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Abstract—Software clones are detrimental to software mainte-
nance and evolution and as a result many clone detectors have
been proposed. These tools target clone detection in software
applications written in a single programming language. However,
a software application may be written in different languages
for different platforms to improve the application’s platform
compatibility and adoption by users of different platforms.
Cross language clones (CLCs) introduce additional challenges
when maintaining multi-platform applications and would likely
go undetected using existing tools. In this paper, we propose
CLCDSA, a cross language clone detector which can detect CLCs
without extensive processing of the source code and without the
need to generate an intermediate representation. The proposed
CLCDSA model analyzes different syntactic features of source
code across different programming languages to detect CLCs. To
support large scale clone detection, the CLCDSA model uses an
action filter based on cross language API call similarity to discard
non-potential clones. The design methodology of CLCDSA is two-
fold: (a) it detects CLCs on the fly by comparing the similarity
of features, and (b) it uses a deep neural network based feature
vector learning model to learn the features and detect CLCs.
Early evaluation of the model observed an average precision,
recall and F-measure score of 0.55, 0.86, and 0.64 respectively for
the first phase and 0.61, 0.93, and 0.71 respectively for the second
phase which indicates that CLCDSA outperforms all available
models in detecting cross language clones.

Index Terms—Code Clone, API documentation, Word2Vector,
Source Code Syntax

I. INTRODUCTION

With the availability of a number of different widely

used programming languages and platforms, and to achieve

compatibility and adoptability, developers may be required

to develop the same functionality in different programming

languages for different versions of a software system. A typical

example of this is the development of mobile phone games

where developers try to make a single game available on

different platforms. For example, a very popular mobile phone

game is Temple Run which is available on three popular

mobile phone platforms: Windows1, iOS2 and Android3. As

many differences exist among the different platforms, it is

required to develop the games according to their designated

platforms such as in C/C# for a Windows phone, Java for an

Android phone and Objective-C for an iPhone [1]. Although

1 Windows Temple Run
2IOS Temple Run
3Android Temple Run

there are tools available4 that help to develop cross-platform

mobile games, their execution still requires platform specific

support. A similar scenario also exists for desktop and web

based applications (such as microservices [3]), where the same

functions need to be replicated across different programming

languages such as Antlr [4], Lucene [5], and Factual [6]. Code

fragments related to such functionality replication in different

programming languages can referred to as Cross Language
Clones or CLCs.

Source code clones can be considered both harmful [10] and

useful [11] based on their characteristics. Previous research

showed that 7% to 23% of the source code of a software

system is cloned [7], [8]. Duplicating code blocks in source

code can add complexity [2] and requires special attention to

maintain and avoid unintended behaviour [12]. Code clones

are also responsible for introducing bugs and functionality

divergence among codebases which decreases overall software

system quality [7], [8]. In addition to these, once a code block

is changed in the source code of a software system, it is

required to propagate that change to the other cloned code

parts too, which usually requires additional effort by the devel-

opers or maintainers. However, for most cases, cross language

clones are created intentionally by developers and are often

unavoidable and cannot be removed [13]. So, to help software

developers and curators to manage cross-language software

systems in an easy, time-effective and cost-effective way, an

automatic cross-language code clone detection technique is

required. It is foremost in collaborative software system devel-

opment where if a developer with expertise in one language

changes or modifies their software version, developers with

expertise in other programming languages need to perform

the same functional change to their respective versions as

well. This is more expensive and time consuming compared

to changing a single language based software system as it

requires prior knowledge regarding the system architecture, as

well as understanding the modification of the code performed

by the first developer.

Let us consider the example given in Figure 1. In Scenario

A, we have code examples for three programming languages:

Java, Python, and C#. Each code fragment performs one

operation: adding two integers. Now, let us consider that

the requirements change and it is needed to add two float-

4Xamarin: https://visualstudio.microsoft.com/xamarin/
PhoneGap: https://phonegap.com/



ing point numbers instead of integers (Scenario B). At first

Java code is modified and updated by a developer (marked

with the green arrow labeled ‘Java’). Now it is required to

make the same change to the other versions of Scenario A.

Sound knowledge of the application architecture and source

code for the different platforms might guide developers to

manually make the changes. However such a task would

demand considerably more effort during real-life large-scale

software development. To help developers in this situation, a

cross language clone detection technique would be useful for

automatically detecting functionally similar code blocks of the

Java version in the C# and Python versions (marked with blue
arrows). Once the clones are located, changes can easily be

made to achieve Scenario B (marked with green arrows).

Fortunately, a good number of automated or semi-automated

techniques and models have been proposed for detecting

code clones in single language based software systems,

such as CCFinder [14], Deckard [15], NiCad [16], and

SourcerCC [17]. A very small number of models have also

been proposed for Cross Language Clone detection, such as

LICCA [12], and CLCMiner [13]. Among them, CLCMiner

only works with code revision histories (diffs) and detects

clones by measuring source code token similarity. A good

number of software applications are available whose func-

tionalities are supported by different platforms. For example,

Apache Lucene can be applied for Java, C#, JavaScript, and

Python. APIs of these tools are almost similar in name across

different platforms. At the same time, their usage patterns are

almost similar too in different programming languages. Au-

thors of CLCMiner can track the changes or modifications of

these API calls across different software applications without

language dependencies. But this scenario is totally different

from the real world Cross Language Clones given in figure 1.

And this model fails to detect or track these clones. On the

other hand, LICCA detects code clones based on intermediate

states represented by Budimac et al.’s SSQSA [18] archi-

tecture. This architecture represents any source code in an

enriched Concrete Syntax Tree (eCST). LICCA analyzes the

eCST and generates a matrix from it, which was extended

for cross language clone detection. But this model has a

number of limitations. First, it requires the source code length

to be equal. Second, code steps and flow of functionality

of two code blocks needs to be the same. These limitations

have made this model not applicable in real world scenarios.

