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Scientific Workflow Management Systems (SWfMSs) have become popular in recent years for accelerating the
specification, execution, visualization, and monitoring of data-intensive tasks. Unfortunately, to the best of our
knowledge no existing SWfMSs directly support collaboration. Data is increasing in complexity, dimensionality,
and volume, and the efficient analysis of data often goes beyond the realm of an individual and requires
collaboration with multiple researchers from varying domains. In this paper, we propose a groupware system
architecture for data analysis that in addition to supporting collaboration, also incorporates features from
SWfMSs to support modern data analysis processes. As a proof of concept for the proposed architecture we
developed SciWorCS - a groupware system for scientific data analysis. We present two real-world use-cases:
collaborative software repository analysis and bioinformatics data analysis. The results of the experiments
evaluating the proposed system are promising. Our bioinformatics user study demonstrates that SciWorCS
can leverage real-world data analysis tasks by supporting real-time collaboration among users.
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1 INTRODUCTION
In the recent big data era, scientific experiments need to handle massive amounts of heterogeneous
data [43, 47]. While data-intensive experiments open up the possibilities for interesting discoveries
(such as through statistical analysis and applying advanced machine learning algorithms), there
are several challenges with complex, data-intensive computation and the analysis process, such
as dealing with failure handling, optimal task scheduling, big data visualization, distributed job
execution and real time execution monitoring [43, 46]. The effective analysis and management of
complex, multi-dimensional, and high volume data is challenging for an individual and often re-
quires collaboration with multiple scientists [87, 88]. In any case, scientific research often demands
collaboration among scientists from multiple domains and with diverse expertise [46, 73, 74, 87, 88].
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Given the collaborative nature of modern complex scientific experiments, recent research de-
termined that Computer-Supported Collaborative Work (CSCW) technologies are necessary to
support scientific experiments that require collaboration among multiple researchers [13, 27, 34, 88].
Jirotka et al. determined that, while the relationship between scientific experiments (i.e., e-Science)
and CSCW is relatively nascent, they together could yield significant benefits in answering com-
plex research questions and in important knowledge discoveries [34]. With this motivation, we
studied the concept of collaboration or groupware systems in the context of Scientific Workflow
Management Systems (SWfMSs) for aiding with complex scientific experiments among multiple
scientists via real-time collaboration. In this paper, we present several challenges and differences
with collaborative SWfMSs in contrast to text or graphics editing groupware systems, and present
a general framework for collaborative SWfMSs that leverages CSCW technologies to support
scientific experiments.

A scientific workflow is a facilitation or automation of a process as a part or whole [3, 33] during
which the targeted data are passed from one computational step to another for certain actions or
processing as per some set of pre-defined rules or instructions [3, 33, 43]. A SWfMS automates a
scientific workflow life cycle: composition, deployment, execution, and analysis [43, 47], which is
discussed in detail in Section 2. While SWfMSs are widely used in recent years for handling and
managing the overall execution of complex scientific experiments [43, 46], none of them directly
support collaborative work among multiple users; hence users need to follow several time consum-
ing manual steps for any required collaboration on a given data analysis task [73, 74, 87, 88]. For
example, for a collaborative design of a scientific workflow, a user first builds a part of a workflow
(e.g., a sub-workflow), exports it from the local workflow engine and shares it with a collaborator
for possible updates on the sub-workflow. Around 3910 such scientific workflows have been shared
among 10665 members (as last noted in August 2018) for collaboration in myExperiment[14] a
shared social space for scientific artifacts. The manual collaboration process is repeated a number of
times to complete building the entire workflow comprising of several sub-workflows. This manual
back and forth process for collaboration is often very time consuming, does not support real-time
editing, and is often impractical as the collaborating group size increases over time.
While the above statistics and scenario reveals the importance and necessity of collaborative

SWfMSs, designing a real-time groupware system for workflow collaboration is non-trivial and
differs from text or graphics editing groupware systems in a number of ways: i) Different Roles.
Scientific experiments often require adequate access control policies for sharing the workflow
components, data products and provenance information among researchers with varying roles [5].
In the context of scientific data analysis, the varying roles might include: Domain user, Pipeline
composer, tool developer or Data specialist and so on depending on the given use-case scenarios
[46]. We present further details on varying roles in Section 5.3. ii) Collaborative Job Scheduling.
Collaborative job scheduling is required to orchestrate and efficiently schedule the independent
workflow execution requests of researchers [87, 88], iii) Collaborative Job Management. In addition
to the primary requirement of workflow job execution, monitoring or failure handling, collaborative
SWfMSs need to have a feedback system to orchestrate the overall data analysis process among the
collaborators, iv) Plugin Architecture for Collaboration. For effective collaboration among research
groups, a collaborative SWfMS must allow easy and real-time plugins of workflow tools, and
v) Collaborative Data Visualization. A collaborative SWfMS should facilitate collaborative data
visualization to fully exploit collaborative data analysis.

To address these challenges and requirements we present a framework towards an effective
design of a collaborative SWfMS for scientific data analysis. Our proposed framework adopts a
plugin based architecture for workflow tools. As a proof of concept of the proposed framework, we
also implement a collaborative SWfMS SciWorCS. As our proposed framework is not restricted to
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any particular research domain, we evaluate it with use-cases from two different research areas
Bioinformatics and Software Repository Analysis where the framework demonstrates promising
results and significant potential.

The main contributions of our work are as follows:

(1) We carefully identify the challenges and requirements for a collaborative data analysis
platform.

(2) We propose a general framework for collaborative data analysis which is applicable to
multiple modern research domains.

(3) We present SciWorCS1 a collaborative SWfMS, developed as a proof of concept of the
proposed framework.

(4) We present two case studies using SciWorCS in the domains of Bioinformatics and Software
Repository Analysis.

(5) We show how users perform collaborative tasks using SciWorCS in the domain of Bioinfor-
matics.

Outline. The rest of the paper is organized as follows. We first present technical prerequisites
and background in Section 2. We discuss related existing research work in Section 3. In Section
4, we discuss the identified requirement analysis and formulate the problems towards the design
of collaborative SWfMSs. We then present our proposed framework in Section 5. We discuss the
implementation details and technical features of SciWorCS as a proof of concept of the proposed
framework with different evaluations in Section 6 and the results are discussed in Section 7. Section
8 discusses the possible threats to validity and finally we draw conclusions in Section 9.

2 BACKGROUND
In this section, we discuss Scientific Workflows and their general life cycle followed by a general
overview of Collaborative Data Analysis.

2.1 Scientific Workflows and Data Analysis
A workflow is a facilitation or automation of a process as a part or whole [3, 33] during which
the targeted data are passed from one participant (e.g., human or computer) to another for certain
actions or processing as per some set of rules [3, 33, 43]. Scientific workflows operate at an abstract
level, and are used for modeling and performing scientific experiments on a dataset [3, 43]. I0n
terms of scientific workflows, the workflow steps are more commonly referred to as Computational
Modules. A computational module is responsible for some independent tasks of data manipulation
and processing. The modules define the associated input data format, the data processing methods
and the corresponding output data format [43].

