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Abstract

Code clones, identical or nearly similar code fragments in a software sys-
tem’s code-base, have mixed impacts on software evolution and maintenance.
Focusing on the issues of clones researchers suggest managing them through
refactoring, and tracking. In this paper we present a survey on the state-
of-the-art of clone refactoring and tracking techniques, and identify future
research possibilities in these areas. We define the quality assessment fea-
tures for the clone refactoring and tracking tools, and make a comparison
among these tools considering these features. To the best of our knowledge,
our survey is the first comprehensive study on clone refactoring and track-
ing. According to our survey on clone refactoring we realize that automatic
refactoring cannot eradicate the necessity of manual effort regarding finding
refactoring opportunities, and post refactoring testing of system behaviour.
Post refactoring testing can require a significant amount of time and effort
from the quality assurance engineers. There is a marked lack of research on
the effect of clone refactoring on system performance. Future investigations
in this direction will add much value to clone refactoring research. We also
feel the necessity of future research towards real-time detection, and tracking
of code clones in a big-data environment.
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1. Introduction

Changes are inevitable during software maintenance and evolution. Code
cloning is a common practice which is often employed by the programmers
while implementing changes during both the development and maintenance
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phases of a software system. Code cloning involves copying a code fragment
from one place of a software system and pasting it to several other places of
that system with or without modifications. Code cloning results the existence
of identical or nearly similar code fragments in the code-base. These identical
or similar code fragments are known as code clones.

Code clones are of great importance from the perspectives of software
maintenance and evolution. A great many studies [112, [1], 42} (55} [68], 6, [7], 87,
441 196, 115} 1211 130, 117, 120, 118, [116] have been conducted on discovering
and analyzing the impacts of code clones on software maintenance. While a
number of studies [I], 42 551 68 73], [74], [75] identify some positive impacts
of code clones, there is strong empirical evidence [82, (6] [7, 87, 44 86, 05
96, [80), 24], 60, 17, [56] [151] of negative impacts too. Focusing on the issues
related to code clones researchers suggest managing them through refactoring
[11,3] and tracking [31 [58] for minimizing their negative impacts, and getting
benefited from their positive sides.

Clone refactoring refers to the task of merging several clone fragments
from a clone class (i.e., a group of code fragments that are similar to one
another) into a single one if possible. However, refactoring of all clone frag-
ments in a software system is impractical [70]. There can be situations where
refactoring of clone fragments in a particular class is impossible but the frag-
ments need to be updated together consistently. Clone tracking is important
in such situations.

The clone fragments in a particular clone class may remain scattered at
different source code files and folders of a software system’s code-base. Clone
tracking [31, 58] means remembering all the clone fragments in a clone class
as the software system evolves through changes so that when a programmer
makes some changes to a particular clone fragment in that class, the clone
tracking system can automatically notify her about the existence of the other
clone fragments in the class. The programmer can then decide whether she
needs to implement similar changes to these other clone fragments in order
to ensure consistency of the software system’s code-base.

A number of studies have been conducted on clone refactoring [158, 4]
1541 129, [128] [11], 5, 137, 138, 5, 49 50, 15 13 26 [76] and tracking [94]
1441 130, 31) 32] 58], 48] resulting a number of related techniques and tools
111, 5, 94], 144 (30}, BT [32] 58, 71, 49], 53, [78], 16, 140} B8, 92, 145]. The goal
of our survey is to investigate the state-of-the-art in clone refactoring and
tracking, and pointing out possibilities of future research. We answer the
research questions listed in Table [1] and make the following contributions:
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e (Classifying and discussing the existing studies on clone refactoring and
tracking

e Defining quality assessment features for the clone refactoring and track-
ing tools, and performing a comparative analysis of the tools with re-
spect to these features.

e Identifying future research possibilities in the area of clone refactoring
and tracking.

Our survey can be useful for the researchers in the field of clone refactoring
and tracking because it can help us quickly identify the research directions
that have already been explored, find the directions that are yet to explore,
identify the existing tools and techniques in the field, and make a compara-
tive scenario among these tools on the basis of their features. Our analysis
indicates that future research can be conducted on enhancing the existing
refactoring and tracking tools to support more programming languages as
well as clone-types. We also realize that in order to keep pace with the rapid
advancement of technologies, it is important to support clone management
(i.e., clone detection, tracking, and refactoring) in a big-data environment
empowered by Hadoop-MapReduce framework. Future research in this di-
rection can make a significant contribution in software maintenance.

The rest of the paper is organized as follows. Section[2|defines code clones,
Section [3| describes our survey procedure, Section |5| discusses the studies on
clone refactoring by separating those into eight categories, Section [6] presents
a qualitative analysis of the clone refactoring tools, Section [7| discusses the
existing studies on clone tracking, Section [§| shows a qualitative analysis of
the clone tracking tools, Section [9] discusses future research possibilities in
clone refactoring and tracking, Section (10| presents answers to the research
questions, and Section [11| concludes the paper with final remarks.

2. Code Clone

According to the literature [115] [121], if two or more code fragments in
a code-base are identical or nearly similar to one another, we call them code
clones.

Clone-Pair: Two code fragments that are similar to each other form a
clone pair.

Clone Class: A group of similar code fragments forms a clone class or
a clone group.



Table 1: Research Questions
RQ 1 | Can we categorize the existing studies on clone refactoring and
tracking? If so, how much has each category been explored?
RQ 2 | What are the features of the existing clone refactoring and tracking
tools? Can we draw a comparative scenario among these tools on
the basis of these features?
RQ 3 | What are the possible future research directions in clone refactoring
and tracking?

2.1. Types of Code Clones
There are four types of code clones as discussed below.

e Type 1 Clones. Exactly similar (i.e., identical) code fragments disre-
garding their comments and indentations are known as Type 1 clones.

e Type 2 Clones. Type 2 clones are syntactically similar code frag-
ments. These are mainly created from Type 1 clones because of re-
naming identifiers and changing data-types.

e Type 3 Clones. Type 3 clones are created from Type 1 and Type
2 clones because of addition, deletion, or modification of source code
lines. Type 3 clones are also known as gapped clones.

e Type 4 Clones. Semantically similar code fragments are known as
Type 4 clones. If two or more code fragments perform the same task
but are implemented in different ways, these code fragments are called
Type 4 clones. Type 4 clones are also known as semantic clones.

Code clones can be of different granularities such as: file clones, class
clones, method clones, or arbitrary block clones. Researchers have also inves-
tigated on detecting duplications (i.e., clones) in higher level code structures
[8, 9], [89], formal models [27, 28], UML sequence diagrams [133] [85], software
requirements specifications [61] 62], and Matlab/Simulink models [110].

3. Survey Procedure

We have performed a literature survey on refactoring, tracking, and syn-
chronization of code clones. The list of websites that we explored for search-
ing studies relevant to our survey include: www.dl.acm.org (ACM Digital Li-
brary), ieeexplore.ieee.org (IEEE Xplore Digital Library), www.sciencedirect.com,
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Table 2: Results from Preliminary Search

Clone Clone Clone  Syn-

Refactor- Tracking chronization

ing
http://ieeexplore.iece.org/ 119 139 53
https://dl.acm.org/ 7 52 12
https://www.sciencedirect.com/ | 183 1,115 47
https://link.springer.com 101 213 101
http://onlinelibrary.wiley.com 2 3 0
www.worldscientific.com/ 8 211 138
http://digital-library.theiet.org | 9 109 31

link.springer.com, onlinelibrary.wiley.com, www.worldscientific.com, and digital-
library.theiet.org (IET Software). The keywords that we used for searching
are: ‘clone refactoring’, ‘clone tracking’, and ‘clone synchronization’. We got
a lot of papers as our search result from the websites. The numbers of papers
that we obtained from different websites for different keywords are listed in
Table When searching papers, we used advanced search options and se-
lected appropriate fields of research to narrow down our search results. The
search results from different websites as well as from different keywords con-
tain duplicates. These duplicates might significantly increase our checking
time of the search results. For this reason, we downloaded the CSV files of
the search results and then developed a program to automatically determine
the distinct results comparing all the search results from all the websites.
We should note that some of the websites do not support exporting search
results. For these cases we checked the search results in the websites one by
one. We obtained 1037 distinct results in total. We checked each of these
distinct results in the following way.

First we checked the title of the paper and tried to decide whether the
paper is relevant to our survey. When we could not decide by just looking at
the title, we read the abstract. For most of the cases, we could decide after
reading the abstract. For only a few cases, we had to read the experimental
details to come to a final decision. We finally selected 97 papers (77 papers
on clone refactoring and 20 papers on clone tracking and synchronization) for
our survey. After selecting the papers for our survey, we thoroughly studied
each of those papers to answer the research questions in Table [ Such
questions were not answered before. In the following sections we present our



survey. We will answer the research questions in Section 9.

4. Contrasting our survey with the existing surveys on code clones

This section describes how our survey is different than the existing surveys
[116] 114, 121 [72, 109, [67, 132, 119, [120] on code clones.

Roy and Cordy [116] conducted a survey on the available clone detection
techniques and tools. The survey particularly describes the related terms
regarding code clones, clone taxonomy, taxonomy of clone detection tech-
niques, a comparison of the clone detection tools, evaluation of the clone
detection techniques from different dimensions (e.g., portability, precision,
recall, scalability, robustness, usefulness in refactoring), the available tech-
niques for visualizing clones, and application of clone detection techniques
for various purposes (e.g., plagiarism detection, bug detection, aspect mining,
program comprehension, malicious software detection, product line analysis).
The survey also includes an overall discussion of the clone refactoring and
tracking techniques and tools. However, Roy and Cordy did not classify
these techniques and tools on the basis of their effectiveness in refactoring
and tracking. Moreover, a comparison of the tools was not done in the survey.
The survey dates back to 2007. A number of clone refactoring and tracking
tools have been published afterwards. We consider all the recent as well as
preexisting techniques and tools in our survey. We categorize all the existing
clone refactoring and tracking studies into different categories, identify fea-
tures for evaluating the published tools and techniques for refactoring and
tracking, and also, compare the tools on the basis of these features.

In 2014, Roy et al. [12I] conducted another study where they discussed
the existing studies and techniques on code clones from management per-
spectives. While their survey includes overall discussions on clone detection,
analysis, annotation, documentation, tracking, refactoring, cost-benefit anal-
ysis for refactoring schedule, and industrial adoption of clone related tech-
niques, our survey solely focuses on clone refactoring and tracking. We make
a list of the clone refactoring and tracking studies, techniques and tools, dis-
cuss the studies by categorizing them into different categories, compare the
tools and techniques on the basis of their features, and finally discuss future
research possibilities on clone refactoring and tracking. Roy et al.’s [121]
survey does not contain such a comprehensive analysis and comparison of
the clone refactoring and tracking studies, techniques and tools.



Koschke [72] conducted a survey on clone research in 2006. The sur-
vey discussed the existing clone research from different perspectives such as
causes behind making clones, effects of code cloning, evolutionary analysis
of code clones, removal of code clones through refactoring, techniques for
avoiding code clones, and clone detection techniques and tools. Koschke also
made a comparison of the available clone detection tools. While Koschke’s
survey emphasized on comparing clone detection tools, our survey partic-
ularly focuses on clone refactoring and tracking techniques and tools. We
analyze and compare the related studies, techniques, and tools from different
perspectives and answer three research questions through our analysis.

In 2011, Pate et al. [109] conducted a survey on the evolutionary phe-
nomenon of code clones. They answered three research questions in their
survey regarding the methods followed by the studies analyzing clone evolu-
tion, patterns of clone evolution, and the existing reports on whether clones
evolve consistently or not. While Pate et al.’s study [109] was focused on the
evolutionary analysis of code clones, our survey emphasizes on clone refac-
toring and tracking techniques and tools.

Roy et al. [120] conducted a comprehensive survey on the available clone
detection techniques and tools in 2009. The survey proposed a framework
for classifying the clone detection techniques and tools, and then, classified
and compared the techniques and tools on the basis of that framework. The
survey also reports a taxonomy of editing scenarios that generate different
types of code clones. Rattan et al. [114] conducted another survey on clone
detection research in 2013. Beside comparing the existing clone detection
tools, they also discussed the impact of clones on software quality, benefits
of clone management, and clone visualization. Kapdan et al. [67] surveyed
clone detection research emphasizing the capabilities of the clone detectors
in detecting structural clones. Sheneamer and Kalita [132] surveyed the
existing clone detection techniques and tools and the challenges that are
generally faced by the clone detection techniques. In a recent study, Roy
and Cordy [119] conducted a survey on the benchmarks for clone detection
and evaluation. Our survey is different from these existing surveys because
we provide a comprehensive study, analysis, and comparison of the existing
clone refactoring and tracking studies, techniques, and tools.



5. Clone Refactoring

Focusing on the impacts of code clones researchers suggest to properly
manage code clones so that we can get rid of their negative impacts as well as
can be benefited from their positive sides. Clone refactoring is a possible way
of clone management. According to the literature [39], refactoring refers to
changing a software system’s code-base with the goal of enhancing its internal
structure so that its external behaviour does not change. Clone refactoring
refers to the task of merging (i.e., unifying) two or more clone fragments from
the same clone class. Software researchers suggest clone refactoring in order
to improve the maintainability of the source code. A great many studies
[158} 4], 1541 129, 128, 11}, (5], 137, 138, [5], [49] (50} [15] 13}, 26}, [76], 102} [142] have
already been done on clone refactoring. The graph in Fig. [I] reports the
number of publications on code clone refactoring in different years beginning
from the year of 1998. We see that there is an increasing trend in the number
of publications on clone refactoring. After reading and analyzing the existing
studies on clone refactoring, we classify those into the following research
directions:

e Clone categorization from refactoring perspectives

e Automatic refactoring of code clones

e Semi-automatic refactoring of code clones

e Integrating clone detection and refactoring

e Scheduling for clone refactoring

e Comparing clone detection techniques from refactoring perspectives
e Analyzing the effect of clone refactoring

e Investigating how developers refactor clones

e I[dentifying code clones that are important for refactoring

In the following subsections, we discuss the clone refactoring studies by
separating those into the research directions mentioned above.
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Figure 1: Number of publications on clone refactoring in different years

5.1. Clone Categorization from Refactoring Perspective

A number of studies [4], [154] [129] have categorized code clones from the
perspectives of refactoring. Different refactoring techniques have been pro-
posed for different categories. We discuss these studies in the following para-
graphs.

Balazinska et al. [4] proposed 18 categories of clone classes from their
manual investigation on 800 clones from six open-source subject systems
written in Java. They implemented a tool called SMC (Similar Method
Classifier) for automatically classifying clones into these categories. How-
ever, they considered only the method clones in their study. They did not
propose any particular refactoring mechanism for any of the 18 categories
they proposed.

