro-
gramming languages is challenging for several reasons. First



of all, different languages have different syntax and semantic
features and structure. For example, the way Python programs
are written is quite different compared to Java programs.
Second, classes and methods used by different programming
languages may look completely different even if the two
methods from the two different languages achieve the same
objectives. Third, API names and their naming conventions
differ from one programming language to another. As a
result, it is hard to know when two APIs from two different
programming languages are similar to each other by just
observing their names. Fourth, the binary code generated for
different languages and compilers are also differ syntactically
and semantically. Existing tools are thus not capable or have
limited capability in detecting cross-language similar software
applications. With the expansion of the open source com-
munity and the number of available software applications, a
tool with the ability to detect and categorize similar software
applications across different programming languages would be
valuable.

In this paper, we propose a novel model, CroLSim, which
is able to detect similar software applications across different
programming languages. For establishing a connection be-
tween different programming languages, we used the descrip-
tions of APIs and their methods1,2,3 which briefly state the
purpose of the specific package and method. We observed that
although the name of the APIs and their methods are different
across systems of different programming languages, APIs and
methods performing the same operations have semantically
similar descriptions in their documentation. First, we collected
descriptions of APIs and methods for different languages and
built a corpus with those descriptions. Second, we extracted
all APIs and methods (including third party APIs) from the
source code for each of the applications. For each application,
we queried the corpus with the extracted APIs and methods
names, retrieved the related descriptions, and combined the
descriptions for the application into a single file, which we
refer to as the descriptive representational document or DReP
for short. From our observations we found that it is often
hard to get the same structured descriptions for different
APIs and methods across different languages. To address this
challenge, we adapted Le and Mikolov’s distributed memory
model of Paragraph Vectors (PV DM) [10], a deep learning
based advanced Natural Language Processing (NLP) model to
predict semantic information from the method descriptions.
We applied NLP over DReP for each of the software ap-
plications to find semantic similarity between them. Finally,
we clustered the similar software applications by using the
semantic weights generated as an outcome of the deep learning
model.

After showing that CroLSim successfully detected cross-
language similar software applications we applied the model
to see whether it can efficiently recommend cross-language

1Java Docs: https://docs.oracle.com/javase/8/docs/api/
2Python 2.7 Docs: https://docs.python.org/2/library/index.html
3C# docs:https://docs.microsoft.com/en-us/dotnet/api/?view=netcore-2.0

source code if the query is performed using source code
directly without having any human query or Natural Language
Processing mechanisms. For this, we constructed a source code
repository of more than 100K lines of code developed in Java,
Python, and C# programming languages and already verified
as functional similar source. From our experiments we found
that without any change to the proposed CroLSim model,
it can recommend cross-language functional similar source
code with an average precision rate of 0.28 and an average
recall rate of 0.23 for the top 10 recommendations and an
average recall rate of 0.85 for the top 30 recommendations.
We also observed an average F-Measure score of 0.40 for 300
successful queries. Our contributions are as follows:

• We developed a tool, CroLSim, which is able to detect
similar software applications across different high-level
programming languages from a large software repository.
We used method descriptions (provided by programming
language developers and maintainers) for each of the
programming languages to perform this activity. The
model is able to detect similar software applications
from different software repositories. Currently, the model
supports four programming languages: C, Java, Python
and C#. We selected the C programming language as
a representation of a legacy programming language and
showed that CroLSim is successfully able to detect
software similarity even between a legacy programming
language and dynamic programming languages.

• We generated a corpus with the help of API and method
descriptions for different programming languages. For
each language, we maintained an individual XML file.
Each XML file contains descriptions of APIs and meth-
ods used by the programming language.

• We introduced a means of establishing a semantic rela-
tionship between method descriptions of different pro-
gramming languages with the help of the deep learning
based PV-DM model. We calculated semantic relation-
ships among the words used in the description of the
software and predicted semantic words for the software
from that description. Finally, we calculated the similarity
of the predicted words of the different documents which
leads us to create clusters of similar software applications
for a software repository.

• To evaluate our work, we performed an extensive experi-
ment which supports our claim that our model can detect
similar software across different programming languages
and outperforms the currently available models in terms
of accuracy and precision.

• We extended the model to recommend functionally simi-
lar source code across different programming languages.
Unlike other code search models, we did not use a natural
language query, but used source code directly as the
query to recommended functionally similar source code
in another programming language.

• We configured a source code repository of more than
100K functionally similar source code developed in Java,



(a) Java code for adding two numbers (b) C# code for adding two numbers

(c) Python code for adding two numbers

(d) C code for adding two numbers

Fig. 1: Code for adding two integer numbers and displaying results on console in four different programming languages

C#, and Python. To the best of our knowledge, this is the
largest cross-language source code repository with func-
tionally similar code developed in different programming
languages.

This paper is an extended version of our SCAM 2018
paper [9]. We extended the paper in several ways, including
considering additional systems written in different program-
ming languages, examining the effectiveness of the model for
source code search, expanding on the challenges involved in
cross-language similarity detection, adding more detail when
describing the model, extending the experimental section for
detecting cross-language similar functional code blocks, and
generally expanding related work, threats to validity, etc.

The rest of the paper is organized as follows. In Section
II, we provide an example that motivated us to perform
this research along with current challenges. In Section III
we discuss the technologies and methods used in developing
our model. In Section IV we briefly discuss evaluation and
validation procedures of our proposed method. In Section
VI we discuss our experiment with CroLSim for detecting
functionally similar cross-language code blocks. In Section VII
we discuss the probable threats our model may face and how
we tried to reduce their effect. In Section VIII we discussed
related work and, finally, in Section IX we conclude the paper.

II. MOTIVATION AND CHALLENGES

A. Motivation and Problem Statement

At present, many open source code repositories are available
where a user can upload their source code under development,
share their code with collaborators, allow other developers to
edit and update the code from time to time, and publish a stable
version of a software application. One of the most popular
open source code repositories is Github. According to statistics

Fig. 2: Java source code for adding two numbers using com-
mand line arguments. Similar in functionality to Fig. 1a. These
two examples can be considered similar software applications

published on October 2017, Github consists of 24M users,
67M repositories, almost 1M lines of Python code, 986K lines
of Java code, and 326K lines of C# source code [14]. Github
also stores software applications written in other programming
languages. To manage these huge repositories and serve users
better, it is important to categorize the different repositories
based on their similarity in terms of source code, problems
targeted, similar methods called, and so on. When a user
searches source code repositories, categorizing repositories can
also help to return better results.

Detecting similar software applications based on source
code similarity for the same programming language is some-
what simpler than for different programming languages, and
there are many publications available describing different
approaches [68], [72], [76]. Usually, for source code similarity
detection, each word (e.g., API names, library method names,
syntactic information) in the source code is considered a se-
mantic anchor, an element in a document which helps to define
the semantic characteristics of that document [7]. In the case



TABLE I: Source Code Relevance Similarity Score for the
source code shown in Figure 1

Language JAVA C# Python C
JAVA 1 0.062 0.021 0.014

C# 0.0621 1 0.075 0.02
Python 0.021 0.075 1 0.019

C 0.014 0.02 0.019 1

of the same programming language, since almost the same
semantic anchors are used to develop software applications, it
is comparatively easier to detect similarity among applications.
Let us consider the two Java applications shown in Figure 1a
and Figure 2. With the help of either of these applications,
we can add two integer numbers and print the result on the
console. To determine their semantic similarity, we use a well
known Information Retrieval (IR) model, the Vector Space
Model4 [15], with which we analyse the source code of the two
Java applications. We found that the two applications match
85% when considering source code semantic anchors. On the
other hand, for different programming languages, API names,
library method names, identifiers, variable declaration types,
code structure, syntactic information, and so on are mostly
different from each other. In Figure 1 we show the source code
of a software application written in four different programming
languages, namely Java (1a), C# (1b), Python (1c) and C (1d).
All of these applications do the same thing; add two numeric
values and display the results on the console. From the source
code we can see that none of the source code terms, which are
usually used as semantic anchors in source code, are similar in
name or in code structure (i.e., code syntax). To confirm this,
we input the source code of each of these four applications
into the Vector Space Model. The resulting similarity scores
are listed in Table I. From the similarity scores, we can see that
considering semantic anchors using the Vector Space Model
that for each of the different programming language examples
it is not possible to consider them similar, even though they
are almost identical in functionality. As most of the existing
models are based on source code semantics or on used API
patterns in source code, they also fail to detect similarity
between applications across different programming languages,
which we will show in our evaluation section.

B. Current Challenges

Similarity detection of word-documents is well-defined by
Mizzaro in his conceptual framework for relevance [16].
According to this work, if two documents are sharing common
concepts, then these two documents can be considered as rel-
evant documents. This definition can be extended to cluster a
group of documents based on their concepts’ relevance scores.
Similarly, for detecting similar software, if two applications
share some similar features (e.g., text editing, editing images,
executing calculations) then those two applications can be con-
sidered as similar applications. As we have discussed earlier,
because of similarity in used libraries and API names, program

4https://media.readthedocs.org/pdf/gensim/stable/gensim.pdf

structures, it is possible to define a relationship between two
applications of the same language using available Information
Retrieval(IR) methodologies. IR methodologies mainly focus
on finding/establishing semantic relations among terms used
in a document or in a source code of a software application. It
works on two types of associations: Paradigmatic Associations
and Syntagmatic Associations [17]. Syntagmatic associations
take into account two documents as similar if the words
in both of the documents appear similar where Paradig-
matic associations calculates documents similarity based on
highly semantically similar words present in those documents.
Kawaguchi et al. leveraged the syntagmatic associations from
software application source code in their work Mudablue
[6] for calculating similarity score where McMillan et al.
adapted Paradigmatic associations in source code by defining
API calls as semantic anchors in their work CLAN [7].
However, their work may not be extended in detecting cross-
language similar software applications since there remains
a very low probability of any relationships between source
code of two different programming languages (although some
similarities in data types, e.g. Int, float, double, and identifiers
are observed, the amount is too little to calculate application
similarity). It is thus challenging to find a way to establish
a common relationship between source code terminologies of
different programming languages. In this paper we attempt to
address this issue.

We observed that there are a lot of common API methods
and code portions used in the source code of a software
application which does not define the characteristics of the
application and often produces false positive results in de-
tecting software application similarity. Let us consider the
method PRINT() in Java which is a method of the Java Class
PRINTSTREAM or the class instance SYSTEM.OUT. Almost all
the Java applications contain this method to print something in
console. Thus, code blocks related to this method will detect
all software applications as similar to each other. In 2010,
Grechaink et al. [18] ran a study on Java applications of
SourceForge open source software repository and found that
almost 60% of Java applications had used STRING objects and
80% had collection objects. Not only in Java5 but also software
applications developed in other programming languages such
as Python6, C#7, and so on contain some common APIs
libraries and methods. Thus, for getting better performance
in cross-language similar software application detection it is
required to exclude effects of these common methods and
libraries from source code of all the programming languages
which is our another challenge to face during this work.

