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ABSTRACT
A code clone is a pair of similar code fragments, within or be-
tween software systems. To detect each possible clone pair from
a software system while handling the complex code structures,
the clone detection tools undergo a lot of generalization of the
original source codes. The generalization often results in return-
ing code fragments that are only coincidentally similar and not
considered clones by users, and hence requires manual valida-
tion of the reported possible clones by users which is often both
time-consuming and challenging. In this paper, we propose a ma-
chine learning based tool ‘CloneCognition’ (Open Source Codes:
https://github.com/pseudoPixels/CloneCognition ; Video Demon-
stration: https://www.youtube.com/watch?v=KYQjmdr8rsw) to au-
tomate the laborious manual validation process. The tool runs on
top of any code clone detection tools to facilitate the clone validation
process. The tool shows promising clone classification performance
with an accuracy of up to 87.4%. The tool also exhibits significant
improvement in the results when compared with state-of-the-art
techniques for code clone validation.

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
Code Clones, Validation, Machine Learning, Artificial Neural Net-
work, Clone Management.
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1 INTRODUCTION
Studies show that code clone is one of the major reasons for creation
and propagation of software bugs throughout the system, inflating
software maintenance costs [6, 13]. Recent research shows that a
software system on average contains around 7% to 23% of clones of
its overall code base [11, 14]. Detection of such code clones thus
provides a better understanding of the software systems in addition
to facilitating the overall software maintenance task [6, 13]. Hence,
extensive research in this domain resulted in around 200 different
proposed tools and techniques [1, 2, 4, 7, 13, 15, 19] for code clone
detection until 2017 [18]. In general, these tools target to maximize
returning all possible pairs of code clones from a given software
system [6, 13].

With the target of detecting any possible pair of code clone
while comprehending all possible source code modifications, code
clone detection tools undergo a lot of generalization of the original
source code, such as pretty-printing [13, 15], normalization of the
identifiers [7, 15], forming syntax tree [10] and so on, -prior to
applying the corresponding matching algorithms. These general-
izations hence result in clone detection tools to return pairs to code
fragments that are only coincidentally similar and not considered
essentially clones by users [9, 12, 21]. While several factors, such
as templating, Library/API calling protocols, general language or
algorithmic idioms and so on in the implementation process creates
enough similarities among code fragments to be detected by clone
detection tools, they are not often considered clones by users [9, 21].
For these considerations, users often need to manually validate the
reported code clones from a clone detection tool [21]. The manual
validation often becomes a time-consuming and laborious work, as
the software systems evolve over time [16].

In this paper, we present a machine learning based clone valida-
tion tool CloneCognition to automate the validation process. The
tool uses an Artificial Neural Network (ANN) classifier to learn
and predict the human validation pattern towards automating the
code clone validation problem. The classifier model for validation
is trained from manually validated clone sets from IJaDataset 2.0
[3] - a large inter-project dataset of open-source projects. The clas-
sifier model learns by mimicking the human validation patterns
for feature extraction and shows an accuracy of up to 87.4% for
automatic validation. For testing the generality of classification,
the model was rigorously evaluated against different experimental
setups, such as multiple code clone detection tools, artificial code
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clones, different open source projects -where it shows promising
results. The proposed clone classification approach also shows bet-
ter performance when compared against existing state-of-the-art
techniques for code clone validation [21]. While in this paper, we
focus on the tool aspect of the proposed automatic clone validation
approach, we refer the readers to our original paper [12] for details.

Without reinventing the wheel of clone detection techniques,
the tool runs on top of any code clone detection tools to automate
the validation process. The reported possible clones from a clone
detection tools are provided to CloneCognition as input, where they
are validated against the classification model. For every possible
pair of clones, the tool calculates the corresponding probabilistic
score for automatic validation and final report generation. While
the classification model is trained on diverse and evolving manually
validated dataset by multiple expert judges, CloneCognition also
provides a framework for manual validation of code clones towards
building a case-specific dataset for model training and validation
by the tool [12].

CloneCognition follows a service-oriented architecture so that it
becomes compatible with any existing clone detection tool irrespec-
tive of the language or platform differences in the implementation
of the tools via simple service call invocation (e.g., RESTful services).
The tool is publicly accessible from a cloud server1, and also a local
instance of it can be obtained from GitHub2.

2 RELATEDWORKS
Management of the large-set of detected clones has been one of the
active research topics in the code clone detection domain over the
last few years [17, 20, 21]. Yang et al. studied the similar problem for
code clone validation in their work - FICA [21]. Their work lever-
ages ‘Term-Frequency - Inverse Document Frequency’- (TF-IDF) for
the purpose for Type 2 clone validation. However, in our proposed
method we targeted the validation of even beyond Type 2 clones,
having more complex structures such as Type 3. We conducted sev-
eral evaluation studies for comparison, where our proposed method
shows better and promising results (e.g., as presented in Section 5).

Svajlenko et al. [17] used unsupervised machine learning for
clustering similar code clones. Kapser and Godfrey [8] studied on
the categorization of detected clones in hierarchy files and directo-
ries based on location proximity. While the total number of clones
to be analyzed by those methods still remain same, our method in
contrast targets on user-specific classification for clone filtering.