From composition to analysis, the life cycle of a scientific workflow can broadly be categorized
into four phases [15, 28, 43]: i) Composition Phase [15, 43, 51], in this phase the creation of the
workflow comprising the modular abstraction is done; ii) Deployment Phase [15, 43], while the
composition phase defines the abstract level of the workflow, in the deployment phase the composed
workflow is prepared for execution with the required setups; iii) Execution Phase, the deployed
workflow is executed with the associated input data in this phase to produce the corresponding
output of the workflow [15, 43, 51]; and, iv) Analysis Phase, finally in this phase the output data is
analyzed as per some research hypotheses. Workflow data provenance, output data visualization
and so on are some examples of the Analysis phase [43].

1https://github.com/blindedForReviewPhase
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2.2 Collaborative Data Analysis
The generation of large amounts of heterogeneous data on a daily basis by different areas of modern
science has influenced many disciplines in moving towards data and information driven analysis
and discoveries [47]. The volume or complexity of the data often requires collaborative analysis
involving multiple researchers. For example, in a similar study to ours Zhang et al. [88] referred to
the Large Synoptic Survey Telescope (LSST) [45] experiment that demands a collaboration of around
1800 scientists and engineers for a complete analysis process. As well, some scientific domains
essentially require collaboration as they are highly connected to multiple research disciplines
[87, 88], such as the Plant Phenotyping and Genotyping research domain [54]. Hence, the notion
of collaborative data analysis was coined where multiple researchers work on a project dataset for
different data manipulation, execution, analysis, visualization, or interesting knowledge discoveries
[5, 46, 74, 87, 88].

Table 1. Proposed Architecture Vs. Existing Research Work.

# Research Work CM 1 AC 2 C. Viz. 3 C. JQ 4 C. Prov. 5 C. UA 6

1 Zhang [87] ✓ ✗ ✗ ✗ ✗ ✓

2 Lu et al. [46] ✓ ✗ ✗ ✓ ✗ ✗

3 Bhuyan et al. [5] ✗ ✓ ✗ ✗ ✗ ✗

4 Sipos et al. [73–76] ✓ ✗ ✗ ✗ ✗ ✗

5 Galaxy [25], Taverna [62],
Kepler [47], Pegasus [16] ✗ ✓ ✗ ✗ ✗ ✗

6 Proposed Architecture ✓ ✓ ✓ ✓ ✓ ✓

1: Consistency Management, 2: Access Control 3: Collaborative Visualization
4: Collaborative Job Queuing, 5: Collaborative Provenance, 6: Collaborative User
Awareness

3 RELATEDWORK
In this section, we first present related work on CSCW in aiding with scientific experiments (i.e.,
in Section 3.1), and we then discuss recent work for supporting collaborative data analysis with
SWfMSs (i.e., in Section 3.2).

3.1 CSCW to Support Scientific Experiments
Several recent researches assert the necessity of CSCW in supporting complex scientific experiments
that require collaboration among multiple researchers [13, 27, 34, 88]. Jirotka et al. from their
investigation studies presented that, while the relation of scientific experiments (i.e., e-Science)
and CSCW are relatively nascent one, they exhibit significant potentials in answering complex
research questions and in important knowledge discovery [34]. Hence, over the past few years
several research studies have been conducted in understanding human behavior [21, 27]. Besides
some of the study targeted on discrete aspects of collaborative data analysis systems, such as
consistency management or locking schemes [34, 88]. However, to the best of our knowledge none
of the previous study addressed the overall architecture comprising different primary requirement
or components for a collaborative data analysis system. Hence, our study and proposed architecture
is different than the existing studies in the sense that we formulate the discrete research problems
towards designing an overall architecture towards collaborative data analysis.
A number of studies have been conducted in recent years for gaining in depth understanding
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of scientific work practices such as, how scientific experiments are conducted, how research
artifacts are shared, how scientists interact for tools and technologies and so on [34, 48, 60, 67].
While such investigations often target divergent scientific experiments (e.g., the Electronic Medical
Record (EMR) [32], Breast Cancer Screening [35] and so on), they generally aim in providing
important insights on challenges and design implications of CSCW systems towards virtual work-
space for collaborative scientific experiments [34, 48]. As we propose a high-level architecture for
collaborative data analysis platform, the insights from the existing studies exhibit the scope of
integrating with our proposed architecture towards designing a domain specific collaborative data
analysis platform, such as for EMR, Breast Cancer Screening and so on.

3.2 Towards Collaborative Data Analysis
A Scientific Workflow Management System (SWfMS) automates the process of life cycle phases-
composition, deployment, execution and analysis of a scientific workflow [43, 47]. Large-scale
scientific experiments often take advantages of SWfMSs for modeling the overall data analysis
and manipulation process comprising of different computational steps for input data loading,
transformation, aggregation and so on [43] where, SWfMSs work as a framework for supporting
the specification, modification, execution, failure handling, and monitoring of the data-intensive
tasks [43, 46]. With the increase of data complexity and volume, extensive research has been
done on this domain resulting a number of proposed SWfMSs architecture and corresponding
implementation. Some of the modern popular SWfMSs are: Galaxy [25], Taverna [62], Kepler [47],
Pegasus [16], VisTrails [9], Triana [82], VIEW [42], Chiron [61], GridNexus [8]. However, to the best
of our knowledge none of the SWfMSs supports collaboration directly and requires manual effort
in contrast to our proposed architecture supporting real-time collaboration for data analysis.
Lu et al. [46] studied several motivations opportunities for collaborative SWfMSs from the

perspective of large-scale and multidisciplinary research projects. A number of methods have been
proposed for consistency management of the shared workflow in a collaborative environment.
Zhang et al. [87] studied the concept of turn based locking scheme in the context of collaborative
SWfMSs for facilitating the consistency management. In such setup, each collaborators generally
has only the Read access to the shared workflow. Collaborators request and compete for the floor
for carrying out any update or transaction on the workflow (e.g., Read & Write access). Fei et al.
[20] and Zhang et al. [88] presented locking schemes by allowing only descendent module locks
(e.g., descendent nodes of the workflow DAG [43]).

Sipos et al. [73] used two lock modes - User and System locks. Fei et al. [20] proposed a lock
compatibility matrix for a set of six pre-defined modes of locks. Besides, techniques have also been
studied for extending the single-user Grid portals to a collaborative environment [74, 76].
While the locking schemes for consistency management is one of the primary requirements

of a collaborative system [79], such the requirements of collaborative SWfMSs are often more
than that [46]. For example, those studies did not consider several important aspects such as
collaborative job scheduling, collaborative job execution, collaborative visualization, user interaction
for problem solving and so on. Hence, in our study we addressed those requirements as well for a
successful collaborative data analysis platform, which can significantly contribute towards further
improvement in the research domain.
Table 1 demonstrates the summary of the proposed architecture in comparison to some of the

existing related research. The table shows that, while existing research targeted different discrete
components, our proposed architecture addresses all of the primary requirements towards the
efficient design of collaborative data analysis platform.
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4 RESEARCH CHALLENGES AND PROBLEM FORMULATION
In order to design a high-level architecture of a collaborative SWfMS, we first attempted to identify
the challenges in this domain. We thus first studied the existing literature (see Section 3 for quick
reference) and learned about the challenges. We then conducted a survey with scientists of different
domains to understand researchers’ requirements in scientific analysis, their current practices
and encountered challenges. Finally, we analyzed the existing SWfMSs including Galaxy [25] by
using their executables, source code, online documentation, videos, asking questions of the product
developers, and presenting and demonstrating the frameworks to stakeholders. We also confirmed
and adopted the challenges identified by Roy et al. [69] in the collaborative context which follows
an adapted Scenario-based based architectural analysis method (SAAM) proposed by Roy and
Graham [68]. In particular, they focus on how different stakeholders use these systems in a variety
of scenarios and to what extent those systems support their needs, which we reused in our study.
Hence, prior to presenting our proposed architecture in Section 5, here in this section we first
discuss the primary challenges and formulate the problem that we target to solve in our proposed
architecture.