Yu and Ramaswamy [154] detected code clones from Linux using CCFind-
erX clone detector and categorized these clones into three categories: (1)
singular concern clones, (2) cross-cutting concern clones, and (3) partial con-
cern clones. They found that respectively 39%, 24%, and 37% of all the code
clones belong to these three categories. They involved a domain expert to
refactor these clones. The domain expert could refactor code clones in the
first two categories. However, clones in the third category were not suitable
for refactoring because such code clones were parts of other concerns.

Schulze et al. [129] categorized code clones for refactoring on the basis
of two things: (1) type of code in the clone fragments, and (2) location
of the clone fragments. On the basis of the location of code clones in the
directory tree, the authors decide whether OOR (object oriented refactoring)
or AOR (aspect oriented refactoring) is suitable for refactoring those. In
their categorization, they have shown which type of refactoring is applicable
to which type of clone fragments on the basis of the location information of



the clone fragments. According to their analysis when clone fragments of a
particular clone class are scattered throughout the code-base, AOR is more
appropriate for them compared to OOR.

5.2. Automatic Refactoring of Code Clones

A number of studies investigate fully automatic refactoring. Automatic
refactoring refers to the task of refactoring code clones without interaction
from programmers. This task is challenging because the refactoring tool
might often need to select the most appropriate refactoring technique among
a number of alternatives for a particular refactoring case. There are only a
few studies on automatic clone refactoring. We discuss these studies below.

Balazinska et al. [5] refactored method clones in JDK 1.1.5 using the
strategy design pattern proposed by Gamma et al. [40]. The clones were
detected by matching sub-trees in the ASTs (abstract syntax trees) of the
source code. Their refactoring tool, CIoRT (Clone Reengineering Tool), capa-
ble of automatically refactoring three categories of method clones: identical
clones, clones having superficial differences (such as differences in variable
names), and clones having differences in the use of non-local variables. Bal-
azinska et al. identified these three categories of method clones by using their
previously implemented tool SMC [4]. They selected 28 method clones for
refactoring grouped into 11 clone classes belonging to those three categories.
Their refactoring activity increased the size of the source code. For merging
28 method clones their tool created 84 new methods which were easier to
manage.

Meng et al. [92] implemented a fully automatic clone removal tool, RASE,
which is capable of extracting common code guided by systematic edits, cre-
ating new types and methods, parameterizing differences in types, methods,
variables, and expressions, and inserting return objects and exit labels on
the basis of control and data flow. With systematic editing scope RASE
could refactor clones from 54% of the investigated method pairs and 67% of
the investigated method groups. RASE can apply combinations of six refac-
toring operations: extract method, add parameter, parameterize type, form
template method, introduce return object, and introduce exit label.

Mazinanian et al. [90] introduced a clone refactoring tool called JDeodor-
ant. This tool can be used in batch processing mode for automatically reading
clone detection results, analyzing refactorability of code clones, and finally
performing the refactoring action if possible. JDeodorant [90] is the updated
version of the clone refactoring tool implemented in a study performed by
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Tsantalis et al. [145]. We will discuss this study in detail in Section [5.4} In
this study [145], Tsantalis et al. did not perform automatic clone refactoring.
However, in a later study [146], they used their updated tool, JDeodorant
[90], for the purpose of automatic refactoring of code clones.

5.8. Integrating Clone Detection and Refactoring

Clone detection and refactoring are two different tasks. Seamless integra-
tion of these two tasks is necessary in order to ensure proper management of
code clones. Different clone detection tools are currently existing with differ-
ent capabilities. Developing a clone refactoring tool aiming to work on the
output of a subset of these clone detectors might be challenging. Most of the
clone refactoring tools work on top of a single clone detector. Only JDeodor-
ant [90] works on more than one clone detector. In the following paragraphs,
we discuss the studies on integrating clone detection and refactoring.

Tairas [137, [138] proposed a seamless integration between the detection
and refactoring of code clones. There are existing detection techniques as well
as refactoring tools. Tairas’s idea was to customize these existing techniques
and tools to build a complete system for clone maintenance. In a later
study, Tairas and Gray [140] developed an Eclipse plug-in called CeDAR
(Clone Detection, Analysis, and Refactoring) that bridges the gap between
clone detection and refactoring. CeDAR works on top of DECKARD [59]
clone detector. The code clones detected by DECKARD are passed to the
refactoring engine of Eclipse. The refactoring engine then analyzes which
code clones are suitable for refactoring. CeDAR was evaluated on eight open
source software systems. The authors report that CeDAR can considerably
increase the possibilities of clone refactoring by providing higher number
of refactorable clone classes to the programmers compared to other clone
refactoring tools ARIES [53] and SUPREMO [71]. CeDAR is capable of
detecting and refactoring only Type 1 and Type 2 code clones.

The clone refactoring tool JDeodorant [90] which was introduced by Maz-
inanian et al. [90] integrates clone detection and refactoring. The tool was
implemented as a plug-in for the Eclipse IDE. It can automatically import
clone detection results from five different clone detectors (CCFinder [65],
DECKARD [59], CloneDR [11], NiCad [23], and ConQAT [63]), analyze the
code clones for their refactorability, and apply refactoring if possible. While
importing clone detection results from a clone detector, JDeodorant checks
and corrects the syntactic inconsistencies in the clone fragments. It disre-
gards clone fragments that extend beyond method boundaries.
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5.4. Semi-automatic Refactoring of Code Clones

Most of the existing clone refactoring techniques [5, 49, 50, [71], [64] (78] 16,
211, 148 52| 145, [38], 36, [141], 37, [134] are semi-automatic (i.e., they require
user interactions for the actual implementation of refactoring). We discuss
these studies and techniques in the following paragraphs.

The first ever study on clone removal was done by Baxter et al. [11].
They detected code clones by generating ASTs (abstract syntax trees) of the
source code, and then by finding matches between sub-trees. They applied
their technique on a software system written in C. Their implemented clone
detection tool could produce macro bodies and macro invocations for re-
moving clones. Their refactoring approach is restricted to the programming
languages that support macro generation. They considered arbitrary block
clones in their study.

The clone refactoring tool CloRT [5] implemented by Balazinska et al.
[5] using strategy design pattern was capable of automatic refactoring (i.e.,
refactoring without user interaction). However, in another study [3] Bal-
azinska et al. proposed a semi-automated clone refactoring technique using
template design pattern with an aim of providing a higher level of refactoring
flexibility to the programmers by showing them refactoring possibilities. In
this technique they first identify the differences between the method clones,
present these differences to the programmers in an easily understandable way
(showing the differences in ASTs), and provide descriptions about the cate-
gories of differences (such as differences in signature, in variable names) so
that they can have enough knowledge for refactoring.

Koni-N’Shapu et al. [71] performed scenario based refactoring of code
clones using the clone detector DUPLOC [33]. They considered Type 1
clones and Type 3 clones that get created by additions, deletions, or modi-
fications in Type 1 clones for refactoring. Type 2 clones (i.e., created from
Type 1 clones because of renaming variables or changing data-types) were
not considered in the study, because DUPLOC cannot detect Type 2 clones.
Koni-N’Shapu et al. implemented a tool called SUPREMO to assist pro-
grammers in semi-automatic refactoring of code clones. SUPREMO helps us
apply a number of refactoring patterns such as: Extract Method, Pull Up
Method, Create Template Method, Parameterization, Insert Method Calls,
and Insert Super Calls. Koni-N’Shapu et al. identified different cloning sce-
narios, and suggested particular refactoring patterns for each scenario. For
example, if a clone-pair remains in the same method, then the possible pat-
terns for refactoring these clones are Extract Method, and/or Parameterize
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Method. SUPREMO is language independent. It was used for refactoring
clones in SMALL TALK, C++, and Java systems.

Higo et al. [49] performed a study on clone refactoring considering one
open source object oriented subject system called ANTLR. They first detect
clone-pairs and clone classes from ANTLR using Gemini which is a clone
analysis and visualization tool. Gemini uses CCFinder for detecting clones.
They implement a tool called CCShaper that analyzes code clones detected
by CCFinder. CCShaper automatically identifies structural blocks (such as:
loops, if-else blocks, blocks enclosed by ”” and *” ) in the clone fragments. Such
structural blocks are suitable for refactoring. According to CCShaper output
they divide the detected clones into two groups. The clone classes in one
group were refactored using Extract Method Refactoring. The clone classes
in the other group were refactored using "Pull Up Method Refactoring’.

Higo et al. [50, 53] implemented the clone refactoring tool ARIES on
top of their previous tool CCShaper [49]. CCShaper could identify language
constructs that are suitable for extracting from a clone pair detected by
CCFinder. ARIES determines whether such language constructs (e.g., loop,
method, if-else) contains variables beyond their scopes or not. Such infor-
mation is necessary for Extract Method refactoring. ARIES also identifies
the container classes as well as the parent classes of the clone fragments in
a clone-pair. Such class level information is necessary for Pull Up Method
refactoring. ARIS can also help us take decision regarding the following
refactoring patterns: Extract Class, Form Template Method, Move Method,
Parameterize Method, and Pull Up Constructor. Higo et al. [50, 53] detected
clones using CCFinder from a subject system called Apache Ant and found
154 clone classes. By applying ARIES they found 52 clone classes that can
be refactored using 'Extract Method’ refactoring and 12 clone classes that
can be refactored using 'Pull Up Method’ refactoring.

Juillerat and Hirsbrunner [64] proposed an algorithm for ‘Extract Method
Refactoring” on the code clones in Java source code. The first step of the
algorithm is to construct the AST of the Java source code. In the second
step, a token list is generated through a post order traversal of the tree. Then
a loss less data compression technique is applied to the token list to identify
code clones. Code clones are similar sub-lists of tokens. The final step is to
identify those code clones that obey certain constraints necessary for ‘Extract
Method Refactoring’. The authors properly describe the constraints in the
paper. However, investigations regarding the application of the proposed
algorithm on any subject system was not reported.
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Li and Thompson [78] proposed a hybrid approach by combining token
based and AST based techniques for detecting code clones in Erlang/OTP
programs, and for refactoring those code clones under user control. The code
clones were detected using token matching because this approach is faster.
An AST based technique was applied to identify the syntactically well-formed
clones. The detection and refactoring mechanisms were implemented as a tool
called Wrangler. Wrangler was integrated with Emacs and Eclipse. In a later
study [79] Li and Thompson updated Wrangler to detect clones incrementally.

Brown and Thompson [16] proposed an AST based clone detection and
refactoring technique for Haskell source code. While the clone detection
part is automatic, the refactoring part is semi-automatic and requires user
analysis and interactions at different steps of clone removal. The detection
and refactoring mechanisms were combined into a tool called HaRe (Haskell
Refactorer).

Choi et al. [21] identified clone refactoring opportunities by combining
different clone metrics. They identified and analyzed code clones using Gem-
ini [147] which is a GUI front-end of the clone detector CCFinder [65]. Gemini
reports three metircs: LEN(S), RNR(S), and POP(S) for the code clones de-
tected by CCFinder. LEN(S) is the average length of the clone fragments in
the clone set S. RNR(S) is the ratio of non-repeated token sequences of the
clone fragments in S. Finally, POP(S) is the number of clone fragments in
the clone set S. They showed that combinations of these metrics can report
refactorable clone sets (i.e., clone classes) with higher precision compared to
each individual metric.

Tokunaga et al. [143] proposed a methodology for defining a collection
of refactoring patterns for code clones. They showed two categorizations of
code clones from refactoring perspectives: (1) categorization on the basis of
the class relationships of code clones, and (2) categorization on the basis of
the granularity of clone fragments. They presented the refactoring pattern
for Pull Up Method. It seems that the refactoring pattern that they describe
is trivial. A number of studies have used pull up method refactoring be-
fore. Also, this refactoring technique has been clearly defined by Fowler [39].
Fowler has defined a long list of refactoring patterns (93 patterns in total). In
presence of such patterns there is no necessity of redefining those. Tokunaga
et al. have shown two possible categorizations of code clones. However, more
sophisticated categorizations were proposed by the previous studies.

Volanschi [148] identified many domain specific refactoring opportunities
which are called stereotypes. These opportunities are not generally targeted
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by the standard refactoring tools that apply some common refactoring mech-
anisms such as: extract method, pull-up method etc. Volanschi proposed to
refactor C and COBOL stereotypes by using code generators (macros in C,
and COPY in COBOL) through a semi-automatic way. The proposed ap-
proach was applied on 10 software systems. Three systems were written in C,
and the remaining seven were written in COBOL. In case of C programs, the
reduction through refactoring was up to 46%. In case of COBOL programs,
this reduction was up to 26%.

Higo and Kusumoto [52] identified code clones for refactoring by inves-
tigating their past evolution historoy. According to their consideration, the
clone fragments that experienced the same changes together in the past can
be the most promising candidates for refactoring to the programmers. They
conducted a small experiment on a subject system ArgoUML written in Java.
Using their approach they found 13 clone sets from the last revision of Ar-
goUML. Nine of these clone sets were suitable for refactoring. Their approach
only considers clone fragments that together experienced the same changes
previously. They did not consider late propagation in code clones. In late
propagation the changes that are made to one clone fragment are propagated
to the other clone fragment in the same clone-pair at a later time. Before
change propagation there is a divergence period when the updated code frag-
ment is not regarded a clone fragment of the other fragment that was not
updated. The two fragments converge again after change propagation. Such
clone fragments that experience late propagation are also important for refac-
toring because they have a tendency of preserving their similarity. Higo and
Kusumoto [48] did not consider such clones in their study.

Sarala and Deepika [127] proposed an approach that unifies clone detec-
tion, analysis, and refactoring for C# applications. They first generate the
abstract syntax tree for a C# program, and then, construct an abstract se-
mantic graph from it. The abstract semantic graph is generated by extracting
the type information of the program entities such as identifiers, and methods.
Code clones are detected from this semantic graph. After detecting clones
they can refactor those on the basis of some preconditions and post condi-
tions. However, the authors did not mention the pre and post conditions for
refactoring. Also, they did not report which type of clones they can refactor.
Moreover, their proposed technique was not compared with any preexisting
detection and refactoring techniques.

Yoshida et al. [152] proposed dynamic support for clone refactoring. Ac-
cording to their observations developers are not generally interested in refac-
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toring code clones that were created long ago. Refactoring of such clones
will require testing previous functionalities, and this might require much
time and effort. Developers are mainly interested to refactor code fragments
that are clones of a fragment which he/she is currently working on. From
such observations Yoshida et al.[I52] propose that when a developer will be
working on a particular code fragment, the IDE should be able to proactively
detect clones of that particular code fragment. The idea of detecting refac-
toring candidates proactively is promising. However, the proactive detection
proposal was not implemented by the authors.