Besides, several visualization techniques have been proposed for
clone management, such as Scatter plot [7], Hasse diagram [5], an
aspect browser-like view [20], hierarchical graphs [4] and so on.
Note that, our proposed tool can further aid in such clone manage-
ment by providing additional dimensions, such as clone validation
score.

3 CloneCognition WORKING
METHODOLOGY

In this section, we present a brief discussion of the working pro-
cedure of the tool, while we refer to our original paper for detail
studies envisioning the tool [12].

1http://p2irc-cloud.usask.ca/cloneCognition
2https://github.com/pseudoPixels/cloneCognition

3.1 Clone Validation with Machine Learning
3.1.1 Dataset Formulation. Themachine learningmodel of CloneCog-
nition is trained on the clone sets of IJaDataset 2.0 [3] - a large
inter-project dataset of open-source projects. For the machine learn-
ing model generalization, CloneCognition used five different pub-
licly available and state-of-the-art tools- NiCad, Deckard, iClones,
CCFinderX and SourcererCC for detecting clones independently
from IJaDataset 2.0.

3.1.2 Feature Extraction. We conducted several experiments and
studies on the feature selection and extraction for the machine
learning classifier. While in this paper we focus on the tool aspects
of our research studies on clone validation, we refer the readers
to the original paper for details presentation on the feature sets,
such as feature selection, classification data distribution in terms of
features, feature scores, cluster information and so on [12]. Existing
works on clone validation only address up to Type 2 clones and
uses token level sequence matching, such as n-gram [21]. However,
with an attempt to extending the validation process beyond Type
2, we use three level of normalization of the fragments for similar-
ity feature extractions - line similarities with Type 1, 2 and 3 levels
of normalization, token level similarities in Type 1, 2 and 3 level of
normalization [12]. Besides, from our investigation study we found
that, human judges in addition to the similarity measures assess
different visual structural attributes, such as - fragment size differ-
ences -with different consideration on larger versus smaller fragments,
unmatched braces, function intersected -which are also considered
in the feature set of CloneCognition.

3.1.3 Training the Machine Learning Classifier Model. CloneCog-
nition works on top of the reported code clones from a code clone
detection tool. The reported clones from a clone detection tool
are sent to CloneCognition for validation and report regeneration
based on the validation result from the machine learning model.
CloneCognition uses Artificial Neural Network (ANN) model, f (x)
for learning the human validation patterns towards automating the
clone validation task (e.g., Fig. 1(b)). For a given test clone pair set,
CloneCognition extracts features set, xt to activate on the learned
model function, ŷt = f (xt ). ANN being a probabilistic classifier
predicts and returns, ŷt - the vector containing the probability of a
submitted clone pair for being true positive and false positive e.g.,
as in Eq. 1.

ŷt = f (xt ) = (Pr [yt = (1, 0)], Pr [yt = (0, 1)]) (1)

From our several studies on classifier selection and their corre-
sponding configurations, we found that ANN performs better with
one hidden layer comprising of 107 nodes, softmax activation func-
tion for the output layer and converges within a range of 500 to
600 epochs giving an accuracy of 87.4% [12].

3.1.4 Classification Decision Configuration and Clone Validation
Report Generation. The trained classifier, ŷt = f (xt) assigns prob-
ability values- Pr [yt = (1, 0)] and Pr [yt = (0, 1)] -respectively for
the true positive and false positive clone classes. Users can tune the
clone classification decision by setting different values of- γ [0, 1],
which is used by CloneCognition to make the prediction decision.
A test clone pair is validated as true positive, if Pr [yt = (1, 0)] ≥ γ .
The default value of γ is 0.5, such that CloneCognition makes true
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Figure 1: High-Level Workflow of CloneCognition.

positive prediction if, Pr [yt = (1, 0)] ≥ Pr [yt = (0, 1)]. CloneCog-
nition calculates and returns several reports on the clone validation
statistics, such as precision, true positive counts, false positive
counts, true positive ratio and false positive ratio. The validation
responses are also recorded as CSV format for the corresponding
test code clone pairs for later use.

3.2 High-Level Architecture of the Tool with
its Components

Fig. 1 demonstrates the core components and schematic diagram of
CloneCognition. The components can be classified into two major
groups - manual validation framework for maintaining the cycle
of supervised learning (i.e., Fig. 1 (a)) and clone validation with
machine learning models (i.e., Fig. 1 (b)).

Towards creating a custom training dataset for case-specific sce-
narios [12, 21] or enriching the existing training dataset, CloneCog-
nition provides a framework for a cycle of supervised learning (e.g.,
Fig. 1 (a)). Here, user-specified new clone pair sets are iteratively
presented to the users for validation responses towards building
manually validated dataset. The labeled dataset is later used for
corresponding feature extraction and training the CloneCognition
model (e.g., as presented in Section 3.1.2 and 3.1.3 respectively). The
trained model is finally saved (e.g., after model serialization, such
as pickling) for later automatic clone classification.

