
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

CloneCognition: Machine Learning Based Code Clone
Validation Tool

Golam Mostaeen
University of Saskatchewan

Saskatoon, Canada
golam.mostaeen@usask.ca

Jeffrey Svajlenko
University of Saskatchewan

Saskatoon, Canada
jeff.svajlenko@usask.ca

Banani Roy
University of Saskatchewan

Saskatoon, Canada
banani.roy@usask.ca

Chanchal K. Roy
University of Saskatchewan

Saskatoon, Canada
chanchal.roy@usask.ca

Kevin Schneider
University of Saskatchewan

Saskatoon, Canada
kevin.schneider@usask.ca

ABSTRACT
A code clone is a pair of similar code fragments, within or be-
tween software systems. To detect each possible clone pair from
a software system while handling the complex code structures,
the clone detection tools undergo a lot of generalization of the
original source codes. The generalization often results in return-
ing code fragments that are only coincidentally similar and not
considered clones by users, and hence requires manual valida-
tion of the reported possible clones by users which is often both
time-consuming and challenging. In this paper, we propose a ma-
chine learning based tool ‘CloneCognition’ (Open Source Codes:
https://github.com/pseudoPixels/CloneCognition ; Video Demon-
stration: https://www.youtube.com/watch?v=KYQjmdr8rsw) to au-
tomate the laborious manual validation process. The tool runs on
top of any code clone detection tools to facilitate the clone validation
process. The tool shows promising clone classification performance
with an accuracy of up to 87.4%. The tool also exhibits significant
improvement in the results when compared with state-of-the-art
techniques for code clone validation.

CCS CONCEPTS
• Software and its engineering→ Maintaining software.

KEYWORDS
Code Clones, Validation, Machine Learning, Artificial Neural Net-
work, Clone Management.

ACM Reference Format:
GolamMostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and Kevin
Schneider. 2019. CloneCognition: Machine Learning Based Code Clone
Validation Tool. In Proceedings of The 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Studies show that code clone is one of the major reasons for creation
and propagation of software bugs throughout the system, inflating
software maintenance costs [6, 13]. Recent research shows that a
software system on average contains around 7% to 23% of clones of
its overall code base [11, 14]. Detection of such code clones thus
provides a better understanding of the software systems in addition
to facilitating the overall software maintenance task [6, 13]. Hence,
extensive research in this domain resulted in around 200 different
proposed tools and techniques [1, 2, 4, 7, 13, 15, 19] for code clone
detection until 2017 [18]. In general, these tools target to maximize
returning all possible pairs of code clones from a given software
system [6, 13].

With the target of detecting any possible pair of code clone
while comprehending all possible source code modifications, code
clone detection tools undergo a lot of generalization of the original
source code, such as pretty-printing [13, 15], normalization of the
identifiers [7, 15], forming syntax tree [10] and so on, -prior to
applying the corresponding matching algorithms. These general-
izations hence result in clone detection tools to return pairs to code
fragments that are only coincidentally similar and not considered
essentially clones by users [9, 12, 21]. While several factors, such
as templating, Library/API calling protocols, general language or
algorithmic idioms and so on in the implementation process creates
enough similarities among code fragments to be detected by clone
detection tools, they are not often considered clones by users [9, 21].
For these considerations, users often need to manually validate the
reported code clones from a clone detection tool [21]. The manual
validation often becomes a time-consuming and laborious work, as
the software systems evolve over time [16].

In this paper, we present a machine learning based clone valida-
tion tool CloneCognition to automate the validation process. The
tool uses an Artificial Neural Network (ANN) classifier to learn
and predict the human validation pattern towards automating the
code clone validation problem. The classifier model for validation
is trained from manually validated clone sets from IJaDataset 2.0
[3] - a large inter-project dataset of open-source projects. The clas-
sifier model learns by mimicking the human validation patterns
for feature extraction and shows an accuracy of up to 87.4% for
automatic validation. For testing the generality of classification,
the model was rigorously evaluated against different experimental
setups, such as multiple code clone detection tools, artificial code

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Mostaeen, Svajlenko, Roy, Roy, Schneider

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

clones, different open source projects -where it shows promising
results. The proposed clone classification approach also shows bet-
ter performance when compared against existing state-of-the-art
techniques for code clone validation [21]. While in this paper, we
focus on the tool aspect of the proposed automatic clone validation
approach, we refer the readers to our original paper [12] for details.