Very recently, Perez et al. [42] proposed a cross-language

clone detection model where they try to learn an AST [22]

representation of some given source code with the help of

the skip-gram model [47]. Although their approach is sound,

their model suffers from low average precision and F-measure

scores which makes their model difficult to operate in real

world cross language clone detection scenarios.

In this paper, we propose CLCDSA, a model for detecting

cross language clones by analyzing source codes without the

requirement of intermediate representations or restrictions.

This model can detect cross language clones by analyzing the

similarity of 9 syntactic source code features. From a previous

Fig. 1. Source code for adding two numbers in Java, C#, and Python. Scenario
A illustrates adding integers & Scenario B illustrates adding floats

study, we found that these features have almost similar values

if two source code fragments from two different programming

languages have similar functionality. This model can detect

cross-language clones in two different ways. First, it can detect

clones on the fly without having any predefined knowledge.

For this, CLCDSA measures Cosine Similarity between two

matrices which are generated by extracting values of the 9

features from source code fragments. Metrics are extracted

by traversing the AST of related code fragments. Second,

CLCDSA supports a reconfigured Siamese architecture based

Deep Neural Network [31], [39] which can automatically learn

the values of 9 features from a good number of labeled data

and can detect cross-language clones with greater accuracy.

For providing support for large size datasets, this model uses

an action filter. This action filter is designed based on API

call similarity used in two different code fragments across

different programming languages. Cross-language API call

similarity is learned with the help of the API documentation

and Mikolov’s Word2Vec [19] model. This filter helps to

discard non-probable clone pairs from consideration before

advancing to the main model which reduces computational

complexity, number of comparisons, and improves scalability.

To the best of our knowledge, we are the first to use 9 effective

source code syntactical features along with cross language

API call similarity in detecting cross language clones (se-

mantic features). For performing our evaluation and validating

CLCDSA, we carefully collected a large size valid cross-

language clone dataset. From our evaluation we observed that

for different threshold values, CLCDSA can detect clones on



the fly with an average precision, recall, and F-measure score

of 0.55, 0.86, and 0.6 respectively and for CLCDSA-DeepNN,

the observed average precision, recall, and F-measure are

0.61, 0.93, and 0.71 respectively which outperforms all of

the available models in terms of accuracy and scalability. The

dataset we used for validating our proposed model along with

our evaluation results are available for further use [63].
The remainder of the paper is organized as follows: Sec-

tion II describes the design modules of the model, Section III

discusses the architectural design of the model, Section IV

briefly discusses the evaluation and validation steps and results

of CLCDSA, Section V describes the probable threats to

validity and how those were addressed, Section VI describes

closely related work, and Section VII concludes the paper.

II. CLCDSA: CROSS LANGUAGE CLONE DETECTOR

In this section, we describe our cross language clone de-

tector, CLCDSA. As with other clone detection models, we

process source code to extract the metric information needed

for our work. We use an action filter to filter out non-probable

clones from consideration to make our model more scalable.

A. Feature Selection
Table I shows the features Saini et al. [24] proposed in

their work as being useful for detecting code clones in Java.

Most of the features are derived from the Software Quality

Observatory for Open Source Software (SQO-OSS) quality

model proposed by Samoladas et al. [25]. Although it has

been shown that analyzing all these features is helpful in

achieving great accuracy when detecting clones in a single

programming language, not all of these features can be used

for cross language code clone detection. In a previous study

we determined which of the features in Table I were most

effective for cross language clone detection. In that study we

used a dataset that contained more than 300K functionally

similar cross language clone code fragments written in three

different languages: Java, C# and Python. We applied each of

the features on functionally similar code clones to see the

effect and performance of a feature in determining source

code similarity. The primary objective of our study was to

see how similar the values were for each of the features

for three different but functionally similar code fragements.

From our brief study and manual analysis, we found that

out of 24 features, 9 features use almost the same metrics

across the different programming languages (shown in bold

in Table I). By observing this, we selected these 9 features

for detecting cross language clones in the belief that two code

fragments will be functionally similar if they share similar

metrics. This study took more than 20 hours of manual labor

to effectively find the suitable features. These features can also

be useful in other cross language source code analysis based

work, and other research work, such as code search [27], rapid

prototyping [26], and code quality analysis [28].

B. Preprocessing
Preprocessing of given code fragments for CLCDSA is

comprised of four steps. First, we remove all the comments

TABLE I
FEATURES TO ANALYSE SOURCE CODE

Name of the Source Code Feature

Number of External Methods Called

Number of Variables Referenced

Number of Variables Declared
Number of Statements

Total Number of Operators
Number of Arguments

Number of Expressions
Total Number of Operands
Method, Maximum Depth of Nesting

Number of Loops (for,while)
Number of Local Methods Called

Halstead Vocabulary

Halstead Effort to Implement

Halstead Difficulty to Implement

Number of Exceptions Thrown
Number of Exceptions Referenced
Number of Classes Referenced

McCabes Cyclomatic Complexity
Number of Class Casts

Number of Boolean Literals

Number of Character Literals

Number of String Literals

Number of Numerical literals

Number of Null Literals

and string literals from the source code. The reason behind this

is to keep track of only the selected features and their values

rather than keeping buggy information to analyze. Second,

we generate an Abstract Syntax Tree (AST) [22] for each

of source code fragments in our repository. For generating

AST, we used AntlrV4 [23] and its grammars. The reason

behind selecting AntlrV4 is its acceptability and adaptability

with various programming languages and platforms. AST is

generated by traversing the Parse Tree produced by AntlrV4

related to the given code fragments. Third, we apply regular

expressions on the generated ASTs to extract a metric for each

of the features that we selected for detecting cross language

clones. Once we represented each of the source code fragments

with an AST, it became easier to track down all the features

and their values with the help of regular expressions. Fourth,

we extract the API calls by traversing the AST with the help

of a NODEVISITOR class. These API calls are then passed to

the next step (Action Filter) to filter out probable non-clone

pairs of source code to increase the scalability of CLCDSA.