4.1 Consistency Management in Collaborative Scientific Workflow Composition
One of the most important challenges for any real-time collaborative system is the consistency
management of the shared objects in the face of conflicting operations by the collaborators [79, 80].
In a collaborative editing system, the concurrent operations on the same shared object might
create several conflicting states at any given time frame. Generally, different version controlling
techniques, such as SVN - Subversion, CVS - Concurrent Versions System and so on are widely used
for conflict resolution of the unstructured document collaborative systems, such as Collaborative
Text Document Editing [65], Collaborative Computer Aided Design (CAD) [12], object-based
collaborative Graphics Editing systems [79], Collaborative Bitmap Editing System [23].
Unlike these documents, the scientific workflows are more structured where one module can

be highly dependent on another due to dataflow relation in between them [88]. Even any minor
changes in any part of a workflow, can significantly impact the other part of the collaborative
workflow in execution and data manipulation [19, 20, 87, 88]- which often make the problem
notably different than that of unstructured document collaborative systems, such as text or graphics
editing systems [54, 74, 88]. Hence, consistency management in the face of conflicting concurrent
operations in collaborative workflow composition has been one of the important research problems
in this domain [19, 20, 54, 74, 87, 88].

4.2 Collaboration Modeling for Varying User Roles
Studies show that the identification and modeling of varying user roles in the context of complex
scientific experiments and data analysis can often be crucial and different than that of unstructured
document collaborative systems [5, 11, 49]. Majority of the scientific experiments do not suggest
clear direction on how to proceed or on the correctness of the solution and thus often exhibit
‘ill-defined’ problem nature [10] where the solutions are not often exact and also there exists
several paths or strategies towards the possible solution [4, 10]. Besides, a scientific workflow is
comprised of and linked with different components, such as workflow module ports, executable,
datalink, data products, provenance information [5, 20, 88]. Managing the usability and accessibility
of the workflow components among the collaborating parties are important to guarantee their
domain specific expertise matching, security of the components and easier access [5].
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Fig. 1. High-level Architecture of a Collaborative SWfMS

4.3 Collaboration and Workflow Execution
Lu et al. investigated the possible challenges towards the execution and tasks management from
collaborative perspective, such as maintaining a collaborative provenance model, the relationship
between scientific workflows and collaboration models [46]. In a similar study, Zhang [87, 88]
presented that often there can have several sub-groups working collaboratively on different sub-
workflows of an entire scientific workflows. A collaborative SWfMS needs to handle such indepen-
dent sub-workflow execution and backdoor communication among the sub-group collaborators
[88]. A collaborative scientific data analysis hence, must provide facilities for queuing and handling
execution plans by independent collaborative sub-groups.
In the context of scientific data analysis, provenance management is important for supporting

the reproducibility of scientific experiments, result interpretation or problem diagnosis [22, 43].
The scientific experiments from the collaborative perspective also demands improved provenance
management for the multi-level and heterogeneous executions [43].

4.4 Plugin Based Architecture
The data analysis tasks are generally conducted with sets of individual reusable computational units
or modules [1]. The computational units are often configured as per the specific data manipulation
steps [1, 47]. As different researchers often work towards smaller sub-tasks in a collaborative, the
collaborative data analysis platform hence primarily need to support easier real-time pluggig-in of
the computational units. The plug-in support thus allows extension and solving of more complex
problems over time in collaboration.
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4.5 User Interaction and Problem Solving
Research studies show that, when group activities are not properly channeled and coordinated,
the interaction among the members could affect the iterative process of solution finding and
thus negatively affect the solution [17]. Given the complex nature of scientific data analysis
involving users of different roles, we need to model the communication and awareness among
collaborators. In the context of collaborative SWfMSs, the required interaction can be of, i) awareness
or communication and ii) data visualization among collaborators.

4.5.1 Awareness and Communication Among Collaborators. Providing different methodologies
for group communication towards problem-solving and decision making are also very important
towards the success of a groupware system [17, 40]. Given the ‘ill-defined’ nature of the data analysis
tasks [10], effective real-time interaction among the users are often at the heart of exploiting the
collaboration and problem solving [17]. Hence, similar to other groupware system, the collaborative
data analysis platform need to facilitate real-time user communication (i.e., text, audio, visual and
so on) and user awareness (i.e., telepointer, heatmap and so on) towards aiding problem solving.

4.5.2 Collaborative Data Visualization. In terms of scientific data analysis, data visualization is
also an essential component for interesting knowledge discovery and problem solving, such as
of Genomic data analysis [83]. The collaborative platform hence should support easy plugging-in
of new data visualization tools and aid in collaborative visualization such as via visualization
components sharing, real-time annotation and so on. Research studies show that, in addition to the
user awareness and communication, such support for data visualization and collaborative problem
solving can be important for the successful design of groupware systems [17].

5 PROPOSED ARCHITECTURE
Figure 1 illustrates the proposed high-level architecture of a collaborative SWfMS. As noticeable
from the figure, the proposed architecture comprises of different components and relations among
them. In this section we present the technical functions of the components and also explain how
they interact with one another.

5.1 Plugin Based Architecture for Collaborative Workflow Composition
The data analysis is powered by a set of reusable computational modules, which are integrated to
collaborative data analysis platform as different plugins by the API developers. As plugin-based
architecture is one of the primary requirements for the extension of collaborative data analysis
over time (e.g., as discussed in Section 4), in this section we discuss our proposed approach towards
achieving the goal using the two primary components of the architecture Toolbox and Workflow
Model.

5.1.1 Toolbox. A workflow for data analysis is often represented as a Directed Acyclic Graph (DAG),
W = (M,E), where M is a set of n finite number of modular tasks,mi , (1 ≤ i ≤ n) and E is a set
of directed edges, ei j = (mi ,mj ), (1 ≤ i ≤ n, 1 ≤ j ≤ n, i , j) denoting the dependency relations
among the modular tasksmi andmj [24, 66]. A module,m can be responsible for some independent
computation tasks, such as any module,mi can be responsible for some statistical analysis on a
given dataset, while another module,mj can be responsible for applying a machine learning model
on the dataset and so on. The computation of any module,ml is often further customized (e.g.,
number of nodes, hidden layers in case of a Neural Network Classifier and so on) by its corresponding
configuration sets, Cl - a set of Pl available parameter configurations, ci ∈ Cl , (1 ≤ i ≤ Pl ). Hence,
a collaborative SWfMS module can be generalized as Definition 5.1.
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Fig. 2. Process Modeling for Collaborative Data Analysis Platform.
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Definition 5.1 (Collaborative Computational Module). A computational task module is gen-
eralized as a tuple,m =< id, I ,O,C, S,T > where id is the unique identifier of the module in a
workflow, I andO are the corresponding set of supported input and output data formats respectively
by the module, C is a set of P different parameter settings or configurations, S is the modular
source code that executes based on I ,O,C and finally, T is the set of possible states of the module
(i.e., ready, running, success, failed, aborted) in an execution.

