
Evaluating Performance of Clone Detection Tools in
Detecting Cloned Cochange Candidates

Md Nadim Manishankar Mondal Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

{mdn769, mshankar.mondal, chanchal.roy}@usask.ca

Abstract—Code reuse by copying and pasting from one place to
another place in a codebase is a very common scenario in software
development which is also one of the most typical reasons for
introducing code clones. There is a huge availability of tools to
detect such cloned fragments and a lot of studies have already
been done for efficient clone detection. There are also several
studies for evaluating those tools considering their clone detection
effectiveness. Unfortunately, we find no study which compares
different clone detection tools in the perspective of detecting
cloned co-change candidates during software evolution. Detecting
cloned co-change candidates is essential for clone tracking. In this
study, we wanted to explore this dimension of code clone research.
We used six promising clone detection tools to identify cloned
and non-cloned co-change candidates from six C and Java-based
subject systems and evaluated the performance of those clone
detection tools in detecting the cloned co-change fragments. Our
findings show that a good clone detector may not perform well
in detecting cloned co-change candidates. The amount of unique
lines covered by a clone detector and the number of detected
clone fragments plays an important role in its performance. The
findings of this study can enrich a new dimension of code clone
research.

Index Terms—Clone Detection, Cloned Co-change Candidates,
Commit operation, Software Maintenance.

I. INTRODUCTION

A large number of software tools have already been in-
troduced for detecting cloned code fragments. Two surveys,
that were done in 2009 by Roy et al. [25] and in 2013 by
Rattan et al. [22] reported 75% increase in the number of
clone detection tools in these four years. Roy and Cordy [23]
reported the existence of about 200 tools for detecting cloned
code fragments. Although a large number of clone detection
tools currently exist, we found no study for comparing the
performance of different tools based on their ability to be used
in software maintenance activity such as predicting cloned co-
change candidates during software evolution. In this study,
we wanted to explore, whether a good clone detector also
performs well in detecting cloned co-change fragments?

One of the common features of clone detection tools is
to combine similar code fragments into a clone group or
class. The code fragments in a particular clone class are
expected to perform similar functionalities. If we want to
make changes to a particular clone fragment in a clone class,
the other fragments in the class are likely to have similar
changes to ensure consistency of the codebase. Considering
this assumption, we can say that all the clone fragments in a
clone class have the possibility of being a cloned co-change

candidate with any change of that class members. We utilize
the clone classes provided by the clone detectors for these
types of co-change prediction.

During software evolution, a developer makes changes in
the codebase to fulfil some change requests. Those change
requests could be related to each other or independent [19, 17].
Therefore, all the changes done in a single commit need not be
related to each other. Some changes in a single commit may be
dependent on each other and some may be independent. The
related code fragments are known as the co-change candidates
in literature [18]. Some of those co-change candidates may
contain similar code-fragments i.e. they are clones of one
another, on the other than, other types of co-change candidates
may not be cloned fragments but they have a functional
dependency or coupling with each other. If a developer makes
changes to a target code fragment, those changes might also
need to be reflected to other similar fragments in the codebase
to ensure consistent evolution of the software system [20, 16].
Failing to change a co-change candidate of a target fragment
can introduce bugs in the software system [10, 9]. In this
study, we evaluated the performance of clone detection tools
in detecting cloned co-change candidates.

We have analyzed thousands of commit operations from the
evolutionary histories of six subject systems listed in Table I.
While analyzing a commit operation, we identify which code
fragments changed together (i.e., co-changed) in that commit.
Considering each fragment as the target fragment, we try to
predict the other actually co-changed fragments using each of
our clone detectors. We found some change fragment which is
not detected by any of the clone detectors. We excluded those
change fragments from consideration during calculating the
performance measures of clone detectors. An example of our
detection process is demonstrated in Fig. 1. Let us assume
that 21 changes, C1 to C21, occurred in the codebase of a
subject system in a particular commit operation. We detect
these changes using the UNIX diff operation. If we consider
C1 as the target change, the other 20 changes, C2 to C21, are
the actual co-change candidates (i.e., co-changed candidates)
of C1. We apply different clone detectors to detect these co-
change candidates for the target change C1. Let using Deckard
we can detect five change fragments (C2, C6, C8, C15, C21)
from those 20 fragments, similarly using Nicad we can detect
four fragments (C5, C10, C16, C18). We will continue to
detect co-change fragments using all the other clone detectors.