Moreover, the open source community is increasing every-
day. At the same time, the size of each programming languages
own repository and number of software applications in those
repositories are rising too. As a result, the amount of source
code in these open source software repositories are growing

5https://www.programcreek.com/2011/08/the-most-widely-used-java-apis/
6https://docs.python.org/3.4/library/functions.html
7https://msdn.microsoft.com/en-us/library/ms973806.aspx



(a) Methods Extraction and DReP creation for Java Program (b) Methods Extraction and DReP creation for C# Program

(c) Methods Extraction and DReP creation for Python Program (d) Methods Extraction and DReP creation for C Program

Fig. 3: Procedures for creating DReP from source code analysis

everyday. In a report on October 2017, Github has claimed that
right now they have 67M software repositories of different
programming languages and 24M users and contributors in
their system8. To detect cross-language software applications
similarity of this huge number of open source software repos-
itories we need to analyze source code of all the applications
which is a Big Data handling and analysis problem. We thus
need to find a light-weight model for analyzing source code
of software applications within a reasonable time, which is
highly challenging.

III. CROLSIM - MODEL AND APPROACH

In this section, we discuss our four phase approach for
detecting cross-language similar software applications, the key
methods we used in CroLSim (i.e., Singular Value Decomposi-
tion or SVD, Deep Learning & Natural Language Processing,
and Paragraph Vector-Distributed Memory approach or PV-
DM), and the CroLSim architecture.

A. Approach

CroLSim is divided into four phases. In Phase 1, we
establish a common connection among the API and library
methods used by each programming language. For this, we
use the API and library descriptions available and maintained
by developers and maintainers for the different programming
languages. For example, Java and its packages, methods, and
their user descriptions are maintained by Oracle9, C# is de-
veloped and maintained by Microsoft10, Python is maintained
by Python Software Foundation11, and so on. We assume that,
if the combined descriptions of all of the methods used in
a software application (i.e., the application’s ‘DreP’ file) is
similar to the combined descriptions of the methods used in

8https://octoverse.github.com/
9https://www.oracle.com/java/index.html
10https://docs.microsoft.com/en-us/dotnet/csharp/
11https://www.python.org/psf/

another, then we can say these two applications are similar. We
consider these DRePs as a Continuous Bag of Words (CBOW)
[19] without considering any predefined semantics among the
words. Let us consider the source code examples shown in
Figure 3. Figure 3a, 3c, 3b and 3d provide examples of
DReP files using our process. At first we select and extract
methods used in the source code. After which, we query our
corpus of method descriptions with each extracted package
and method name, writing the results of the query to the
application’s DReP.

In Phase 2, we use Singular Value Decomposition (SVD)
to filter out commonly used methods. We found that some
APIs and their methods are common across applications and
so provide little information for distinguishing an application,
its use, or its category. Consider the four programs in Figure 3.
We see that one of the methods used by the Java program is
PRINTLN() from the JDK package SYSTEM.OUT, which prints
something to the console with a newline. If we look at the C#
program we see that the WRITE() method from the CONSOLE
package does the same thing. The Python and C programs use
PRINT() and PRINTF() respectively to accomplish something
similar. If we give the same importance to these methods as to
other more specialized and less frequently used methods it will
lead us to incorrectly identify software applications as being
similar merely if they use print functionality. Collins et al. [7]
in their work also found this issue with methods used in Java
source code. To deal with this, they used Singular Value De-
composition(SVD) along with Latent Semantic Indexing(LSI)
to determine the less used but important methods in a Java
program.

In Phase 3 we use an adapted Doc2Vec model [10] and
cosine similarity [21] to determine the semantic similarities
between cross-language software applications. Different devel-
opers and maintainers usually use different sentence structures
and forms for describing different methods and library uses,
and so working with a direct word to word match of the DRePs



for calculating software application similarity would not be
useful. To predict words for representing the semantics of a
DReP, we adapted the Doc2Vec model [10]. One of the main
features of the Doc2Vec model is that it can predict semantic
words from a paragraph or document on the fly without pre-
training. We considered these predicted semantic words to
be Semantic Anchors for each DReP and later we calculate
the Cosine similarity [21] among the Semantic Anchors. In
this way we calculated semantic similarities between cross-
language software applications.

In Phase 4 we apply the K-Nearest Neighbors (KNN) algo-
rithm to cluster software applications where similar software
applications will appear in the same cluster.

B. Singular Value Decomposition

To reduce the affect of less effective API calls, which
are actually used in the source code of almost all of the
software applications, we adapted the model Singular Value
Decomposition (SVD) [22]. SVD is normally applied on a
matrix M to factor that matrix into the multiplication of three
matrices such that:

M = ADBT (1)

where A and B are orthogonal and D is diagonal where the
values are positive real numbers. It is helpful to find a low rank
matrix from a high dimensional matrix which can be used as
an approximation of the regular one. SVD helps to select the
peak variable in a dataset which in the other direction, helps
to understand the variance existing in that dataset. This nature
of SVD can easily be extended in selecting less frequently
used API calls from the collection of all API calls used in
a software system. SVD subordinate the frequently used API
calls and highlights the less frequent ones from a collection.

To incorporate SVD in our work we developed a m × n
dimension Term-Document Matrix (TDM) M with the help of
extracted API calls from our collected software repository. In
our matrix, row m is the name of the API call and column n is
the software application. Each cell then represents the number
of the specific API calls that appear in the source code of the
related software application. For every programming language
l used in our work we developed an individual TDM matrix
Ml using the source code of the software applications from the
software repository we collected from GitHub. Now, applying
SVD on each of the Ml we derived the low rank matrix which
consists of the least-used but effectively-used API calls in each
of the software applications of the software repository.

To perform the entire process we adapted an Information
Retrieval (IR) technique called Latent Semantic Indexing (LSI)
[23] which embeds both TDM and SVD. According to the
equation 1, SVD decomposes each of the matrices into three
matrices of dimension d whose value is needed to be defined
by the user. Usually the value of the dimension d is selected
as 300 [23]. After performing LSI, based on equation 1, one
of the matrices contains vectors for each of the software
applications and using cosine similarity we can find similar
software applications for a single language [7]. But it is quite

impossible to detect software application similarity among
different programming languages as the name of API calls
are often different between programming languages.

C. Deep Learning & Natural Language Processing

Deep learning, also known as hierarchical learning, is a part
of machine learning within Computer Science. It is a collection
of learning algorithms which use neural networks and a
learning structure inspired from human brain configuration
and functionality as its architecture [24]. It uses multiple
processing layers with multiple neurons, most often fully con-
nected, to train the model with multiple levels of abstractions
[25]. Deep learning can be performed in a supervised way
and in an unsupervised way. In unsupervised deep learning,
different features are learned during the training period in
an unsupervised manner (train with unlabelled data). In deep
learning, usually Rectified Linear Units (ReLU) are used as
an activation function instead of Sigmoid or other activation
functions in order to have a greater number of values between
0 and 1 for different points in the training range to solve
Gradient Decent Vanishing or, in other words, to solve the
lower Gradient value problem [26].

Recently, applications of Deep Learning have flourished
in Natural Language processing (NLP) research. The main
theme of NLP [28] is to automatically analyze and represent
human language with the help of theory motivated compu-
tational algorithms and models [29]. The analysis phase in
NLP is performed by representing a word in a vector of d
dimensions (d is defined by an analyzer) and analyze the
representational relation with surrounding word vectors which
is a computationally expensive procedure [30]. In recent years
NLP research has been successful by adapting deep learning
which is able to analyse words from a sentence to a full
paragraph for identifying the semantics of a word in a more
accurate way [31].

Among the different kinds of deep neural networks applied
in NLP, one form is the Convolutional Deep Neural Network
(CNN) which uses a grid-like topology for processing data
[27]. This network model uses a linear mathematical operation
layer, called ‘Convolution’, at the very beginning of data pro-
cessing operations. It replaces general matrix multiplication for
reducing the dimension of the data which helps to approximate
a better training performance after completion of the training
procedure [32]. It uses a lower dimensional filter to sub-sample
the provided training data, analyse it with the help of ReLU
and followed by Max Pooling (take the highest/average value
from the filter space) and stride (value of moving the filter
along the dimensions of the sample data) to traverse the entire
sample data. By performing these steps iteratively the whole
CNN procedure generates an approximation of the original
sample data in a lower dimensional space.

In NLP, for word to vector representations, many of the
recent models use a neural network [33], especially CNNs on
word embeddings [31] to reduce vector dimensions as well as
to learn every word vector deeply with respect to surrounding
words in a sentence or context. Word embeddings, also known



Fig. 4: Neural Network Architecture for Word2Vec

as distributional vectors, represents the characteristics of the
surrounding words of a specific work which helps to learn
the semantic meaning of a word [34], [35]. This procedure
preserves similarity between words which tends to detect the
context similarity of different word documents. Recently, word
embeddings has become the heart of a lot of successful NLP
tasks [36], [37]. One of the recent CNN based word vector
representation models is Word2Vec [38] where the convolution
layer operation (the first layer in the deep learning model) is
applied on word embeddings to sub-sample the frequent words
as a goal of training a large unlabelled corpus in a faster way.

In their Word2Vec research, Mikolov et al. revisited the
word embeddings technique and proposed two word-vector
learning techniques: Continuous Bag of Words (CBOW) and
the Skip-Gram Model [31]. CBOW tries to learn the semantics
of a word by learning the conditional probability of that word
based on the context of the words surrounding it across a
predefined window size. The Skip-Gram model tries to predict
surrounding words by taking into account the current word.
Both models use a fully connected neural network with one
hidden layer which works as a projection layer. The input
layer of the CBOW model considers word vectors for the two
previous words and two post words (total 5 words including
the target word itself) to predict the current word of the context
when the window size s is 5. The Skip-gram model does the
opposite. Each word vector for the selected words is learned
from the column of the word embeddings generated from the
given context. Figure 4 depicts the architecture of the CBOW
learning model.

As shown in Figure 4, N is the number of words in the
context and V is the number of neurons in the hidden layer h.
We are trying to predict xk in the output layer, denoted as yk
where kεN , with the help of n previous and post words from
the context in such a way that 2n ≤ s. The output layer is
calculated using a hierarchical softmax function of N words
from the context vocabulary. The fully connected layer trains
each of the words in the context with two weight matrices: the
weight between the input layer and the hidden layer is WN×V

and the weight between the hidden layer and the output layer

is WV×N which generates two trained vector representations
vi and vo according to the following equations:

WN×V = {{wsi}N} and WV×N = wikvi =Wk,. and vo =W.,k

(2)
Using the above learning equations, the softmax function

for each of the words wordoutput with respect to the given
context word wordinput will be:

P

(
wordoutput
wordinput

)
=

exp(vTo vi)∑N
i=1 exp(v

T
o vi)

(3)

D. Paragraph Vector - Distributed Memory (PV-DM) Model

The design topology of Word2Vec was to have a learning
model which can learn word vector representation in a faster
way. With the help of Word2Vec it is possible to learn word
vectors for a full phrase or a full sentence. In other words,
Word2Vec can learn word vectors for a fixed length context.
To extend this work for learning word vectors from a variable
length context, Le and Mikolov [10] proposed a new model,
called ‘Paragraph Vector’ and also frequently called Doc2Vec,
which is able to learn continuous distributed vectors in an
unsupervised way from a paragraph or full document. In
this model, they tried to predict vectors for a paragraph by
predicting multiple word vectors from the paragraph itself.