Without reinventing the wheel of clone detection techniques,
the tool runs on top of any code clone detection tools to automate
the validation process. The reported possible clones from a clone
detection tools are provided to CloneCognition as input, where they
are validated against the classification model. For every possible
pair of clones, the tool calculates the corresponding probabilistic
score for automatic validation and final report generation. While
the classification model is trained on diverse and evolving manually
validated dataset by multiple expert judges, CloneCognition also
provides a framework for manual validation of code clones towards
building a case-specific dataset for model training and validation
by the tool [12].

CloneCognition follows a service-oriented architecture so that it
becomes compatible with any existing clone detection tool irrespec-
tive of the language or platform differences in the implementation
of the tools via simple service call invocation (e.g., RESTful services).
The tool is publicly accessible from a cloud server1, and also a local
instance of it can be obtained from GitHub2.

2 RELATEDWORKS
Management of the large-set of detected clones has been one of the
active research topics in the code clone detection domain over the
last few years [17, 20, 21]. Yang et al. studied the similar problem for
code clone validation in their work - FICA [21]. Their work lever-
ages ‘Term-Frequency - Inverse Document Frequency’- (TF-IDF) for
the purpose for Type 2 clone validation. However, in our proposed
method we targeted the validation of even beyond Type 2 clones,
having more complex structures such as Type 3. We conducted sev-
eral evaluation studies for comparison, where our proposed method
shows better and promising results (e.g., as presented in Section 5).

Svajlenko et al. [17] used unsupervised machine learning for
clustering similar code clones. Kapser and Godfrey [8] studied on
the categorization of detected clones in hierarchy files and directo-
ries based on location proximity. While the total number of clones
to be analyzed by those methods still remain same, our method in
contrast targets on user-specific classification for clone filtering.

Besides, several visualization techniques have been proposed for
clone management, such as Scatter plot [7], Hasse diagram [5], an
aspect browser-like view [20], hierarchical graphs [4] and so on.
Note that, our proposed tool can further aid in such clone manage-
ment by providing additional dimensions, such as clone validation
score.

3 CloneCognition WORKING
METHODOLOGY

In this section, we present a brief discussion of the working pro-
cedure of the tool, while we refer to our original paper for detail
studies envisioning the tool [12].

1http://p2irc-cloud.usask.ca/cloneCognition
2https://github.com/pseudoPixels/cloneCognition

3.1 Clone Validation with Machine Learning
3.1.1 Dataset Formulation. Themachine learningmodel of CloneCog-
nition is trained on the clone sets of IJaDataset 2.0 [3] - a large
inter-project dataset of open-source projects. For the machine learn-
ing model generalization, CloneCognition used five different pub-
licly available and state-of-the-art tools- NiCad, Deckard, iClones,
CCFinderX and SourcererCC for detecting clones independently
from IJaDataset 2.0.

3.1.2 Feature Extraction. We conducted several experiments and
studies on the feature selection and extraction for the machine
learning classifier. While in this paper we focus on the tool aspects
of our research studies on clone validation, we refer the readers
to the original paper for details presentation on the feature sets,
such as feature selection, classification data distribution in terms of
features, feature scores, cluster information and so on [12]. Existing
works on clone validation only address up to Type 2 clones and
uses token level sequence matching, such as n-gram [21]. However,
with an attempt to extending the validation process beyond Type
2, we use three level of normalization of the fragments for similar-
ity feature extractions - line similarities with Type 1, 2 and 3 levels
of normalization, token level similarities in Type 1, 2 and 3 level of
normalization [12]. Besides, from our investigation study we found
that, human judges in addition to the similarity measures assess
different visual structural attributes, such as - fragment size differ-
ences -with different consideration on larger versus smaller fragments,
unmatched braces, function intersected -which are also considered
in the feature set of CloneCognition.