C. Action Filter: API Call Similarity

Like other large-scale clone detection techniques [17], [24],

CLCDSA also comprises a filter which helps to filter out

the source code pairs which have almost zero probability

of being a clone pair. Saini et al. [24] and Sajnani et al.

[17] used a number of tokens from source code and their

semantic similarity as parameters to filter out non-clone pairs

before proceeding to the main clone detection model. Their

approach is good enough to filter out non-clone pairs for

a single programming language, but their approach will not

work to filter out probable non-clone pairs across two different

programming languages. In addition to these parameters, Saini

et al. proposed an additional way to filter out non-clone pairs.

They tried to see how many similar API calls occurred in a



probable clone pair. They believed that if API calls similarity

is low between two code fragments, their probability of being

a clone pair is also low. This hypothesis is also true for

cross-language clone pairs. But since API calls of different

programming languages are not semantically similar, Saini

et al.’s proposed way of detecting API calls similarity based

on their semantics will not be applicable here. A group of

researchers recently found that API calls similarity across dif-

ferent programming languages could be learned and detected

by their documentation similarity [29], [30]. Programming

language developers and curators provide documentation of

each of the APIs they added to their regular libraries5 so that

developers can understand the usage and scope of that API in

the source code. The hypothesis of the two previous works is if
two APIs from two different programming languages perform
the same task, their usage documentation will be semantically
the same. We also adapted this hypothesis in designing the

action filter. For large scale code clone detection, this filter

is very effective as regular code to code comparison for

detecting clones is expensive and time consuming (increases

exponentially as the number of code fragments increases).

Fig. 2 shows the example of two code blocks, developed in

Java and C# respectively, which take two integer numbers as

input from users, adds them, and finally shows their sum on

the console. In the Java code example, the API calls used are

PRINTLN() and NEXTINT(). For the C# code, the API calls

are WRITE(), PARSE() and READLINE(). None of these API

calls are textually similar to each other, although they provide

similar functionality. From Fig. 2 we can also see the related

documentation for each of the API calls. By analyzing the

API call documentation we see that the documentation for

PRINTLN() and WRITE() have the same semantic meaning.

The same is true for other API calls. By observing this, we

decided to adapt this hypothesis in designing our Action Filter.

With the help of the API call documentation we detect the

level of similarity among API calls used in a probable cross

language clone pair. If this similarity is less than the predefined

threshold value then that clone pair is rejected and considered

a non-clone pair. By doing this, we reduce the number of

comparisons before advancing to the main clone detection

model. This helps the proposed model to execute swiftly, as

well as makes it scalable for large sized clone data.

D. Feature Metrics Extraction & Similarity Detection

Metric based clone detection approaches are common and

have been popular for detecting clones in single programming

language based software applications [32]–[34]. For detecting

cross language clones, as they are functionally similar clones

(e.g., Type-4 clones), it is hard to see that metrics of the

features for two source code fragments of a cross language

clone pair are directly similar to each other. For this, we

selected the features very carefully and finely tuned the feature

metrics. In Table I the name of the features we found feasible

5Java https://docs.oracle.com/javase/9/docs/api/overview-summary.html
Python: https://devdocs.io/python 2.7/
C# https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.5.2

Fig. 2. Examples of API call documentation. API calls with the same
functionality usually possess the same semantic description.

for detecting cross language clones have been identified in

bold. By traversing the generated AST of each source code

fragment in the repository, we extracted the value for each of

the features listed in numeric form. We recorded those metrics

in a CSV file. The reason behind saving them in a CSV file

is to have a table-based record which is easy to handle.

For detecting cross language clones on the fly, this model

takes a matrix consisting of 9 feature values as input. It used

Cosine Similarity to detect a probable clone pair using the

following equation where A and B are two matrices:

cos(θ) =
A · B

‖A‖ ‖B‖ (1)

III. CLCDSA MODEL

In this section, we briefly discuss the design strategies of

the model and the deep neural network it uses to detect cross

language clones along with the workflow.

A. DataSet Collection

Because of the absence of an openly available cross-

language clone dataset, for experimenting and evaluating our

model, we created a dataset with more than 78K solutions from

programming contests developed in developed in Java, C#,

and Python [63]. We collected the source code for all of these

solutions from three open source programming contest sites:

AtCoder6, Google CodeJam7 and CoderByte8. The reason for

selecting code from these websites is to ensure all the collected

code, written in different programming languages, are func-

tional clones of each other. According to the definition, cross

6https://atcoder.jp/
7https://www.go-hero.net/jam/10/languages/0
8https://www.coderbyte.com/challenges



TABLE II
DESCRIPTION OF DATABASE

Total number of code blocks 78,000

Total number of Questions 1,300

Total number of Java code blocks 26,000

Total number of Python code blocks 26,000

Total number of C# code blocks 26,000

Average Lines of Code Java 36∼47

Average Lines of Code Python 23∼28

Average Lines of Code C# 41∼52

language clones mean two or more code blocks developed in

different programming languages that are functionally similar

to each other. The open source contest sites accept solutions

for a posted problem without any language restriction. At

the same time, all the submitted code blocks are tested with

the same input and expected output to validate them. So, we

can easily say that accepted solutions for any programming

language for a single problem statement are functional clones

of each other, which we can claim as the best validated cross

language clone database in every respect.