Fig. 1: Demonstrating Cloned Co-change Detection Process

After getting the results from all the clone detectors, we find 10
unique change fragments (C2, C5, C8, C15, C21, C5, C8, C10,
C15, C21) out of 20 fragments by taking a union of the results
of all the clone detectors. We will take those 10 unique change
fragments as cloned co-change candidates and calculate the
recall of each of the clone detectors based on their number
of detection among those cloned co-changes. For each subject
system, we finally calculated average recall, average precision,
and F1 Score for each of the clone detector for predicting the
actually co-changed fragments during system evolution. We
then compare the clone detectors based on their F1 Score.
Fig. 2 and Fig. 3 shows the bar chart of Average Recall and
Average Precision drawn from our experimental results and in
Table VI we have given the calculated F1 Score. According
to our preliminary findings and ranking of the clone detectors
(Table VIII), we can conclude that DECKARD outperforms
all the other five tools. The performance of ConQAT is next
to DECKARD. Other tools are in the following order where
NiCad and SimCAD provides equal F1 Score, on the other
hand, iClones and Simian are very close based on their
F1 Score. We also calculated the average number of distinct
lines detected as cloned lines by each of the clone detectors in
all the revisions of all the subject systems and found that the
clone detector which detects more distinct lines as a cloned
line in the codebase also performs well in detecting cloned
co-change candidates.

Based on this preliminary study, we tried to answer the
following research questions:

RQ1: What is the comparison scenario of the clone detec-
tors in predicting cloned co-change candidates?

RQ2: Why do different clone detectors perform differently
in detecting cloned co-change candidates?

To the best of our knowledge, our study is the first one
to compare clone detection tools considering a particular
maintenance perspective (e.g., considering their capabilities in
successfully suggesting cloned co-change candidates during
software evolution). From an initial assumption, it is obvious
that a clone detector which is good in detecting clone should
also be good in detecting cloned co-change candidates. In
this exploratory study, we wanted to practically verify this
assumption. We selected six good clone detectors reported in
several earlier studies in our investigation to verify whether
they are also good at detecting co-change.

TABLE I: Subject Systems

Systems Lang. Domains LOC Rev.
Brlcad C Computer Aided Design 39,309 2115
Carol Java Game 25,091 1700
Ctags C Code Def. Generator 33,270 774
Freecol Java Game 91,626 1950
Jabref Java Reference Manager 45,515 1545
jEdit Java Text Editor 191,804 4000

TABLE II: Summary of Data Processed

Category of
Information Brlcad Carol Ctags Freecol Jabref JEdit

Number of revisions
Processed 2113 1700 774 1001 1540 215

Number of revisions
experiencing change 660 454 447 836 860 145

Number of revisions
experiencing more than
one change

553 430 330 833 755 145

We organized this paper in the following sections: Some
related works are described in Section II, our methodology is
in Section III, we described the experimental result in Section
IV, the discussion is in section V, Section VI explains some
possible threats to validity, and we conclude our paper by
mentioning future work in Section VII.

II. RELATED WORK

There are several studies [28, 25, 2, 24] that have been
focused on ranking different clone detection tools based on
their performance in detecting different types of clone frag-
ments and accuracy of those detection tools. Burd and Bailey
[3] did a study for comparing the performance of three clones
and two plagiarism detecting tools based on their precision
and recall of the ability to detect duplicated codes in a single
file or across different files. Bellon et al. [2] evaluated six
clone detection tools based on eight large C and Java programs
of almost 850 KLOC and made a framework for comparing
different clone detection tools with the data validated by
one of the authors of this. Rysselberghe and Demeyer [26]
evaluated three representative clone detection techniques from
a refactoring perspective where they provided comparative
results in terms of portability, kinds of clone reported, scala-
bility, number of false positive, and number of useless clone
detection. Svajlenko and Roy [28] evaluated eleven modern
clone detection tools using four benchmark frameworks and
noted ConQAT, iClones, NiCad and SimCAD as very good
tools for detecting clones of all the three types (Type-1, Type-
2, Type-3). Roy et al. [25] did a qualitative comparison and
evaluation of the latest clone detection approaches and tools,
and made a benchmark called BigCloneBench [23] which
contains eight million manually validated clone pairs in a large
inter-project source dataset of more than 25,000 projects and
365 million lines of code. They categorize, relate and assess
different clone detection tools based on two different points
of view such as classification based on the overlapping set
of attributes in the different code fragments and the scenarios
how Type-1, Type-2, Type-3, and Type-4 clones created. They