3.1.3 Training the Machine Learning Classifier Model. CloneCog-
nition works on top of the reported code clones from a code clone
detection tool. The reported clones from a clone detection tool
are sent to CloneCognition for validation and report regeneration
based on the validation result from the machine learning model.
CloneCognition uses Artificial Neural Network (ANN) model, f (x)
for learning the human validation patterns towards automating the
clone validation task (e.g., Fig. 1(b)). For a given test clone pair set,
CloneCognition extracts features set, xt to activate on the learned
model function, ŷt = f (xt). ANN being a probabilistic classifier
predicts and returns, ŷt - the vector containing the probability of a
submitted clone pair for being true positive and false positive e.g.,
as in Eq. 1.

ŷt = f (xt) = (Pr [yt = (1, 0)], Pr [yt = (0, 1)]) (1)

From our several studies on classifier selection and their corre-
sponding configurations, we found that ANN performs better with
one hidden layer comprising of 107 nodes, softmax activation func-
tion for the output layer and converges within a range of 500 to
600 epochs giving an accuracy of 87.4% [12].

3.1.4 Classification Decision Configuration and Clone Validation
Report Generation. The trained classifier, ŷt = f (xt) assigns prob-
ability values- Pr [yt = (1, 0)] and Pr [yt = (0, 1)] -respectively for
the true positive and false positive clone classes. Users can tune the
clone classification decision by setting different values of- γ [0, 1],
which is used by CloneCognition to make the prediction decision.
A test clone pair is validated as true positive, if Pr [yt = (1, 0)] ≥ γ .
The default value of γ is 0.5, such that CloneCognition makes true

2

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

CloneCognition: Machine Learning Based Code Clone Validation Tool ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

Clone Pair Sets

Feature Extractor

ANN Classi erTrained Model

ML Validated Clones

Manual Val. Framework

Manual Val. Clones

Train ML Class�er Model

Command Line / RESTful Serv. / Web UI

Tool Core Components

(a) (b)

Clone Pair Sets

M
a
n
u

a
l
C

lo
n
e
 V

a
li
d
a
ti

o
n
 F

ra
m

e
w

o
rk

 a
n

d
 M

L
 T

ra
in

e
r

M
a
c
h

in
e
 L

e
a
rn

in
g
 B

a
s
e
d
 C

o
d
e
 C

lo
n
e
 V

a
li
d
a
ti

o
n

Figure 1: High-Level Workflow of CloneCognition.

positive prediction if, Pr [yt = (1, 0)] ≥ Pr [yt = (0, 1)]. CloneCog-
nition calculates and returns several reports on the clone validation
statistics, such as precision, true positive counts, false positive
counts, true positive ratio and false positive ratio. The validation
responses are also recorded as CSV format for the corresponding
test code clone pairs for later use.

3.2 High-Level Architecture of the Tool with
its Components

Fig. 1 demonstrates the core components and schematic diagram of
CloneCognition. The components can be classified into two major
groups - manual validation framework for maintaining the cycle
of supervised learning (i.e., Fig. 1 (a)) and clone validation with
machine learning models (i.e., Fig. 1 (b)).

Towards creating a custom training dataset for case-specific sce-
narios [12, 21] or enriching the existing training dataset, CloneCog-
nition provides a framework for a cycle of supervised learning (e.g.,
Fig. 1 (a)). Here, user-specified new clone pair sets are iteratively
presented to the users for validation responses towards building
manually validated dataset. The labeled dataset is later used for
corresponding feature extraction and training the CloneCognition
model (e.g., as presented in Section 3.1.2 and 3.1.3 respectively). The
trained model is finally saved (e.g., after model serialization, such
as pickling) for later automatic clone classification.

As presented in Section 3.1.4, Fig. 1 (b) demonstrates the differ-
ent components of the tools for automatic clone validation report
levering the trained machine learning model. For new set of clone
pairs, CloneCognition uses feature extraction module for prepare
the feature vector, which is fed to the trained model for generating
the machine learning validated clone reports.

The tool follows a Service-Oriented architecture, so that the com-
ponents can be individually accessed via RESTful API or Web UI in
addition to command line as illustrated in the figure. We present
brief discussion on the corresponding services and usage of the tool
in the following section.