The generalized definition of the computational modules allows collaborators to plugin, reuse
and share the set of tools with others for a given data analysis task.

5.1.2 Workflow Models and DAG Formulation. While a computational module from the toolbox
is responsible for a given data analysis or manipulation task, a set of such modules are combined
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together forming aworkflow towards solving amore complex data analysis problem. Fig. 3 illustrates
a dataflow relation of a workflow between two arbitrary computational modules- mi and mj .
SciWorCS assigns unique identifier to each of the modules comprising a given workflow, such as
mi =< id : i, I ,O,C, S,T > andmj =< id : j, I ,O,C, S,T >. As a module from the toolbox can be
used zero to multiple times, the identifiers are used to uniquely identify all the input-output ports in
a given workflow. For example, we consider an arbitrary module-m from the toolbox, that contains
two input ports- x ,y, and one output port- z. We assume the module get a unique identifier- i on
usage to a workflow. Hence, its input-output ports are encapsulated with the identifier, such as
mi =< id : i, I : [xi ,yi ],O : [zi ],C, S,T >, to uniquely identify in the workflow. The output dataset
generated from an output port of a module is also labeled as the port identifier, which is used for
forming the data dependency relation among the workflow modules. For example, as illustrated
in Fig. 3, the modulemi is a predecessor of the modulemj where, one of its output datasets with
reference- dim from an output port is linked as the input dataset reference for an input port of
module,mj .

5.2 Consistency Management System for Collaborative DAG Formulation
One of the most important challenges for any real-time collaborative system is the consistency
management of the shared objects in the face of concurrent conflicting operations by the collabora-
tors [79, 80]. Sun and Chen [79] studied two primary important requirements for any collaborative
system to be successful: i) High Responsiveness: Provided the non-deterministic communication
latency, a collaborative system need to be light-weight with least amount of delay for a collabora-
tor’s action and its corresponding effect, and ii) High Concurrency: The collaborative system should
be able to maintain a consistent state in spite of multiple concurrent update operations from the
collaborators.

As illustrated in Fig. 1, our proposed architecture for collaborative SWfMS adapts a hybrid style
for ensuring the high responsiveness in the data analysis process via direct client-client communi-
cation and also client-server communication for workflow components (i.e., data, module details
and so on) and execution. That is, instead of running a single instance of the collaborative SWfMS
for all the collaborators, we keep a local copy of the SWfMS for the each of the collaborators,
where the corresponding update operation information are broadcast to the collaborators via
simple light-weight message passing for synchronization. However, while our adaption of the
replicated architecture facilitates the high responsiveness, it also comes with an added challenge
of consistency management in the face of concurrent conflicting operations by the collaborators.
For example, assuming the collaborative workflow DAG composition as illustrated in Fig. 3, two
collaborators might concurrently update the incoming datalink dlm to two different values, x and y,
where, x , y. A conflicting situation, hence occurs on message passing the update information to
the other collaborator.
The consistency management in collaborative SWfMSs can often be different than that of the

collaborative text or graphics editing systems for the complex dependency relations among the
workflow modules [54, 73, 88]. The scientific workflows often being highly structured, any mi-
nor change of any attribute can significantly affect the execution behavior of the descendant
sub-workflow [54, 74, 87]. A number of locking schemes have been proposed in recent years for
facilitating the consistency management in dependency graphs [39, 75] and scientific workflow
DAGs [54, 73, 74, 87, 88]. The locking schemes were proposed targeting the varying use-case sce-
narios such as, locking schemes [87] following Robert’s Rules of Order (RRO) [50], locking schemes
supporting Backdoor Communication [88], locking schemes targeting granular controls [20, 54, 74]
and so on. While we propose a high-level architecture, the appropriate locking schemes can be
selected and implemented as per the requirement of the specific collaborative SWfMSs.

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. EICS, Article 09. Publication date: June 2019.



Designing Groupware Systems to Support Complex Scientific Data Analysis 09:11

5.3 Identification of Roles and Access Controls
Collaborative work involving different researchers or stakeholders face different challenges in its
development phases. For example, creating a clear team vision or specifying the problems to solve by
any particular research groups can often be confusing and thus reducing the overall team potential.
This problem with role conflict, ambiguous problem statements to solve or overlapping of work by
different researchers cost significant amounts of time and money [6]. This type of ambiguity and
unclear definition of problem statements to the worse create stress and dissatisfaction among the
research team slowing down the whole process [89]. So creating several distinguishable roles and
assigning some specific tasks to each of them might show many possibilities in the improvement
of productivity of the whole research team.

(i) Domain User : In workflow management system a large range of tools are accessed by domain
users for scientific data analysis. Each tool is designed for a particular task. One tool’s output
is fed to the next tool for execution and so on. As domain users need to handle different
tools, one might be expert with one settings and another might be others parameter setting.
Scientific tools usually come up with lots of settings.

(ii) Pipeline Composer : This job will be done by an e-science developers who will make sure the
system allows a wide range workflows for the domain users. While composing workflows,
he may need to contact with a tool developers in case of any errors or missing of any tool.

(iii) Tool developer : Tool developers develop the scientific tools. He may need to collaborate with
domain users for running the tools for testing the tool with real world settings.

(iv) Data specialist: Domain users and pipeline composers need to collaborate with data specialists
for accessing data for tools.

After defining the possible user roles, we then identify the possible interaction and collaboration
among the user. We use Collaborative Interactive Application Methodology (CIAM) [52], to design
the process model for the proposed method. For process modeling, we chose to use CIAM, because
of its support for collaborative system design. A successful process modeling for ensuring all
the important interaction and collaboration among the users requires detail information about
the user’s responsibilities and hence, might vary for different use-cases or requirements. Fig. 2
illustrates the designed process model using CIAM for our proposed architecture of collaborative
data analysis platform. The process modeling or the access controls on the workflow components
are facilitated using the ‘Participation Table’ and ‘Responsibilities Modeling’ of CIAM. Participation
table helps to get a higher level of abstraction about the individual and collaborative responsibilities,
where Responsibilities Modeling are used for detailing the responsibilities on the basis of different
user roles [52, 53]. After carefully following the steps of CIAM [52], we designed the process model
as illustrated in Fig. 2. The model demonstrates the interactions among the identified user roles
for the distinguished steps for collaborative data analysis. The process model also demonstrates
the access controls on different workflow components along with the user permissions, such as
Create (C), Read (R) or Write (W). For example, the Admin privileges are assigned to specific users
with C/R/W permission. The arrows in the diagram also illustrates the link among the processes
comprising the collaborative members.