also elaborated the procedure of using the result of their study
to select the most suitable clone detection tool or technique in
the context of a specific set of areas and limitations.
There are some studies which not only proposed a clone
detection mechanism but also did a comparison of their
proposed technique with some existing techniques. Koschke
et al. [13] provided a technique to detect clone using suffix
trees in abstract syntax trees and they also made a comparison
to other techniques using the Bellon benchmark for clone
detectors. Ducasse et al. [6] and Selim et al. [27] also utilized
Bellon’s framework for measuring the performance of their
proposed clone detection tools based on string comparison and
intermediate source transformation respectively. Selim et al.
[27] showed that their tool is capable of detecting Type-3
clones and their technique is better than the source-based clone
detectors based on the value of recall through a slight drop
in the precision using Bellon’s corpus where clone group is
not complete. Compared to the standalone string and token-
based clone detectors, their technique showed a little higher
precision.
All the studies which compared different clone detectors have
been focused on the precision, recall, computational complex-
ity, and memory used or detecting a specific type of clone
fragments such as Type-1, Type-2, Type-3, or Type-4 during
the detection approach of duplicated code in a codebase. Our
study to compare clone detectors is completely different from
the previous comparisons. We do not want to compare clone
detection tools based on the capability to detect clones. Our
point of interest is to detect co-change candidates during the
software commit operations. Mondal et al. [18] did a study
to predict and rank the co-change candidates by analyzing
evolutionary coupling from previously done change history
using generated clone fragments by NiCad but they did not
consider the result of other clone detection tools and also
did not show any comparative study among different clone
detection tools in doing such prediction and rank of co-change
candidates. We found no study which compared different
clone detectors in this perspective of software maintenance.
In this research, we have analyzed the performance of six
clone detection tools based on their capabilities in finding
co-change candidates during software evolution using their
generated clone result. We have taken four clone detection
tools (ConQAT, iClones, NiCad, and SimCAD) suggested as
good tools in the study of Svajlenko and Roy [28] and two
other tools, one of them is text similarity-based (Simian) and
the other is tree similarity-based (DECKARD) for evaluating
their performance in our study. According to our knowledge,
this is the first such investigation of performance with clone
detection tools.

III. METHODOLOGY

We have used six subject systems listed in Table I and six
clone detection tools (Table III) for our analysis. Our analysis
aims to rank these clone detection tools based on their perfor-
mance in successfully suggesting actual co-change candidates
(ACC) during the software evolution. Before starting our main

TABLE III: Configuration of Participating Clone Detection Tools

Tools Configuration for Clone Detection
ConQAT block clones, clone min-length=5, gap ratio=0.3
DECKARD min. size: 30 tokens, 5 token stride, min. 85% similarity
iClones minimum block: 30, minimum clone: 50,

All Transformation

NiCad block clones, blind renaming, max. threshold=0.3,
minimum lines=5, maximum lines=2500

SimCAD block clones, Source Transformation= generous
Simian min. size: 5 lines, normalize literals/identifiers

analysis, we have to resolve some issues and we have taken
the following considerations in this regard.

Selection of subject systems: To select subject systems
for this study, we considered both the popularity of program-
ming language and availability of a considerable amount of
revisions. According to the TIOBE Programming Community
index [29] (an indicator of the popularity of programming
languages), Java is dominating the list of popular programming
languages for more than the last ten years and C is the second
most popular programming language within this period. Con-
sidering this fact, we wanted to select subject systems written
in these two programming languages. Our other consideration
was the availability of a considerable amount of revisions of
each of the systems. Based on both of the considerations, we
have chosen the subject systems listed in Table I.

Selection of clone detectors: In this research, we wanted to
examine those clone detection tools which are good in detect-
ing all types of clones. To select such tools, we considered
some related studies. We have taken ConQAT [12], iClones
[7], NiCad [5], and SimCAD [30] as they have been reported
as very good tools for detecting all type of clones in the study
of Svajlenko and Roy [28]. Besides these, DECKARD [11],
iClones and NiCad are often considered as common examples
of modern clone detectors that support Type-3 clone detection.
The reason of taking Simian [8] in our analysis was its ability
to find duplicated code by line-by-line textual comparison
supporting identifier renaming with a fast detection speed
on the large repository and extensive use in several clone
studies [21, 31, 15, 4, 14]. NiCad, SimCAD, and Simian
are textual similarity-based clone detection tools. DECKARD
works using tree comparison technique, on the other hand,
ConQAT and iClones are token-based clone detection tools.