The present status of our dataset is given in Table II. At the

time of collecting the dataset, we visited each of the archived

problems and their solutions. For each of the problems, we

collected at least 20 fully accepted solutions for each of the

three programming languages under observation. We visited

around 1,300 archived problem statements to construct our

dataset. In this way, we built a complete cross-language

clone dataset of 78K solutions from programming contests

developed in Java, Python, and C# programming languages. In

this dataset, accepted solutions for a single problem statement

are validated cross-language clones of each other, whereas

accepted solutions of two different problem statements are

identified and validated as a cross-language non-clone pair.

Among the entire dataset, we used AtCoder and Google Code

Jam for training and testing the DeepNN model whereas

source code collected from CoderByte was used for validating

the model.

B. API Learning and Action Filter Model

For learning API call similarity across different program-

ming languages, we first collected API documentation of the

supported libraries of Java, C#, and Python. We developed a

WEBCRAWLER tool to crawl through the API documentation

provided by the language developers and curators. For each

of the API calls, for every language, we collected only the

first sentence in the belief that it carries the information

regarding the API call’s functionality and scope. We added

the API calls documentation to an XML file. For each of the

programming languages we maintained a separate API calls

documentation XML file. Once the XML files were created,

we traversed each of the XML files and read the collected API

calls documentation manually. The purpose of this step was

to verify the quality of the collected API calls documentation.

If we found any non-useful API call documentation, we again

searched for that API call description and manually replaced

the previous documentation with a proper description. This

process took us around 7 hours of manual labor on average

for the three programming languages. Second, we adapted

Mikolov et al.’s [19] proposed Word2Vec model to generate a

vector representation for each API call description. We trained

each API call documentation with the help of Google’s word

vector pre-trained model9. The reason behind this is to train

each word of an API call documentation with greater accuracy

with the help of a reasonable sized pre-trained word vector

representation model. Third, with the help of Cosine Similarity

stated in Equation 1 we calculated the similarity between the

vector representation of two API calls’ documentation selected

from two different programming languages. We map each

API call of one language to API calls of the other languages

in a one to many manner. We also considered extracting

information from the name of the API calls. But as various

programming languages use different naming conventions, we

found that this information is not feasible for our work. So

we only considered API documentation to learn and detect

similarity among two API calls of two different programming

languages. We maintained a CSV file to record all of the API

call similarity scores along with the name of the API calls

themselves. We individually generated and maintained a CSV

file for each programming language pair we considered. This

is how we determined cross-language API call similarity.

Once the cross-language API call similarity is learned, the

action filter is invoked, which is composed of the following

three steps. First, we selected a probable clone pair from

two different programming languages, retrieved their ASTs

and extracted API calls. Second, we selected two API calls

from two source code fragments and queried them against the

language pair specific CSV file that was generated in the API

learning step, to obtain the similarity score. Each API call

in a single source code fragment is paired with all the API

calls in the other source code fragments and queried against

the appropriate CSV file to obtain the similarity score for that

API pair. The API pair with the highest similarity score is kept

and the others are omitted. At the same time, that API pair was

removed from consideration. The same process was followed

for the rest of the API calls until all the API calls of a source

code fragment were paired up with those of the other source

code fragments having the highest similarity score. Third, we

normalized the API call similarity score by taking the average

of the remaining pairs similarity score. Let us consider A and

B are representing lists of API calls used in two given source

code fragments. If (A1, B1), (A2, B2), ...., (Ak, Bk) are API

call pairs depicting the highest similarity scores then the API

call similarity for a probable clone pair is calculated using the

following equation to normalize the API calls similarity score:

APICallsSimilarity =

∑k
i=1

(
Ak, Bk

)

k
(2)

Let us consider the clone pair example given in Fig. 2.

9https://github.com/mmihaltz/word2vec-GoogleNews-vectors



The Java code API calls are PRINTLN(), NEXTINT() and C#

API calls are WRITE(), READLINE(), PARSE(). According to

our action filter algorithm PRINTLN() was paired with each

of WRITE(), READLINE(), PARSE() and the (PRINTLN(),

WRITE()) pair survived with a 0.82 similarity score. After

that, NEXTINT() was paired with READLINE(), PARSE()

and the (NEXTINT(), READLINE()) pair remained with a

0.56 similarity score. So the API call similarity score was

(0.82 + 0.56 + 0.82 + 0.56)/4 = 0.69. The Action Filter will

not consider a source code pair as a probable clone if their

API call similarity score is less than 0.5.

C. Feature Vector Formulation

Section III-A describes the dataset we considered for evalu-

ating our model. For the CLCDSA Deep Learning model, we

randomly divided our collected database for training, testing

and validation purposes. First, we started working with the

AtCoder dataset. For each of the questions, we selected 10 ac-

cepted solutions for each of the three programming languages:

Java, C#, and Python for training purpose, 5 accepted solutions

for each language for testing the model and 5 for validating the

model. In this way, 20 accepted solutions for a single problem

statement for each of the programming languages were divided

into training, testing, and validation sets. Next, following the

same process we divided the Google Code Jam dataset. We

configured the feature vector with 9 metrics for each of the

source code fragments in a pair with an additional boolean

metric, which indicated whether this code pair was a clone or

not (0 for non-clone and 1 for clone). So, the feature vector

dimension was 19. In this way we generated a sample labeled

dataset of 3B feature vectors, where 1.5B feature vectors

represent clone pairs and the remaining 1.5B feature vectors

represent non-clone pairs. The whole sample was selected

randomly without any preconditions or constraints. Thus, we

can reasonably claim that the model that we generated for

CLCDSA represents the regular structure of source code

fragments and can show the same performance with source

code fragments collected from other repositories for detecting

cross language clones.