5.4 Job Management and Execution for Collaborative Setup
Job manager is responsible for the scheduling and execution of the job (i.e., representing a modular
task) from the workflow models. It manages the dependencies and execution order of the jobs
to maintain a dataflow oriented execution plan - a job is ready and ordered for execution only if
all of its required input datasets are available (i.e., input dataset or produced without errors from
prior jobs). It also maintains a job queue for managing the multiple execution requests from the
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Fig. 4. Plugin-Based Collaborative Dataset Visualization

collaborators (such as, a sub-workflow of the entire data analysis steps for which a collaborator is
responsible for and so on). The queued jobs are dispatched for local or cluster executions as per
the configurations and implementation of the computational modular step,m. In case of cluster
execution, the dispatched jobs are submitted to a cluster manager (such as, Apache Spark cluster
manager [77]), which in turns are distributed across different worker nodes for parallel execution.
The job manager also sends back the job execution status (e.g., running, success or failed) to the
collaborators for real-time monitoring.

5.5 Plugin-Based Collaborative Dataset Visualization
Similar to the computational modules, a visualization plugin is generalized as a tuple, v =<
I ,O,C, S >, where I and O represent the corresponding set of input(s) and output(s), C is a set of
different parameter settings or configurations and S is the modular source code for the correspond-
ing data visualization. A plugin manager keep tracks of and pulls the available plugins for the
usage. Finally, a plugin runner runs the plugins on the specified clone dataset for generating the
visualization outputs. Fig. 4 illustrates the high-level architecture for the collaborative data analysis
of the proposed method.
The visualization plugin manager also maintains a Message Queue (MQ) for the collaborative

visualization information among the clients. The message structure might depend on the collabora-
tive requirements. For example, in case of collaborative annotation, the message might contain the
co-ordination information, color, shape types (e.g., rectangles or circles) and so on along with the
corresponding user information. The visualization manager pulls the messages from the queue to
render along with the dataset visualization for collaborative analysis. As the MQ is maintained
directly among clients the responses are comparatively faster, keeping the collaborative dataset
visualization more interactive.
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5.6 User Awareness and Interaction
While the consistency management is one of the primary requirements of a collaborative system
[78, 79], providing different methodologies for group communication towards problem-solving
and decision making are also often very important towards the success of the system [17]. Using
the message queue of our proposed architecture for client-client communication, the collaborative
data analysis platform can adapt required implementation for user awareness and interaction from
CSCW techniques. For example, using the user’s mouse position information the ’Telepointer’
features can be integrated to the system, text chat, collaborative white board and so on can also be
implemented as per requirement of the collaborative system. We discuss implementation of some
of such tools as proof of concept in Section 6.1.

Fig. 5. User Interface Overview of SciWorCS.

6 EXPERIMENTS AND EVALUATION
In this section we present different experimental studies for evaluating the proposed architecture.
In our conducted experiments we tried to address the following Research Questions (RQ).

• RQ 1: How can we design collaboration in scientific workflow management system?
• RQ 2: How can we implement a real-world collaborative SWfMS that is functional and
performant by supporting consistency management, sub-workflow execution, visualization
in various formats and so on?

• RQ 3: How can we utilize our collaborative platform for different scientific analysis domains?
• RQ 4: How does the proposed architecture impact the network overhead?
• RQ 5: How do scientists perceive real-time collaboration in data analysis?

We implemented SciWorCS as a proof of concept of the proposed architecture and also for
answering RQ 1, which we discuss in Section 6.1. We then discuss different conducted experiments
and real-world use-case scenarios in answering the above RQs 2, 3, 4 and 5 respectively.

6.1 SciWorCS as a Proof of Concept
We implemented the SciWorCS tool as a proof of concept of the proposed collaborative scientific
workflow management system. The implementation is a cloud-based system. The SciWorCS is
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implemented in Python programming language (e.g., Python 2.7 ). We used Python to leverage the
larger number packages and library supports for different domains of data analysis. For example, a
great numbers of bioinformatics [1, 84], image processing, machine learning [64] and so on tools
and libraries are recently implemented in Python for its trending popularity. Besides, the tools
those are written in a different programming language can also be added to SciWorCS toolbox
using Python wrapper for the command line access.

We used HTML5, CSS and JavaScript for the client side programming and creating user interface
for easier accessibility of SciWorCS core. SciWorCS provides an intuitive graphical user interface for
defining the workflowDAG, -where the selected tools from the toolbox can be graphically connected,
reorganized, zoomed in/out, modified and so on. The interactive and intuitive interface allows
increased accessibility of SciWorCS. We used GoJS [26] - a JavaScript library- for implementing
interactive diagrams in HTML. We used JavaScript Ajax for asynchronous server communications
for obtaining different information from the server, such as availability of a dataset in the server,
job status for a workflow execution and so on.
Fig. 5 demonstrates an overview of the SciWorCS user interface. The panel labeled as- ‘A’,

contains all the workflow components such as, multiple toolboxes categorized as per the general
data analysis tasks of the modular tools, saved workflows and shared workflows with collaborators.
The composition of the workflow is done on panel ‘B’. The selected modular tools from the toolbox
appear in this panel where they can be connected defining the dataflow relation among them. As
illustrated in the figure, the workflow data flow relation is presented in intuitive DAG representation.
The modules can be configured using the corresponding attributes in the popup panel ‘C’, -which
appears on Mouse Left Double-Click on any module from the workflow DAG. Panel ‘D’ shows a
list of collaborators and their current online/offline status. The list of the workflow outputs are
presented in panel ‘E’ and the new dataset can be browsed and uploaded to the server for analysis
from the panel ‘F’.

We also incorporate different communication tools for the group discussion and decision making
in the process of collaborative data analysis. The textual communication tools include peer-to-peer
and group chatting system. In addition to the textual communication tools, SciWorCS provide
real-time Audio and Video streaming based communication system among the collaborators. As
also illustrated in the figure, a Collaborative Virtual Whiteboard (CVW) also has been implemented
in SciWorCS for aiding the group discussion and problem-solving. The CVW contains different
simple tools (such as color selector, paintbrush size selector and so on) to manage the discussion
process among the collaborators. In real-time groupware systems, telepointers (e.g., multiple cursors)
are widely used to increase the group awareness [30]. Studies show that, in the context of CSCW,
through the simple movement of telepointers, collaborators often communicate their focus of
attention, gesture over the shared views and so on [29, 30]. For example, in terms of collaborative
SWfMSs, telepointers often might be used by the collaborators to create group awareness about
the individuals’ focus on attention on sub-workflows, tools and so on. Hence, we also implement
real-time telepointer communication systems among the collaborators in SciWorCS.
SciWorCS leverages WebRTC for the implementation of the communication tools. WebRTC

provides real-time peer-to-peer communication along with audio-video streaming from modern
browsers without any further requirements of software packages or tools [44]. Note that, while we
have implemented different communication systems for the collaboration, their selection or usage
patterns among collaborators might often be impacted by several factors, such as the collaborating
group itself, the nature of data analysis tasks for collaboration and so on.

Answering RQ 1. The implementation of SciWorCS helps answering the RQ1 and demonstrates
the potential and possibility of implementation of the proposed architecture. The interpreter based
Python programming language was used for real-time plugin architecture, job management and
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execution. JavaScript was used for making data-intensive Asynchronous server request and on the
other hand, the WebRTC technology was used for light-weight Client to Client message passing
for real-time collaboration.