Determining if the extracted co-changes are related to
each other or not: Even though we have extracted all the
changes between two adjacent revisions (i.e., revision n and
n+1), we cannot guarantee that all the changes are actually
co-change candidates of each other. There might be some
changes which do not depend on any other changes i.e. they
may change independently. The inclusion of such dissimilar
changes into our calculation can drop the detection accuracy of
clone detectors. To minimize such drops, we excluded those
co-changes which are not detected by any of the six clone
detectors. As none of the clone detectors in our study considers
them as co-change candidates, we considered those changes
as dissimilar or independent changes.

Ensuring if the configuration parameters of all the clone
detection tools identical with each other or not: As we
wanted to compare different clone detectors based on their
capability of successfully suggesting co-change candidates, it
was important to configure them identically during detecting
clones from our subject systems. Wang et al. [31] introduced
confounding configuration choice problem where the config-
uration of different tools during clone detection may play a
vital role and the result may be best or worst depending on
the configuration. Our configuration of different tools is shown
in the Table III. We have used similar configurations for each
of the tools for obtaining a consistent result. We have taken
configuration values similar to Svajlenko and Roy [28] which
they conducted to compare different clone detectors based
on their efficiency in detecting cloned fragments. ConQAT,
NiCad, and DECKARD require similarity parameter which we
have taken for ConQAT 70% (gapratio=0.3), for NiCad 70%
(threshold=0.3) and DECKARD 85%. We analyzed the result
obtained from DECKARD with the similarity score 70% (as
of ConQAT and NiCad) and found that with this similarity
score DECKARD generates a lot of unwanted clones in the
result where most of them are duplicated and showing a lot of
fragments as a clone to itself several times. We also tried some
other percentage values such as 75%, and 80% but the detected
result of DECKARD becomes much desirable when we set
it to 85%. Svajlenko and Roy [28] also used 85% similarity
while running DECKARD for Mutation Framework. As we
wanted to compare different clone detectors based on their
capability of successfully suggesting co-change candidates,
it was very important to configure them identically during
detecting clones from our subject systems.

The overall approach: Our overall processing is performed
in some distinct steps. Initially, we downloaded all the source
files of all the revisions of all the subject systems from their
respective SVN repositories. We then applied diff operation
between each file of a revision with the respective file in
the next revision and extracted the change information such
as Name of the File which is changed, the Line where the
respective change begins, the Line where the change is ended
from the output of diff. We did the change extraction for
each of the revision (excluding the last one) of all the subject
systems. After detecting all the changes, we started the clone
detection on all the revisions of all the subject systems using
all the clone detection tools. We started our main analysis
to find the accuracy of each of the clone detection tools
after having the result of all the clone detectors and change
information from all the revisions.

The mechanism of calculating accuracy is demonstrated in
our introduction using Fig. 1. Suppose, we are examining a
particular commit operation. The number of fragments that
were changed in this commit operation is n. Now, let us
consider one of these n fragments as the target fragment.
Then the other n − 1 fragments are the actually co-changed
candidates for the target fragment. We excluded the non-
cloned co-change candidates using the approach described in
the introduction. After this exclusion, we get the Actually

TABLE IV: Percent of Cloned co-change

Subject
Systems

Total Number
of Changes

Average Percentage of
Cloned co-change (%)

Brlcad 2103 14
Carol 3299 10
Ctags 533 17

Freecol 7514 12
Jabref 6011 8
jEdit 3603 9

Cloned Co-change (ACC) for each of the target fragments.
Let us assume that the target change fragment intersects

a particular clone fragment from a particular clone class.
The other fragments in that clone class are considered as
the Predicted Cloned Co-change (PCC) candidates. We now
determine how many of these PCC intersect with the ACC to
obtain the number of detected cloned co-change candidates by
the clone detector.

These counts of predicted and actually co-changed can-
didates are considered as the true positives to calculate
Recall, Precision, and F1 Score. We calculate these using the
following equations (Eq. 1, 2, and 3).