Fig. 5: Paragraph vector learning framework for predicting
the next word (‘token’) from the paragraph ID and three input
words (‘Scans’, ‘the’, ‘next’) (adapted from [10])

Figure 5 illustrates using the paragraph vector learning
framework for our Java program DReP example given in
Figure 3a. Three words from the Java DReP file (‘Scans’,
‘the’, and ‘next’) are trained for predicting the next word
‘token’. All the words of a paragraph are embedded in a word
matrix W . Each of the paragraphs in a document is identified
with a unique paragraph id. Paragraph ids are embedded in a
matrix D and provide further context. At the training phase,
the paragraph id vector, represented by a column in matrix
D and vectors for training words, represented by a column
in matrix W are highlighted and concatenated for predicting
the word ‘token’ for the DReP context. Paragraph vector is
used to memorize the missing elements in the current context.
Paragraph vectors are shared among all the paragraphs of a



Fig. 6: Schematic diagram for CroLSim

document where word vectors of each paragraph are shared
with other word vectors of that paragraph. The entire training
process is accomplished with the help of stochastic gradient
descent which is usually obtained by back propagation in
a neural network. This model is also called the Paragraph
Vector-Distributed Memory (PV-DM) model. A paragraph
vector uses the same concept and structure as word2vec with
the extension of a paragraph matrix along with a concatena-
tion/average stage between word vectors and paragraph vectors
to predict some word vectors or words as concepts for each
of the paragraphs.

E. CroLSim’s Architecture

A schematic diagram of the CroLSim architecture is shown
in Figure 6. The main elements of our architecture are the
software repositories that contain the applications to be con-
sidered, the scripts for combining the source code for each ap-
plication, the application of the Singular Value Decomposition
(SVD) model for identifying infrequently used API calls, a
corpus of API method call descriptions, the constructed DReP
for each application, the application of Doc2Vec and cosine
similarity to determine semantically similar DRePs, and finally
the use of KNN for clustering similar applications. All the
software applications we collected for validating our model
from Github are placed in Software Repositories. For each
language we maintained a separate repository. The combined
source code for each software application is also placed in
Software Repositories.

At the beginning of the application of the CroLSim model,
we selected one of the repositories and detected the program-
ming language for that repository. We did this because the
process of API call extraction from source code varies from
language to language. At the same time, we also gathered
the Readme files for each of the software applications in
the selected software repository. After extracting API calls
from all the software applications in the repository, we run
SVD on them to identify infrequently used API calls from
all the software applications in the repository. This procedure

is already proven to be workable in previous work [7] in
the belief that lower used API calls highly preserve the
characteristics of the software application. We considered the
top 400 API calls resulting from this approach. After obtaining
filtered API calls, we store them in the software repository for
each application. After performing SVD, once we obtained
every filtered API call, for each API call we queried the corpus
to get API documentation for the queried API call.

Before performing a query with API calls, we generated
API documentation for each of the software applications. We
generated an XML file by extracting all the third party API
package and method details from each API documentation
respectively. E.g. For java applications, we first considered
JDK 8.0 and extracted all of its packages, classes and methods
from its API documentation and recorded them to an XML
file. This process took almost 3.5 hrs. It is also observed
that developers of Java applications use some other external
third party APIs, e.g. OpenCV, Apache Log4j, Jsoup, etc for
developing their tool. To cover API documentation for all of
these external third party APIs, once we selected one of the
software applications from the software repository, we tried to
scan for the third party APIs the respective software applica-
tion contains. After identifying them, we checked whether we
had already extracted API documentation for those APIs or
not. If not, we again extracted packages, classes and methods
for that specific API. We maintained a separate file to track
which of the third party APIs we documented so far. Once we
extracted API documentation from a third party API, we added
the name of that API to our track file so that we can have a
record and did not need to extract documentation for the same
API for the second time. For getting API documentation, we
searched for the documentation inside the jar file first (usually
provided with the source code of the application). If we did not
obtain documentation from inside the jar file, we downloaded
the library and used javadoc API12 [39] provided by Oracle
with jdk 8.0. In this way, we developed a corpus for our

12https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html



work which is an XML file containing Packages, Classes and
method names and descriptions for available third party APIs.
We maintained a single XML file for each of the individual
APIs. To develop a corpus only for the Java programming
language, it took more that 15 hours. For other programming
languages, we followed the same procedures for obtaining
third party API documentation. E.g. for Python, we extracted
API documentation for python2.7 and python3.6, for C# we
considered API documentation for dotnet version 4.0. For
additional undocumented API, we first collected that API and
then for Python, we used pydoc13 and for C#, we used DocFX
[40]. It took almost the same amount of time for collecting
API documentation for each of Python and C#.

For our model, another potential source of information could
be the comments and descriptions provided by the developer
or any descriptions of the developed APIs provided by the
developers of the software application. Like Readme files in
GitHub, source code comments and descriptions of used APIs
could be an important source of information to understand
the functionality of the software application. But, from a
manual analysis of the source code of the software repositories
collected from Github or other open source software we found
that most of the cases source code comments or description
on the used APIs are not available. From our analysis we
also observed that comments and source code descriptions
are mostly available for software repositories managed by
a group. But software applications developed by a single
developer or small size software applications rarely contain
any informative comments and descriptions. As our proposed
model CroLSim’s main target is to detect similarity among
any kind of open source software repositories, to handle
all types of software repositories (without considering size,
code quality, number of developers, and so on) we excluded
comments available in the source code or descriptions of API
calls or developed APIs for this study.

Once we queried the corpus with the extracted API call,
we retrieved the API documentation for each of the API calls
and added them to a single text file. We named this text file
‘DReP’. For a single software application we usually extracted
a lot of API calls which might lead to a large DReP as we
added retrieved API documentation for each of the API calls.
To reduce the size of the DReP, if an API is called multiple
times, we added API documentation to DReP only once as our
main target was to find out the characteristic and feature of
the software application. For each of the software applications
in the repository, we generated a single DReP and saved it
inside the repository along with the software application. With
this approach, we did not consider user-defined methods and
their descriptions, but rather we fully depended on API calls
developers used in their work. The reason behind this is due
to the quality of the documentation used by developers during
development of the user defined functions; very often it is
found that developers did not use any documentation when
developing their method’s operation inside the source code. In

13https://docs.python.org/2/library/pydoc.html

(a) Vector Dimension vs Training Accuracy

(b) Window Size vs Training Accuracy

Fig. 7: Doc2Vec training accuracy with change in parameters

our evaluation section we show that our method outperforms
all the existing methodologies in this way.

Once creating a DReP for each software application in
the software repository for all the programming languages,
we used these DRePs as input to the word vector learning
model Doc2Vec. We adapted the library and structure of
Doc2Vec from Genism [41] with some small modification in
the parameters. We set the parameters of Doc2Vec according
to the following way for our study: 50 epochs, 10 window size,
2000 dimensions, 0.25 learning rate and number of projects
considering as sample size. Experimental results shown in
Figure 7a and Figure 7b helped us to finalize the values of the
parameters to be used in our experiment. For performing these
experiments, we used the baseline values of the parameters
proposed by Le and Mikolov in their work Doc2Vec [10].
For epoch and learning rate, we used the same values as
the authors suggested. For finding the most accurate and cost
effective values for window size and vector dimension, we
used the proposed value for one parameter and tried to see
the training accuracy by varying the other parameter. By
this we found the right values of window size and vector
dimension for our model. The reason behind this experiment
is to configure high dimensional word vector for training
CroLSim as our configured DRePs are a collection of retrieved
API documentations instead of a regular paragraph. As a
result, most of the sentences are not related to each other.
On other hand, DReP also depends on appearance of API
calls which is also not fixed for all the software applications.
So, to learn the distributed representations of a word inside
a paragraph more accurately we used high dimension vector
representation for each of our word. We executed our model
using the Tensorflow [42] deep learning platform. Finally, for
calculating similarity between two projects, we determine the
cosine similarity between Doc2Vec scores for two DRePs
(the DRePs represent the documentation of the API calls



that occurred in the two projects) according to the following
equation:

CosineSimilarity = cos(θ) =
A ·B
‖A‖ ‖B‖

(4)

where, A and B are word vectors of dimension D.
Using the cosine similarity, we generated a matrix where

both row and column of the matrix represent names of the
project samples of the software repository. Cells of the matrix
represent the cosine similarity scores between the indexed
projects. After performing the whole matrix, we applied the
KNN algorithm to cluster software applications where similar
software applications will appear in the same cluster. We used
the value of K as K = 2, 3, 4...n. Among them, we found that
for our dataset K = 5 works better. Actually, for having an
optimal value for K, we needed to have previous knowledge
about the variations of software applications present in our
software repository. In a real scenario, it is impossible to know
about the varieties of stored software applications. So, we did
not fix any value for K and kept it as one of our future research
questions.

F. CroLSim’s Workflow

Fig. 8: Workflow for detecting Similar Software Applications

Working steps for CroLSim is stated in Figure 8. In step (1)
a user queries using the name of the software application they
are looking for. This step can be performed in two different
ways. In the first way, a user can just enter the name of
the software application as a query. In the second way, a
user can upload the entire software application as a query
to find similar software applications across different platforms
(Java, Python or C#) from the software applications archive.
Once the query is entered, in step (2), the search engine
sends the query to the CroLSim execution panel. CroLSim
is directly linked with the software applications archive where
each of the software applications in the repository is already
trained according to the architecture stated in Figure 6. For
querying with the complete software application CroLSim
trains it with pre-trained data available from the CroLSim
execution and responds with similar applications from the
software repository. If the query is with the name of the
software application and it is in the repository, then CroLSim
responds with the related software applications of the queried

one. If the query is with the name of the software application
but it is not in the repository, it will then try to match with the
name of the software applications in the software repository.
The main focus of this work is to detect similar software
applications based on the software application source code.
Designing an efficient search engine is out the the scope of
this work. Consequently, in step (3) the results of the query
executed by CroLSim are returned to the search engine. The
search engine ranks all the resulting software applications
based on their cosine similarity score in step (4) and adds them
to a single page with link to each of the software applications.
Finally, in step (5) this page is returned to the user.

IV. EXPERIMENTAL SETUP

In this section we are going to show how we designed our
CroLSim experimental setup. We used an Intel(R) Core(TM)
i7-2600 3.4 GHz CPU with 16GB RAM to run the experiments
with CroLSim. Search and retrieval engine related tools and
models are usually evaluated by experts with manual relevance
judgments [7], [8], [43]. We validated the results of CroLSim
with 12 participants who have all been involved in software
application development for at least 5 years. To evaluate our
work, we compared our model results with two of the base
methods, CLAN [7] and Repopal [8] as these two models are
closely related to our work and are state of the art solutions
in detecting software similarity. In the following sections we
discuss the baseline methods and our experimental setup.

A. Baseline Methods

Our goal of developing CroLSim was for detecting software
similarities across software applications written in different
programming languages, in particular because there is a
marked lack of tools and research for detecting software
application similarity across different programming languages.
Some of the work, Thung et al. [11] and Yang et al. [8]
claimed that their work can be extended to software similarity
detection across different programming languages although
they have not provided any evaluation regarding their claims.
Among them, Collaborative Tagging based software similarity
detection [11] is hard to work with in real scenarios as their
work requires manual tagging with tag words or topics [44]
which are usually available in different software repositories.
Unfortunately, most of the time, developers or users of a
software application do not associate it with tags available
in the repository. Moreover, collaborative tagging mechanisms
face a number of challenges [45], which further hinders the
acceptance of this model. Further, this work does not fit with
our work as it works with external information rather than
focusing on the information available within the software
application itself. Thus we did not evaluate our work with
respect to [11].