4 CloneCognition USAGE
While the architecture allows accessing the technical features from
command lines, we developed a user interface on top of the RESTful
services to ensure easier manipulation and visualization of the
validated clones. In this section, we present the major technical
features provided by the CloneCognition tool.

4.1 Automatic Clone Validation using Machine
Learning

For automatic validation, the reported sets of code clone pairs from
a clone detection tool are provided to CloneCognition as input
(for example, uploaded from the user interface as presented in Fig.
2). The tool extracts the feature sets for clone classification from
the input sets of clone pairs. The extracted feature set for a corre-
sponding clone pair is then activated against the trained machine
learning model. CloneCognition sends the clone pairs with the
corresponding classification probability values, as corresponding
response for the clone validation requests. A code clone pair is
validated as either true or false positive based on the probabilities
assigned by the classifier. As noticeable from the figure (i.e., Fig.
2), the clone validation can also be tuned by the user set threshold
for validation decision making of the classifier [12]. In addition
to the corresponding clone validation scores, CloneCognition also
returns the validation overall validation statistics, such as total true
positive clones, precision and so on of the input reported possible
clone pair sets, which are often useful for the evaluation of clone
detection tools [21].

4.2 Manual Validation and Model Building
Fig. 3 demonstrates the manual validation framework of CloneCog-
nition. The reported code clones from a clone detection tool are
imported to CloneCognition, where the possible code fragments of
corresponding clone pairs in iterations are presented to the user in
a comparison view. Users mark a presented clone pair as any of -
‘False Clone Pair’, ‘True Clone Pair’ or ‘Undecided’ from their man-
ual judgment of the presented clone pairs. CloneCognition records
the manual responses for the corresponding clone pairs, -which
are exportable as .csv format from the tool. The manual validation
framework by the tool provides two folds advantages. First, the
manual responses can be used for enriching the clone validation

Figure 2: CloneCognition User Interface- Automatic Clone
Validation with Machine Learning.

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Mostaeen, Svajlenko, Roy, Roy, Schneider

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Figure 3: CloneCognition User Interface- Manual Validation
and Model Building.

benchmark dataset, and hence evaluating the result quality of a
clone detection tool. Second, the manual validation responses are
used by CloneCognition for further improving the machine learn-
ing model in a cycle of supervised learning.

CloneCognition also supports training the machine learning
classifier towards improving the model from the obtained manual
validation patterns. The responses from the newly validated clones
are used by CloneCognition towards a cycle of supervised learning.

Figure 4: Comparison of CloneCognition with Related
Works on Clone Validation. Validation accuracy calculated
from known dataset and compared with existing methods.

5 EVALUATION
The CloneCognition classification model shows a promising clone
validation accuracy of 87.4%, when evaluated using 10-fold cross val-
idation against IJaDataset 2.0 [3]. Besides, for attaining confidence
in the classification performance, the clone validation was tested
for different use-cases, such as with different open source software
systems, code clone detection tools, multiple users, artificial clones,
existing methods and so on, - where the classification model shows
promising results. For example, Fig. 4 shows the snippets of com-
parison of the tool with related state-of-the-art methods [21] for
clone validation. The graph plot illustrates that CloneCognition out-
performs the existing methods for clone validation across reported
clones from different software systems. We also studied the result
quality of the classification model of CloneCognition. For example,
Fig. 5 shows the Receiver Operating Characteristic (ROC) curve of
the tool. The result illustrates that CloneCognition attains up to 0.87
Area Under ROC (AUC), which is promising. Fig. 6 demonstrates
a better result quality of CloneCognition when compared to the

Figure 5: ROC curve of CloneCognition for clone classifica-
tion.

existing methods for code clone validation [21]. The box-plot graph
illustrates that the proposed tool exhibits better overall median pre-
cision, recall, and F1-score in comparison to the existing methods
of clone validation. CloneCognition also shows better consistency
in its result qualities in comparison to the existing methods- where
the existing methods exhibit higher variances in corresponding
validation results as depicted in Fig. 6.

Figure 6: Result quality comparison with related works.