Recall =
|PCC ∩ACC|
|ACC|

(1)

Precision =
|PCC ∩ACC|
|PCC|

(2)

F1 Score =
2× Precision×Recall

Precision+Recall
(3)

We repeat the calculating process of Recall and Precision
for all the changes in each of the subjects systems with the
detected clone fragments generated by all the clone detection
tools. We then calculate F1 Score of the clone detectors for
each of the subject systems by taking the average values of Re-
call and Precision which is reported in Table VI. We reported
both the ranking of the tools in each of the subject systems
in Table VII and overall ranking considering all the subject
systems in Table VIII. To calculate the overall ranking of the
tools we took weighted average (Total number of Changes is
the corresponding weighting factor in each subject system)
of the performance measures (Precision, Recall, F1 Score) in
each individual subject systems.

IV. EXPERIMENTAL RESULT

In this section, we will answer the research questions based
on our overall analysis and obtained results by the processing
of each of the six subject systems using all the six clone
detection tools.

Fig. 2: Average Recall of Different Tools

A. Answer to the RQ 1

What is the comparison scenario of the clone detectors
in predicting cloned co-change candidates?

The key experimental results are in Fig. 2, Fig. 3, Table IV,
Table VI, Table VII and Table VIII where Fig. 2 and Fig. 3
shows the average Recall and average Precision of each of the
clone detection tools. Table IV shows the percent of cloned
co-change candidates we found from the six subject systems
using the six clone detection tools. We found the highest and
lowest percentage of cloned co-change candidates from Ctags
and Jabref respectively. Table VI shows the F1 Score of each
of the clone detectors in each of the subject systems. The
F1 Score is calculated using Equation (3). Our experimental
results concluded in Table VII which shows that DECKARD
and ConQat equally show better performance than the other
tools in most of the subject systems. The summary of the
results in the Table VII shows that among the subject systems,
ConQAT is the best in BRLCAD and Jabref and second-
best in the other two Ctags and Freecol, on the other hand,
DECKARD is the best in Carol and Freecol and second-best
in the other two Jabref and JEdit. Similarly, NiCad shows
the highest accuracy in the result of Ctags and JEdit, second
highest in the result of Carol, but not much considerable
in all the other subject systems. Performance of SimCad,
iClones, and Simian in these criteria is not remarkable. We
also calculated overall performance in Table VIII where we
can see that the F1 Score of DECKARD is highest than the
other tools. ConQAT, NiCad, SimCAD, iClones, and Simian
are in the following order considering the weighted average
of F1 Score.

As our analysis was based on the clone class provided by
the clone detection tools, we found that the efficiency of clone
detection tools in suggesting cloned co-change candidates is
mostly dependent on its effectiveness in making clone class.
The tool which groups functionally similar clone fragments
into a clone class effectively can perform well in successfully
suggesting cloned co-change candidate(s). Different values of
the accuracy of different clone detectors indicate the difference
in their efficiency in this research domain.

Fig. 3: Average Precision of Different Tools

TABLE V: Summary of Detected Clone Results (Weighted Average)

Tools DECKARD ConQAT SimCAD iClones Simian NiCad
#CF 5792 1747 838 728 635 401

LCF 15276 13471 13433 11605 11239 9875
#CF: Number of Clone Fragments in Each Revision
#LCF: Number of Unique Lines Covered by Clone Fragments in Each Revision

B. Answer to the RQ 2

Why do different clone detectors perform differently in
detecting cloned co-change candidates?

From the answer of our RQ 1, we found a difference in
performance for different clone detection tools in suggesting
cloned co-change candidates. We found a good clone detector
may not be good at detecting cloned co-change candidates.
This motivates us to find out the reason to answer this research
question.

We investigated the number of clone fragments and the
number of distinct lines covered by those clone fragments
by all the six clone detectors from all the revisions of all
the subject systems. Table V shows the weighted average of
those counts for each of the clone detection tools. Considering
both, the weighted average of the number of clone fragments
and the weighted average of the number of lines covered by
those clone fragments from all the revisions of all the subject
systems, if we order the clone detectors from the highest
to the lowest, we find Deckard and ConQAT in the top of
the list. Though, earlier study [18] suggests that NiCad is
a very good clone detector, in both of these cases, it falls
at the bottom of the list. Despite, NiCad performs very well
in detecting clone fragments, it provides a lower number of
clone fragment and also the lower number of line coverage by
those clone fragments in the software systems. For that reason,
while detecting the cloned co-change candidates, NiCad is
showing lower F1 Score. The number of clone fragments and
line coverage by those fragments seems to be an underlying
factor behind the obtained comparison scenario of the clone
detectors in predicting cloned co-change candidates, there can
be several other factors such as overlapping of code clones and
code similarity detection mechanism. We plan to investigate
these factors in future.