6.2 Effects of Varying Locking Schemes
The lock on a module with higher dependency degree,ϕ (i.e., the total number of distinct descendant
modules), can largely impact the overall collaboration scope of the workflow. We thus conducted
several experimental studies with varying workflow tree structures to test the hypothesis. We
considered six different dependency relations of the workflow trees and two different locking
schemes - Strict Module Locking [20, 88] and Attribute Level Locking Scheme [54] as presented in
Fig. 6.
The 2, 3 or 4 regular workflow trees in the figure represents three different structures, where

every non-leaf workflow module has exactly 2, 3 or 4 child modules respectively. The 2, 3 or 4
all connected workflow trees on the other hand, represent some-what similar structures, but with
higher dependency degree considerations where, any workflow module of level l , is dependent on
all of the modules of level (l − 1) by direct incoming dataflow relation among them (i.e., except for
the root workflow module).
As the methodology for simulating short-read, long-thinking pattern [87, 88] in the simulation

experiments, we considered random thinking time [88] interval ranging from 10 ms to 15 ms in
between any basic workflow operations i.e., i) Adding a new module to the workflow, ii) Adding a
new datalink to/from a module, iii) Updating an attribute of a module and iv) Updating source/des-
tination of a datalink.) execution by a collaborator. If the next thinking time is relatively longer (e.g.,
considered, >10 ms), the corresponding simulated collaborator releases any accessed object, making
it available for other collaborators of the group. As for facilitating the consistency management,
the locking schemes adapt some algorithms for managing the workflow component access to
the collaborators. For evaluating the behavior in terms of collaborative SWfMSs, we considered
different locking schemes to simulate the collaborative workflow composition. In the context of
collaborative SWfMSs, the behavior of the locking schemes were evaluated in terms of average
waiting time, - the average time required in between the access requests and grants of different
workflow components by collaborators for the workflow composition.

The experimental results as illustrated in the figure, show a significant increase in average
waiting time with the increase of overall dependency relation in case of strict module locking
scheme. For example, in case of strict locking, for 2 all connected workflow tree the average waiting
time raises up to around 1520 ms in comparison to proposed attribute level locking scheme, which
is approximately 958 ms. That is, the average ratio of reducing the overall waiting time by the
proposed method is around 0.63 (i.e., 958 ∗ 100/1520 = 63%) in case of 2 all connected workflow tree
structures. Similarly in case of 2 regular workflow tree structures, the average waiting time with
29 collaborators raises up to around 1243 ms and 726 ms for strict module locking and proposed
locking schemes respectively. It is also noticeable from the graphs that, the difference in average
waiting time between the locking schemes increases significantly with the increase of collaborating
group size. For example, both the locking schemes show more or less similar average waiting time
when the group contains five or less number of collaborators, however the average waiting time
increases noticeably with the increase of group size for strict locking scheme in comparison to the
proposed locking scheme.

Answering RQ 2. The experimental study demonstrates that the proposed architecture can
adapt different variance of locking schemes. From the graph, the study reveals that the proposed
architecture shows the scaling capacity in terms of increasing number of collaborators. While the
average waiting time increases with the increased number of collaborators for the access of limited
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workflow components, its comparative lower increase demonstrates the scaling capacity of the
proposed architecture. Besides, the behavior can further be improved with the adaption of more
efficient locking scheme.

Fig. 6. Effects of Locking Schemes on Performance.

6.3 Use-Case Evaluation for Collaborative Data Analysis
Existing studies show several motivations and use-cases towards collaborative SWfMSs [46, 46, 87,
88]. Different experimental studies can exploit the added advantages of collaboration for accelerating
the overall process [88].

6.3.1 Code Clone Detection (Software Repository Analysis). Code clones are similar pairs of code
fragments in software systems [55, 70, 71]. Studies show that, on average software systems often
contain 7% to 23% of codes that are copied from one location to another (e.g., code clones) [2, 38, 71].
Code clones are often responsible for inflating the overall softwaremaintenance cost, and hence their
successful detection has been one of the research problem in the domain of software engineering
[71, 81].

Throughout the life-cycle of a software system, the code clone fragments often undergo several
changes, such as identifier name changes, addition/edition/removal of several statements, changes
in the presentation and so on [70, 71]. Code clone detection techniques hence, undergo several
pre-processing and transformation steps, such as pretty-printing [70, 72], normalization of the
identifiers [37, 72], forming syntax tree [41] of the code fragments and so on, prior to applying any
matching algorithms which can be aided with SWfMSs. The different computational units can be
plugged-in as re-usable module as proposed in the architecture for scientific data analysis.
For the use-case, we leverage the modular steps from NICAD [72] a widely used code clone

detection tool, to demonstrate the re-usability of the workflow modules towards clone detection
process as per the given requirements. As input, the workflow takes the target software system
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Fig. 7. Code Clone Detection Workflow in SciWorCS.

Fig. 8. Applying Machine Learning in SciWorCS for Clone Validation.

repository and outputs the detected code clone pairs along with different statistics of the detected
clones (e.g., number of detected clones, pair-wise similarity values and so on). Fig. 7 illustrates the
scientific workflow comprising of the plugged-in modules to SciWorCS for code clone detection.
On execution of the workflow on supplied data (i.e., software source codes), it detects and outputs
the code clone pairs available in the source codes. The figure also demonstrates the visualization of
the output dataset as proposed in our architecture.

Collaboration Scope. The definition of code clone given a pair of code fragments is often subjective
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Fig. 9. Experimental results on message passing behavior of proposed collaborative SWfMSs architecture.

Table 2. Classification Accuracy Comparison for different Machine Learning Models.

# Machine Learning Classifier Classific. Acc. (%)
1 Random Forest 84.47
2 Random Tree 79.84
3 Naive Bayes 83
4 Bayes Network 81.79
5 Naive Bayes Updateable 82.99
6 Logistic Regression 85.06

[70, 71]. For example, in a related study, Yang et al. [86] conducted a survey, where users were
provided the same clone sets (e.g., detected by clone detection tools) for validation. The study
reported a significant variations among the users in validating the same clone sets (e.g., for the same
provided clone sets, the number of decided true positive code clones varied within a range of 4.76% to
23.81% for different users). Hence, SciWorCS can be leveraged for machine learning based automatic
clone classification (i.e., True/False Clones). For example, Fig. 8 demonstrates the usage of different
machine learning algorithms towards automatic code clone validation. Initially, collaborators can
work on building the manually validated dataset, which are then used by the plugged-in machine
models in SciWorCS. For example, Table 2 demonstrates the obtained classification accuracy for
some of the plugged-in machine learning models in SciWorCS for code clone classification.
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Besides, finding suitable configuration for a given scenario of clone detection is also a research
problem in the software research domain [85]. Hence, the proposed architecture exhibits signif-
icant potential in allowing the researchers towards collaboratively configuration searching and
converging to the subjective preferences of detected clones.

Fig. 10. FastQC quality measures on example sequence file.

6.3.2 QC Report of FastQ File with FastQC (Bioinformatics). Different Quality Control (QC) tools
are widely used in the field of Bioinformatics to investigate any potential problem or check the
quality of the input sequence files [7]. Here, in this use-case we demonstrate the usage of QC
workflow for analysis of sequence files.

FastQ is a popular sequence file containingNucleotide sequence data with associated quality scores
[7, 18]. FastQC is a widely-used tool for QC report generation and analysis of FastQ sequence files
[18]. In addition to the FastQ sequence files, the tool also accepts inputs as Sequence Alignment Map
(SAM) or Binary Alignment Map (BAM) formats runs a series of tests and generates corresponding
QC reports [18]. FastQC also generates tables, graphs and HTML based permanent report for overall
visualization of the QC reports.