D. CLCDSA Deep-Learning Model

Although various machine learning techniques exist (for

example, Oreo [24]), we exploited the deep learning methodol-

ogy to detect cross language clones. Deep Neural Networks or

plain Neural Networks usually use a good number of interme-

diate layers of neurons, to automatically learn the features of

a model in a non-linear transformation manner. These models

are popular because of their ability of learning features and

properties of universal approximation. These models can easily

be adapted for large datasets. Some other areas successfully

addressed by Deep Neural Networks [36] include computer

vision [35] and natural language processing [19], [37].

CLCDSA’s Deep-Learning Model was developed on the

basis of the Siamese Architecture Neural Network [39] which

works efficiently when it is required to compare two objects

side by side to detect their similarity. This model can also

Fig. 3. Siamese Architect for CLCDSA. The model comprises of a) two
identical subnetworks, b) comparator and c) classification unit

handle the symmetry of input vectors with great care [38].

This gives the advantage of the non-requirement of main-

taining a predefined order of input vectors. The source code

input pairs (c1, c2) and (c2, c1) will be treated in the same

manner. Siamese architecture also requires a reduced number

of parameters as the weight parameters are shared between the

two identical sub-neural networks.

Fig. 3 shows the CLCDSA deep learning model architec-

ture. We considered 9 dimensional feature vector for each

source code as input to the model (for a pair, it is 18).

These two feature vectors were then fed to two identical

subnetworks, which performed the same transformation on

both of the feature vectors. Both of the subnetworks had the

same configuration, and had 2 fully connected hidden layers

of 100 units each. Once the output of this subnetwork model

was generated, two output vectors were concatenated and fed

to the next comparator model. The comparator model was

comprised of 3 hidden layers of sizes 100-50-10, with full

connectivity among the neurons between two layers. Finally,

the output of the comparator was fed to the classification unit.

The classification unit was comprised of a single neuron which

consists of a logistic unit having the following calculation

mechanism [40]:

f
( 10∑

i=1

wixi

)
=

1

1 + ε−
∑10

i=1 wixi
(3)

Here i represents the number of units at the last layer of the

comparator unit which is 10 for our experiments, xi is the

input value of that layer, and wi is the estimated weight for that

corresponding parameter. Although it is usually considered

that the classification unit value greater than 0.5 is a probable

clone for any learning based clone detection model [24], [42],

for our evaluation, we also considered classification unit values

of 0.65 and 0.8 as thresholds for accepting a code pair as clone.

We selected ReLU as the activation function and



Fig. 4. CLCDSA workflow for detecting cross language clones

dropout [43] for keeping the model free from over-fit. We

also selected relative entropy [44] as a loss function among

the units of each layer to calculate the distance between

the predicted label and the expected label. We selected the

stochastic gradient descent of learning rate 0.0001 with a 3%

reduction after every epoch. We considered a batch size of

3000 for each epoch, randomly initialized the values with the

help of ‘He normal’ [45], and set the iteration value to 55 to

get the final trained model.

E. CLCDSA Workflow

From Fig. 4 we can observe the working strategy of our

proposed cross language clone detection model CLCDSA.

Steps 1, 2, 3, 4 and 6 are related to the generation of the

training model for CLCDSA and steps 1, 2, 3, 4 and 5 are

related to the on-the-fly clone detection. In Step 1, source

code from the repository is fetched into a language detection

chamber. It is required as the grammar for AST generation

varies from one programming language to another. Once the

language is detected, in Step 3, the AST is generated and

recorded. This step is repeated for each source code fragment

in our repository. Once the AST generation step is completed,

all the generated ASTs are fed to the feature extraction module.

In this step, all the ASTs are traversed and numeric metrics for

our selected features are calculated and recorded. And these

metrics are preserved as the name of the source code file.

Once the metrics are generated, in Step 5, with the help

of Cosine Similarity, CLCDSA detects whether the selected

source code pair is a clone or not. Before Step 5 or Step 6, all

the source code pairs, which are considered as probable clone

pairs, are required to pass through the action filter described in

Section II-C. During the training phase, since we are already

providing labelled data, those feature vectors are not required

to pass through the action filter. In Step 6, with the help of the

labelled data, the Neural Net model has already been trained,

before deploying it to detect clones.

In Step 7, CLCDSA starts clone detection phase. Once the

list of the probable clone pairs are given to the model as input,

with source code fragments developed in any programming

language, steps 2, 3, and 4 are executed along with the action

filter. After that, if on-the-fly clone detection is selected, Step

8 will occur. It will take the feature values of both the source

code fragments as a matrix, and with the help of Cosine

Similarity will determine whether this pair is a clone or not

based on the predefined threshold value to define a clone. If

the clone detection Neural Net model is preferred, the feature

vector for the source code pair will then be fed to the model

and Step 9 will come in effect. The output of the neural

net will define whether the given source code pair of two

different programming languages are clones or not based on

the predefined threshold value.

IV. EVALUATION

In this section, we explain the analyses on the results that we

obtained from CLCDSA’s evaluation and validation processes.

For analyzing the performance of the model we used three

metrics which are popular and widely used in defining the

performance of the clone detection models [17], [41], [46].

These are Precision, Recall and F-Measure.

A. Evaluation Metrics

Precision stands for the relation of correctly predicted

samples to the total number of positively evaluated samples.