TABLE VI: F1 Score of Different Tools in Detecting Cloned Co-change

Subject
Systems

Total Number
of Changes

Total Number of
Cloned Cochange F1 Score in Detecting Cloned Co-change

ConQAT DECKARD iClones NiCad SimCAD Simian
Brlcad 2103 13821 0.42 0.28 0.38 0.19 0.25 0.36
Carol 3299 69454 0.25 0.31 0.15 0.30 0.30 0.13
Ctags 533 1963 0.23 0.20 0.13 0.31 0.06 0.17
Freecol 7514 246083 0.17 0.30 0.08 0.09 0.12 0.07
Jabref 6011 79417 0.20 0.20 0.14 0.17 0.18 0.12
jEdit 3603 160689 0.11 0.12 0.06 0.14 0.09 0.05

TABLE VII: Ranks of Clone Detectors by F1 Score in each of
the Subject Systems

Tools BRL-CAD Carol Ctags Freecol Jabref JEdit
ConQAT 1 4 2 2 1 3
DECKARD 4 1 3 1 2 2
iClones 2 5 5 5 5 5
NiCad 6 2 1 4 4 1
SimCAD 5 3 6 3 3 4
Simian 3 6 4 6 6 6
* Tools are listed in alphabetic order in the left-most column.
* The numbers under each subject system represent the ranks of the tools for that system.

TABLE VIII: Final Rank of Clone Detectors Considering all the
Subject Systems

Clone Detectors Weighted Average
of Precision (p)

Weighted Average
of Recall (r)

F1 Score
2pr/(p+r)

Final
Rank

DECKARD 0.16 0.65 0.25 1
ConQAT 0.23 0.18 0.20 2
NiCad 0.18 0.16 0.17 3
SimCAD 0.19 0.15 0.17 4
iClones 0.17 0.11 0.13 5
Simian 0.16 0.10 0.12 6

V. DISCUSSION

There are two primary perspectives of managing code
clones: (1) clone tracking and (2) clone refactoring. Our
research essentially focuses on the clone tracking perspective.
The main task of a clone tracker is to suggest similar co-
change candidates when a programmer attempts to change a
code fragment. For suggesting co-change candidates, a clone
tracker depends on a clone detector. Our research compares
six promising clone detectors based on their capabilities in
suggesting cloned co-change candidates. According to our in-
vestigation, DECKARD and ConQAT are the most promising
tools for suggesting such co-change candidates. NiCad and
SimCAD are also very good options according to our final
ranking demonstrated in Table VIII. Based on our overall
observation, we can say that the performance of DECKARD
is much better compared to the other clone detection tools
in detecting co-change candidates during software evolution.
As the clone classes generated by different clone detectors
played an important role in our analysis, we can say that
the clone detectors which can group similar clone fragments
into a class efficiently will perform better in detecting co-
change candidates during the commit operation. Therefore,
from this observation, we can conclude that the performance
of DECKARD, ConQAT, and NiCad is better compared to the
other clone detectors in grouping similar clone fragments into
a clone class.

When a particular code fragment is changed, we apply the
clone detectors to predict which other similar code fragments
might also need to be co-changed. However, some dissimilar
fragments might also be changed together with the particular
fragment. As we are applying only clone detectors, we cannot
consider those dissimilar co-change candidates in our research.

In our research, we do not compare the clone detectors
considering their clone detection efficiency. We rather compare
the clone detection tools based on their ability in suggesting
cloned co-change candidates. Such a comparison of clone
detectors focusing on a particular maintenance perspective
was not done previously. Suggesting co-change candidates for
a target program entity is an important impact analysis [1]
task during software evolution. Thus, through our research,
we investigate which of the clone detectors can be useful
in change impact analysis to what extent. Findings from our
research can identify which clone detector(s) can be promising
for change impact analysis.