Repopal [8] was mainly developed for organizing GitHub
repositories. The authors of this work used three features
to detect similar software repositories in Github; they are
Readme files relevance, Stargazer relevance and Time Rele-
vance. Readme files are usually provided by the developers or



owners of the Github repositories where developers provide
descriptions regarding the repository or tool they are going
to share with open source community. This readme files
sometime contain instructions on how to use the shared tool to
make help to the open source community. This document can
be called as developer document which is usually provided
with almost all of the software repositories in Github. It is
expected that, the tools which are solving the same problem
should contain the same information in their readme files.
To evaluate CroLSim, we forked the relevance calculation
mechanism of readme files stated in Repopal and showed
performance comparison between them. The second feature
is Github Stargazer which refers to when the user puts a
star on a repository if they are interested in that repository
or tool or want to approve this tool or repository for future
use. In some other cases a user puts a star to keep track
of that repository, its updates, or any change or addition of
features to that repository. In Repopal authors determined
the Stargazers of a repository first. After that, they tried to
define a similarity score between two Stargazers keeping in
mind how many repositories are commonly starred by them
and how many repositories are in total starred by those two
Stargazers. Once they found similarity scores for all of the
Stargazers for two repositories, they calculated the relevance
score between two repositories by averaging the similarity
scores of the Stargazers. The Stargazer feature, or the power
of putting a star on a repository is solely a feature of Github.
Moreover, in Github Stargazer information is available only
for a few repositories as only some of the popular repositories
are starred by users. Even some of the repositories are starred
by the developers only so that they can keep track of their
own repositories. As a result, the authors of Repopal only
evaluated their work with 1,000 software applications or
repositories which is a very small number compared to the
number of repositories in Github. As our CroLSim does not
depend on any of the specific features of any open source
software application repositories we are not going to evaluate
our CroLSim with the Stargazer feature of Repopal. Finally,
the last feature of Repopal was time relevance between two
repositories by a single user. The authors of Repopal assumed
that two repositories created by a single user within short time
difference will be similar to each other. This feature is also a
Github feature, usually used to track a user’s everyday activity,
which is hard to extend to other open source repositories. So
we also do not consider the time relevance feature of Repopal
and only considered the readme files relevance mechanism of
Repopal to evaluate CroLSim.

Another recent and successful work on software similarity
detection is JavaCLAN [7] where Collins et al. measured
API call similarity among different software applications. This
work performs well for a single programming language like
Java but is not intended for detecting software similarity
across different programming languages. Although CroLSim
was developed for detecting software application similarities
across different programming languages it can detect software
similarities for a single programming language as well. To

evaluate this feature of CroLSim we compared its performance
with that of JavaCLAN.

B. DataSet Collection
For collecting software applications from GitHub, we devel-

oped a crawler, named GitCrawl which crawls throughout the
GitHub repositories and downloads C, Java, Python, and C#
software applications. With the help of GitCrawl we traversed
more than 350K repositories and downloaded more than 10k
software applications for each of the programming languages.
Many of these downloaded repositories did not include any
software application or source code except some descriptions
or PDF files or other documents. We manually removed those
repositories and finally selected 4,139 C, 8,956 Java, 7,658
C#, 10,232 Python applications for the CroLSim evaluation.

C. Evaluation Methodologies
In this section, we discuss how we evaluated CroLSim’s

performance with the help of 9 participants and performance
measurement matrices.

1) Confidence: Confidence level means the degrees of
relevance one participant can provide at time of validating
the results of detected similar software applications of our
proposed model. We asked our participants to evaluate the
detected similar software applications related to their query
and after completing manual evaluation, by giving a confi-
dence score ranges from 1 to 5 according to Table II. We
built an application with appropriate user interface to make it
easier for our participants and for collecting confidence scores
for each of the software applications ranked in the top-5 for
a query performed by each participant of our system. Once
we collected the scores, we calculated the mean and median
confidence levels for the recommended top-5 results for each
query. We allowed each of our participants to query twice with
two different software applications which generates 20∗2 = 40
recommendations for four programming languages in total. As
a result, we got 480 recommendations and related confidence
scores to evaluate our work. We could do more, but as each
of our participants needed to validate 20 software applications
for each of their queries, which was quite time consuming
(>9hours/query) and required considerable manual labour, we
limited our validation process to 24 queries in total. However,
since those queries were randomly selected and performed on a
collection of real software applications, the evaluation process
would not differ much with a higher number of queries.

TABLE II: Degree of relevance assigned by participants

Score Relevance Description

1 Highly Dissimilar The queried tool and the retrieved tool
are fully different from each other

2 Dissimilar The queried tool and the retrieved tool
are mostly different from each other

3 Neutral It is hard to say whether the queried tool
and retrieved tools are similar or not

4 Similar The queried tool and the retrieved tool
are similar to each other at various points

5 Highly Similar The queried tool and the retrieved tool
are fully similar to each other



2) SuccessRate@T: We adapted this performance analysis
parameter from Zhang et al. Repopal [8] work. According
to their definition, SuccessRate@T defines the proportion of
successful top-5 recommendations we found after performing
a query in our system. Here value of T can be any value of our
defined confidence level. E.g: If we assign confidence level 5
as value of T (SuccessRate@5) and top-5 recommendations by
our system for a given query are evaluated by our participant
with the confidence level 4, 5, 4, 3, 1, we will consider this
as a successful similar software detection by our CroLSim.
On the other hand, if top-5 recommended tools for a given
query are evaluated with confidence level 4, 3, 2, 1, 2 at
time of SuccessRate@5, this query will not be considered
as a successful one. In our work, we considered up to
SuccessRate@4 as successful recommendation for a query.

3) User Study: The main goal of the user study is to vali-
date the performance of our proposed model. In other words,
to see whether our model is successful enough to detect cross-
language similar software applications without any restriction
to development platform. As we didn’t have any previous
knowledge regarding the collected software applications of
our testing repository, it is required to evaluate the results
manually. And to keep it bias free, we sought help from the
people who are experienced with programming languages and
software applications development and are not related at any
respect to the development of our model. And at the same
time, we ensure that the participants of this user study are not
known about which tool they are using during their study. To
do this, we covered the tools’ name by a tool id without the
tool name by themselves.

To cross validate our work, we divided our participants
randomly in two groups. Each of the group participants were
asked to run CroLSim in their own way. We divided our whole
experiments in two different sets. For the first set, we defined
a list of tasks needed to perform by the participants and gave
it to the participants along with a list of software applications
we collected from Github. Each of the participants was asked
to perform query with the name of one of the software
applications for each of the programming languages from the
repository. To ensure the accuracy and and adaptability of
cross validation, we did not provide any restrictions to the
participants at the time of selecting software applications for
performing queries and have given freedom in choosing soft-
ware applications from any language. Once a user queried with
the name of the software application for one language, related
software applications for other three programming languages
are resulted and listed on the interface of the CroLSim tool. We
limited the number of software applications on the interface
to 5 so that the redundant queried results do remain from out
of the focus. Once the queried results are shown, we asked
our participants to assign a confidence level, C, to each of
the resulting software applications according to Table II. As
we used software applications from 4 programming languages
for evaluation, namely C, Java, C# and Python, we ensured
that all the participants of our study have experience with
working with these programming languages. To ensure this, we

asked our participants to self declare their experience with the
programming languages we used in our model. And we invited
only those who had experience on using these programming
languages for more than 3 years. For the second set of study,
we asked our participants to upload and query with a single
software application along with source code and perform the
same steps up to assigning a confidence level to each of
the resulted related applications for each of the programming
languages.

Finally, when both of the groups are done with their queries
and evaluation, we asked one group to validate the evaluation
results of the other group. At this time, we asked the partici-
pants to check and comment regarding the already evaluated
queries and their results and finalize their decision of accepting
or rejecting the previous participants evaluation. We collected
all the accepted queries and results of confidence level. For the
rejected results, we performed those queries again with other
participants and have collected the final results once they are
finally accepted by the validating participant.

4) Precision: For our evaluation we defined precision as
the portion of similar and highly similar applications rec-
ommended by our model in the top-5 positions for a given
application repository query, which is the same definition that
is used by the authors of Repopal [8]. For the set of queries
performed by our participants we calculated mean and median
precision for our proposed model. As we are going to evaluate
whether our model can detect software similarity across differ-
ent programming languages, we calculated mean and median
precision for recommended similar tools individually across
different programming languages, e.g., we calculated mean
and median precision between C and Java, C and C# and
C and Python, Java and Python, Java and C# and C# and
Python respectively. At the time of calculating precision for a
recommendation system, we also need to calculate Recall of
the system. But for our case, we could not calculate it as we
did not define and did not have any previous knowledge about
our repository regarding how many software applications are
similar in our experimental software repository. The main
reason behind this is to evaluate the performance of CroLSim
in a real life scenario and bias free experimental analysis.

5) Base Work Development: We developed CLAN, one of
our baseline methods described in section IV-A, following the
description and experimental setup discussed in CLAN’s own
publication [7]. We collected API classes and package names
for the JDK1.814 to build API archive. As it is not defined in
the publication on which software applications McMillan et al.
performed their evaluation for CLAN we applied and evaluated
our developed CLAN on our collected software applications
from Github. We experienced an average of 2-3% error with
the evaluation results given in the original publication but this
is accepted as our software repository is different from them.
At the same time, Zhang et al. also evaluated CLAN for their
work [8]. We didn’t find much different with their evaluation
of CLAN with our developed one. So we can say, the CLAN

14https://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html



we developed is a good fit for evaluating our proposed model
CroLSim.

Another baseline method is detecting similar software appli-
cations based on the similarity of Readme files adapted from
Zhang et al. [8]. For this, we collected the Readme files from
each of the software applications in the repository and applied
Vector Space Model (VSM) on them to calculate relevance
scores according to the description given in the publication. We
also forked the Readme files relevance calculation mechanism
from Repopal Github repository and have tried to evaluate our
developed model with their one. Our experiments show similar
performance for both of the models.

6) Research Questions: For performing the evaluation
work, we designed our experiments to find the answer of the
following research questions:

RQ1 What are the SuccessRate@T Scores of CroLSim, CLAN
and Repopal(Readme) for a single and cross program-
ming languages?

RQ2 What are the Confidence Scores of CroLSim, CLAN and
Repopal(Readme) for a single and cross programming
languages?

RQ3 What are the Precision Scores of CroLSim, CLAN and
Repopal(Readme) for a single and cross programming
languages?

V. EVALUATION

In this section, we are going to answer the research
questions we have defined in earlier section for evaluating
the performance of our proposed model. As a support for
answering the questions we will also show our experimental
results and have a discussion on the results.