Fontana et al. [38] investigated clone refactoring in Java software systems,
and implemented a tool called DCRA (Duplicated code refactoring advisor)
that can identify clone refactoring opportunities. Their tool was build on top
of NiCad [23] clone detector. DCRA includes a CloneDetailer module that
determines necessary information for refactoring clone-pairs. Seven clone
refactoring techniques could be suggested by DCRA. Fontana et al. evaluated
DCRA on four Java software systems.

Hauptmann et al. [47] proposed an approach for extracting overlapping
clones to reusable components. Their approach is suitable for removing clones
from automated system tests. They use a grammatical inference algorithm
called Sequitur [105] for the purpose of refactoring. Sequitur creates a gram-
mar by replacing recurring parts using rules. Using Sequitur they propose a
decomposition of the test suite where all reusable components are efficiently
extracted. The test engineers can visualize the decomposed test suite, and
can manually apply refactoring on the basis of the extracted reusable com-
ponents. Hauptmann et al. validated their approach in an industrial setting
and experienced that the approach is in fact beneficial for refactoring clones
from test suites.

Tsantalis et al. [145] proposed a promising approach for automatically
assessing the refactorability of a clone-pair by extending their previous work
[76] on clone refactoring. Their approach analyzes whether the differences
that exist between the two clone fragments in a clone-pair can be safely pa-
rameterized without affecting the behaviour of the software system. Their
approach is based on matching the PDGs of the candidate clone fragments.
They applied their approach on thousands of clone-pairs detected from 9
subject systems using four clone detectors: CCFinder [65], DECKARD [59],
CloneDR [11] and NiCad [23]. According to their investigation, the clone-
pairs detected as refactorable by their approach can indeed be refactored
without causing any side effects. They also found that clones in a close rel-
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ative location are generally more refactorable compared to clones in distant
locations. Type 1 clones appear to be more refactorable than Type 2 and
Type 3 clones. For refactoring Type 3 clones their approach tries to move the
unmatched statements at the beginning or at the end of the clone fragments
in such a way that the movements do not affect program behaviour. They
compared their clone refactoring approach with CeDAR [140] and found that
their approach is capable of finding 83% more refactorable clones. An up-
dated version (JDeodorant [90]) of their clone refactoring tool has already
been discussed in Section [5.2] Although the proposed refactoring technique
is a very promising one, it can only assess the refactorability of a clone pair.
It cannot assess the refactorability of a clone group consisting of more than
two clone fragments.

Narasimhan and Reichenbach [104] investigated refactoring of near-miss
clones in software systems written in C+4-. While most of the clone refac-
toring studies were done on Java systems, the study of Narasimhan and
Reichenbach indicates the necessity of clone refactoring facilities in C++
systems too. Narasimhan [103] also developed a tool for merging method
clones in C++. Further study on refactoring block clones in C+4 subject
systems can be an important contribution. Basit et al. [10] developed a tool
for unifying method clones using meta-programming based reuse technique
of VCL. They discussed different patterns of cloning between methods and
suggested VCL based techniques for unifying them.

Hotta et al. [54] investigated clone refactoring using a particular refactor-
ing technique called ‘Form Template Method’ and developed a tool named
‘Creios’ that can semi-automatically refactor code clones existing in the sub-
classes derieved from a common base class. Their tool works on top of Scropio
[51] clone detector and refactors clones in software systems written in Java
only. Also, the proposed approach of clone refactoring is only applicable to
software systems developed using object oriented programming languages.
The authors showed the applicability of ‘Creios’ by successfully applying it
on an open-source Java system called ‘Apache-Synapse’.

Ettinger et al. [35], [34] proposed an algorithm for automatically eliminat-
ing / refactoring Type 3 clones through method extraction. The algorithm
was proposed being inspired by a similar algorithm introduced by Komon-
door and Horwitz. The authors identified and resolved a number of opti-
mization problems in Komondoor’s algorithm and showed that solutions to
these optimization problems contribute to refactoring of Type 3 clones.

Bian et al. [12] investigated semi-automatic refactoring of near-miss
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clones using Extract Method refactoring technique. They proposed a clone
refactoring approach called SPAPE which is capable of merging two Type 3
clone fragments such that the structures of the clone fragments are syntac-
tically dissimilar but semantically similar. Their approach involves building
PDGs for the two near-miss clone fragments to be merged and transforming
those PDGs if possible for merging. The authors applied their approach on
ten open source subject systems and found that SPAPE can effectively apply
Extract Method refactoring on near-miss clones.

In a recent study, Tsantalis et al. [146] investigated the use of Lambda
Expressions (introduced in Java 8) for the purpose of refactoring code clones
having behavioral differences (i.e., Type 2 and Type 3 clones). They imple-
mented their refactoring approach as a part of their previously introduced
clone refactoring tool JDeodorant [90] and tested the applicability of their ap-
proach on a clone dataset consisting of 46,765 Type 2 and Type 3 clone pairs
which were considered non-refactorable by the pre-existing clone refactoring
techniques. However, the authors could refactor 27,218 clone pairs using
their tool capable of using Lambda Expressions, where 16,173 clone pairs
were of Type 2 and the remaining 11,045 clone pairs were of Type 3. They
performed an extensive evaluation of the clone pairs identified as refactorable
and established the applicability of Lambda Expressions for refactoring code
clones.

Hatano and Matsuo [46] investigated refactoring Type 2 clones in indus-
trial software systems developed in COBOL programming language. Their
approach of refactoring involves making compiler directives for common code
fragments. They also suggest a mechanism for refactoring nested clones by
ordering their refactorings. The authors show that refactoring can result in
27% reduction of COBOL source code. Futher investigations on refactoring
Type 3 clones in COBOL systems can add value to clone refactoring research.

Fense et al. [37] investigated clone refactoring in the context of migrating
cloned product variants to a software product line. They experimented on
five cloned product variants and could reduce about 25% of the code clones
(common code in product variants). Thaller et al. [142] investigated clone
detection and refactoring in a programmable logic controller (PLC) software
developed using IEC 61131-3 Structured Text and C/C++. Such a study
indicates the necessity of clone management in PLC software systems as well.
Su et al. [134] proposed a mechanism for refactoring functionally equivalent
code clones in C systems. Their mechanism incorporates both static and
dynamic analysis for identifying functionally equivalent code fragments. Li
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et al. [81] conducted a study on identifying and refactoring code clones that
have semantically similar structures through matching PDGs of the target
clones. While most of the existing studies investigate refactoring Type 1,
Type 2, or Type 3 clones, Su et al. [134] and Li et al. [81] investigated
functionally equivalent (Type 4) clones. Further studies on refactoring Type
4 clones can add value to clone refactoring research.

5.5. Scheduling for Clone Refactoring

After identifying the code clones for refactoring we can refactor them in
different orders. Different refactoring orders will result different extents of
gains in terms of system performance, and maintainability. The studies [15]
77,1159, [156] regarding refactoring scheduling propose different schedules (i.e.,
orders) for refactoring code clones with the goal of achiving the maximum
gain while minimizing the refactoring effort. We discuss these studies in the
following paragraphs.

Bouktif et al. [15] proposed a clone refactoring effort model in order
to optimize the refactoring task. They represented the clone refactoring
task as a multi-objective problem where the objectives are: minimizing the
refactoring effort, and maximizing the gain (i.e., maximizing the refactoring).
They performed their case study on a geographical information system called
GRASS.

Yoshida et al. [153] investigated whether dependency among code clones
can help us find a better schedule for clone refactoring. They introduced the
concept of chained methods (methods that are related together) and chained
clones (clones belonging to the chained methods) and proposed a suitable
refactoring pattern for them.

Lee et al. [77] proposed a technique for automatically identifying code
clones that are suitable for refactoring, and for scheduling (i.e., ordering)
the refactoring activities of those clones. Their technique aims to identify
the most beneficial refactoring schedule using genetic algorithm (GA). They
compared their scheduling algorithm with manual scheduling, greedy algo-
rithm based scheduling, and exhaustive scheduling approaches for four open
source software systems and found that their proposed alrogithm performs
better than the other algorithms.

Zibran et al. [159] [I157] proposed an effort estimation model for estimat-
ing the effort required for refactoring code clones. They also proposed an
algorithm for scheduling the clone refactoring activities using constraint pro-
gramming approach. Their effort estimation model can be used for estimating
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clone refactoring effort both in object oriented and procedural subject sys-
tems. They also show that their scheduling algorithm outperforms the other
scheduling algorithms that use genetic algorithm, or greedy algorithm.

5.6. Comparing clone detection techniques from refactoring perspective

Rysselberghe and Demeyer [122] investigate three clone detection tech-
niques (string matching based, token matching based, and metric fingerprint
based technique) on five subject systems from a refactoring perspective. They
found that the code clones reported by metric fingerprint based technique
are more suitable for refactoring. However, the other two techniques reveal
more refactoring opportunities than the former technique. The code clones
detected using token based technique require more effort to be refactored
compared to the other two techniques. Also, refactoring of such code clones
is less obvious compared to the code clones detected using the other two
techniques.

Tsantalis et al. [145] investigated refactoring of code clones detected from
four clone detection tools: CCFinder [65], DECKARD [59], CloneDR [11]
and NiCad [23]. They also made a compaison of these clone detectors from
refactoring perspectives and found that AST based clone detection tools,
CloneDR and DECKARD, have a tendency of detecting more refactorable
clones (particularly, more refactorable clones of Type 2 and Type 3) in the
production code compared to the other two clone detectors. The token-based
clone detector, CCFinder, appears to detect more refactorable clones in the
test code. Moreover, while CloneDR tends to detect smaller refactorable
clones mostly located in the same method, DECKARD appears to detect
larger and more uniformly distributed (in term of clone size) refactorable
clones. For the hybrid clone detector, NiCad, Tsantalis et al. found that the
consistent renaming option provides us with more refactorable clones.

5.7. Analyzing the effect of clone refactoring

Rajapakse and Jarzabek [113] investigated the effects of unifying code
clones in an web application. They first implemented the web application
using PHP without any controlling on the cloning process. Then, they refac-
tored the code clones in the PHP server pages. They compared the perfor-
mance of the web applications before and after the application refactorings.
According to their findings, clone unification may negatively affect system
performance. It might greatly increase the testing effort and time. Two or
more modules might utilize the same method. A change in that method

20



should require all modules to be tested. However, if different copies of that
method exist for different modules, then the modules can evolve indepen-
dently with independent evolution of the method copies.

The findings of Rajapakse and Jarzabek [113] are very important from the
perspective of software maintenance. Their findings imply that clone refac-
toring is not always beneficial for the performance and maintenance of web
applications. We think that similar studies should also be conducted con-
sidering desktop applications. Mahmoud and Niu [88] found that removing
code clones through refactoring can negatively affect requirements to code
traceability. However, Mourad et al. [102] found that after clone refactoring,
the source code attributes of the refactored classes get significantly improved.

5.8. Investigating how Developers Refactor Clones

Researchers think that before developing clone refactoring tools we should
also investigate how developers generally perform clone refactoring during de-
velopment and maintenance. A number of studies [41} 139, 20} 160} 150} 149,
66l [18] have identified and reported different patterns of refactoring applied
by the programmers. We discuss these studies in the following paragraphs.

Gode [41] identified removal of code clones by analyzing the clone evo-
lution history of four subject systems using an incremental clone detection
tool [43]. According to his investigation, 'Extract Method Refactoring’ is
the refactoring technique which is most frequently used by the programmers.
Also, the clones that are removed by refactoring are mostly located in the
same source code file. According to his manual observation there was a no-
table discrepancy between the code clones detected by the clone detector and
the clones removed by the developers through refactoring.

Tairas and Gray [139] identified and analyzed the clone refactoring ac-
tivities of the programmers from the evolution histories of two open source
software systems: JBoss, and ArgoUML. They detected clones using the
DECKARD [59] clone detector. For identifying the changes to the code
clones they used UNIX diff command. According to their observation, refac-
toring can be done on parts of code clones (i.e., sub-clones). They suggest
that clone refactoring tools should be able to analyze and suggest sub-clone
refactoring opportunities.

Choi et al. [20] performed a study on three open source software system
in order to understand how clones are refactored during software develop-
ment by the developers. They detected clones using CCFinder [65] and
identified clone refactoring using Ref-Finder [69, [111]. Although CCFinder
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detects only Type 1 and Type 2 clones, they also detected Type 3 clones
using undirected similarity [91]. They targeted to mine one of the follow-
ing seven refactoring patterns: Extract Method, Pull-up-Method, Replace
Method with Method Object, Extract Class, Parameterize Method, Extract
Super Class, and Form Template Method. They found that two refactoring
patterns: Extract Method, and Replace Method with Method Object are
mostly used by the programmers during development.

Zibran et al. [160] investigated the effects of seven different factors on
clone removal. These factors include: clone group size (number of clone
fragments in a clone class or group), size of clone fragment, distribution of
clone fragments in the file system, change types experienced by the clones,
frequency of experiencing changes, clone granularity, and extent of textual
similarity among the clone fragments. They performed their investigation on
9 subject systems using a NiCad-based clone genealogy extractor called gCad.
They found that clone fragment size and textual similarity of clone fragments
significantly affect the removal of clone fragments. Clone fragments with
larger size have a significantly higher tendency of being removed from the
system. Also, clone fragments with variable name differences were found to
be more promising candidates for removal. Zibran et al. found that there are
many promising candidates for removal through refactoring. However, those
were not refactored possibly because of the lack of tool support. Zibran et
al. did not investigate any clone removal or refactoring pattern. As we have
already discussed in the previous subsections, there are different patterns
for clone refactoring such as: extract method refactoring, pull up method
refactoring. A study on which clone refactoring pattern is mostly used by the
developers during programming could be important. In a recent study [155]
proposed developing a tool for visualizing and analyzing different instances
of clone refactoring.

Wang and Godfrey [150] performed a study on recommending code clones
for refactoring considering design, context, and evolution history of the code
clones. They detect code clones from different revisions of a software system
using the clone detector called iCones [43]. Then they automatically analyze
the clone evolution history and identify instances of clone refactoring by
applying the approach proposed by Demeyer [29]. They collected 15 features
by observing the clone refactoring instances. Using these features they build
a classifier for recommending refactoring candidates. They evaluated their
clone refactoring recommendation technique on three subject systems. In
a within-project-testing environment their technique can suggest refactoring
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candidates with a precision of 77.3% to 87.9%. In case of cross-project-testing
their technique’s precision was between 73.2% to 88.5% percent.

Wang and Godfrey [149] also investigated intentional clone refactoring in
Linux kernel, and found that only a very little proportion of the code clones
are intentionally refactored by the programmers during evolution. Chen et al.
[18] developed a tool for identifying and visualizing clone refactoring instances
during software evolution. Their tool also supports detecting inconsistent
refactoring instances.