VI. THREATS TO VALIDITY

We have investigated six subject systems in our study.
While more subject systems could generalize our findings, we
selected our systems focusing on their diversity, popularity of
used programming language, and availability of a considerable
number of revisions. For example, our systems are of differ-
ent application domains, sizes, and revision history lengths.
Thus, our findings are not biased by our choice of subject
systems. We believe that our findings are important from the
perspectives of software maintenance.

We have investigated six clone detectors in our study.
Detection parameter settings of the clone detectors can have
an impact on their comparison. However, the parameters
of different clone detectors were selected considering their
equivalence. Thus, we believe that we have a fair comparison
among the clone detectors.

Several code fragments might change together in a commit
operation. While some of these fragments can be similar to one
another, and some might be dissimilar. Similar code fragments
co-change (i.e., change together) for ensuring consistency
of the codebase. However, dissimilar code fragments can
co-change because of their underlying dependencies which
could have some impact on the generalization of this research
outcome. As we aim to compare the clone detection tools, we
wanted to discard the dissimilar co-change candidates from our

consideration. If a co-change candidate was not detected as a
true positive by any of the clone detectors, we discarded the
candidate. We believe that such a consideration is reasonable
in our experiment aiming towards comparing clone detectors
and our findings may inspire more similar research.

VII. CONCLUSION AND FUTURE WORKS

In this research, we make a comparison among differ-
ent clone detection tools from the perspective of software
maintenance. In particular, we investigate their performances
in successfully suggesting (i.e., predicting) cloned co-change
candidates during evolution. We used six open source subject
systems written in C and Java for our analysis. According
to our findings (Table VII & VIII) on thousands of revisions
of these systems, DECKARD and ConQAT show the most
promising results in four (in two best, and the other two
second-best) out of the six subject systems compared to the
other tools. NiCad also shows better performance in three
(in two best, and the other second-best) but it does not
show good enough result in the other three tools. Although
we have figured some reasons of the better performance of
DECKARD, ConQat, and NiCad in the Discussion section of
our study, we planned to extend this research by analyzing
the clone detection mechanism of the clone detectors to
find out some other reasons for their performance. We also
want to investigate the impact of different similarity score of
different clone detectors in finding co-change candidates in our
future studies. Besides this, we want to include some other
clone detection tools of different detection mechanism (i.e.,
tree/ token/ text-based) and subject systems written in some
different programming languages (i.e. C/ C++, C#, Python)
for extending our research.

Acknowledgement: This research is supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), and by a Canada First Research Excellence Fund
(CFREF) grant coordinated by the Global Institute for Food
Security (GIFS).

REFERENCES
[1] Robert S. Arnold. Software Change Impact Analysis. IEEE Computer

Society Press, Los Alamitos, CA, USA, 1996. ISBN 0818673842.
[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Com-

parison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering, 33(9):577–591, Sep. 2007. ISSN 0098-5589. doi:
10.1109/TSE.2007.70725.

[3] E. Burd and J. Bailey. Evaluating clone detection tools for use during
preventative maintenance. In Proc. SCAM, pages 36–43, Oct 2002. doi:
10.1109/SCAM.2002.1134103.

[4] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. Devel-
opment nature matters: An empirical study of code clones in
javascript applications. Empirical Softw. Engg., 21(2):517–564, April
2016. ISSN 1382-3256. doi: 10.1007/s10664-015-9368-6. URL
http://dx.doi.org/10.1007/s10664-015-9368-6.

[5] J. R. Cordy and C. K. Roy. The nicad clone detector. In Proc. ICPC,
pages 219–220, June 2011. doi: 10.1109/ICPC.2011.26.

[6] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On
the effectiveness of clone detection by string matching: Re-
search articles. J. Softw. Maint. Evol., 18(1):37–58, January
2006. ISSN 1532-060X. doi: 10.1002/smr.v18:1. URL
http://dx.doi.org/10.1002/smr.v18:1.

[7] N. Göde and R. Koschke. Incremental clone detection. In Proc. CSMR,
pages 219–228, March 2009. doi: 10.1109/CSMR.2009.20.

[8] Simon Harris. Simian - Similarity Analyser — Duplicate
Code Detection for the Enterprise — Overview. URL
http://www.harukizaemon.com/simian/.

[9] J. F. Islam, M. Mondal, and C. K. Roy. A comparative study of software
bugs in micro-clones and regular code clones. In Proc. SANER, pages
73–83, Feb 2019.