A. Answer to RQ1

Our experimental study on success rates for three tools,
CLAN, Repopal(Readme) and CroLSim are shown in table
III. From the table we can see that CroLSim has higher success
rate than all other models for both single programming lan-
guage and cross-language programming language. For single
programming language e.g. C, Java, Python and C#, CroLSim
can recommend software applications for a given query with
SuccessRate@4 (contain at least 1 similar recommendation
for the given query) for a rate of 71%, 72%, 78% and
81% respectively where the very related work CLAN has
been observed 68%, 65%, 62% and 73% respectively at a
rate of SuccessRate@4. For this scenario, Repopal (reademe)
application has been observed with very poor performance,
28% for C, 32% for Java, 38% for Python and 31% for
C# programming language based software applications. For
SuccessRate@5 (contain at least 1 highly or fully similar
recommendation of software application for the given query)
CroLSim outperforms all other models with its success rate;
65%, 68%, 64% and 75% for C, Java, Python and C# program-
ming languages respectively. For this scenario, other models,
CLAN and Repopal (Readme) have observed a highly lower
success rate (lower than 45%) comparative to CroLSim.

TABLE III: SuccessRate comparision for CLAN, Re-
popal(Readme) and CroLSim (N/A=Not Applicable)

Programming
Language SuccessRate@4 SuccessRate@5

CLAN Repopal
(Readme) CroLSim CLAN Repopal

(Readme) CroLSim

C 68% 28% 71% 37% 22% 65%
Java 65% 32% 72% 32% 21% 68%

Python 62% 38% 78% 28% 25% 64%
C# 73% 31% 81% 44% 26% 75%

C & C# N/A 27% 82% N/A 21% 74%
C & Java N/A 24% 76% N/A 23% 68%

C & Python N/A 24% 68% N/A 22% 63%
Java & Python N/A 19% 71% N/A 24% 62%

Java & C# N/A 22% 82% N/A 29% 70%
Python & C# N/A 18% 76% N/A 28% 65%

We tried to find out the cause of CroLSim’s high success
rate than others. In CLAN, it fully depends on JDK API
calls (For C, available API documentation in web, For C# we
considered .netframework 4.6.1 and for Python, we considered
python library 2.7.14 and 3.5.4). But at time of developing a
project, developers usually use a lot of external third party
libraries and APIs. CLAN didn’t consider those external API
calls which actually made its work hard to detect a concrete
recommended tool for a given query. CroLSim outperforms
CLAN on this point as it considered not only the development
platform provided APIs but also external API calls used in
a software application. On other hand, Repopal (Readme)
only depends on the quality and information received from
analyzing Readme files usually written by developers. Most
of the Readme files consists of a very small information (very
often with less informative about the tool) regarding the tools
they have come with. It is also found that, some readme files
contain description on how to use the tool rather than a short
description regarding the tool. So, it is really hard to detect
similarity between two readme files only based on semantic
analysis. As a result, we observed a very lower success rates
for both SuccessRate@4 and SuccessRate@5 respectively in
case of Repopal (readme).

For cross-language similar software application detection, at
SuccessRate@4, we experimented that CroLSim can recom-
mend software application tools with a success rate of 82%
between C and C#, 76% between C and Java, 68% between
C and Python, 62% between Java and Python, 70% between
Java and C# and 65% between Python and C# programming
language. This result is much higher comparative to Repopal
(Readme) which has observed a lower success rate than 30%.
The performance of CroLSim here depends on the PV DM
model described in section III-D. And for generating DReP,
we used the API descriptions provided by the developers and
maintainers of different programming languages which remain
unchanged for a long period of time. So, the performance we
examined for CroLSim will remain same even if we apply
them with other software repositories except the one we used.

B. Answer to RQ2

The mean and median confidence scores of all three tools,
e.g., CLAN, Repopal (Readme) and CroLSim are stated in Ta-
ble IV. From the table we can see that, for single programming



TABLE IV: Confidence Score comparison for CLAN, Re-
popal(Readme) and CroLSim (N/A=Not Applicable)

Programming
Language Mean Confidence Score Median Confidence Score

CLAN Repopal
(Readme) CroLSim CLAN Repopal

(Readme) CroLSim

C 2.78 1.9 3.75 2.6 1.8 3.8
Java 2.24 1.94 3.29 2.0 1.74 3.5

Python 1.72 1.75 3.62 1.8 1.7 3.7
C# 3.32 1.82 3.48 3.2 1.63 3.6

C & C# N/A 2.1 3.64 N/A 1.71 4.0
C & Java N/A 1.74 3.26 N/A 1.65 3.9

C & Python N/A 1.68 3.31 N/A 1.4 3.6
Java & Python N/A 1.78 3.24 N/A 1.6 3.6

Java & C# N/A 1.89 3.52 N/A 1.6 4.2
Python & C# N/A 1.74 3.35 N/A 1.4 4.0

language, CroLSim has showed mean and median confidence
score 3.75 and 3.8 respectively for C, 3.29 and 3.5 respectively
for Java, 3.62 and 3.7 respectively for Python and 3.48 and
3.6 respectively for C#. For this scenario we examined that
CLAN has observed a mean and median confidence score of
2.78 and 1.9 for C, 2.24 and 2.0 respectively for Java, 1.72 and
1.8 respectively for Python and 3.32 and 3.2 respectively for
C#. The reason for CLAN’s showing poor performance with
Python is that Python supports a lot of third party libraries
rather than depending only on the Python API itself. Thus, it
actually detects a lot of similar tools which are not similar
at all. Eventually, the confidence scores deteriorates a lot.
C# development is mostly dependent of framework APIs,
thus CLAN performs good, almost near to the CroLSim. For
Repopal (readme) we noticed that its recommendation based
on readme files similarity gets very low mean and median
confidence scores (less than 1.9 most cases) which is possibly
not even acceptable as a similar software recommendation
method itself.

For detecting cross-language similar software applications
from a repository, we examined a good and acceptable per-
formance for CroLSim. For recovering similar software appli-
cations between C and C#, the mean and median confidence
scores observed are 3.64 and 4.0 respectively, for C and Java,
they are 3.26 and 3.9 respectively and for C and Python they
are 3.31 and 3.6 respectively. For detecting similar software
applications between java and Python, it is found mean and
median confidence scores are 3.24 and 3.6 respectively. For
similar software detection between Python and C#, mean and
median confidence scores are observed 3.35 and 4.0 respec-
tively and for the case of Java and C#, these values are 3.52
and 4.2. From this analysis we can say, CroLSim can detect
similar software applications across different programming
language with a great accuracy.

C. Answer to RQ3

At this point we are going to discuss about the mean and
median precision we examined for our method and base line
methods for the submitted and recommended queries. From
Table V we can see that CroLSim has a higher mean and
median precision values than all other existing methods. For
single programming language software repositories like C,
Java, Python and C# we observed mean average precision

TABLE V: Precision score comparison for CLAN, Re-
popal(Readme) and CroLSim (N/A=Not Applicable)

Mean Precision Median Precision
Programming

Languages CLAN Repopal
(Readme) CroLSim CLAN Repopal

(Readme) CroLSim

C 0.256 0.154 0.784 0.4 0.19 0.7
Java 0.284 0.147 0.764 0.4 0.2 0.68

Python 0.178 0.158 0.798 0.24 0.19 0.7
C# 0.304 0.151 0.755 0.46 0.2 0.64

C & C# N/A 0.162 0.712 N/A 0.22 0.62
C & Java N/A 0.17 0.722 N/A 0.19 0.58

C & Python N/A 0.146 0.684 N/A 0.2 0.57
Java & Python N/A 0.168 0.652 N/A 0.22 0.57

Java & C# N/A 0.162 0.645 N/A 0.22 0.54
Python & C# N/A 0.158 0.671 N/A 0.2 0.58

values 0.784, 0.764, 0.798 and 0.755 respectively and median
precision values 0.7, 0.68, 0.7 and 0.64 respectively. For C
and Java, CLAN achieves a mean average precision of 0.256
and 0.284 and median precision of 0.4 for both which is lower
than CroLSim. For Python and C#, CLAN’s mean and median
precision achievements are 0.178, 0.304 and 0.24, 0.46 re-
spectively. Compared to CroLSim, mean and median precision
values achieved by CLAN for all the programming languages
are lower. For another baseline method, Repopal(Readme)
achieves very low mean and median precision values (most of
the cases lower that 0.2) which actually defines that CroLSim
outperforms all the existing methodologies and models in
terms of detecting similar software applications from software
repository in terms of accuracy.

For Cross language software similarity detection, we exam-
ined that CroLSim can detect similar software applications
with higher accuracy and precision value across different
programming languages. For C and C#, the mean average
precision for CroLSim is 0.712 and median precision is 0.62.
For C and Java, the mean average precision we observed is
0.722 and median precision is 0.58. And For C and Python,
the mean average precision is 0.684 and median precision is
0.57. For Java and Python, the mean average precision for
CroLSim is 0.652 and median precision is 0.57. For Java and
C# the mean average precision is 0.645 and median precision
is 0.54 and for Python and C# we observed mean and median
precision values 0.671 and 0.58 respectively. Compared to
Repopal (Readme) CroLSim achieved much higher precision
as Repopal (readme) achieved a mean and median precision
rate of less than 0.2.

From the above analysis we could come to a conclusion
that, CroLSim outperforms the existing methodologies of
similar software detection for repositories in terms of success
rate, confidence level and precision score achieved for single
language. For Cross-Platform software similarity detection, to
the best of our knowledge, as it is the first approach to detect
similar software repositories across different programming
languages, a mean average precision of more than 0.65 is an
acceptable one for all respects.

VI. CODE SEARCH USING API DOCUMENTATION

In the above, we showed that our proposed tool performs
considerably better than other alternatives in detecting cross-
language similar software applications. In this section, we



further wanted to explore the idea of detecting cross-language
code fragments, at a very finer granularity, from an entire
software application to a code fragment. Finding similar code
fragments of other languages for a code fragment of a specific
programming language may foster program development in
different languages for a popular software application. This
may also help in software maintenance and program un-
derstanding in case someone is expert in one programming
language but need to work with the applications of another.

Similar to detecting cross-language similar software appli-
cations, recommending similar functional source code frag-
ments in cross-language environment is also challenging to
accomplish. The main challenge is the diversity sustains across
different programming languages in terms of code structure,
semantic and syntactic difference, difference in generated
intermediate states and so on. Some group of researchers
formulated this problem as detecting cross-language code
clone detection and tried to solve this problem in different
ways such as CLCMiner [74] which extended source code
semantic similarity, LICCA [75]- a common intermediate state
for different programming languages, learning AST of code
blocks in different programming languages [80] and so on.
Although all of these models tried to detect cross-language
clones they possess a lot of restrictions and limitations noted
above which actually made these tools impractical in real
world scenarios.

Thus, in this paper, we extend CroLSim’s architecture
to recommend source code fragments of different languages
from repositories for a code fragment of a different language.
Note our objective is not to make a better cross-language
clone detection tool. Rather, we simply wanted to explore
whether the proposed model of CroLSim’s could also work
at a finer granularity. An in-depth study and evaluation of
such an approach is out of the scope of this work. In our
extended architecture, we assumed that each of the user will
have a piece of already developed source code and will search
for related source code developed in another programming
language from a source code repository. To perform this
experiment and evaluation, we collected and created a dataset
of having 100K source code fragments developed in Java, C#
and Python. The whole process of collecting data is described
in Section VI-A. The main goal of our extended work
is to see whether API documentation of each programming
language can help us recommend source code fragments across
different programming languages based on the search source
code snippet. From our evaluation we found that, with only
help of API calls and their documentation similarity (the
main theme of CroLSim) used in source code development,
extended module of CroLSim can recommend source code
snippet of a different programming language than the original
one with an average precision, P of 0.36 at top-10 position
with an average recall rate, R of 0.75 and average F-Measure
F1 of 0.5. These results show promise of the extended tools
in finding cross-language code fragments and possibly also
for cross clone detection. Again, a detailed evaluation and
comparisons of these aspects are our future work.