In other words, in clone related research, precision refers to

the percentage of accurately detected clones from a sample

where both clones and non-clones are placed together. If Np

is the number of detected true positive clones and np is the

number of detected false positive clones, then the precision is:

Precision, P =
Np

Np + np
(4)

Recall shows to the comparative relation of correctly pre-

dicted samples to the total number of positive samples. In



clone research, the percentage of accurately detected clones

from the total number of positive clones present at sample

is called Recall. If Np is the number of detected true positive

clones and Nn is the number of detected false negative clones,

then the recall is:

Recall, R =
Np

Np +Nn
(5)

F-Measure or F1 shows the testing accuracy. It is the

harmonic average of the precision and recall scores of a model

validation process. If P is the calculated precision of a test

system and R is the recall score of that system, then, F-

measure is:

F-measure, F1 = 2 · P ·R
P +R

(6)

B. Research Questions

To evaluate, validate, and show the acceptability of our

model we address the following 4 research questions:

RQ1 Can CLCDSA detect cross-language clones on the

fly without having any predefined knowledge and

only by analyzing the given source code pair’s syn-

tactic features?

RQ2 Can CLCDSA’s DeepNN model detect cross-

language clones with high accuracy?

RQ3 Can CLCDSA outperform all the available cross-

language clone detection models and methodologies

in terms of Precision, Recall, and F-Measure Score?

RQ4 Does CLCDSA support scalability in order to re-

sponsively process a large cross-language clone

dataset?

C. Baseline Methods

To the best of our knowledge, there exist only three tools

and models which can detect cross-language clones. Among

them, Vislavski et al. [12] proposed LICCA which can detect

similar source codes without being language specific. Their

model fully depends on the SSQSA [18] platform, which

generates a common intermediate representation of source

code entities called eCST (enriched Concrete Syntax Tree).

Next, Cheng et al. [1], [13] proposed CLCMiner where they

tried to find out source code tokens similarity to detect

cross-language clones. As their tool was not available, we

replicated their model to show comparison with our work.

Our reproduction results show almost the same accuracy that

the authors stated in their paper. Finally, Perez in his Master

thesis dissertation [41], [42] showed that generating Token

Vectors from traversing AST and learning vectors using the

SkipGram algorithm [47] is helpful in detecting cross language

clones. Their model considered source code pairs a clone if

the estimated score is greater than 0.5.

D. RQ1: CLCDSA On The Fly Performance

From Table I we see the features for which we extracted

metrics from each of the source code fragments in our

repository. We used Cosine Similarity as shown in Eq. 1 for

detecting similarity among the feature matrices, related to the

TABLE III
CLCDSA’S PERFORMANCE DETECTING CROSS-LANGUAGE CLONES

WITHOUT PRE-TRAINING AND ON THE FLY

Threshold@80% Threshold@65% Threshold@50%

Language

Combination

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Java &

Python
0.64 0.48 0.55 0.56 0.63 0.59 0.45 0.87 0.59

Java &

C#
0.78 0.56 0.65 0.67 0.72 0.69 0.57 0.91 0.7

C# &

Python
0.67 0.5 0.57 0.6 0.65 0.624 0.47 0.83 0.6

TABLE IV
TESTING ACCURACY FOR CLCDSA’S DEEPNN

Threshold@80% Threshold@65% Threshold@50%

Language

Combination

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Java &

Python
0.84 0.43 0.57 0.72 0.7 0.71 0.64 0.93 0.76

Java &

C#
0.93 0.54 0.68 0.78 0.76 0.77 0.69 0.97 0.81

C# &

Python
0.86 0.45 0.60 0.73 0.73 0.73 0.66 0.92 0.77

source code of probable clone pairs. From Table III we see the

performance of CLCDSA in detecting cross-language clones

on the fly. With considering 20% difference in feature values

of two different source code fragments, we see that CLCDSA

can detect clones among Java, Python, and C# programming

languages with an average precision of more than 0.68, an

average recall of around 0.5 along with an average F-Measure

score F1 of more than 0.57. For this test case, we actually

restricted the feature metrics of the two source code fragments

belonging to a probable clone pair to be very similar. Even

in that scenario, we saw that CLCDSA could detect cross

language clones with around 60% accuracy. When we allowed

more difference, around 35% in matrix values of two source

code fragments, we observed that CLCDSA can successfully

detect cross language clones among our selected programming

languages with average precision, recall, and F1 score of 0.6,

0.65, and 0.6 respectively. From this scenario, we could see

that with a small compromise with precision rate, CLCDSA

would experience a high recall rate while maintaining the

same accuracy in terms of an F-Measure score. In cross-

language clones, based on developers choice, and differences

in programming language structures and features, it is hard to

get an exact match between two source code fragments from

two different programming languages. So, accepting a good

difference in matrix values of two probable clone candidates

in a cross language environment observes a higher recall rate.

With the similarity Threshold@50% we observed an average

precision, recall, and F-measure score of 0.5, 0.86, and 0.62

respectively which is still acceptable.

From our results we can say that CLCDSA is capable of

detecting cross language clones on the fly with great accuracy

in terms of high Precision, Recall, and F-Measure scores.