5.9. Identifying code clones that are important for refactoring

Code clones that have a tendency of getting changed together consis-
tently during evolution should be considered important for refactoring [52].
Clone fragments that never changed in the past or changed independently are
not promising refactoring candidates [52] 98]. There can be some other fac-
tors, such as clone bug-proneness and cross-boundary relationships of clones,
which have also been considered for identifying important refactoring can-
didates. We discuss the existing studies on finding important refactoring
candidates in the following paragraphs.

Mondal et al. [98] investigated identifying code clones that can be im-
portant for refactoring. They automatically analyzed clone evolution history
from thousands of commit operations of software systems downloaded from
on-line SVN repositories, and discovered a particular clone change pattern,
Similarity Preserving Change Pattern, such that code clones that evolve fol-
lowing this pattern can be important for refactoring. They showed that the
number of SPCP clones (i.e., the number of code clones that can be important
for refactoring) is generally very low in a software system. Also, refactoring
of SPCP clones can help us minimize late propagations [6] in code clones.

In another study [97] Mondal et al. investigated the cross-boundary evo-
lutionary coupling of SPCP clones and found that the SPCP clones having
such couplings should not be considered for removal through refactoring.
Such SPCP clones (i.e., the cross-boundary SPCP clones) should be consid-
ered for tracking along with their relationships across their class boundaries.
The non-cross-boundary SPCP clones can be considered important for refac-
toring. Mondal et al. [101] also developed a tool called SPCP-Miner for
identifying the important code clones for refactoring and tracking.

Mondal et al. [100] also compared the bug-proneness of three different
types (Type 1, Type 2, and Type 3) of code clones and found that Type 3
clones have the highest possibility of experiencing bug-fixes during evolution.
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Table 3: Clone Refactoring Tools

Tool Authors [ Description

Baxter et al’s Baxter et al. [11] It detects arbitrary block clones in C programs and generates macros

Tool for replacing groups of clone fragments.

CLoRT Balazinska et al. CLoRT can automatically refactor Type 1 and Type 2 method clones.

[5]
SUPREMO Koni-N’Shapu et SUPREMO helps us refactor Type 1 and Type 3 clones on the basis
al. [71] of different cloning scenarios. It detects code clones using the clone
detector DUPLOC.

CCShaper Higo et al. [49] CCShaper analyzes code clones detected by CCFinder [65] and auto-
matically finds structural blocks that are suitable for refactoring. It
supports refactoring of Type 1 and Type 2 clones.

ARIES Higo et al. [53] ARIES works on top of CCShaper and generates different metrics that
are suitable for determining clone refactoring possibilities. It supports
refactoring of Type 1 and Type 2 clones.

Wrangler Li and Thompson ‘Wrangler performs AST based detection and semi-automatic refactoring

78] of code clones in Erlang/OTP programs. It is integrated with Emacs
and Eclipse. The clone detection mechanism of Wrangler is incremental.
It helps us refactor Type 1 and Type 2 clones in Erlang/OTP code.
HaRe Brown and HaRe can perform AST based detection and semi-automatic refactoriing
Thompson [16] of code clones from Haskell source code. It helps us refactor Type 1 and
Type 2 clones in Haskel programs.
CeDAR Tairas and Gray CeDAR is an Eclipse plug-in that brides the gap between clone detec-
[140] tion and refactoring. CeDAR detects code clones using DECKARD [59]
and passes the clones to the Eclipse refactoring engine which is respon-
sible for automatic refactoring of code clones. It currently supports
refactoring of Type 1 and Type 2 clones.

DCRA Fontana et al. [38] DCRA was built on top of NiCad [23] clone detector. It can identify
clone refactoring opportunities in Java source code. It supports refac-
toring of Type 1 and Type 3 clones.

RASE Meng et al. [92] RASE is a fully automatic clone refactoring tool that applies combi-
nations of six refactoring operations: extract method, add parameter,
parameterize type, form template method, introduce return object, and
introduce exit label. It can help us refactor Type 1 and Type 2 clones.

JDeodorant Tsantalis et al. The tool called JDeodoant [90] can automatically assess the refactora-

[145], Mazinanian bility of a clone pair. It supports semi-automatic refactoring of the code
et al. [90] clones of all three major clone-types: Type 1, Type 2, and Type 3.

According to their findings, they suggested prioritizing Type 3 clones when
making clone management (such as clone refactoring or tracking) decisions.

6. Qualitative Analysis of the Clone Refactoring Tools

Eleven clone refactoring tools have been reported in the literature. We
have listed these tools in Table [3] While reading the papers describing the
clone refactoring tools, we carefully identified the capabilities of the tools,
for example, which types of code clones they can refactor, whether they can
refactor automatically or semi-automatically, which programming languages
they support, which refactoring patterns they can apply and so on. The fol-
lowing list contains these capabilities (or features). We perform a qualitative
analysis of the tools on the basis of these features. Table [13]shows the URLs
of the tools that are available on-line.

e Which type(s) of clones we can refactor using the tool

e Which refactoring patterns can be applied using the tool
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Table 4: Types of clones that the tools can refactor
Clone Refactoring Tool \ Type 1 \ Type 2 | Type 3 | Type 4 \ Clone Granularity

Baxter et al.’s Tool [11] Yes Yes Block Clones
CLoRT [5] Yes Yes Method Clones
SUPREMO [71] Yes Yes Block Clones
CCShaper [49)] Yes Yes Block Clones
ARIES [53] Yes Yes Block Clones
Wrangler [78] Yes Yes Block Clones
HaRe [10] Yes Yes Block Clones
CeDAR [140] Yes Yes Block Clones
DCRA [38] Yes Yes Block Clones
RASE [92] Yes Yes Block Clones
JDeodorant [90] Yes Yes Yes Block Clones

o Whether the tool refactors code clones automatically or semi-automatically

e Whether the tool can automatically assess the refactorability of code
clones

e Whether the tool depends on a clone detector or it detects clones by
itself.

e The tool’s capability of refactoring clones from different programming
languages.

e GUI support of the tool for accomplishing clone refactoring tasks.

6.1. Clone-type centric analysis of the clone refactoring tools

We build Table 4| considering the types of clones the tools can refactor.
From the table it is clear that most of the tools can refactor Type 1 and Type
2 block clones. Only three tools: SUPREMO [71], DCRA [38] and JDeodor-
ant [90] can help us refactor Type 3 clones. Although DCRA considers Type
3 clones, it cannot refactor Type 2 clones. The Type 3 clones that it can
refactor get generated from Type 1 clones. Thus, DCRA primarily considers
exact similarity of code fragments while refactoring. The same is also true
for SUPREMO. Tsantalis et al.’s tool can be used to refactor all three types
of clones. From Table 4] we see that only one tool, CLoRT [5], considers
method clone for refactoring. However, the other tools that consider block
clones can also refactor method clones, because block clones include method
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Table 5: Language capabilities of the refactoring tools

Clone
Refactor-
ing Tool

Language Capability

Baxter et al.’s

It can be used to semi-automatically refactor code clones in C systems

Tool [11] only.

CLoRT [5] It automatically refactors code clones in Java systems only.
SUPREMO Koni-N’Shapu et al. used this tool to refactor clones in subject systems
[71] written in SMALL-TALK, C, and Java. However, SUPREMO only

shows the clones and reports the cloning scenarios. It cannot suggest
any refactoring patterns to the programmers. Taking refactoring de-
cisions and applying particular refactoring can only be done manually
by the programmer.

CCShaper [49]

This tool can be used to refactor code clones only in Java systems
using the metrics that it generates. The generated metrics are specific
for Java language.

ARIES [53]

This tool can be used to refactor code clones only in Java systems
using the metrics that it generates. The generated metrics are specific
for Java language.

Wrangler [78]

This tool can be used to semi-automatically refactor code clones in
Erlang/OTP programs only.

HaRe [16] This tool can be used to semi-automatically refactor code clones in
Haskel programs only.

CeDAR [140] |It automatically refactors code clones in Java systems only

DCRA [38] This tool can be used to semi-automatically refactor code clones in
Java systems only.

RASE [92] It automatically refactors code clones in Java systems only

JDeodorant This tool can be used to semi-automatically refactor code clones in

[90] Java systems only.
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clones. From our clone-type centric analysis we see that only JDeodorant
[90] supports refactoring of all three major clone-types.

We also observe that no existing clone refactoring tool can refactor Type
4 clones. The primary reason is that the detection technology of Type 4
clones is not much improved. Also, according to the literature [115, 121],
Type 4 clones are semantically similar but syntactically dissimilar. Thus,
the traditional refactoring techniques cannot be used for refactoring Type 4
clones. Future research on refactoring Type 4 clones can be an important
contribution to clone management.

6.2. Programming language centric analysis of the clone refactoring tools

From Table [5| it seems that each of the clone refactoring tools except
SUPREMO [71] was designed to refactor clones of a particular program-
ming language. Seven refactoring tools were implemented for Java systems
only. Three (i.e., Baxter et al.’s tool [11], Wrangler [78], and HaRe [16])
of the remaining four tools were developed for three different languages (C,
Erlang/OTP, and Haskel). The tool SUPREMO [71] was used for refactor-
ing clones in SMALL-TALK, C, and Java programs. However, this tool can
only show the code clones and report the cloning scenarios. The program-
mers manually check the scenarios, decide particular refactoring patterns,
and then apply the refactoring. Thus, SUPREMO does not provide any
language specific support for taking clone refactoring decisions. We feel the
necessity of clone refactoring tool supports for other programming languages
(such as: C++, C#, Python) too.

From Table [4] and Table [5] we realize that the three refactoring tools
(i.e., Baxter et al.’s tool [11], Wrangler [78], and HaRe [16]) provide semi-
automatic support for refactoring Type 1 and Type 2 clones in C, Erlang/OTP,
and Haskel programs. It seems that we need further investigations towards
developing more sophisticated clone refactoring tools with the capabilities of
refactoring Type 3 clones.

6.3. Analysis regarding automatically assessing the refactorability of code
clones

Given two clone fragments, if a clone refactoring tool can automatically
decide whether these clone fragments are refactorable or not, then we say that
the tool is capable of assessing refactorability of clone fragments. From Table
[6] we see that five tools (Baxter et al.’s tool [11], CLoRT [5], CeDAR [140],
RASE [92], and JDeodorant [90]) can automatically assess the refactorability
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Table 6: Capabilities of the refactoring tools in assessing the refactorability of code clones

Clone Refactoring
Tool

Capability in Assessing Refactorability of Code Clones

Baxter et al.’s Tool [11]

It can automatically assess refactorability of code
clones and generates replacement macros for the detected
clone-pairs.

CLoRT [5] It can automatically assess refactorability of code
clones using the strategy design pattern.
SUPREMO [71] It cannot assess refactorability of code clones. It can

determine the cloning scenario of a clone-pair. Programmers
need to take decision manually on the basis of the cloning
scenario.

CCShaper [49)]

It cannot assess refactorability of code clones. Pro-
grammers need to take decision manually on the basis of the
structural blocks that it extracts from the code clones.

ARIES [53]

It cannot assess refactorability of code clones. Program-
mers need to take decision manually on the basis of the struc-
tural blocks and variable scoping information that it extracts
from the code clones.

Wrangler [7§]

It cannot assess refactorability of code clones. Program-
mers need to do it manually.

HaRe [16]

It cannot assess refactorability of code clones. Program-
mers need to do it manually.

CeDAR [140]

It can automatically assess refactorability of code
clones with the help of Eclipse refactoring engine.

DCRA [38]

It can semi-automatically assess refactorability of code
clones. It suggests a ranked list of possible refactoring pat-
terns for a clone-pair. The programmer can then select the
most suitable refactoring patterns.

RASE [02]

It can automatically assess refactorability of code
clones.

JDeodorant [90]

It can automatically assess refactorability of code
clones by evaluating eight preconditions of refactorability.
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of code clones. While assessing refactorability, it is important to determine
whether the refactored code will preserve the original behavior (the behavior
before refactoring) of the software system. JDeodorant automatically checks
eight preconditions [145] to determine if the refactored code will preserve
the original behavior. A refactoring task through violations of any of these
preconditions might change the original behavior of the system. Checking
preconditions is particularly important when refactoring Type 2 and Type 3
clones. If the differences between such clone fragments cannot be parameter-
ized properly (without altering system behavior), the clone fragments should
not be refactorable [145]. Opdyke [108] reports that each task of refactoring
should be done after checking a corresponding set of preconditions to ensure
that the refactored code will not alter system behavior. Through applying
eight preconditions, JDeodorant can assess refactorability of all three major
types of clones (Type 1, Type 2, and Type 3). None of the other tools can
refactor all these three clone-types. RASE performs control flow and data
flow analysis of the refactoring candidates to decide whether their differences
can be parameterized without altering system behavior. CeDAR leaves the
task of precondition checking to the refactoring engine of Eclipse. Both
CeDAR and RASE can assess refactorability of Type 1 and Type 2 clones
only. CLoRT and Baxter et al.’s tool do not apply any particular mecha-
nism for checking whether the refactoring will preserve system behavior. The
tool DCRA [38] provides semi-automatic support for assessing refactorability.
The remaining five tools cannot provide any support for determining whether
clone fragments are really refactorable using any refactoring patterns.

6.4. Analysis regarding automaticity in clone refactoring

From Table [7] we see that most of the tools perform semi-automatic refac-
toring of code clones. Semi-automatic refactoring refers to refactoring under
programmer control. The tool suggests a particular refactoring for the clone
fragments, and the programmer takes the decision about whether to ap-
ply that refactoring. Automatic refactoring means refactoring code clones
without programmer interactions. Automating the task of clone refactor-
ing is challenging. The automatic tool might often need to select the most
suitable refactoring technique among a number of alternatives such as ex-
tract method, extract super class, pull-up clone, introduce template method
etc. After selecting a particular refactoring technique the tool might need
to select a non-conflicting name for an extracted method or an introduced
class. The few tools that automate refactoring by addressing these chal-
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Table 7: Capabilities of the tools in refactoring code clones

Clone
Refactor-
ing Tool

Capability in Refactoring Code Clones

Baxter et al.’s

It can semi-automatically refactor code clones. It generates re-

Tool [11] placement macros for clone-pairs detected from C systems. The program-
mers then decide whether they will use the macros for refactoring clones.

CLoRT [5] It can automatically refactor code clones. It uses strategy design
pattern to automatically factorize the common parts of the cloned meth-
ods, and parameterize their differences.

SUPREMO It does not provide automatic or semi-automatic support for

[1] refactoring code clones. Programmers can see the code clones in

SUPREMO, and then take their own decisions on how to refactor clones
on the basis of the cloning scenario.

CCShaper [49)

It provides semi-automatic support for refactoring code clones.
It automatically identifies structural blocks from clone fragments. These
blocks are suitable for refactoring. Programmers can then take refactoring
decisions on the basis of these structural blocks.