Fig. 10 illustrates a sample workflow illustrating the visualization of the generated report from
FastQC. Note that, as FastQC, other visualization tools can be plugged-in to SciWorCS where the
generated outputs are used by the framework for visualization.

Collaboration Scope. The quality analysis tools are important to ensure that there are no hidden
problems on the sequence files which might be difficult to detect and recover from- at some later
stages of the analysis of the sequence file [18]. Our proposed architecture provides the collaborative
visualization support, which can be used by the researchers for the analysis and reviewing of the
sequence file quality.

Answering RQ 3. The experimental study reveals the significant potential and collaboration
scope of the proposed architecture in terms of real-world data analysis steps. While the two above
scenarios demonstrate primary use-case, the proposed architecture can be extended as per the
requirements of the specific data analysis problems.
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Table 3. Considered Arbitrary Scientific Workflows from myExperiments [14] for the Study.

W. ID Type Workflow Summary
4095 [58] Bio. Paired-end reads assembly after FastQ

groomer using a Migale modified ver-
sion of Velvet tool.

4094 [59] Bio. Workflow used when applying the
CPB2012 Basic Protocol 3; Peaks for
ChIP-seq data using MACS14.

[36] ML Open source The Titanic dataset classi-
fication.

6.4 Experiments on Message Passing Behavior
Our proposed architecture uses simple message passing for the orchestration of used computational
modules and also for configuration of the overall workflow DAG and module settings in a replicated
architecture. The message passing in case of collaborative data analysis platform can be different
than that of graphics or text based collaborative systems, where the message passing among the
clients are the corresponding typed characters [79, 80]. In our proposed architecture, while the
communication varies as per the computational modules (i.e., implementation structure, lengths
and so on) or module configurations, the message passing information among the clients remains
somewhat fixed for the module or DAG updates.
We were interested to testing the message passing behavior and network overhead of our

proposed architecture. For the experiment, we used two real-world bioinformatics modules from
myExperiment and one machine learning based classification workflow for the data analysis tasks as
listed in Table 3. The workflow compositions were simulated both for single-user and collaborative
setups. Since our analysis is on message passing behavior between two clients and server-client,
we considered two independent simulator instance for collaborative setups. We repeated the exper-
iments three times to mitigate possible biases. We used Wireshark[63] - a network analyzer tool, to
track the message passing behavior.
Fig. 9 illustrates the obtained results from the experiments for the above three different data

analysis workflows and also their averaged results. All the graph demonstrates relative higher
amount of packets transfer (i.e., around 80 Packets/10 sec) for both Client-Server and Client-Client
for network and connection initialization. The message passing for Client-Server is more or less the
same in both of the single and collaborative use-cases for requesting and pulling out the required
modules from the server. The behavior is clearly noticeable from the average plots. It is also notice-
able from the plots that the implementation of the specific modules are correlated with the overall
Client-Server message passing. For example, Bioinformatics workflows (i.e., W. 4095 and W. 4094),
the module implementations are as wrapper (i.e., higher level abstraction) to the original source
code. The wrapper structure are generally minimal in nature in oppose to complete original source
codes, and hence resulted in lesser Client-Server message passing, such as 1 to 4 Packets/10 sec for
the use cases. On the other hand, the Machine Learning (ML) workflow modules contained original
source implementation and hence, the message passing shows relatively higher rate, such as in the
range of 1 to 7 Packets/10 sec for the use-case.
For any module addition/deletion, the Client-Client message passing is somewhat similar (i.e.,

comprising the unique module identifier information) irrespective of the specific module. However,
the Client-Client message passing is also dependent on the module configurations and datalink
relation updates among them. For example, as noticeable from the average plot, the Client-Client
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message passing ranges between 0 to 10 Packets / 10 sec after 50 sec of the workflow composition
for corresponding workflow update operations (i.e., module configurations and datalink relations),
while there are minimal Client-Server message passing.

Answering RQ 4. The study results exhibit minimal network for the proposed architecture.
While the Client-Client message passing depends on the specific workflow structure and configura-
tions, the Client-Server message passing shows fairly similar behavior when compared with single
user based data analysis, which is promising for scaling the proposed architecture for increased
number of collaborators.

6.5 User Study
In order to investigate how research scientists perceive collaboration data analysis (RQ5), we
conducted a user study with the proposed collaborative SWfMS. This user study helped us get
insights how users make use of the system, e.g. what styles of works collaborators engage in for
scientific workflow composition for collaborative data analysis. We used four well known real
world bioinformatics data analysis tasks or workflows from myExperiment [14] as described in
Table 4.

Table 4. Considered well-known Scientific Workflows from myExperiments [14] for the User Study.

W. ID Workflow Summary
4095 [58] Paired-end reads assembly after FastQ

groomer using a Migale modified version of
Velvet tool.

4094 [59] Workflow used when applying the CPB2012
Basic Protocol 3; Peaks for ChIP-seq data using
MACS14.

2944 [56] Transform FastQ to FASTA, using the tools,
Groomer, Filter FastQ, FastQ Trimmer.

2939 [57] Retrieves Genome and SNP data from UCSC
for a particular chromosome. Finds Exons from
SNPs.

In total these workflows require 19 unique computational modules, which were integrated to
our collaborative framework for the study. The computational modules are the building blocks of
the workflows for collaborative composition of the study. To mitigate the bias of problem solving
complexity while acquiring the collaborative composition patterns, the workflow structures were
printed and provided to the participants for collaborative composition.

For a given workflow, participants had to select (i.e., via Mouse Left-Click) the required compu-
tational modules available in the tool panel (i.e., Panel ‘A’, Figure 5) of the collaborative framework.
The selected modules appear in the composition panel (i.e., Panel ‘B’, Figure 5) for devising the
required datalink relations among them via Mouse Left-Click and Dragging among the correspond-
ing input/output ports of the modules. Participants follow a series of collaborative revisions and
updates on a workflow such as, module configuration changes (i.e., Panel ‘C’, Figure 5, on Double-
Clicking a module), delete/update/addition operations on the workflow components (i.e., modules or
datalinks) and so on to complete the composition of the target workflow. Note that for consistency
management we used attribute level locking scheme as it reduces average waiting time for the
participant as per the simulated study described by Mostaeen et al. [54]. This locking scheme allows
collaborators to work independently on selected region of the workflow (i.e., sub-workflow).
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While the selected locking scheme ensures consistent composition in the face of conflicting oper-
ations, participants use different available user interaction tools of the framework for orchestrating
the collaborative composition of the workflow. The telepointer (i.e., multiple cursors) information
is passed among the collaborators for real time group awareness on their location, movement and
probable focus of attention [29] in the collaborative workflow. Collaborators also invoke other
communication tools (i.e., audio communication, video conferencing, textual group/P2P chatting)
of the framework for discussion and convergence on a plan. In addition to that the collaborative
discussion process is also assisted by the framework’s data visualization and virtual white board
tools.

Ten graduate students from a local university participated in the experiments. The participants
were split in five groups, each comprising of two members for collaborative workflow composition.
The participants were introduced and trialed with SciWorCS editor prior to starting the user study.