E. RQ2: CLCDSA’s DeepNN performance

We evaluated the DeepNN model of CLCDSA, described

in Section III-D, with the help of a testing and a validating

dataset and performance metrics. Table IV shows the test-

ing performance of the CLCDSA model. With the model



TABLE V
CLCDSA’S DEEPNN PERFORMANCE DETECTING CROSS-LANGUAGE

CLONES

Threshold@80% Threshold@65% Threshold@50%

Language

Combination

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Precision

P

Recall

R

F-Measure

F1

Java &

Python
0.76 0.46 0.57 0.67 0.65 0.66 0.58 0.9 0.705

Java &

C#
0.86 0.57 0.685 0.75 0.68 0.713 0.67 0.96 0.79

C# &

Python
0.73 0.46 0.564 0.65 0.65 0.65 0.62 0.89 0.731

configuration described in Section III-D we see that with

the threshold value of a classification unit of 0.8 or greater,

the model can detect cross language clones among the three

programming languages under observation i.e., Java, C#, and

Python for the testing dataset with an average precision of

above 0.85, along with an average recall rate of 0.46, and

an average F-measure score of above 0.6. From this test

case, we see that with the training model that we configured

we can detect cross language clones with a good accuracy

even under a tight acceptance rate. Although the training

model should perform more effectively in terms of recall

rate as regular models do, for cross language clones, since

the metrics for the features highly vary from language to

language, by accepting a low error rate in model prediction,

we observed a low recall rate. With similarity threshold@65%,

which means accepting a classification unit value of 0.65 and

above, CLCDSA could detect cross language clones with an

average precision, recall, and F-measure score of 0.74, 0.72,

and 0.74 respectively. From this, we can observe that despite

compromising the precision a little, the recall rate increased

around 23%. With the threshold value of 0.5 and above, we

observed an average precision, recall, and F-measure score of

0.66, 0.95, and 0.79 respectively. Considering the observed

values of the performance metrics for the test set data we

can say that the CLCDSA DeepNN model is well designed.

As well, training the model with our cross language clone

training dataset helped the model to detect clones from the

test data set with an average of 75% accuracy, for the selected

programming languages.

For validating the DeepNN model, we generated a val-

idation dataset. We took 5 accepted solutions for each of

the programming languages for a single problem statement

collected from two open source programming contest sites:

AtCoder and Google Code Jam. Along with this dataset, we

collected accepted solutions from another open source contest

site: Coderbyte10. For a single posted problem, we collected

at least 5 accepted solutions for each of the programming

languages from this site in the same manner as we did for

AtCoder and Google Code Jam. In this way, we built our

dataset for validating the DeepNN model. From this dataset,

we randomly selected 200 questions and their solutions for

validation purpose. We also randomly selected the probable

clone pairs from this dataset. From Table V we can see

CLCDSA’s DeepNN model’s performance in detecting cross

10https://www.coderbyte.com/challenges

TABLE VI
PERFORMANCE OF AVAILABLE TOOLS IN DETECTING CLONES AMONG

JAVA & PYTHON PROGRAMMING LANGUAGES

Tools Precision Recall F1-Measure

LICCA 0.14 0.32 0.194

CLCMiner 0.09 0.13 0.11

AST Learner 0.184 0.81 0.30
11Since AST Learner currently only supports Java and

Python, we only performed our clone detection experiment

with Java and Python

language clones for our validating dataset. Comparing it with

that of Table IV we see that we did not loss much accuracy in

detecting cross language clones for the testing and validating

dataset. With threshold@80%, which means accepting a clas-

sification unit value of 0.8 or more as clones, for the validation

dataset, DeepNN of CLCDSA detected clones with an average

precision of 0.80, with an average recall rate of 0.48, along

with an average F-measure score of 0.59. From this we can

say that we observed a little bit of a reduced precision rate

for validating data compared to test data. However, it was

acceptable because reducing the threshold value to 0.65, we

observed around 8% or less reduction in average precision

rate, but got an increment of around 20% in average recall

rate. These results are still less compared to the test data, but

their differences were very little and we could easily accept

this, since the validated data was completely new to the model.

Finally, by accepting a classification unit value of 0.5 or more

as clones, we experienced that CLCDSA could detect cross-

language clones with an average precision of 0.62, an average

recall 0.9, and an average F-Measure 0.71. This indicates that

CLCDSA could detect clones with around 70% accuracy.

From the above discussion we can say that CLCDSA

DeepNN detects cross language clones with greater accuracy

than CLCDSA On-the-Fly. This model and the experimental

data along with the experimental results available for others

[63].

F. RQ3: Performance of Available Models

As discussed in Section IV-C we found that at present three

tools are available which could detect cross language clones.

Among them, CLCMiner was designed for a different purpose

and was not designed to detect plain cross language functional

clones (two source codes written in different programming

languages performing same operation). From the Table VI we

can also see the poor performance of this model. Each of the

average precision and recall rates we observed for CLCMiner

was on average below 0.15. In addition to that, LICCA also

performed poorly for our clone dataset. The reason behind

LICCA’s poor performance is the set of the restrictions it

possesses. For detecting clones, LICCA needs the code blocks

size to be the same and requires the same control flow and

sequences along with the same flow of statements. In regular

cross language clone data, these preconditions are hard to meet

because of the nature and structure of different programming

languages. From our observation and the description provided



TABLE VII
PERFORMANCE OF ACTION FILTER IN REDUCING TOTAL COMPARISONS

Comparison

Style

Action Filter

Status

Number of

Comparisons

Action Filter

Status

Number of

Comparisons

Total Dataset No Filter 5.8077e+838 Filter Active 2.84253e+30

Java & Python No Filter 3.87259e+279 Filter Active 2.84217e+30

Java & C# No Filter 3.87259e+279 Filter Active 3.7252e+19

C# & Python No Filter 3.87259e+279 Filter Active 3.63798e+26

in their paper, we found that LICCA could detect cross-

language clones with an average precision, recall, and F-

measure score of 0.14, 0.32, and 0.20 respectively. Finally,

we experimented with the state of the art Cross Language

clone detection model AST Learner. With the acceptance of

prediction value score of 0.5 and up, AST Learner could detect

cross language clones with around 0.18 average precision and

0.81 average recall. This helped them achieve an F-Measure

score of 0.30. Comparing the experimental results described in

Table VI with Table III and Table V, CLCDSA outperforms all

available tools and methodologies for detecting cross language

clones by a high margin in terms of precision, recall, and F-

Measure.