TABLE VI: Description of Dataset

Total number of code blocks 101,440
Total number of clones 816
Total number of Java codes blocks 34,146
Total number of Python codes blocks 33,025
Total number of C# code blocks 34,269
Average Line of Codes Java 41-48
Average Line of Codes Python 23-27
Average Line of Codes C# 46-53

A. Dataset Creation

For performing our empirical study on detecting cross-
language functional clones we have created a database of
having more than 100K code fragments developed using Java,
C# and Python programming languages. All these code frag-
ments are basically collected from three open source program-
ming contest sites; they are AtCoder15, Google Code Jam16

and CoderByte17. The reason of collecting code fragments
from here was to technically assure all these fragments are
functional clones to each other. Before this, to the best of
our knowledge, no such dataset of cross-language clones was
available. Usually, cross-language clones mean two or more
code blocks developed in different programming languages
will be functionally similar to each other. The open source
contest sites usually accept solutions for a posted problem
without any language restriction. At the same time, all the
submitted code blocks are tested with specific input and output
data to validate. Thus we can say, for a single problem posted
in the site, all the accepted answers are functionally similar to
each other.

We manually traversed all the contest sites mentioned above.
For each of the posted contest problems, we collected the top
20 accepted solutions for each of the three subject system
programming languages. So for each of the posted problem
we actually collected 60 functionally similar source codes. By
doing this, from our traversal of more than 1300 problems
through three programming contest websites we collected over
100K source codes for our experiment.

The present status of our dataset is given in Table VI.
For each of the posted problems, we collected at least 20
fully accepted solutions for Java, C# and Python individually.
We only considered accepted solutions in a believe that they
are already validated and can be considered as a cross-
language code clone base. From three different contest sites we
visited more than 10K problems and their solutions, collected
60 accepted solutions for three programming languages and
finally come up with more than 100K functional code clone
blocks which to the best of our knowledge the largest cross-
language clones database have ever been created.

B. Preprocessing and Experimental Setup

Like other clone detection tools, we preprocessed the source
code fragments of the dataset we had prepared for our work.

15https://atcoder.jp/
16https://www.go-hero.net/jam/10/languages/0
17https://www.coderbyte.com/challenges



We dropped all the comments and other string literals from
each of the source code. After that, we extracted API calls
from each of the source code fragments. For this case, as
of CroLSim for detecting similar software applications, we
dropped SVD part, meaning we kept all the API calls even
if they were called multiple times inside a source code. The
reason for this is in detecting similar software applications,
we only looked for the operations what each of the software
applications are doing rather than the direct similarity of a
piece of source code fragment to the other. Thus, keeping
information of only unique API calls helped CroLSim to
detect similar software applications. However, at code frag-
ment granularity, it is required to track all the API calls
because in source code two similar API calls can be used
for two different purposes. Rather than SVD, we used rest of
the methodologies of CroLSim without any modification to
examine its performance in detecting cross-language similar
fragments. And we kept the same experimental setup as we
did for detecting cross-language similar software applications.

For performing the validation of our extended model, we
evaluated the model in a k-fold cross validation way. Unlike
regular k-fold cross validation, we randomly selected source
code as search query and recorded the recommended source
code fragments based on the search query. From the dataset we
can see that our dataset contains over 100K unique functional
code samples with 60 variations each (20 functionally similar
source codes for each of the three programming languages).
We performed 300 query over our dataset and observed the
performance of the model. These 300 queries are uniquely
selected from 100K source code samples. And once a source
code is selected as query set, its functionally similar code
blocks are automatically considered as gold dataset for evalu-
ating the performance of the query (that means each query has
20 source code fragments per language, all of which should
be recommended by the system for 100% precision and recall
rate). To make sure that all of the programming languages are
covered perfectly during our experimental analysis, at time
of randomly selecting queries we ensure at least 50 unique
queries are selected from each of the programming languages.
In other words, our randomly selected 300 queries have at least
50 queries for each of the Java, Python and C# programming
languages.

C. CroLSim’s Code Search Architecture

From Figure 9 we can see the schematic diagram of
CroLSim when it is extended to recommend cross-language
source codes fragments and the step by step descriptions
on this works. Step 1 to 5 are designed to train the source
code fragments with the help of Le and Mikolov’s pro-
posed Doc2Vec [10] model. To perform this Paragraph Vector
learning technique, in step 1 we extracted all the API calls
from each of the source code fragments in the source code
repository. We maintained individual document for keeping
track of extracted API calls for each of the source code in
the repository. We used AntlrV4 [81] to generate Abstract
Syntax Trees (AST) and extract API calls from that tree. Once

Fig. 9: Schematic Diagram for Cross Language Code Search

API calls are extracted from all the source code fragments,
we created a DReP for each of the source code fragments.
Each DReP consists of the API descriptions provided by the
developers of the programming language. So, in step 3, each
of the API call descriptions are pulled from the corpus and
listed in the DReP. In this way, a DReP for each of the source
code fragments in the repository is created and in step 4 we
store them in the DReP repository. For each programming
language, we maintained an individual source code and DReP
repository. In step 5, using Doc2Vec we trained each of the
DRePs stored in the DReP repository and stored those trained
vectors in the DReP repository. This training is performed for
each of the programming languages inside repository and cross
repository, means each repository for a programming language
is trained with another programming language’s repository. For
Doc2Vec, we used the same configurations for parameters we
had used for CroLSim at the time of detecting cross-language
similar software applications. Performing the whole training
process took us a total of 15 hours to accomplish. In step
6, we assume that a developer has already developed or has
a piece of source code in one programming language and
is looking for functionally similar source code fragment in
another programming language. They enter that code snippet
as a search query. Once they query with that code snippet, API
calls are extracted from it in step 7 and the corpus is used for
extracting related API documentation. Once API documenta-
tion is extracted, in step 9, all of the API documentation is
listed in a new DReP named SearchDReP. In step 10, this
newly created SearchDReP is trained with the already trained
model created in step 5.

Once the training is finished, in step 11, with the help of the
Cosine similarity mechanism, similarity between SearchDReP
and DRePs from the repository are calculated and the name
of the DRePs listed in a page in ascending order of similarity
scores to the SearchDReP. This step is performed for all the
repositories of different programming languages individually
and results are listed according to their language. Once this



step is performed, in step 12, source code fragments of the
listed DRePs are recovered from the source code repositories
and are returned to the user or developer in step 13 as a single
web page. All the retrieved results are categorized based on
the developed language. From this page, a user can select
and get their required source code in another programming
language which they can easily use for development and rapid
prototyping.

D. Experimental Results on Code Search

In this section we discuss the experimental results and
evaluation we performed to evaluate our model in performing
cross-language code search. We considered three matrices for
the full evaluation, they are Precision P , Recall R and F-
Measure F1. These three matrices are widely used and adapted
by most of the researchers in code search and source code
similarity detection studies [77], [82]. The research questions
(RQ) which we tried to answer during our evaluation process
are:

• RQ1. What is the observed precision rate P of CroLSim
in searching similar code examples among the program-
ming languages Java, Python and C#?

• RQ2. What is the observed recall rate R of CroLSim in
searching similar code examples among the programming
languages Java, Python and C#?

• RQ3. What is the observed F1 of CroLSim in searching
similar code examples among the programming lan-
guages Java, Python and C#?

In the following section we are going to answer all these
research questions.

1) RQ1: Precision Rate: From Table VII we can see
the precision rate we observed. We can see that, for cross-
language source code recommendation on Top 10 position,
average precision rate is 0.20 plus. While the precision values
are low, they are kind of promising given that we only consider
API calls and their documentation used in a programming
language and using that information we tried to detect source
code similarity. But our manual observation with some of
the code fragments says that for different cases, with some
modifications in code structure, addition of looping or ad-
ditional features like try/catch block, change in operations,
statements and expressions, the same API calls can be used to
perform different functionality based on the requirement. As
a reason, some of the code blocks from repository with the
same API calls are recommended by the system even if they
are not actually similar to the queried source code. On Top 20
recommended code blocks, we observed an average precision
of 0.27 for all of the subject systems and for Top 30 recom-
mendation, an average precision for all 300 random queries
is 0.27. So we can say, using only API calls’ documentation
similarity of source code fragments across 3 subject system
programming languages we achieved around 30% precision
in recommending cross-language source fragments.

2) RQ2: Recall Rate: : As discussed earlier, for each of
our successful queries, there is 10 functionally similar source
code fragments for each of the subject system programming
languages. From Table VII we can see that, for Top 10
recommendation, the Recall rate R for searching out cross-
language similar source code fragments using direct source
code as query is on average of 0.21 among the three subject
system programming languages. At top 20 recommended
source codes, the observed recall rate is on average of 0.60
and finally for top 30 recommendation, the recall rate we
experimented is on average of 0.82 for all the three sub-
ject system programming languages among them. From this
observations we can say that, with API calls similarity in
source codes across different programming languages, with its
present structure, CroLSim is successful enough to find out
similar source codes across different programming languages.
We have already discussed the reason behind our claims
in previous section. In addition to that, to the best of our
knowledge, we are the first to use API calls’ documentation
similarity in detecting cross-language similar code fragments,
and search code blocks in repository by directly querying with
source code from any language.

3) RQ3: F-Measure: : From Table VII we can see that,
for all of our successful 300 queries across three subject
system programming languages, for top 10 recommendations,
CroLSim has observed an average F-measure score of 0.21.
For top 20 and top 30 cross-language source code recommen-
dations, the average F-Measure score we observed is around
0.40. From these experimental results we can say, API calls’
documentation similarity can be a promising way to search
similar code blocks from a source code repository as well as
detecting cross-language code clones in different versions of a
software applications or across different software applications.

VII. THREATS TO VALIDITY

In this section we discuss the threats to validity of our
proposed system and our evaluation. As well, we discuss the
mechanisms and precautions we took to minimize the threats.

Participants. The evaluation of our proposed model is
primarily based on the similarity scores given by nine partic-
ipants. We considered some factors which may create threats
to the validity of the evaluation results. They are: (a) Interest
of the participants to carefully evaluate the results, (b) The
familiarity of the participants with Java, Python, and C#
programming languages, and (c) consistency of participants
in evaluating the responses the system produces.