ARIES [53]

It provides semi-automatic support for refactoring code clones.
ARIES was built on top of CCShaper. It can identify the structural
blocks suitable for refactoring. It additionally determines whether such
blocks contain variables beyond their scopes or not. Programmers can
take refactoring decisions from these information.

Wrangler [78]

It provides semi-automatic support for refactoring clones. The
programmer highlights the code clones in the IDE. Wrangler then checks
whether the clone fragments can be safely refactored using the refactoring
patterns mentioned in Table [9]

HaRe [16] It provides semi-automatic support for refactoring code clones.

CeDAR [140] It provides semi-automatic support for refactoring code clones
through Eclipse refactoring engine.

DCRA [38] It provides semi-automatic support for refactoring clones using
a module called Refactoring Advisor. This module analyzes a clone-pair,
and provides a ranked list of possible refactoring patterns (such as Extract
Method or Pull Up Method) for the pair. Programmer can then select
the most suitable patterns for refactoring the clone-pair.

RASE [92] It can automatically refactor code clones by applying one or more
of six refactoring patterns mentioned in Table @

JDeodorant It provides semi-automatic support for refactoring code clones.

[90] If a programmer selects two clone fragments for refactoring, the tool auto-

matically checks eight preconditions to determine whether the fragments
are really refactorable. If the fragments are refactorable, then the tool au-
tomatically shows a preview to the programmer containing all the changes
that will occur to the code-base after refactoring. The programmer can
then select the particular refactoring.
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lenges include CLoRT, RASE, and JDeodorant. Among these three tools,
JDeodorant supports a new refactoring technique that involves introducing
Lambda Expressions. Such a refactoring technique significantly increases
the number of refactorable clones having behavioral differences. No other
existing clone refactoring tools support this technique. We should note that
automatic refactoring cannot obviate the necessity of manual checking after
refactoring as well as manual refactoring in particular situations. This is the
reason why most of the tools facilitate semi-automatic refactoring. Although
RASE performs refactoring automatically, Meng et al. [92], the authors of
this tool, report that there were cases where automatic refactoring was im-
possible. Only the experienced programmers can perform refactoring in such
cases. Thus, we think that refactoring of code clones should be done semi-
automatically. JDeodorant supports semi-automatic refactoring as well. We
see that the tool SUPREMO [71] cannot provide tool support for refactoring.
It only helps programmers look at the code clones. The programmers then
manually decide which refactoring pattern should be applied for refactoring
the code clones, and then perform the refactoring.

6.5. Analysis regarding tool’s dependency on clone detectors

If we look at Table |8 we see that five refactoring tools (e.g., RASE)
detect clones by themselves. The remaining six tools (e.g., ARIES) use clone
results from clone detectors. Among these six tools, each of the five tools:
SUPREMO, CeDAR, CCShaper, ARIES, and DCRA can refactor clones
detected by a single clone detector. The remaining tool, JDeodorant [90],
can work on clone detection results from five clone detectors: CCFinder,
DECKARD, CloneDR, NiCad, and ConQAT.

Integration of detection and refactoring capabilities in the same tool is im-
portant. It eliminates the dependency on a separate clone detector. However,
clone detection technologies have been improved a lot in the past decades.
Using a clone detector that can detect clones from multiple programming lan-
guages can open the possibilities of refactoring clones from these languages.
Thus, making use of clones detected by existing clone detectors is also very
important. We see that JDeodorant [90] can refactor clones detected by more
than one clone detector. Further investigations on this tool may enable it to
refactor clones from all the programming languages supported by the clone
detectors.
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Table 8: Dependency of the refactoring tools on clone detectors

Refactoring Tool \ Dependency on Clone Detector

Baxter et al.’s Tool [11] | Independent

CLoRT [5] Independent

SUPREMO [71] Refactors clones detected by DUPLOC

CCShaper [49)] Refactors clones detected by CCFinder

ARIES [53] Refactors clones detected by CCFinder

Wrangler [78] Independent

HaRe [16] Independent

CeDAR [140] Refactors clones detected by DECKARD

DCRA [38] Refactors clones detected by NiCad

RASE [92] Independent

JDeodorant [90] Refactors clones detected by CCFinder, DECKARD, CloneDR,
NiCad, ConQAT

Independent = The tool both detects and refactors clones.

6.6. Clone refactoring pattern centric analysis

From Table[9] we see that three refactoring tools: Baxter et al.’s tool [11],
Wrangler [78], and Hare [16] can help us apply language specific refactoring
patterns for refactoring code clones in C, Erlang/OTP, and Haskel programs
respectively. The other eight tools can help us apply different refactoring
patterns for clone refactoring in Java systems. CCShaper [49] helps us apply
only two patterns: Extract Method refactoring, and Pull Up Method refac-
toring. Each of the five tools: CeDAR [140], RASE [92], ARIES [53], DCRA
[38], and JDeodorant [90] can help us apply a number of refactoring patterns.
JDeodorant additionally supports clone refactoring using Lambda Expres-
sions. The tool CLoRT [5] applies strategy design patterns for factorizing
common parts and parameterizing the differences between two cloned meth-
ods. We see that these six tools (CeDAR, RASE, ARIES, DCRA, CLoRT,
and JDeodorant) are promising in terms of the refactoring patterns that they
help us apply for refactoring clones. The authors of the tool SUPREMO [71]
applied a number of refactoring patterns for refactoring clones. However,
the application was done manually. SUPREMO cannot help us apply any
refactoring pattern.

6.7. Analysis regarding the GUI (graphical user interface) support of the tools

While refactoring code clones, graphical user interfaces provided by the
refactoring tools can play an important role in reducing refactoring effort and
in understanding which refactoring patterns can be suitably applied. Table
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Table 9: Refactoring patterns that can be applied by the clone refactoring tools

Clone Refactor-
ing Tool

Refactoring patterns that it helps us to apply

Baxter et al.’s Tool
(1]

The tool produces macro bodies for clone removal, and generates
macro invocations for replacing the clones.

CLoRT [5] This tool applies strategy design pattern to parameterize clone
differences, and to decouple clones from their contexts.
SUPREMO [71] The authors manually applied the following refactoring patterns:

Extract Method, Pull Up Method, Parameterize Method, Create
Template Method, Insert Method Calls, and Insert Super Calls
by analyzing the code clones showed by SUPREMO.

CCShaper [49)]

The tool helps us refactor clones using Extract Method and Pull
Up Method refactoring techniques.

ARIES [53]

This tool can help us apply the following refactoring patterns:
Extract Method, Pull Up Method, Extract Class, Form Template
Method, Move Method, Parameterize Method, and Pull Up Con-
structor.

Wrangler [78]

The tool can help us generalize a function definition, extract func-
tion, and fold expressions against a function definition.

HaRe [16] It helps us in function folding, As-pattern folding, and merging.

CeDAR [140] It helps us apply the following refactoring patterns: Extract
Method, Pull Up Method, and Introduce Utility Method.

DCRA [38] It advises a number of refactoring techniques including: Ex-
tract Method, Replace Method with Method Object, Merge
Method, Pull Up Method, Pull Up Method Object, Form Tem-
plate Method, and Leave Unchanged.

RASE [92] This tool helps us apply six refactoring patterns: Extract Method,

Add Parameter, Parameterize Type, Form Template Method, In-
troduce Return Object, and Introduce Exit Label.

JDeodorant [90]

This tool helps us apply the following refactoring patterns: Ex-
tract Method, Pull Up Method, Introduce Template Method, and
Introduce Utility Method. It can also generalize types within
the clone fragments, if necessary, and parameterize the differences
within the clone fragments (PM), either with regular parameters
[145] or Lambda expressions [146].
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Table 10: GUI (graphical user interface) supports provided by the refactoring tools

Clone
Refactor-
ing Tool

GUI Support for refactoring

Baxter et al.’s
Tool [11]

Baxter et al. [11] did not report about the GUI support of their tool.

CLoRT [5]

Balazinska et al. [5] did not report about the GUI support of CLoRT.

SUPREMO
1]

SUPREMO supports viewing source code of the two candidate clone
fragments so that a programmer can understand which lines of the
fragments are similar and which lines are dissimilar. It also supports a
graphical view of the system in order to guide a developer in choosing
the promising candidates for refactoring.

CCShaper [49)

CCShaper was embedded in GEMINI which is a graphical clone analysis
tool. Thus, while CCShaper does not have any particular UI support of
its own, it depends on GEMINTI’s UI to help programmers take decision
about refactoring.

ARIES [53]

ARIES has a GUI component that supports interactive investigation
of code clones for refactoring. The metric graph of ARIES allows users
to filter out code clones that are not suitable for refactoring.

Wrangler [78]

Wrangler is integrated with Emacs and Eclipse and it provides graphical
support for refactoring code fragments in Erlang/OTP programs.

HaRe [16] HaRe provides a graphical user interface to help programmers refactor
code fragments in Haskel programs.

CeDAR [140] |CeDAR was implemented as a plug-in for Eclipse IDE and it supports
viewing clone groups for refactoring.

DCRA [38] Fontana et al. [38] did not report about the GUI support of DCRA.

RASE [92] RASE does not support any graphical user interface for refactoring.

JDeodorant JDeodorant was implemented as a plug-in for Eclipse IDE. It provides

[90] necessary GUI (graphical user interface) support for viewing imported

clone groups from five clone detectors, visualizing a target clone pair
for refactoring, and analyzing refactorability.
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Table 11: All features of the clone refactoring tools

Clone Refac-|Pub- Clone- Lang. Assessing Application of | Dependency | Applicable GUI Support
toring Tool licat- | type Capabil- | Refactora- | Refactoring on Clone | Refactoring
ion Capabil- | ity bility Detector Patterns
Year ity
Baxter et al.’s|1998 Type 1|C Automatic Semi-automatic | Independent Macro generation | Not Reported
Tool [11] Type 2
CLoRT [5] 1999 Type 1| Java Automatic Automatic Independent Strategy design | Not Reported
Type 2 pattern
SUPREMO [71] | 2001 Type 1 | Small- Manual Manual DUPLOC EM, PUM, PM, |Supports viewing
Type 3 Talk, C, CTM source code of the
Java refactoring candi-
dates
CCShaper [49] 2004 Type 1| Java Semi- Semi-automatic | CCFinder EM, PUM Provides support
Type 2 automatic through Gemini
ARIES [53] 2008 Type 1| Java Semi- Semi-automatic | CCFinder EM, PUM, EC, |Supports interac-
Type 2 automatic CTM, MM, PM, |tive investigation
PUC and metric graph
visualization
Wrangler [78] 2009 Type 1| Erlang Semi- Semi-automatic | Independent GFD, EF, FEFD Has GUI supports
Type 2 /OTP automatic
HaRe [16] 2010 Type 1 | Haskel Semi- Semi-automatic | Independent FF, APF, Mrg Has GUI supports
Type 2 automatic
CeDAR [140] 2012 Type 1| Java Semi- Semi-automatic | DECKARD EM, PUM, IUM Provides GUI sup-
Type 2 automatic port as a plug-in
for Eclipse
DCRA [38] 2015 Type 1| Java Semi- Semi-automatic | NiCad EM, RMMO, | Not Reported
Type 3 automatic MrgM, PUM,
PUMO, CTM
RASE [92] 2015 Type 1| Java Automatic Automatic Independent EM, AP, PT, | No GUI support
Type 2 CTM, IRO, IEL
JDeodorant [90] [ 2015 Type 1| Java Automatic Semi-automatic | CCFinder, EM, PUM, CTM, | Provides GUI sup-
Type 2 DECKARD, IUM, ILE, PM port as a plug-in
Type 3 CloneDR, for Eclipse
NiCad, Con-
QAT

EM = Extract Method
GFD = Generalize a Function Definition

PUM = Pull Up Method

EF = Extract Function

PM = Parameterize Method
MrgM = Merge Method

EC = Extract Class

FEFD = Fold Expressions against a Function Definition MM = Move Method Mrg = Merging

FF = Function Folding APF = As-Pattern Folding RMMO = Replace Method with Method Object
PUMO = Pull Up Method Object CTM = Create Template Method PUC = Pull Up Constructor
IRO = Introduce Return Object AP = Add Parameter PT = Parameterize Type

IUM = Introduce Utility Method ILE = Introduce Lambda Expression IEL = Introduce Exit Label

shows the GUI supports provided by different clone refactoring tools. Ac-
cording to the table, seven tools (SUPREMO, CCShaper, ARIES, Wrangler,
HaRe, CeDAR, and JDeodorant) provide GUI support for clone refactor-
ing. Among these seven tools, CeDAR and JDeodorant were implemented
as plug-ins for Eclipse IDE. CCShaper does not have its own GUI support.
It depends on Gemini’s GUI support for assisting developers in refactoring.
ARIES is a standalone GUI based clone refactoring tool. While a standalone
tool works separately on the detected clones for refactoring, IDE integrated
tools can support programmers in refactoring code clones during coding.
Such a real-time refactoring support is generally more desirable because it
can be useful to prevent programmers from making new clones. Wrangler and
HaRe provide IDE integrated supports for clone refactoring in Erlang/OTP
and Haskel programs. SUPREMO is a standalone tool.

35



6.8. Overall analysis considering all the features

We have accumulated all the features of all the clone refactoring tools
in Table [11] From our previous discussions we realize that the tool called
JDeodorant [90] can be used to refactor code clones of all three major clone-
types (Type 1, Type 2, and Type 3). None of the other existing clone refac-
toring tools can refactor all these three clone-types. JDeodorant can work
on clone detection results from five clone detectors: CCFinder, DECKARD,
CloneDR, NiCad, ConQAT. The other clone refactoring tools provide sup-
port only for a single clone detector. JDeodorant supports both automatic
and semi-automatic refactoring of code clones. It also provides GUI supports
as a plug-in for the Eclipse IDE.

RASE [92] is an automatic clone refactoring tool for Java systems. How-
ever, it refactors Type 1 and Type 2 clones only. CLoRT [5] is also an
automatic refactoring tool for the same programming language. However, it
cannot refactor block clones. Thus, JDeodorant [90] seems to be a promising
clone refactoring tool with necessary GUI supports for Java systems.

We also surveyed the capabilities of the clone refactoring tools in refac-
toring clone pairs or clone groups. While most of the tools can refactor clone
groups (a clone group can contain two or more clone fragments), three tools
(JDeodorand, DCRA, and SUPREMO) are capable of refactoring clone-pairs
only. Although majority of the clone groups detected by the clone detectors
contain two or three clone fragments [146], a clone group can sometime con-
tain a large number of clone fragments. For refactoring such large groups,
it is important for a clone refactoring tool to be capable of refactoring clone
groups rather than just clone pairs. As JDeodorant appears to be a very
promising clone refactoring tool, future investigation towards making it ca-
pable of refactoring clone groups can add value to clone refactoring research.