G. RQ4: Scalability

To evaluate the performance of the action filter that we

proposed for CLCDSA we compared the total number of

estimated comparisons among the given source code and the

actual comparison performed at the time of validating the

model. For this experiment, we selected the dataset that we

configured for validating the CLCDSA DeepNN model. The

dataset consists of 200 problem statements where for each

problem statement we selected 5 accepted solutions for each

of the three programming languages. From Table VII we see

the comparative performance of a number of source code

comparisons with the absence and presence of the action

filter. From the data in Table VII, we see that our proposed

action filter successfully reduced the number of source code

comparisons by a significant amount, which illustrates the

scalability and capability of our model in handling large cross

language clone datasets.

V. THREATS TO VALIDITY

We consider a number of threats to the validity of our study.

One threat concerns our collected dataset and its validation.

We performed our evaluation and validation process with a

collected dataset of 78K source code written in Java, C#, and

Python to solve programming contest problems. We collected

the dataset from open source contest sites where submitted

solutions for a single problem are tested with the same input

and the expected output. We only collected the source code

which was accepted with full scores. Solutions of one single

problem statement are considered clones to each other and

solutions of different problem statements are considered non-

clones. Based on these considerations, we claim that the

dataset is a validated source of cross language code clones

and that CLCDSA will be able to show similar performance

in general, and with other cross-language clone datasets.

Another probable threat could be the quality of the API

call documentation used by our Action Filter. We collected

documentation from the programming language curators’ web-

sites. The documentation has been used and considered of

good quality in previous studies. Our consideration of using

a similar approach as of previousl studies helps mitigate the

threat to validity of our study.

Finally, the selection of DeepNN for our feature vector

learning model could be questionable too. We selected this

model based on the model selection process described in

Oreo [24]. DeepNN has already proved to be applicable to

work for similar kinds of problems and usage scenarios. So,

we claim that we have selected a reasonable model to learn

our feature vector. In the future, we would like to perform a

further study to verify whether DeepNN is the best choice for

our proposed model or not.

VI. RELATED WORK

Detecting clones across projects is not a new concept.

Considerable research and tools are available to detect clones

between and within projects. Single language clones can be

detected using source code text similarity (e.g., Duploc [48],

Marcus et al. [49], and NiCad [16]), code-token based similar-

ity (e.g., CCFinderX [14], Clone Detective [50], iClones [51],

and SourcererCC [17]), AST-based similarity detection tech-

niques (CloneDr [52], Deckard [15], CloneDigger [53], and

SimScan [54]), metrics-based techniques [34], [55], clones

in binary executables [60], and Program Dependency Graph

(PDG) based clone detection techniques [56], [57]. Although

progress has been made in detecting clones for a single

language, a significant gap still exists in detecting clones

across different programming languages.

One of the very first works in cross language clone detection

was proposed by Kraft et al. [58] where they leveraged

CodeDOM as an intermediate representation. Their model

could detect clones across programming languages developed

by Microsoft .Net framework that usually used the same inter-

mediate representations, e.g. C#, ASP.Net, Visual Basic, and

so on. Their model is not able to directly detect clones across

different programming languages such as clones between Java

and C# or Java and Python (where intermediate states are

totally different, at the same time supported platforms and

programming language maintainers are different too). Another

very closely related work was by Al-Omari et al. [59]. They

detected clones in .Net programming languages by analyzing

the generated Common Intermediate Language (CIL).

Vislavski et al. [12] proposed LICCA to detect cross lan-

guage clones. They leveraged the SSQSA [18] platform’s

capability of generating common intermediate representations

for various programming languages. Although it is a sound

approach for detecting cross language clones, their model

suffers from a number of limitations such as failing to detect

cross language clones for non-equal length source codes, non-

similar control flow of data and non-similar usage pattern

of APIs’ in different source codes and so on (discussed in

Section I). These limitations restrict their model from being



usable for real-world cross language clone detection. Cheng

et al. [1] proposed CLCMiner to detect code changes for a

3rd party tool’s API calls across different programming lan-

guages. They use a word-token matching strategy to track code

changes across different revision histories. Their approach

fails to detect similar functional code blocks across different

programming languages.

Very recently an AST learning based approach was pro-

posed by Perez et al. [41], [42] which can learn AST represen-

tations across different programming languages. Their model

is quite capable of detecting code clones between Java and

Python. However, their model has a very low precision rate

even though their model accepts 50% and up similar AST

blocks as code clones. Supervised [24], [62] and unsupervised

[61] deep learning based clone detection models are have

been proposed for detecting clones for a single programming

language. However, the approaches used are not suitable for

detecting cross language clones.

Learning similar APIs across different programming lan-

guages has already been shown to be capable of detecting

similar software applications [29] and finding similar cross

language libraries [30]. Currently the performance of these

models is acceptable, however, more research is required to

develop a highly accurate similar API calls mapping technique

that could easily be adaptable in a cross language software

development environment.

VII. CONCLUSION

While there are many clone detection tools available for

detecting clones in software systems written in a single

programming language, there are only a few approaches for

detecting clones in software systems implemented in different

programming languages. Given that cross language clones are

likely to have more varieties than single language clones, and

that they may pose additional challenges in software mainte-

nance and evolution, it is important to detect cross language

clones. In this paper, we proposed CLCDSA which can detect

cross language clones with greater accuracy compared to all

other available models in terms of Precision, Recall, and F-

Measure. CLCDSA can detect clones both on the fly, and

with the help of a deepNN network. In the future we plan

to study its suitability for other cross language based source

code analysis.
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