6.5.1 Results of our User Study. All the collaborating group could successfully complete the given
tasks for the study with an average time of 15 minutes. For the collaborative composition task in
this study, we found that collaborators more often adapt the divide and conquer work approach
towards completing the composition. The clear target for the mere composition task in collaboration,
resulted in more or less fair task splits among the collaborators. Prior to starting the task, the
collaborators were found to make plan via discussion for approaching the problem. In addition to
the discussion, individual collaborator were also found to directly contribute to the composition
(e.g., via module/datalink addition, deletion and so on) - as opposed to the ‘scribe’ style of work (e.g.,
where a single collaborator is responsible for entire composition). For example, for a collaborative
composition two collaborators had - 65% and 35% splits of operations (e.g., module/datalink addition,
deletion and so on) out of total 105 operations for the workflow composition; combined for the
workflows presented in Table 4. Besides, the total engagement in the discussion also showed a
fair split of 55% and 45%. Similar trends were also found among other collaborating groups for the
composition task.
From an individual perspective in a collaborative group, a participant’s results also exhibit

contribution in different aspects of the composition. For example, in a collaborative group, a
member contributed 15% in discussion, 50% in edit operations (e.g., module/datalink addition,
deletion and so on) and 35% in other management operations towards the composition, such
as DAG view update, access request/wait/release and so on, out of all the generated events by
the collaborator in the composition. Similarly, another collaborator also found to split the self
events 23% in decision making discussion, 47% in edit operations and 30% in other management
operations. That is, the results demonstrate that, the collaborators in overall, adapted the task
splits and also individuals contributed in different aspects of the composition. For example, Fig.
11 illustrates the engagement of the participants in collaborative composition. For more granular
pattern visualization, a whole collaborative composition (e.g., from log) has been divided into two
sessions and plotted the contribution of the collaborators for the corresponding sessions. The graph
illustrates that, the collaborators showed their engagement in comprehending the composition
problem across different sessions.

The chat log of the collaborators also exhibits the similar patterns, such as: - ‘Collab. #1: ... Do you
have a way to proceed? I was thinking lets get [add to workflow] the input modules first?...’, ‘Collab. #2:
... Alright. Go ahead ...’, ‘Collab. #1: ... I have set all the user inputs [modules]... Would you like to do
[add to the workflow] the second layer [from the provided reference]?...’ .

Answering RQ5. The preliminary user study shows that users utilizes collaboration facilities
of SciWorCS in scientific data analysis. This kind of system can be helpful for complex data
analysis tasks and can increase the overall productivity. For understanding users behavior more
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Fig. 11. Collaborative Composition Work Patterns (where,W. Operation: workflow update operations such
as, module addition/remove/update or datalink addition/remove/update. Comms.: communication among
collaborators. Frequency : frequency ofW. Operation or Comms. in collaborative setups. )

appropriately, in future we will involve more users and we will use NASA TLX questionnaire to
identify their behavior by measuring cognitive workload, performance, effort and frustration.

7 RESULT DISCUSSION
We evaluated our proposed architecture for a collaborative data analysis platform in different
setups in Section 6. Our implementation of SciWorCS as a proof of concept of the proposed
architecture demonstrates that it can address the primary requirements of a collaborative data
analysis platform, including plugin support, consistency management for collaborative workflow
composition, collaborative job planning and execution, user interaction tools for problem solving,
and collaborative modelling for a variety of user roles.
We also evaluated the different components of the proposed architecture using SciWorCS.

Our study demonstrates that the proposed architecture can adapt to various locking scheme
implementations, as per the requirements and use case scenarios. As well, the simulated studies for
varying scientific data analysis workflows (i.e., 2, 3 and 4 all-connected trees and 2, 3 and 4 regular
workflow trees) and for 1 to 30 collaborators, demonstrates the proposed architecture’s scaling
capability and also its performance in terms of different locking schemes.
We also experimented to determine the network overhead of the proposed architecture for

collaborative workflow composition. The experiments demonstrate that the proposed method for
collaborative composition results in minimal overhead in contrast to single user based composition.
We used real-world data analysis workflows for Bioinformatics and Software Repository Analysis
along with their scope of collaboration, where the proposed architecture exhibits significant
potential.
Our small scale user study demonstrates that SciWorCS in the domain of bioinformatics has

the potential to support users to do real-world bioinformatic tasks. Although our user study does
not describe user behaviour in multiple dimensions (such as ease of use, cognitive workload, and
degree of frustration) and for different domains, it shows that users can successfully complete their
assigned tasks within a reasonable amount of time (on average 15 minutes) while being involved
with various collaborative activities (such as shared editing, chatting, and shared visualization).
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8 THREATS TO THE VALIDITY
We evaluated the proposed architecture using computer generated simulations in terms of different
setups and metrics, such as the effect of varying locking schemes, impacts of different workflow
structures, network overhead and so on.While the simulated studies allowed us to test the scalability
of the proposed methods, it also exhibit threats for any result biases which is a common threat for
any simulation studies. However, since our experiments we primarily focused on the scalability
and performance of the proposed architecture in extreme cases, we chose to conduct simulated
studies with varying setups and scales as opposed to experiments with a few users, so that we
can map the results in the case of limited number of users. In order to further mitigate bias, the
experiments were conducted on the same machine and also repeated a number of times to use
their average values for convergence. For the user study, we mostly involved graduate students as
the study participants and thus their experience with our proposed platform may not reflect what
a domain expert would experience. However, in order to at least partially mitigate the issue, we
chose the participants who are knowledgeable of the applications of scientific workflows in the
bioinformatics domain.

9 CONCLUSION AND FUTUREWORK
Realizing the compelling need for collaborative data analysis, several methods or techniques have
been proposed and developed in recent years [73–76, 87, 88]. In this paper, we identified the primary
challenges for a collaborative data analysis platform in contrast to collaborative text or graphics
editing systems. From these findings, we then proposed an architecture for a collaborative data anal-
ysis platform. The architecture addresses plugin-based tool integration, role-based access control
for workflow components, independent sub-workflow execution and monitoring for supporting
sub-group collaborations, integrated communication technologies for group discussions, decision
making or problem solving, and plugin-based visualizations. We leveraged Scientific Workflow
Management System (SWfMS) functionality for handling the underlying data-intensive processing
in our proposed collaborative data analysis architecture. As a proof of concept, we also developed a
collaborative SWfMS SciWorCS. We presented different technical features of SciWorCS and also
presented several real-world use-cases for scientific workflow composition, execution, and data
visualization. Our proposed architecture demonstrates promising results when evaluated in terms
of different real-world scenarios of scientific workflow collaboration. Our preliminary user study
in the bioinformatics domain also shows the promise of the platform.

In the future we would like to use SciWorCS to investigate users’ behavior in different domains,
such as Plant Phenotyping and Genotyping, Hydrological Modelling, and Source Code Analysis.
We will utilize the NASA-TLX [31] questionnaire to analyze users’ behaviour in these domains. In
particular, we want to compare the performance of different locking schemes (discussed in Section
5) for different scientific analysis which will demand both short-term and long-term thinking
behaviour from users. By analyzing the experimental data we want to be able to recommend which
locking scheme is suitable for which situations.
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