[10] J. F. Islam, M. Mondal, C. K. Roy, and K. A. Schneider. Comparing
bug replication in regular and micro code clones. In Proc. ICPC, pages
81–92, May 2019. doi: 10.1109/ICPC.2019.00022.

[11] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proc. ICSE, pages 96–
105, May 2007. doi: 10.1109/ICSE.2007.30.

[12] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetective - a
workbench for clone detection research. In Proc. ICSE, pages 603–606,
May 2009. doi: 10.1109/ICSE.2009.5070566.

[13] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract
syntax suffix trees. In 2006 13th Working Conference on Reverse
Engineering, pages 253–262, Oct 2006. doi: 10.1109/WCRE.2006.18.

[14] J. Krinke, N. Gold, Y. Jia, and D. Binkley. Cloning and copying
between gnome projects. In Proc. MSR, pages 98–101, May 2010. doi:
10.1109/MSR.2010.5463290.

[15] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy, J. Krinke, and
K. A. Schneider. An empirical study of the impacts of clones in
software maintenance. In Proc. ICPC, pages 242–245, June 2011. doi:
10.1109/ICPC.2011.14.

[16] M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider. Investigating
context adaptation bugs in code clones. In Proc. ICSME, pages 157–
168, Sep. 2019. doi: 10.1109/ICSME.2019.00026.

[17] Manishankar Mondal, Chanchal Roy, and Kevin Schneider. Connectivity
of co-changed method groups: a case study on open source systems.
pages 205–219, 11 2012.

[18] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider.
Prediction and ranking of co-change candidates for clones. In Proc.
MSR 2014, pages 32–41, 2014. ISBN 978-1-4503-2863-0.

[19] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider.
An empirical study on change recommendation. In Proc. CASCON,
CASCON ’15, pages 141–150, Riverton, NJ, USA, 2015. IBM Corp.

[20] Manishankar Mondal, Banani Roy, Chanchal K. Roy, and Kevin A.
Schneider. Associating code clones with association rules for change
impact analysis. In Proc. SANER, page 11pp, 2020.

[21] C. Ragkhitwetsagul, J. Krinke, and D. Clark. Similarity of source code
in the presence of pervasive modifications. In Proc. SCAM, pages 117–
126, Oct 2016. doi: 10.1109/SCAM.2016.13.

[22] Dhavleesh Rattan, Rajesh Kumar Bhatia, and Maninder Singh. Software
clone detection: A systematic review. Information Software Technology,
(7):1165–1199.

[23] C. K. Roy and J. R. Cordy. Benchmarks for software clone detection:
A ten-year retrospective. In Proc. SANER, pages 26–37, March 2018.
doi: 10.1109/SANER.2018.8330194.

[24] Chanchal Roy and J.R. Cordy. Scenario-based comparison of clone
detection techniques. pages 153–162, 07 2008. ISBN 978-0-7695-3176-
2. doi: 10.1109/ICPC.2008.42.

[25] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. SCIENCE OF COMPUTER PROGRAMMING, page 2009,
2009.

[26] F. Van Rysselberghe and S. Demeyer. Evaluating clone detection
techniques from a refactoring perspective. In Proc. ASE, pages 336–
339, Sep. 2004.

[27] G. M. K. Selim, K. C. Foo, and Y. Zou. Enhancing source-based
clone detection using intermediate representation. In 2010 17th Working
Conference on Reverse Engineering, pages 227–236, Oct 2010. doi:
10.1109/WCRE.2010.33.

[28] J. Svajlenko and C. K. Roy. Evaluating modern clone detection tools. In
Proc. ICSME, pages 321–330, Sept 2014. doi: 10.1109/ICSME.2014.54.

[29] TIOBE Software. Tiobe index — tiobe - the software quality company,
2019. URL https://www.tiobe.com/tiobe-index/. [Online;
accessed 01-April-2019].

[30] M. S. Uddin, C. K. Roy, and K. A. Schneider. Simcad: An extensible
and faster clone detection tool for large scale software systems. In Proc.
ICPC, pages 236–238, May 2013. doi: 10.1109/ICPC.2013.6613857.

[31] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. Searching for
better configurations: A rigorous approach to clone evaluation. In Proc.
ESEC/FSE, pages 455–465, New York, NY, USA, 2013. ACM.