6 CONCLUSION
In this paper, we proposed a machine learning based tool CloneCog-
nition for automating the time-consuming and laborious works of
code clone validation. The tool shows promising clone classification
results with an accuracy of up to 87.4% and also outperforms the ex-
isting state-of-the-art clone validation techniques. The CloneCogni-
tion tool offers several advantages in terms of code clone validation,
such as i) integration with any clone detection tool as validation
layer, ii) easier validation process from simple user interface, iii)
precision measurement of clone detection tools, iv) possibilities of
important knowledge discoveries and visualization in terms vali-
dated clone sets and corresponding validation scores.

ACKNOWLEDGMENT
This research is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC), and by two Canada First
Research Excellence Fund (CFREF) grants coordinated by the Global
Institute for Food Security (GIFS) and the Global Institute for Water
Security (GIWS).

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

CloneCognition: Machine Learning Based Code Clone Validation Tool ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

REFERENCES
[1] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering 33, 9 (2007).

[2] EkwaDuala-Ekoko andMartin P Robillard. 2007. Tracking code clones in evolving
software. In Software Engineering, 2007. ICSE 2007. 29th International Conference
on. IEEE, 158–167.

[3] Ambient Software Evoluton Group. [n.d.]. IJaDataset 2.0. http://secold.org/
projects/seclone.

[4] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th international conference on Software Engineering. IEEE Computer
Society, 96–105.

[5] J Howard Johnson. 1994. Visualizing textual redundancy in legacy source. In Pro-
ceedings of the 1994 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 32.

[6] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on. IEEE, 485–495.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[8] Cory Kapser and Michael W Godfrey. 2004. Aiding comprehension of cloning
through categorization. In Software Evolution, 2004. Proceedings. 7th International
Workshop on Principles of. IEEE, 85–94.

[9] Cory Kapser and Michael W Godfrey. 2006. " Cloning considered harmful" con-
sidered harmful. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference
on. IEEE, 19–28.

[10] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using
abstract syntax suffix trees. In Reverse Engineering, 2006. WCRE’06. 13th Working
Conference on. IEEE, 253–262.

[11] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In Software

Maintenance and Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
249–260.

[12] G. Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and K. Schneider.
2018. On the Use of Machine Learning Techniques Towards the Design of Cloud
Based Automatic Code Clone Validation Tools. In Source Code Analysis and
Manipulation, 2018. SCAM 2018. 18th IEEE International Working Conference on.
IEEE.

[13] Chanchal K. Roy and James R. Cordy. 2007. A survey on software clone detection
research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[14] Chanchal K. Roy and James R. Cordy. 2008. An empirical study of function clones
in open source software. In Reverse Engineering, 2008. WCRE’08. 15th Working
Conference on. IEEE, 81–90.

[15] Chanchal K Roy and James R Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization. In
Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference
on. IEEE, 172–181.

[16] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In Software Maintenance and Evolution (ICSME), 2014 IEEE Interna-
tional Conference on. IEEE, 476–480.

[17] Jeffrey Svajlenko and Chanchal K Roy. 2016. AMachine Learning Based Approach
for Evaluating Clone Detection Tools for a Generalized and Accurate Precision.
International Journal of Software Engineering and Knowledge Engineering 26,
09n10 (2016), 1399–1429.

[18] Jeff Thomas Svajlenko et al. 2018. Large-Scale Clone Detection and Benchmarking.
Ph.D. Dissertation. University of Saskatchewan.

[19] Robert Tairas and Jeff Gray. 2006. Phoenix-based clone detection using suffix trees.
In Proceedings of the 44th annual Southeast regional conference. ACM, 679–684.

[20] Robert Tairas and Jeff Gray. 2009. An information retrieval process to aid in the
analysis of code clones. Empirical Software Engineering 14, 1 (2009), 33–56.

[21] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto.
2015. Classification model for code clones based on machine learning. Empirical
Software Engineering 20, 4 (2015), 1095–1125.

5

http://secold.org/ projects/seclone
http://secold.org/ projects/seclone

	Abstract
	1 Introduction
	2 Related Works
	3 CloneCognition Working Methodology
	3.1 Clone Validation with Machine Learning
	3.2 High-Level Architecture of the Tool with its Components

	4 CloneCognition Usage
	4.1 Automatic Clone Validation using Machine Learning
	4.2 Manual Validation and Model Building

	5 Evaluation
	6 Conclusion
	References