6.9. Analyzing clone refactoring tools on the basis of different refactoring
scenartos

In this section we provide a comparative analysis of the clone refactor-
ing tools on the basis of their capabilities of in refactoring code clones in
different refactoring scenarios. Refactoring scenarios are language specific.
There are different refactoring tools for different programming languages.
However, most of these tools can be used for refactoring code clones in Java
systems. From Table we see that eight tools (excluding Baxter et al.’s
tool, Wrangler, and HaRe) can be used for refactoring code clones in Java
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systems. We provide a scenario-based comparison of these eight refactoring
tools considering different scenarios that are specific to Java programming
language.

6.9.1. Scenario-based comparison of the refactoring tools considering Java
language
We have already mentioned that eight tools can be used for clone refactor-
ing in Java systems. These tools are: CLoRT [5], SUPREMO [71], CCShaper
[49], ARIES [53], CeDAR [140], DCRA [38], RASE [92], and JDeodorant [90]
Tool. We compare capabilities of these eight tools considering the following
scenarios.

e Scenario 1: The two clone fragments that need to be refactored reside
in the same method.

e Scenario 2: The two clone fragments that we want to refactor reside
in two different methods of the same Java class.

e Scenario 3: The two clone fragments that we want to refactor reside
in two subclasses of the same immediate super class.

e Scenario 4: One of the two clone fragments that are candidates for
refactoring resides in a subclass, and the other one resides in the im-
mediate superclass.

e Scenario 5: One of the two clone fragments that are candidates for
refactoring resides in a subclass, and the other one resides in a super-
class which is not the immediate superclass of the subclass.

e Scenario 6: The two clone fragments that we want to refactor reside
in two different subclasses: C1 and C2. The immediate superclasses of
these two subclasses are different.

e Scenario 7: The two clone fragments that we want to refactor reside
in two unrelated classes.

We show these seven scenarios in Fig. 2 In each of these scenarios we
show two clone fragments: CF1 and CF2 which are candidates for refactor-
ing. We discuss whether a tool facilitates refactoring in these scenarios, and
what type of facilities it provides for refactoring. Table shows the tool
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Figure 2: Clone refactoring scenarios have been shown in this figure. In each scenario we
can see two clone fragments, CF1 and CF2, that are candidates for refactoring.
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Table 12: Tool capabilities in different refactoring scenarios

Clone Refactoring Tool \

S1 | S2 | S3 | S4 | S5 | S6 |
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Y = The tool supports refactoring in the scenario
N = The tool cannot refactor in the scenario

Table 13: On-line links of the clone refactoring tools

Clone Refactoring Tool \

On-line links

Baxter et al.’s Tool [11]

No on-line link is available.

CLoRT [5]

No on-line link is available.

SUPREMO [71]

No on-line link is available.

CCShaper [49)]

No on-line link is available.

ARIES [53]

No on-line link is available.

Wrangler [78]
HaRe [16]
CeDAR [140]

https://www.cs.kent.ac
https://www.cs.kent.ac

.uk/projects/wrangler/Wrangler/Home.html
.uk/projects/refactor-fp/hare.html

No on-line link is available.

DCRA [33]

No on-line link is available.

RASE [92|
JDeodorant [90]

No on-line link is available.

https://users.encs.con
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https://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
https://users.encs.concordia.ca/~nikolaos/jdeodorant/

capabilities with respect to the scenarios. The following paragraphs describe
how a tool facilitates refactoring in a particular scenario.

We first discuss the clone refactoring tool CLoRT [5]. From Table
we see that it cannot facilitate refactoring in the simplest scenario, Scenario
1 (S1). The reason is that it can only refactor method clones. Scenario 1
indicates that the clone fragments to be refactored are block clones in the
same method. However, CLoRT can be used for refactoring in the other
six scenarios if the two refactoring candidates are method clones. CLoRT
applies strategy design pattern for refactoring. The tool SUPREMO [71]
facilitates refactoring in each of the seven scenarios. It automatically de-
termines each of these scenarios on the basis of the positions of the clone
fragments to be refactored. For each scenario it suggests particular refac-
toring patterns. The programmers can apply these patterns to perform the
refactoring. However, this tool cannot automatically assess refactorability of
two clone fragments. Programmers are responsible for assessing the refac-
torability. CCShaper [49] does not particularly facilitate refactoring in any
of the seven scenarios. Given two clone fragments, it only shows the struc-
tural blocks in the fragments. The programmers are to make refactoring
decisions seeing these structural blocks. The tool ARIES [53] is a significant
improvement over CCShaper [49], and it facilitates refactoring in these seven
scenarios by providing necessary metrics which are indicators of particular
refactoring patterns applicable in particular scenarios. However, it cannot
automatically assess refactorability of clone fragments. The tool CeDAR
[140], implemented as a plug-in of Eclipse IDE, supports refactoring in four
scenarios as mentioned in Table [12] Tt uses Eclipse refactoring engine for
automatically determining the refactorability of two clone fragments. Also,
CeDAR provides support for applying three refactoring patterns: extract
method, pull up method, and introduce utility method. DCRA [38] supports
refactoring in six scenarios (excluding the seventh scenario). It automatically
detects the scenarios by analyzing clone locations and suggests a set of refac-
toring patterns for each scenario. However, it cannot automatically assess
refactorability of clone fragments. RASE [92] can perform automatic refac-
toring of clone fragments in four scenarios: S1, S2, S3, and S7 as mentioned
in Table JDeodorant [90], however, supports all the seven refactoring sce-
narios listed above. This tool performs both automatic and semi-automatic
refactoring. It can automatically assess refactorability of any clone-pair by
analyzing a number of preconditions. It also provides support for applying
many refactoring patterns including extract method, pull up method, create
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template method, introduce utility method, parameterize method, and intro-
duce Lambda FExpressions.

7. Clone Tracking

Clone tracking means remembering all clone fragments in a particular
clone class during evolution so that when a programmer wants to make some
changes to a particular fragment in the class, he/she gets notified about the
existence of the other clone fragments in the same class. The programmer
can then decide whether to implement the same changes to these other clone
fragments to ensure consistency of the code-base. The main purpose of clone
tracking is to ensure consistent updates of the code clones that are not suit-
able for refactoring. Updating code clones by ensuring their consistency is
also known as clone synchronization in the literature. A number of studies
[94 [144] 30, 31} [32, 58] 48] [131] have been done on clone tracking as well
as clone synchronization resulting a number of techniques and tools. Fig.
shows a bar graph showing the number of publications on clone tracking in
different years. We see that clone tracking research started from the year
of 2001. By comparing the graphs in Fig. [l and Fig. [3] we see that there
are more publications on clone refactoring compared to clone tracking. We
discuss the studies on clone tracking and synchronization in the following
subsections by separating them into the following four categories.

e Clone synchronization without clone tracking
e Clone synchronization with clone tracking
e Clone tracking without facilities for synchronization

e Ranking code clones for tracking

7.1. Clone synchronization without clone tracking

A number of studies were conducted with an aim to synchronize code
clones without tracking them through evolution. Such studies mainly con-
sider Type 1 clones for synchronization. We discuss these in the following
paragraphs.

The first ever study on clone synchronization was done by Miller and
Myer [94]. They implemented a tool that supports interactive simultane-
ous editing of multiple text regions that are similar to one another. The
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Figure 3: Number of publications on clone tracking in different years

programmer first defines a set of text regions by manually selecting those.
These regions were called records by Miller and Myer. After defining the
record set if a programmer edits one record, the other records in the same
set also experience the same edit. Simultaneous editing was integrated with
an editor called LAPIS [93].

Toomim et al. [144] implemented a prototype tool called Linked Editing
as an extension of XEmacs. The tool supports simultaneous editing of multi-
ple clone fragments in a clone group. The user first selects the clone fragments
that need to be linked together and then applies the tool to link those. After
the linking, any further edits to any of the linked clone fragment will be au-
tomatically reflected to the other clone fragments in the group. Toomim et
al did not apply any particular clone detector. Selecting groups of duplicated
code fragments and linking them need to be done by the programmers. Also,
such an approach can only be applied to Type 1 clones. Consistent updating
of Type 2 and Type 3 clones were not considered by Toomim et al. [144].

Nguyen et al. [107] developed a clone-aware software configuration man-
agement system, Clever, that represents code clones as subtrees in ASTs and
provides supports for clone detection and synchronization. Clever provides
suggestions for clone synchronization. It cannot track clones through evolu-
tion. Wit et al. [25] proposed a mechanism called CloneBorard for instantly
identifying if a programmer is making changes to code clones. They also
proposed strategies for resolving inconsistencies in clones.

Lin et al. [84] implemented a tool called CCDemon which is capable of
synchronizing only the copy-paste induced code clones. CCDemon mines the
software evolution history to identify synchronizing modifications in the copy-
paste clones, and uses these modifications for suggesting changes to pasted
clones in future. The authors applied the tool on five open source software
systems and found that it can identify 96.9% of the to be modified positions
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in the pasted code and can suggest 75% of the required modifications.

7.2. Clone synchronization with clone tracking

The studies that we will discuss in this subsection investigated supporting
clone synchronization through clone tracking. Clone tracking through evo-
lution helps us identify how clones co-changed in the past. This co-change
information can help us suggest synchronizing changes in future.

Duala-Ekoko and Robillard [32] [30, B1] proposed a clone tracking tech-
nique by introducing the concept of clone region descriptor (CRD). CRD is
used to uniquely describe a clone fragment residing in a method. It consists
of file name, class name, method name, and relative location of a clone frag-
ment in the method. CRD is independent of the text in the clone fragment.
However, the concept of CRD works only for Type 1 and Type 2 clones.
Duala-Ekoko and Robillard implemented a clone tracking tool called ‘Clone-
Tracker’ that works on the basis of CRD. CloneTracker relies on the clone
detector SimScan. In order to track code clones using CloneTracker, the
programmers are to manually select which clones they want to track. While
code clones are selected for tracking, CloneTracker builds a clone model on
the basis of these selected clone fragments and tracks this model as well as
the code clones during evolution. When any change occurs to any of these
tracked clone fragments, CloneTracker notifies the programmers about the
other fragments in the same clone group, supports consistent updating of the
clone fragments, and also updates the clone model. The clone model created
by CloneTracker can be used for collaboration among the team members of
the project. The drawback of CloneTracker is that it cannot track clones if
they are moved to a different place in the code-base.

Jablonski and Hou [58] implemented a clone tracking tool called CReN as
an Eclipse plug-in which is capable of tracking copy/paste clones and consis-
tent renaming identifiers. When a programmer copies a code fragment and
pastes it any where in the code-base, CReN can identify this activity and
tracks both the original (from which the copy was made) and pasted code
fragments. CReN also infers a set of rules on the basis of the relationships
between the identifiers of these fragments. CReN only identifies and tracks
copy /paste induced clones, and it does not use any external clone detector to
detect the clones. However, code clones are not only created by copy/paste
activities. Many code clones can be created accidentally. Dissimilar code
fragments might become similar because of changes during software evolu-
tion. These code clones are ignored by CReN. Also, copy/pasted fragments
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might not always appear as clones by definition after the programmer has
made changes to the pasted fragment. There is no implication on how CReN
can treat these fragments.

Nguyen et al. [106] developed a tool called JSync which is capable of
incremental detection and tracking of code clones, detecting changes to code
clones, notifying developers about changes to clones, and consistently updat-
ing (i.e., synchronizing) clone groups. JSync works on the ASTs of a code-
base and represents changes at tree editing scripts. The authors applied
JSync on Bellons benchmark database and found that its synchronization
accuracy varies between 70% to 90%. JSync is capable of handling mainly
two types of clones (Type 1 and Type 2) in Java systems.

Cheng et al. [19] developed a clone synchronization tool called CCSync
which is capable of synchronizing structurally dissimilar clones through a
complex matching of ASTs of the clone fragments. The working procedure
of CCSync involves detecting synchronization rules among clone fragments.
CCSync can identify code clones that are suitable for synchronization with a
precision of 92% and a recall of 84%. It works on Type 1, Type 2, and Type
3 code clones of Java systems only.

7.8. Clone tracking without facilities for synchronization

A number of studies only investigated clone tracking. The aim of these
studies is to track the clone genealogies through evolution. The tools im-
plemented in these studies were not associated with IDEs, and thus, these
tools cannot facilitate clone synchronization. We discuss the studies in the
following paragraphs.

Harder and Gode [45] introduced the tool CYCLONE which is capable
of detecting and showing the clone genealogies from the software evolution
history. CYCLONE works on the clone detection results of iClones [43]. Al-
though CYCLONE detects and shows clone genealogies, it cannot facilitate
simultaneous editing of clone fragments in the IDE. Also, as it is not inte-
grated with the IDE, it cannot notify programmers when they attempt to
modify clone fragments.

Saha et al. [124] developed a clone genealogy extractor called gCad. It
can form clone genealogies considering the clone results of the NiCad clone
detector [23]. Saha et al. [123] also compared the genealogy detection capa-
bility of gCad with that of CYCLONE [45] and CloneTracker [31], and show
that gCad is superior to the other two tools in extracting clone genealogies.
However, gCad was not integrated with any IDE, and thus, it cannot support
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programmer notification when clone fragments get changed. Also, it cannot
facilitate simultaneous editing of code clones.

Higo et al. [48] enhanced the CRD (Clone Region Descriptor) based clone
tracking technique which was proposed by Duala-Ekoko and Robillard [32].
The drawback of the CRD based technique is that it cannot track code clones
if they are moved to a different place in the code-base. Higo et al. enhanced
this technique to make it capable of realizing movements of code clones. They
experimented on two open source subject systems and found 44 clone classes
which could not be tracked by the original CRD based technique. However,
the enhanced technique could track these clone classes with a precision of
91%.

Ci et al. [22] proposed an algorithm for mapping clone groups across
multiple revisions of software systems. Their algorithm is based on CRD [30]
and they applied it on the clone detection results of NiCad [23] clone detector.
Their experiment on three software systems indicates that their proposed
algorithm can efficiently track clone groups across software revisions.

Bakota [2] investigated the evolution of code clones across software revi-
sions in order to identify faults due to inconsistent changes in code clones.
The evolution of a software system called jEdit was investigated in this re-
search, and it was found that around half of the smells reported during evo-
lution were caused by inconsistent changes to code clones. Lozano and Wer-
melinger [87, 86] tracked clone evolution for comparing the change-proneness
of clone code with that of non-clone code and found that clone code exhibits
a higher change-proneness.

7.4. Ranking code clones for tracking

A software system may contain a huge number of code clones. A large
portion of these code clones might not be suitable for tracking. Identifying
the ones that can be important for tracking is a challenge. Only one study
investigated this issue. We discuss this in the following paragraph.