For mitigating the effects (a) we asked our participants at the
beginning whether they are interested in evaluating the results
of the three systems (CLAN, Repopal (Readme) and CroLSim)
we considered for our work. We already acknowledged that the
process of manual validation is time consuming and requires a
lot of patience. At the time of selecting participants we ensured
that all our participants were really interested in evaluating our
work and had enough time to evaluate the observed results
(according to our statistics, each of our participants required



TABLE VII: CroLSim’s Performance in searching similar cross-language source codes from repositories

Searching Source Code
Programming

Languages Top 10 Top 20 Top 30

Precision
P

Recall
R

F-Measure
F1

Precision
P

Recall
R

F-Measure
F1

Precision
P

Recall
R

F-Measure
F1

Java &
C# 0.25 0.25 0.25 0.31 0.62 0.41 0.28 0.87 0.42

Java &
Python 0.18 0.18 0.18 0.26 0.53 0.35 0.27 0.79 0.40

C# &
Python 0.21 0.21 0.21 0.28 0.56 0.37 0.27 0.81 0.405

an average of two hours to perform the evaluation process with
the three subject systems).

It is hard to evaluate the expertise of the participants with C,
Java, Python and C# programming languages. We do consider
that a lack of knowledge of a programming languages will
affect the validation process of our work. To reduce this
threat, we only invited participants with more than 5 years
development experience with the subject system programming
languages individually. Most of the participants are from
inside our organization which actually helps us to verify their
proficiency with the programming languages.

For maintaining the consistency of the participants and the
standard of the evaluation we tried to evaluate one query for
three of our subject systems with a single participant. Once a
query is evaluated, it is verified by another participant. In this
way we tried to maintain the standard of evaluation and the
decision of degree of similarity equality distributed for each
query.

Repositories. In this study, we evaluated 18 queries in total
with the help of external participants, which is low in number.
We could do some more queries but the time and cost require
for evaluation have limited our number of queries. In future
we will increase the number of queries to further evaluate our
work. Our baseline methods also performed around the same
number of queries when evaluating their work.

Another important threat could be the quantity and quality
of the repositories. We collected 4,139 C-based software
applications, 8,956 Java software applications, 7,658 C# soft-
ware applications, and 10,232 Python software applications
from GitHub. For ensuring the quality of the applications we
selected only those software applications which are executable.
And as our goal is to work with the real time scenario, we not
only tried to be selective with the software applications for
repositories and have tried to work with a portion of regular
repositories. In this way hope to limit the threats to validity
with the selection of repositories.

For the code search problem, the repositories we collected
and created for the experiment are solutions to different
programming contest problems which were made available by
programming contest sites. We collected only the accepted
solutions in three subject systems for each of the posted
problems from those contest sites. As the solutions were
already accepted by a group of judges of each contest sites,
so we can say, accepted solutions in different languages for

each of the problems are functionally similar to each other.
And we collected more that 100K source code examples in
three different subject systems which we think are enough to
perform our experiment and report the results at this stage. We
have a plan to increase the source code examples in the near
future.

Programming Languages. Open source software appli-
cation repositories like Github, SourceForge, BitBucket, and
so on contain software applications built with different pro-
gramming languages. For evaluating CroLSim we randomly
selected software applications written in three different pro-
gramming languages (Java, Python and C#) to show our
approach is workable in detecting cross-language software
similarity. This model can work with other programming
languages as well.

Third party API documentation. Unavailability or poor
quality third party API documentation can also be a threat
for the validity of CroLSim. As our work is dependent on
the user documentation of the API calls, this information is
very important. To limit this threat we tried to use the API
documentation which is made available by the developers of
the programming language’s own platform. For external third
party libraries, we collected the available API documentation
first. If the documentation is not available, we collected the
source code and generated the documentation for that API.
By this we maintained the quality too because usually the
available documentation is already verified and understandable
by the users.

Evaluation Metrics. The evaluation metrics we used in this
work was adapted from the closely related models, CLAN
[7], [11], and Repopal [8]. These metrics are also used in
various previous studies [6], [46], [47]. In this way we hope to
lessen the probability of a threat by using the same evaluation
metrics.

VIII. RELATED WORK

Detecting similar applications in a software repository is
not a new research topic. There are a number of approaches
related to our work, or related to the model we used. Below
we provide a summary of those approaches.

A. Detecting Similar Repositories

Studies closely related to our proposed CroLSim model
include: Kawaguchi et al. [6], McMillan et al. [7], Thung et al.
[11] and Zhang et al. [8]. Kawaguchi et al. only considered



the semantics of source code with their MudaBlue tool [6].
Their work also requires manual investigation of informative
semantics of source code. Collins et al. in their tool CLAN [7]
used the JDK API calls similarity to detect similar Java based
software applications from the repository. They had worked
with more that 8k applications to evaluate their work. This
work is not applicable to detect similar software applications
across different programming languages. In addition to this,
depending only on JDK API calls may only partly represent
the source code of a software application which may lead to
identifying the wrong software applications as being similar or
not. In another work, Thung et al. [11] proposed to work with
manual Collaborative Tagging of applications for detecting
similar applications. This work is challenging to implement in
detecting software similarity in real world software application
repositories because of its sole dependency on manual evalu-
ation and user experience. Recently Zhang et al. [8] evaluated
three pieces of information for each software application
extracted from Github to detect similar software, Readme
files relevance, Stargazer relevance and Time Relevance. Their
approach works for Github alone. Even Stargazer information
is not available in a lot of Github repositories. Zhang et
al. evaluated their result only on 1000 repositories which is
possibly not enough for such studies.

In our work, CroLSim, we tried to address the limitations of
the existing solutions discussed above. Our work is based on
the documentation of API calls and the Deep Convolutional
Neural Network based Paragraph Vector model, which has not
been studied before in this context. To evaluate our work we
compared our model to the work of McMillan et al. and Zhang
et al. and demonstrated with rigorous experiments that our
model outperforms those approaches in detecting similar soft-
ware applications for both single and cross-language software
applications.

B. Recommendation Systems

There have been a great many recommendation systems,
such as the work of Bajracharya et al. [48], Thung et al.
[49], Bauer et al. [50], and Cubranic et al. [51]. Structural
Semantic Indexing (SSI) as proposed by Bajracharya et al.
[48] associates direct words with source code blocks based on
API call similarity. Thung et al. [49] recommended libraries to
developers by analyzing association rules among the libraries.
They considered the present library call and the use of that
library in other software applications to reveal a usage pattern
for that library. Cubranic et al. [51] in their tool Hipikat tried
to recommend artifacts by analyzing archives which might be
helpful for understanding that project. All these studies are
related to our work as we leveraged the similarity of API usage
patterns in the source code to detect and recommend similar
software applications. But we differ in scope since we focused
on detecting and recommending similar software applications
across different programming languages from source code
repositories, which is not studied prior to our work. The
recommendation system research focused on systems written
in the same programming language.

In addition to this work, quite a few context-based ap-
proaches are used for bug detection and localization in source
code [52], [53], [54]. Most of these bug localization and fixing
techniques are for systems written in a single programming
language. In the future we plan to extend our work to detecting
bugs in cross-language software applications.

C. Code Search and Clone Detection

Several studies search for code fragments from source
code, including, Exemplar [47], SNIFF [82], Portfolio [46],
Parseweb [56], Spotweb [55], and CCFinder [62]. These stud-
ies perform code searching with the help of Natural Language
Processing and matching a certain amount of word queries.
These are not directly related to CroLSim as we performed
recommending similar software applications based on search
terms or using software applications directly. But we also
extended CroLSim for recommending cross-language source
code fragments where we used source code directly as a query.
This feature made this model unique and is different from
existing models as none of them support cross-language source
code recommendation directly.

At present many source code clone detection tools are avail-
able, such as SourcererCC [57], NiCad [58], and many others
[59] which use different text, token, AST, graph and other
approaches to detect similar code fragments across different
software applications for single languages [68], [72], [73].
Cross-language code clone detection in software applications
is also studied in different research work, e.g. Craft et al. [60],
Zheng et al. [61], and so on. However, like these approaches,
an extended version of CroLSim can be used to detect cross-
language clones too. We have a plan to work on this too in
the near future in order to increase the accuracy of CroLSim
in detecting cross-language functionally similar code blocks.

D. Software Categorization

Another research area related to our study is categoriz-
ing software applications of a software repository. A good
number of studies have already been conducted, including
by Kawaguchi et al. [6], Wang et al. [63], Xu [64], and
Zhang [65]. Wang et al. proposed a SVM-based hierarchical
software categorizing approach by analyzing and aggregating
different online profiles across different software repositories
with a good accuracy in terms of precision, recall and F-
measure. However, the primary basics of categorizing software
applications is by detecting similar software applications. Once
one can detect similar software applications, with the help
of different clustering approaches, such as KNN, Random
Forest, and SVM, it is possible to cluster software applications
based on their similarity score. Therefore, CroLSim can be
easily extended to categorize software applications which is
discussed in our architecture section and could be done so in a
cross-language context, which other categorization approaches
cannot address. In the future, we plan to explore this feature
in depth.



IX. CONCLUSION

We proposed CroLSim, a tool and model for detecting
cross-language similar software applications from open source
software repositories with an average precision of more than
65%. To the best of our knowledge, we are the first who have
studied a deep neural network based natural language process-
ing technique for finding a universal solution for software sim-
ilarity detection which can perform equally for both single and
cross-programming language applications. We extracted API
calls from applications and used API documentation related
to the API calls for detecting similar software applications.
Our experimental evaluations show that CroLSim outperforms
the state of the art techniques in detecting similar software
applications in every aspect with a significant performance
gain. In addition, we extended the work for searching func-
tionally similar code blocks from a source code repository by
querying with the source code directly and without the help
of any natural language query processing. Early results show
promise and we plan to explore this further in the future.
Our plan is to extend this work to detecting code clones
in software applications, searching similar code blocks from
different software applications with better accuracy and preci-
sion, and automatically categorizing software applications with
meaningful names in a cross-language environment. We also
plan to improve the performance of CroLSim and study AST-
based approaches for detecting similar software applications.

X. ACKNOWLEDGEMENTS

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by
a Canada First Research Excellence Fund (CFREF) grant
coordinated by the Global Institute for Food Security (GIFS).

REFERENCES

[1] Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, ech
M, Chilton J, Clements D, Coraor N, Eberhard C, Grning B, Guerler
A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N,
Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016 update Nu-
cleic Acids Research (2016) 44(W1):W3-W10 doi:10.1093/nar/gkw343

[2] Goff, Stephen A. et al. The iPlant Collaborative: Cyberinfrastructure
for Plant Biology. Frontiers in plant science 2 (2011): 34. PMC. Web.
31 Oct. 2017.

[3] Bolser D, Staines DM, Pritchard E and Kersey P Ensembl Plants:
Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics
Data Netmad

[4] Amir Michail and David Notkin. Assessing software libraries by brows-
ing similar classes, functions and relationships. In Proceedings of
the 21st international conference on Software engineering . ACM, New
York, NY, USA, p:463–472.

[5] Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer.
Detecting similar Java classes using tree algorithms. In Proceedings of
the 2006 international workshop on Mining software repositories. ACM,
New York, NY, USA, 65–71.

[6] S. Kawaguchi, P. K. Garg, M. Matsushita and K. Inoue, ”MUDABlue:
an automatic categorization system for open source repositories,” 11th
Asia-Pacific Software Engineering Conference, 2004, pp. 184–193.