As presented in Section 3.1.4, Fig. 1 (b) demonstrates the differ-
ent components of the tools for automatic clone validation report
levering the trained machine learning model. For new set of clone
pairs, CloneCognition uses feature extraction module for prepare
the feature vector, which is fed to the trained model for generating
the machine learning validated clone reports.

The tool follows a Service-Oriented architecture, so that the com-
ponents can be individually accessed via RESTful API or Web UI in
addition to command line as illustrated in the figure. We present
brief discussion on the corresponding services and usage of the tool
in the following section.

4 CloneCognition USAGE
While the architecture allows accessing the technical features from
command lines, we developed a user interface on top of the RESTful
services to ensure easier manipulation and visualization of the
validated clones. In this section, we present the major technical
features provided by the CloneCognition tool.

4.1 Automatic Clone Validation using Machine
Learning

For automatic validation, the reported sets of code clone pairs from
a clone detection tool are provided to CloneCognition as input
(for example, uploaded from the user interface as presented in Fig.
2). The tool extracts the feature sets for clone classification from
the input sets of clone pairs. The extracted feature set for a corre-
sponding clone pair is then activated against the trained machine
learning model. CloneCognition sends the clone pairs with the
corresponding classification probability values, as corresponding
response for the clone validation requests. A code clone pair is
validated as either true or false positive based on the probabilities
assigned by the classifier. As noticeable from the figure (i.e., Fig.
2), the clone validation can also be tuned by the user set threshold
for validation decision making of the classifier [12]. In addition
to the corresponding clone validation scores, CloneCognition also
returns the validation overall validation statistics, such as total true
positive clones, precision and so on of the input reported possible
clone pair sets, which are often useful for the evaluation of clone
detection tools [21].

4.2 Manual Validation and Model Building
Fig. 3 demonstrates the manual validation framework of CloneCog-
nition. The reported code clones from a clone detection tool are
imported to CloneCognition, where the possible code fragments of
corresponding clone pairs in iterations are presented to the user in
a comparison view. Users mark a presented clone pair as any of -
‘False Clone Pair’, ‘True Clone Pair’ or ‘Undecided’ from their man-
ual judgment of the presented clone pairs. CloneCognition records
the manual responses for the corresponding clone pairs, -which
are exportable as .csv format from the tool. The manual validation
framework by the tool provides two folds advantages. First, the
manual responses can be used for enriching the clone validation

Figure 2: CloneCognition User Interface- Automatic Clone
Validation with Machine Learning.
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Figure 3: CloneCognition User Interface- Manual Validation
and Model Building.

benchmark dataset, and hence evaluating the result quality of a
clone detection tool. Second, the manual validation responses are
used by CloneCognition for further improving the machine learn-
ing model in a cycle of supervised learning.

CloneCognition also supports training the machine learning
classifier towards improving the model from the obtained manual
validation patterns. The responses from the newly validated clones
are used by CloneCognition towards a cycle of supervised learning.

Figure 4: Comparison of CloneCognition with Related
Works on Clone Validation. Validation accuracy calculated
from known dataset and compared with existing methods.

5 EVALUATION
The CloneCognition classification model shows a promising clone
validation accuracy of 87.4%, when evaluated using 10-fold cross val-
idation against IJaDataset 2.0 [3]. Besides, for attaining confidence
in the classification performance, the clone validation was tested
for different use-cases, such as with different open source software
systems, code clone detection tools, multiple users, artificial clones,
existing methods and so on, - where the classification model shows
promising results. For example, Fig. 4 shows the snippets of com-
parison of the tool with related state-of-the-art methods [21] for
clone validation. The graph plot illustrates that CloneCognition out-
performs the existing methods for clone validation across reported
clones from different software systems. We also studied the result
quality of the classification model of CloneCognition. For example,
Fig. 5 shows the Receiver Operating Characteristic (ROC) curve of
the tool. The result illustrates that CloneCognition attains up to 0.87
Area Under ROC (AUC), which is promising. Fig. 6 demonstrates
a better result quality of CloneCognition when compared to the

Figure 5: ROC curve of CloneCognition for clone classifica-
tion.

existing methods for code clone validation [21]. The box-plot graph
illustrates that the proposed tool exhibits better overall median pre-
cision, recall, and F1-score in comparison to the existing methods
of clone validation. CloneCognition also shows better consistency
in its result qualities in comparison to the existing methods- where
the existing methods exhibit higher variances in corresponding
validation results as depicted in Fig. 6.

Figure 6: Result quality comparison with related works.

6 CONCLUSION
In this paper, we proposed a machine learning based tool CloneCog-
nition for automating the time-consuming and laborious works of
code clone validation. The tool shows promising clone classification
results with an accuracy of up to 87.4% and also outperforms the ex-
isting state-of-the-art clone validation techniques. The CloneCogni-
tion tool offers several advantages in terms of code clone validation,
such as i) integration with any clone detection tool as validation
layer, ii) easier validation process from simple user interface, iii)
precision measurement of clone detection tools, iv) possibilities of
important knowledge discoveries and visualization in terms vali-
dated clone sets and corresponding validation scores.
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