Mondal et al. [99] investigated ranking of the co-change candidates of
code clones from the perspective of clone tracking. When a programmer
attempts to make changes to a particular clone fragment, they can find which
other clone fragments in the same clone class have high possibilities of getting
co-changed with that particular fragment. Mondal et al. also ranked these
other clone fragments (i.e., the co-change candidates) on the basis of their
evolutionary coupling. They investigated two types of ranking: frequency
ranking and recency ranking of the co-change candidates. According to their
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analysis, recency ranking performs better than frequency ranking mechanism
when ranking co-change candidates for code clones.

8. Qualitative analysis of the clone tracking tools

The clone tracking tools that are reported in the literature are listed
in Table While reading the papers on these tracking tools, we identi-
fied the capabilities (or features) of these tools, for example, which types of
code clones they can track, whether they can notify programmers regarding
changes in code clones, whether they support simultaneous editing of clone
fragments in a clone class, which programming languages they support, and
so on. We mention these features in the following list and perform a qualita-
tive analysis of the tools on the basis of these features. Table 24| shows the
URLs of the tools that are available on-line.

e Tool’s capability in synchronizing the clone fragments in a clone class

e Tool’s capability in automatic tracking of clone fragments through evo-
lution

Tools capability in automatically notifying programmers about changes
in the tracked clone fragments

Tool’s capability in handling different types of clones

Language coverage of the tool

Tool’s dependency on clone detector
e GUI support of the tool for accomplishing tracking tasks

In the following paragraphs we perform a comparative analysis of clone
tracking tools on the basis of the features mentioned above.

8.1. Analysis of the tools regarding their capabilities in clone synchronization

From Table we see that seven tools (i.e., excluding CYCLONE and
gCad) facilitate clone synchronization; however, the tools, CReN and CCDe-
mon, facilitate it in a restricted way. CReN only supports consistent renam-
ing of the identifiers involved in the clone fragments. Other types of editing
are not supported by CReN. CCDemon can only support synchronization of
copy/paste induced clones.
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Table 14: Clone Tracking Tools

Tool \ Authors \ Description

Simultaneoug Miller  and | This tool facilitates clone synchronization through simulta-

Editing Myer [94] neous editing of multiple clone fragments selected by a pro-

grammer.

Linked Toomim et | This tool facilitates the programmers to define groups of

Editing al. [144] identical code clones and editing of these code clones simul-

taneously.

CloneTracker Duala-Ekoko | CloneTracker facilitates tracking of user selected clone classes
and  Robil- | throughout the evolution using CRD (Clone Region Descrip-
lard [31] tor) based clone tracking technique. It can notify program-

mers if changes were made to clone regions tracked by it.
CloneTracker is implemented as a plug-in for Eclipse IDE.

CReN Jablonski et | CReN is capable of tracking copy/paste induced clones and

al. [58] enforcing consistent renaming of identifiers in such clones.
CReN was implemented as an Eclipse plug-in.

CYCLONE | Harder and | CYCLONE is capable is detecting and showing genealogies

Gode [45] of code clones detected by iClones [43] clone detector. It was
implemented as an standalone tool and it does not support
clone synchronization.

gCad Saha et al. | gCad helps us in detecting clone genealogies and analyzing
[124] clone evolution. It works on the clone detection results of the

NiCad clone detector [23]. gCad was also implemented as a
standalone tool. It does not support clone synchronization.

JSync Nguyen et al. | JSync detects and tracks code clones incrementally, senses
[106] changes to code clones, notifies programmers about such

changes, and helps programmers in updating code clones
consistently.

CCSync Cheng et al. | CCSync can synchronize structurally dissimilar code clones
[19] through a complex matching of their ASTs. For suggesting

synchronizing changes, CCSync detects and analyzes syn-
chronization rules among code clones.

CCDemon Lin et al. | CCDemon was developed for synchronizing copy/paste in-
[84] duced code clones. It mines the software evolution his-

tory to identify synchronizing modifications in copy/paste
clones and uses these modifications to suggest synchronizing
changes in future.
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Table 15: Capabilities of the tools in synchronizing code clones

Clone Tracking
Tool

Simultaneous editing capability

Simultaneous It supports clone synchronization through simultaneous edit-
Editing [94] ing of the programmer selected identical code clones.

Linked  Editing | It facilitates synchronization of the programmer selected code
[144] clones.

CloneTracker [31]

It supports synchronization of the clone fragments detected by
the clone detector SimScan.

CReN [58] It supports clone synchronization in a restricted way. It
only provides consistent renaming facility of the identifies in the
copy/paste induced clones.

CYCLONE [45] It does not support clone synchronization, because it was not
integrated with an IDE.

gCad [124] gCad does not support synchronization of code clones. It was
not integrated with an IDE.

JSync [106] JSync supports clone synchronization through matching the
ASTs of the clone fragments.

CCSyne [19) CCSync supports synchronizing code clones through a com-
plex matching of their ASTs and identifying synchronization rules.

CCDemon [84] CCDemon supports synchronization of the copy/paste induced

code clones through learning from clone synchronization history.

Table 16: Capabilities of the tools in tracking code clones through evolution

Clone Tracking Tool

\ Clone tracking capability

Simultaneous Editing [94]

It does not support tracking of clone fragments through
evolution.

Linked Editing [144]

It does not support clone tracking through evolution.

CloneTracker [31]

It supports clone tracking through evolution using the
technique called CRD (Clone Region Descriptor).

CReN [58] It supports tracking of copy/paste induced clone frag-
ments. It cannot consider clone fragments that get created
in ways other than copy/pasting.

CYCLONE [45] It supports clone tracking through detection of clone
genealogies.

gCad [124] It supports clone tracking by detecting clone genealogies
from software evolution history.

JSync [106] It supports clone tracking through incremental detec-
tion of code clones.

CCSync [19] It supports clone tracking through mining synchroniza-
tion rules among clones.

CCDemon [84] It does not support clone tracking during software evo-

lution.
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Table 17: Capabilities of the tools in notifying programmers automatically

Clone Tracking Tool \ Automatic programmer notification

Simultaneous Editing [94] | It does not provide notifications to the programmers
when clone fragments get changed, because it cannot track
clone evolution.

Linked Editing [144] It does not provide notifications to the programmers
when clone fragments get changed, because it cannot track
clone evolution.

CloneTracker [31] It notifies the programmer when a clone fragment
tracked by it gets modified.
CReN [58] It supports programmer notification in a restricted

way. When a variable name in a copy/paste clone frag-
ment gets changed, it notifies programmers to help them
make similar changes to the corresponding variables in the
other clone fragments in the same clone group.

CYCLONE [45] It was not implemented as an IDE Plug-in, and thus, it
cannot support programmer notification.

gCad [124] As gCad was not integrated with any IDE, it does not
support programmer notification during software de-
velopment.

JSync [106] It supports programmer notification through sensing
changes to code clones.

CCSyne [19) It notifies programmers about changes in code clones,
and also, suggests synchronizing changes to those.

CCDemon [84] It supports notification for copy/paste induced clones.

8.2. Analysis regarding the capability of the tools in tracking code clones
through evolution

Table [16| demonstrates the clone tracking capabilities of the tools during
system evolution. We see that three tools (Simultaneous Editing [94], Linked
Editing [144], and CCDemon [84]) do not support tracking of code clones
during system evolution. Thus, these tools are not really clone tracking tools.
Clone tracking facility is available in CloneTracker [31], CYCLONE [45],
gCad [124], JSync [106], and CCSync [19]. CReN also support clone tracking;
however, in a restricted way. It only supports tracking of copy/paste induced
clones. Clone fragments created in ways other than copy/pasting cannot be
tracked by CReN. Saha et al. [123] shows that gCad is more efficient in
detecting clone genealogies compared to CloneTracker and CYCLONE.
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Table 18: Capabilities of the tools in handling different clone-types

Clone Tracking Tool

|

Consideration of clone-types

Simultaneous Editing [94] | It only supports synchronization of Type 1 (identical) clones.

Linked Editing [144] It only supports synchronization of Type 1 (identical) clones.

CloneTracker [31] It supports synchronization and tracking of Type 1 and Type
2 clones.

CReN [58] It supports consistent renaming and tracking of Type 1 and
Type 2 clones.

CYCLONE [45] It supports genealogy detection of Type 1, Type 2, and Type
3 clones.

gCad [124] It facilitates genealogy detection of Type 1, Type 2, and Type
3 clones.

JSync [106] It supports detection and synchronization of Type 1 and Type
2 clones.

CCSync [19) It supports synchronization of Type 1, Type 2, and Type 3
clones.

CCDemon [84] It supports synchronization of copy/paste induced Type 1
clones.

8.3. Analysis regarding the capability of the tools in notifying programmers

We show the programmer notification capabilities of the tools in Table[17]
We see that two tools: Simultaneous Editing [94] and Linked Editing [144]
do not provide supports for notifying programmers when clone fragments get
changed. The reason is that these two tools cannot track clone evolution.
Although the tools CYCLONE [45] and gCad [124] facilitates genealogy de-
tection, they do not support programmer notification during development
because they are not integrated with any IDEs. We see that CloneTracker,
JSync, CCSync, and CCDemon support programmer notification. CReN
also provides limited support for programmer notification. When a variable
name in a copy /paste clone fragment gets changed, the other fragments in the
same group are notified to the programmer to ensure similar changes to the
corresponding variables in these other fragments. CCDemon also supports
programmer notification only for copy/paste clones.

8.4. Clone-type centric analysis of the tools

Table shows a clone-type centric comparison of the clone tracking
tools. We see that each of the two tools: CloneTracker, and CReN supports
tracking of Type 1 and Type 2 clones. Both CYCLONE and gCad support
genealogy detection of all three clone-types: Type 1, Type 2, and Type 3.
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Table 19: Capabilities of the tools in handling programming languages

Clone Tracking Tool

|

Programming language capability

Simultaneous Editing [94] | It supports simultaneous editing for Java and HTML code.

Linked Editing [144] It supports simultaneous editing of code clones in Java systems
only.

CloneTracker [31] It supports simultaneous editing and tracking of code clones in
Java systems only.

CReN [58] It supports consistent renaming and tracking of copy/paste in-
duced clones in Java systems only.

CYCLONE [45] It supports clone genealogy detection and analysis in Java sys-
tems only.

gCad [124] gCad helps us detect and analyze clone genealogies considering
multiple programming languages including Java, C, and C#.

JSync [106] It works only on software systems written in Java.

CCSync [19) It supports clone tracking and synchronization in Java systems
only.

CCDemon [84] It supports clone synchronization in Java systems only.

CCSync supports tracking of all three clone types (Type 1, Type 2, and Type
3). JSync only supports synchronization of minor modifications (such as a
single insert or delete) in Type 3 clones. CCDemon supports synchronization
of copy/paste induced Type 1 clones. The remaining two tools only support
simultaneous editing of Type 1 clones.

8.5. Programming language centric analysis of the tools

We show the programming language capabilities of the clone tracking
tools in Table We see that the tool called Simultaneous Editing [94] sup-
ports two programming languages: Java and HTML. Each of the other tools
except gCad [124] only supports Java. gCad supports genealogy detection
of code clones considering three programming languages: Java, C, and C#.
Future research on how to support more languages by the tracking tools is
important.

8.6. Analysis for the capability of the tools in handling clone results from
clone detectors

We now discuss the capabilities of the tracking tools in handling clone

results from clone detectors. From Table 20] we see that each of the two

tools: Simultaneous Editing [94] and Linked Editing [144] depends on manual

identification of the programmers to realize code clones for simultaneous
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Table 20: Capabilities of the tools in handling code clones from different clone detectors

Clone Track- | Capability in handling clone detector output

ing Tool

Simultaneous It does not apply any clone detector for detecting code clones. It com-
Editing [94] pletely relies on the manual detection of the programmers. A program-

mer first manually selects the code clones she intends to work on. The
tool can then support editing those code clones simultaneously.

Linked Editing
[144]

Like the Simultaneous Editing tool [94], this tool also relies on the man-
ual selection of the programmers to realize code clones to edit simulta-
neously.

CloneTracker This tool is capable of tracking code clones detected by the clone detector

[31] SimScan.

CReN [58] This tool cannot work on the clone detection results of any clone detec-
tor. It can detect copy/paste induced code clones by itself. A copy/paste
activity performed by a programmer triggers the tool. The tool then
stores the code clones and continues to track them for ensuring consis-
tent renaming in future.

CYCLONE [45] | Tt can work on clone detection results from iClones [43].

gCad [124] It works on clone detection results from NiCad [23].

JSync [106] It incrementally detects code clones by itself.

CCSync [19] It works on top of ConQAT [63].

CCDemon [34] It detects copy/paste induced clones by using JCCD [14]
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editing. CReN also does not apply any clone detector for detecting clones
for tracking. It can detect code clones by itself. However, it can only realize
code clones from the copy/paste activities of the programmers. Code clones
can be created in many other ways such as forking, merging of similar software
systems, design reuse etc. Such code clones are also important for tracking.
CReN cannot consider such code clones for tracking. We think it is better
to use a clone detector for detecting code clones so that we do not disregard
particular clones from consideration. From Table we see that the tool
called CloneTracker applies the clone detector SimScan for clone detection.
The tools CYCLONE [45] and gCad [124] can work on clone results from
iClones [43] and NiCad [23] respectively. While JSync detects clones by
itself, CCSync works on top of ConQAT. CCDemon uses JCCD [14] for
clone detection. Future research on customizing the clone tracking tools to
make them capable of working with other state-of-the-art clone detectors can
make a significant contribution towards clone management.

8.7. Analyzing the tools on the basis of their GUI (graphical user interface)
support

GUI supports for programmer notification and simultaneous editing are
important for clone tracking tools. Without these supports, a clone tracker
cannot help programmers in making consistent updates to code clones. Table
shows the details regarding GUI supports provided by the clone tracking
tools. We see that all of the tools except CYCLONE and gCad provide GUI
supports for tracking tasks. Simultaneous Editing [94] and Linked Editing
[144] tools cannot support programmer notification because these cannot
keep track of the clone genealogies. Among the other tools, CloneTracker,
CReN, JSync, and CCDemon were implemented as plug-ins for the Eclipse
IDE. These tools support both programmer notification and simultaneous
editing of code clones. Although CCSync is a standalone tool, it has GUI
supports for notifying and simultaneous editing as well.

8.8. Querall analysis of the clone tracking tools

We draw Table 22| accumulating all the features, and demonstrating tool
capabilities with respect to these features. We see that CCSync can detect
and track all three types of clones (Type 1, Type 2, and Type 3) with nec-
essary GUI supports for programmer notification and simultaneous editing.
The tools CYCLONE [45] and gCad [124] are also promising for clone ge-
nealogy detection. Specially, gCad is the most promising clone genealogy

53



Table 21: GUI (graphical user interface) supports provided by the tools

Clone Track- | GUI support

ing Tool

Simultaneous This tool is integrated with LAPIS text editor and it provides support
Editing [94] for simultaneous editing of clone fragments selected by programmers.