[7] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, ”Detecting Sim-
ilar Software Applications”, ICSE 2012,

[8] Zhang, Y., Lo, D., Kochhar, P.S., Xia, X., Li, Q. and Sun, J., February.
Detecting similar repositories on GitHub. IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
(pp. 13–23). IEEE. 2017

[9] K. W. Nafi, B. Roy, C. K. Roy, and K. A. Schneider. CroLSim: Cross
Language Software Similarity Detector Using API Documentation. In
2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 139–148. IEEE, 2018.

[10] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32 (ICML’14),
Eric P. Xing and Tony Jebara (Eds.), JMLR.org II-1188-II-1196

[11] F. Thung, D. Lo and L. Jiang Detecting similar applications with
collaborative tagging 28th IEEE International Conference on Software
Maintenance (ICSM), pp. 600–603, 2012.

[12] https://en.wikipedia.org/wiki/Document-term matrix
[13] https://en.wikipedia.org/wiki/Latent semantic analysis
[14] https://octoverse.github.com/
[15] S. K. M. Wong and Vijay V. Raghavan. Vector space model of infor-

mation retrieval: a reevaluation. In Proceedings of the 7th annual
international ACM SIGIR conference on Research and development in
information retrieval, British Computer Society, Swinton, UK, 167–185.

[16] S. Mizzaro How many relevances in information retrieval? Interacting
with Computers, Volume 10, Issue 3, 1 June 1998, Pages 303–320

[17] Rapp R. Syntagmatic and Paradigmatic Associations in Information
Retrieval. In: Schader M., Gaul W., Vichi M. (eds) Between
Data Science and Applied Data Analysis. Studies in Classification,
Data Analysis, and Knowledge Organization, 2003 Springer, Berlin,
Heidelberg

[18] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Ste-
fano Crespi, Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi.
An empirical investigation into a large-scale Java open source code
repository. In Proceedings of the 2010 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM
’10). ACM, New York, NY, USA, , Article 11 , 10 pages.

[19] Zellig S. Harris, Distributional Structure, WORD, 10:2-3, 146–162,
1954

[20] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[21] Singhal, A. Modern Information Retrieval: A Brief Overview. IEEE
Data Eng. Bull., 24, 35–43, 2001.

[22] j. Hopcroft and R. Kannan, Foundations of Data Science, chapter 4,
pp: 115–146, 2013.

[23] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R.
Harshman, Indexing by latent semantic analysis, Journal Of the
American Society for Information Science, Volume: 41, no: 6, 1998,
p: 391–407.

[24] Q.V. Le A Tutorial on Deep Learning Lecture 2015, Stanford
University, USA.

[25] Y. LeCun, Y. Bengio and Geoffrey Hinton Deep Learning, Nature
Review, Vol 521, 25th May 2015.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. In
Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV ’15). IEEE Computer Society, Washington, DC, USA,
1026–1034.

[27] LeCun, Y. Generalization and network design strategies. Technical
Report CRG-TR-89-4, University of Toronto

[28] Bates. M. Models of natural language understanding, Proceedings of
National Academy of Sciences, vol 95, pp 9977–9982, October 1995.

[29] T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent trends in
deep learning based natural language processing, in arXiv preprint
arXiv:1708.02709, 2017.

[30] D. Jurafsky and J. H. Martin, Speech and Language Processing., Book
Draft on August 7, 2017

[31] T. Mikolov, K. Chen, G. Corrado and J. Dean , Efficient Estimation of
Word Representations in Vector Space, arXiv preprint arXiv:1301.3781,
September 2013.

[32] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, link:
www.deeplearningbook.org.

[33] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A neural proba-
bilistic language model Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[34] X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for large-scale
sentiment classification: A deep learning approach in Proceedings of
the 28th international conference on machine learning (ICML-11), 2011,
pp. 513–520.



[35] R. Collobert and J. Weston A unified architecture for natural language
processing: Deep neural networks with multitask learning in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[36] J. Weston, S. Bengio, and N. Usunier Wsabie: Scaling up to large
vocabulary image annotation, in IJCAI, vol. 11, 2011, pp. 2764–
2770.

[37] P. D. Turney and P. Pantel,From frequency to meaning: Vector space
models of semantics Journal of artificial intelligence research, vol. 37,
pp. 141–188, 2010.

[38] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Dis-
tributed representations of words and phrases and their compositionality
in Advances in neural information processing systems, 2013, pp. 3111–
3119.

[39] javadoc by Oracle: \http://www.oracle.com/technetwork/articles/java/
index-jsp-135444.html

[40] DocFx: https://dotnet.github.io/docfx/tutorial/docfx getting started.html
[41] Rehurek, R. and Sojka, P.,Software framework for topic modelling with

large corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks.

[42] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M. and Kudlur, M., TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp.
265–283), 2016, November.

[43] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schtze.Introduction to Information Retrieval. Cambridge University
Press, New York, NY, USA, 2008

[44] David M. Blei. Probabilistic topic models. Communication ACM 55,
4 (April 2012), 77–84. DOI: https://doi.org/10.1145/2133806.2133826

[45] George Macgregor, Emma McCulloch Collaborative tagging as a knowl-
edge organisation and resource discovery tool, Library Review, Vol.
55 Issue: 5, pp.291–300, https://doi.org/10.1108/00242530610667558

[46] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: finding relevant functions and their usage. In Proceedings of
the 33rd International Conference on Software Engineering (ICSE ’11).
ACM, New York, NY, USA, 111–120.

[47] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu and Q. Xie,
Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications, In IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1069–1087, Sept.-Oct. 2012.

[48] S. K. Bajracharya, J. Ossher, and C. V. Lopes Leveraging usage
similarity for effective retrieval of examples in code repositories In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering (FSE ’10). ACM, New York,
NY, USA, 157–166

[49] F. Thung, D. Lo and J. Lawall, Automated library recommendation, 2013
20th Working Conference on Reverse Engineering (WCRE), Koblenz,
2013, pp. 182–191.

[50] V. Bauer, T. Vlke and E. Jrgens, ”A Novel Approach to Detect Unin-
tentional Re-implementations,” 2014 IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, 2014, pp. 491–495.

[51] D. Cubranic and G. C. Murphy, ”Hipikat: recommending pertinent soft-
ware development artifacts,” 25th International Conference on Software
Engineering, 2003. Proceedings., 2003, pp. 408–418.

[52] Xin Xia and David Lo. 2017. An effective change recommendation
approach for supplementary bug fixes. Automated Software Engg. 24,
2 (June 2017), 455–498.

[53] X. Xia, D. Lo, Y. Ding, and J. M. Al-Kofahi, Improving automated bug
triaging with specialized topic model, IEEE Transactions on Software
Engineering, pp. 1–1, 2016

[54] X. Xia, D. Lo, X. Wang, and B. Zhou, Accurate developer recommen-
dation for bug resolution, vol. 8144, pp. 72–81, 2013

[55] S. Thummalapenta and T. Xie, Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web, in ASE, pp.
327–336, 2008.

[56] S. Thummalapenta and T. Xie, Parseweb: A programmer assistant for
reusing open source code on the web, in ASE, pp. 204–213, 2007.

[57] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and
Cristina V. Lopes. 2016. SourcererCC: scaling code clone detection
to big-code. In Proceedings of the 38th International Conference on
Software Engineering (ICSE ’16). ACM, New York, NY, USA, 1157–
1168. DOI:

[58] C. K. Roy and J. R. Cordy, ”NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code Nor-

malization,” 2008 16th IEEE International Conference on Program
Comprehension, Amsterdam, 2008, pp. 172–181.

[59] C. K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Sci. Comput. Program. 74, 7 (May 2009), 470–495.

[60] N. A. Kraft, B. W. Bonds and R. K. Smith,Cross-language clone
detection 20TH International Conference On Software Engineering
And Knowledge Engineering, 2008

[61] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu and J. Zhao, Mining
revision histories to detect cross-language clones without intermediates
31st IEEE/ACM International Conference on Automated Software En-
gineering (ASE), Singapore, 2016, pp. 696–701.

[62] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Trans. Softw. Eng. 28, 7 (July 2002), 654–670.

[63] T. Wang, H. Wang, G. Yin, C. Ling, X. Li, and P. Zou, Mining software
profile across multiple repositories for hierarchical categorization, in
ICSM, pp. 240–249, 2013.

[64] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, Predicting semanti-
cally linkable knowledge in developer online forums via convolutional
neural network, in The Ieee/acm International Conference, pp. 51–62,
2016.

[65] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li, Combining software
metrics and text features for vulnerable file prediction, in International
Conference on Engineering of Complex Computer Systems, pp. 40–49,
2015.

[66] Wiwie, C., Rttger, R. and Baumbach, J. Comparing the performance of
biomedical clustering methods. Nature Methods, 2015.

[67] https://en.wikipedia.org/wiki/Abstract syntax tree
[68] C. K. Roy and J. R. Cordy, An Empirical Study of Function Clones in

Open Source Software, 2008 15th Working Conference on Reverse
Engineering, Antwerp, 2008, pp. 81–90. doi: 10.1109/WCRE.2008.54

[69] Antlr https://www.antlr.org/
[70] Spark https://spark.apache.org/
[71] Apache Lucene http://lucene.apache.org/
[72] C.K. Roy, J.R. Cordy and R. Koschke, Comparison and Evaluation of

Code Clone Detection Techniques and Tools: A Qualitative Approach,
Science of Computer Programming, 74 (2009) 470–495, 2009.

[73] M. Asaduzzaman, C. K. Roy, K. A. Schneider and M. D. Penta, LHDiff:
Tracking Source Code Lines to Support Software Maintenance Activi-
ties, 2013 IEEE International Conference on Software Maintenance,
Eindhoven, 2013, pp. 484–487. doi: 10.1109/ICSM.2013.78

[74] X. Cheng, Z. Peng, L. Jiang , H. Zhong, H. Yu and J. Zhao, CLCMiner:
Detecting cross-language clones without intermediates, IEICE
TRANSACTIONS on Information and Systems, 100(2), pp.273–284,
2017.

[75] T. Vislavski, G. Rakic, N. Cardozo and Z. Budimac LICCA: A tool for
cross-language clone detection, In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pp. 512–516, March 2018.

[76] D. Rattan, R. Bhatia, and M. Singh Software clone detection: A
systematic review, Information and Software Technology, Vol-
ume 55, Issue 7, 2013, Pages 1165–1199, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2013.01.008.

[77] D. A. Smith, Rapid Software Prototyping, Ph.D. Dissertation.
University of California, Irvine. AAI8303547.

[78] L. Luqi, and R. Steigerwald, Rapid software prototyping, In
Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences, vol. 2, pp. 470–479. IEEE, 1992.

[79] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang and
B. Mobasher, Recommending source code for use in rapid software
prototypes, 34th International Conference on Software Engineering
(ICSE), Zurich, 2012, pp. 848–858. doi: 10.1109/ICSE.2012.6227134

[80] Daniel Perez M.Sc Thesis dissertation:
https://daniel.perez.sh/research/master-thesis/thesis.pdf

[81] Antlr version 4: https://www.antlr.org/
[82] S. Chatterjee, S. Juvekar, K. Sen, SNIFF: A Search Engine for

Java Using Free-Form Queries. In: Chechik M., Wirsing M. (eds)
Fundamental Approaches to Software Engineering. FASE 2009. Lecture
Notes in Computer Science, vol 5503. Springer, Berlin, Heidelberg

[83] https://github.com/Kawser-nerd/CroLSim