Linked Editing
[144]

Linked editing tool was integrated with a prototype editor called
Codelink and it supports simultaneous editing of multiple clone frag-
ments selected by programmers.

CloneTracker This tool is integrated with Eclipse IDE as a plug-in and it provides

[31] necessary GUI supports for notifying programmers when they attempt
to make changes to a clone fragment, and for making consistent changes
to clone fragments.

CReN [58] This tool is implemented as an Eclipse plug-in and it provides GUI sup-
ports for programmer notification and consistent updating of copy-paste
induced clones.

CYCLONE [45] | It does not provide any GUI support for programmer notification or
consistent updating.

gCad [124] This tool does not provide any GUI support for programmer notification
or consistent updating.

JSync [106] JSync is implemented as an Eclipse plug-in and it supports both
programmer notification and simultaneous consistent updates to code
clones.

CCSync [19) It is implemented as a standalone tool and it supports both programmer
notification and simultaneous consistent updates to code clones.

CCDemon [34] CCDemon is implemented as a plug-in for the Eclipse IDE and it sup-

ports programmer notification and consistent updates to code clones
with necessary GUI.
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Table 22: Clone Tracking Features

Clone Tracking | Program-| Capability | Language DependencyGUI support
synchro- | clones mer no- |in han- | support |on a clone
nization |through |tification |dling detector
evolu- clone-
tion types
Simultaneous | Yes No No T1 Java, No Support for si-
Editing [94] HTML multaneous edit-
ing
Linked Edit- | Yes No No T1 Java No Support for si-
ing [144] multaneous edit-
ing
CloneTracker | Yes Yes Yes T1 T2 Java SimScan | Support for pro-
[31] grammer notifi-
cation and simul-
taneous editing
CReN [58] Yes Yes Yes T1 T2 Java No Support for pro-
grammer notifi-
cation and simul-
taneous editing
CYCLONE No Yes No T1 T2 T3 | Java iClones No GUI support
[45] for tracking
tasks
gCad [124] No Yes No T1 T2 T3 | Java C |NiCad No GUI support
C# for tracking
tasks
JSynce [106] Yes Yes Yes T1 T2 Java No Support for pro-
grammer notifi-
cation and simul-
taneous editing
CCSyne [19)] Yes Yes Yes T1 T2 T3 | Java ConQAT | Support for pro-
grammer notifi-
cation and simul-
taneous editing
CCDemon Yes No Yes T1 Java JCCD Support for pro-
[84] grammer notifi-

cation and simul-
taneous editing
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Table 23: Capabilities of the tools in different tracking scenarios

Clone Tracking Tool [Scenario 1[Scenario 2[Scenario 3 | Scenario 4
CloneTracker [31] Y N Y N

CReN [58] Y Y Y N
CYCLONE [45] Y Y Y N

gCad [124] Y Y Y N

JSync [106] Y Y Y N

CCSync [19] Y Y Y N

Y = The tool can track in the scenario. N = The tool cannot track in the scenario.

detector. However, these two tools (i.e., CYCLONE and gCad) do not sup-
port programmer notification and synchronization of clone fragments. Future
research involving integration of these two tools with an IDE to facilitate
synchronization and programmer notification can make an important contri-
bution in clone management.

8.9. Comparative analysis of the clone tracking tools on the basis of tracking
scenarios

We now analyze the clone tracking tools on the basis of a number of
tracking scenarios. We define the scenarios emphasizing tool capabilities in
detecting clone genealogies. From Table 22| we see that the tools: Simulta-
neous Editing [94], Linked Editing [144], and CCDemon [84] cannot track
clone fragments through evolution. We limit our scenario-based analysis on
the remaining six tools. The scenarios have been defined below.

e Scenario 1: Tracking a clone fragment when it neither experiences
changes nor is moved to a different location in the code-base.

e Scenario 2: Tracking a clone fragment when it is moved to a different
place.

e Scenario 3: Tracking a clone fragment when it experiences changes.

e Scenario 4: Tracking a clone fragment when it becomes a non-clone
fragment.

Table[23]shows the capabilities of the four clone trackers in different track-
ing scenarios. We see that most of the clone trackers are capable of clone
tracking in the first three scenarios. They cannot track the evolution of a
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Table 24: On-line links of the clone tracking tools
Clone Tracking Tool \ On-line Link

Simultaneous Editing [94] | No on-line link is available.

Linked Editing [144] https://www.xemacs.org/

CloneTracker [31] https://www.cs.mcgill.ca/~swevo/clonetracker/
CReN [58] No on-line link is available. B
CYCLONE [45] http://softwareclones.org/cyclone.php

gCad [124] https://homepage.usask.ca/~mam815/gCad.zip
JSync [106] No on-line link is available.

CCSync [19] No on-line link is available.

CCDemon [84] https://github.com/11lmhyy/CCDemon

clone fragment in the last scenario. Tracking a clone fragment in the last
scenario (Scenario 4) where a clone fragment becomes a non-clone fragment
is also important. It might be the case that a particular clone fragment has
become a non-clone fragment because the other fragments in its group have
been deleted. In such a case, it is important to track this non-clone fragment
(i.e., which was a clone fragment previously) because it can again make a
clone group with one or more other code fragments. Also, the deleted code
fragments might reappear. If we cannot track such a non-clone fragment, we
will miss its evolution during its non-cloned period. Tracking a clone frag-
ment during its non-cloned period can help us analyze late propagations [6] in
code clones. From Table [23| we also see that CloneTracker [31] cannot track
a clone fragment if it is moved to a different place. Higo et al. [48] performed
an investigation emphasizing this problem of CloneTracker and proposed an
improved tracking mechanism called Enhanced CRD which was capable of
tracking clone fragments if they were moved to different places. Using En-
hanced CRD in CloneTracker can improve its clone tracking capability. Table
indicates that CYCLONE and gCad are promising clone trackers on the
basis of different scenarios. However, as we previously discussed, these two
tools are not integrated with IDEs, and thus, cannot provide programmer
notification and simultaneous editing facilities. Also, CReN is capable of
tracking only the copy/paste clones.

9. Future Research Possibilities on Clone Refactoring and Tracking

From our analysis on the existing clone refactoring and tracking research,
we feel the necessity of further research in the directions discussed in the
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following paragraphs. While our discussions in Sections are
based on our findings from Sections [5.7] [6.2] and respectively, Sections
9.3 9.4}, 0.5 and [9.8|discuss some yet unexplored or rarely explored areas

in clone refactoring and tracking.

9.1. Post-refactoring analysis on the effects of clone refactoring on system
performance

Analyzing the effect of clone refactoring on system performance is im-
portant. We have discussed the related studies in Section [5.7 Rajapakse
and Jarzabek [113] showed that clone refactoring negatively affects the per-
formance of web applications written in PHP and significantly increases the
testing effort. Such studies should also be performed considering software
systems developed in other programming languages such as: Java, C, and
C#. It is also important to investigate whether clone refactoring affects
energy consumptions of software systems. A recent study [83] shows that
small changes in the code-base can cause significant difference in the energy
consumption of a software system. Mahmoud and Niu [88] discovered that
removal of code clones through refactoring can negatively affect requirements
to code traceability. We realize that clone refactoring should be investigated
with a focus on software requirements engineering. The particular types of
refactoring that are likely to be harmful for code traceability need to be
identified so that software engineers can avoid such types of refactoring.

9.2. Increasing language support of the clone refactoring tools

Most of the existing clone refactoring tools support refactoring code clones
from only one programming language. However, projects involving multiple
programming languages exist. Refactoring code clones across multiple pro-
gramming languages is still a challenge. The existing studies did not inves-
tigate this important issue. The existing clone refactoring tools apply clone
detectors that can detect clones from multiple languages. For example, we
consider the clone refactoring tool DCRA [38] that applies NiCad [23] clone
detector for detecting clones. While NiCad [23] supports Java, C, C#, and
Python programming languages, DCRA only supports clone refactoring in
Java systems. We understand that different programming languages have
different constructs, designs, and coding styles. Thus, refactoring patterns
should be different for different programming languages. However, the same
refactoring pattern might be applicable to multiple languages that support
similar coding style. Future research on which refactoring patterns can be
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commonly applicable to which programming languages, and which are the
language specific patterns can be much important.

9.3. Refactoring Type 4 clones

By the definition [115] [121], Type 4 clones (i.e., semantically similar code
fragments) do not have syntactic similarity. Thus, the traditional refactoring
tools cannot be used for refactoring semantic clones. However, if two code
fragments in two places of a code-base are detected as semantic clones, then
their refactoring might involve discarding one clone fragment and using the
other one in both places possibly through method calls. Deciding which clone
fragment to remove and which one to use should depend on the run-time
complexity, coding standards, and code comprehensibility of the candidate
Type 4 clone fragments. Intuitively, the clone fragment with lower run-
time complexity should be more promising compared to the more complex
one. Two studies [134] R1] have investigated refactoring functionally similar
clones. However, these studies do not consider run-time complexity of the
candidate clones. Future investigations on automatically comparing the run-
time complexity as well as the comprehensibility of two semantically similar
code fragments can add much to clone refactoring research.

9.4. Inter-project clone refactoring

The existing clone refactoring studies and techniques only deal with intra-
project clone refactoring (i.e., refactoring of code clones in the same software
system). However, different software systems that are written in the same
programming language may have common code fragments. These code frag-
ments are known as inter-project clones. It is important to detect and refac-
tor inter-project code clones. A code fragment (for example, a method) that
has been used for implementing more than one software systems should be
given importance, because this code code fragment may again be used for
implementing another project in future. Thus, such code fragments, that is
the inter-project clones, should be managed with equal importance. Refac-
toring of inter-project clones can be done by developing a global library that
will contain these clones and calling appropriate methods in this library in
place of the corresponding code clones. A number of studies [57, [135] have
been done on inter-project clone detection. Ishihara et al. [57] investigated
detecting inter-project functional clones for building libraries. We think that
similar studies should be done targeting block clones too.
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9.5. Big-data clone refactoring

Inter-project clone detection and refactoring should be facilitated in a
big-data environment empowered by Hadoop-MapReduce framework. Let us
consider a particular software company where programmers are working on a
number of projects. Also, a number of projects have already been developed
in the company. Programmers can get coding help for their on-going projects
from these already developed projects through inter-project clone detection
and refactoring. Inter-connecting all the already developed as well as on-
going projects, parallel detection and refactoring of inter-project code clones
from these projects can only be facilitated in a big-data environment. A
number of studies [125] [136] [126], [135] have been done on big-data clone
detection. Future research on big-data clone refactoring has much potential
to advance the state-of-the-art of clone detection and refactoring.

9.6. Increasing language support of the clone tracking tools

Most of the clone tracking tools only support tracking of code clones
in Java systems. The tool Simultaneous Editing [94] also supports HTML.
However, this tool cannot track code clones through evolution. The tool
gCad [124] supports Java, C, and C#. However, it cannot support simulta-
neous editing, and programmer notification. Future research on enhancing
clone trackers so that they can deal with code clones from different program-
ming languages such as: C, C++, C#, and Python can make an important
contribution towards clone management.

9.7. Clone tracking in a big-data environment

An alternative of automatic tracking of all important code clones in a
code-base is instant detection of code clones in a time efficient manner. Let
us assume a programmer is working on a piece of code. If we can detect
all the duplicate copies of this piece of code instantly, then it might obvi-
ate the necessity of clone tracking. Clone tracking requires maintaining a
clone database. Also, the evolution of each of the clone fragments need to
be tracked through different revisions. For this purpose we need a clone
genealogy analyzer. However, instant detection of code clones can possibly
eliminate these necessities. In order to facilitate instant clone detection, we
possibly need a big-data environment empowered by Hadoop-MapReduce
framework. In the parallel computing environment of Hadoop we might be
able to detect code clones instantly. Investigations in this direction can be
much important.
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9.8. Comparing the benefits of clone tracking and refactoring

The clone fragments in a particular clone class can be refactored or
tracked. Refactoring removes all instances of the clone fragments by a single
instance, whereas tracking does not remove any instance of clone fragments
but ensures consistent updates of the fragments. Refactoring is beneficial
because it obviates the necessity of implementing the same change to mul-
tiple clone fragments. Refactoring also reduces the size of the code-base.
Moreover, refactoring of a clone class might not always be possible, however,
tracking of the class is always possible. In such a situation it is important
to perform a trade-off analysis of the benefits gained from refactoring and
tracking. We should perform this trade-off analysis in a way that is similar to
the investigation of Rajapakse et al. [113]. We should have two copies of the
same software system. We should refactor a number of clone classes in one
copy, and those clone fragments in the other copy should tracked for a certain
period of evolution. Then we should analyze the evolution history consid-
ering the following points: (1) time and effort required for refactoring, (2)
time and effort for updating code fragments after refactoring, (3) time and
effort for updating clone fragments under tracking, (4) system performance
after refactoring, (5) system performance while tracking. Future research on
comparing refactoring and tracking benefits through evolution analysis can
be much important for efficient software maintenance.

10. Answering the Research Questions

We conduct our survey with an aim to answer the three research questions
listed in Table [} In answer to the first research question (RQ 1) we can say
that we can categorize the existing studies on clone refactoring and tracking.
Sections 4 and 6 mention these categories and discuss the clone refactoring
and tracking studies on the basis of these categories. Our discussions demon-
strate the extent to which each of these categories has been explored. We
have also provided possible suggestions for further exploration. In answer
to our second research question (RQ 2) we can state that we have identi-
fied six features for qualitative analysis of the clone refactoring and tracking
tools. Sections 5 and 7 mention these features and make a comparison of
the refactoring and tracking tools on the basis of these features. We have
also answered our third research question (RQ 3) by discussing a number
of future research possibilities in clone refactoring and tracking. Section 8
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contains this discussion. Our study findings can be helpful for researchers
aiming to explore the area of clone refactoring and tracking.

11. Conclusion

In this paper we present our survey on the existing research, tools, and
techniques on clone refactoring and tracking. We categorize the studies on
the basis of their research directions and discuss the extent to which each
category has been explored. We also identify the existing clone refactoring
and tracking tools and make a comparison among these tools on the basis
of their features. From our survey on clone refactoring we realize that auto-
matic refactoring cannot eradicate the necessity of manual effort regarding
finding refactoring opportunities, and testing system behaviour after the ap-
plication of refactoring. Research shows that post refactoring testing can
require a significant amount of time and effort from the quality assurance
engineers. There is a significant lack of research on how clone refactoing
can affect system performance. Future investigations in this direction will
add much value to clone refactoring research. We also feel the necessity of
future research towards real-time detection, and tracking of code clones in a
big-data environment.
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