
SPCP-Miner: A Tool for Mining Code Clones That
Are Important for Refactoring or Tracking

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Code cloning has both positive and negative impacts
on software maintenance and evolution. Focusing on the issues
related to code cloning, researchers suggest to manage code clones
through refactoring and tracking. However, it is impractical to
refactor or track all clones in a software system. Thus, it is
essential to identify which clones are important for refactoring
and also, which clones are important for tracking. In this paper,
we present a tool called SPCP-Miner which is the pioneer one
to automatically identify and rank the important refactoring as
well as important tracking candidates from the whole set of
clones in a software system. SPCP-Miner implements the existing
techniques that we used to conduct a large scale empirical study
on SPCP clones (i.e., the clones that evolved following a Similarity
Preserving Change Pattern called SPCP). We believe that SPCP-
Miner can help us in better management of code clones by
suggesting important clones for refactoring or tracking.

I. INTRODUCTION

If two or more code fragments in a code-base are exactly or
nearly similarly to one another, we call them code clones. Two
or more similar code fragments form a clone class. Code clones
are mainly created because of the frequent copy/paste activities
of the programmers during software development and mainte-
nance. Clones are of great importance from the perspectives
of software maintenance and evolution [1], [8], [9], [11], [18].
Although cloning helps us in faster software development and
program comprehension, there are strong empirical evidences
[1], [11] of some negative effects of code cloning such as -
hidden bug propagation [1], unintentional inconsistent changes
[1], higher instability [11], and late propagation [1]. Focusing
on the issues related to code clones researchers suggest to
manage clones through refactoring and tracking.

Clone refactoring refers to the technique of merging two
or more clone fragments into a single one without altering
system behaviour. Clone tracking means remembering the
clone fragments in a particular clone class so that while
changing a particular clone fragment from that class in future,
we can also look at the other clone fragments in the class to
decide whether we also need to make similar changes to these
other fragments to maintain consistency.

Before applying clone management activities (such as
refactoring or tracking) it is important to identify which clones
are important for refactoring or tracking. There are empirical
evidences [9] that it is impractical to aggressively refactor
all clones in a software system, because some clones are
volatile. Also, a significant amount of clones do not change
at all during evolution, and a considerable amount of clones
have the possibility of evolving independently [9] . These
clones should neither be considered for refactoring or nor
for tracking. Moreover, sometimes removal of clone fragments
through refactoring might negatively affect the future evolution
of related non-clone fragments [12]. Such clone fragments

should be considered for tracking rather than refactoring. We
should also note that the task of clone refactoring is often
time consuming and costly because it requires interaction of
experienced programmers and also, after refactoring the modi-
fied code snippets might be subject to testing whether they are
performing their expected functionalities. Thus, identification
of important clones for refactoring as well as for tracking is
important. If the programmers do not have any knowledge
of which clones are important to be refactored or tracked,
they might get overwhelmed while taking clone management
decisions from a large set of clones of a software system.

The existing clone refactoring or scheduling tools [2], [5],
[10], [16], [18] only focus on identifying refactorable clones by
analyzing their structural issues. However, two clone fragments
might be refactorable on the basis of their syntactic structure
but they might not be important to be refactored on the basis
of their past evolution history. These existing refactoring tech-
niques and tools cannot determine which clones are important
to be refactored. Higo and Kusumoto [6] performed a small
scale study on identifying refactoring candidates on the basis of
their past evolution history. According to their consideration
if two or more clone fragments received the same changes
during the past evolution, they are important candidates for
refactoring. However, two clone fragments might not co-
evolve by always receiving the same changes, but they can
still be important candidates for refactoring. Late propagation
clone pairs can be considered as examples of such cases.
During late propagation two clone fragments might evolve
independently for a period before getting re-synchronized.
Such clone fragments should be considered for refactoring
because they have the tendency of preserving their similarity.
Higo and Kusumoto’s approach exclude these clones from
refactoring considerations. Moreover, their approach cannot
identify important clones for tracking. A number of clone
tracking techniques and tools [4], [7], [17] are also available.
However, none of these can determine which clones are
important for tracking.

Focusing on the above issues, in this paper we present a
tool called SPCP-Miner [15] which is capable of performing
two tasks: (1) automatic identification of the important clones
for refactoring and also, the important clones for tracking from
a large set of clones reported by the clone detectors, and (2)
prioritizing these important clones according to the necessity
of refactoring as well as tracking. Thus, SPCP-Miner can com-
plement the existing clone detection, refactoring, and tracking
tools. SPCP-Miner implements the existing techniques that
we used for performing a large scale empirical study [12]
regarding the identification and ranking of important clones
for refactoring or tracking. So far as we have studied, there are
no other existing tools that can automatically identify clones
that are important for refactoring, or for tracking.



We name our tool (SPCP-Miner) focusing on the pattern,
SPCP (Similarity Preserving Change Pattern), that it mines
by analyzing the clone evolution history of a software system.
SPCP-Miner detects all those clones that evolved following
an SPCP. We refer these detected clones as SPCP clones.
SPCP clones are important from the perspectives of clone
management (such as clone refactoring and tracking) [12].
The non-SPCP clone fragments either evolve independently
or are rarely changed during evolution and thus, should not be
considered important for management [12], [14]. SPCP-Miner
also separates the SPCP clones into two disjoint subsets by
analyzing their evolutionary coupling. One set contains those
clones that are important for refactoring and the other set con-
tains clones that are important for tracking. According to our
previous empirical study [12] on thousands of revisions of six
diverse subject systems written in two different programming
languages, around 23.47% of all clones in a software sytem can
be SPCP clones. We also reported that 13.20% of all clones
can be important for refactoring, and the remaining 10.27%
(= 23.47 - 13.20) clones can be important for tracking. SPCP-
Miner not only detects all such clones but also ranks them on
the basis of the necessity of refactoring and tracking [12]. Here,
we should note that in a previous study [14] we implemented
a tool called MARC for detecting SPCP clones. However,
MARC does not have the capability of determining which of
these clones are important for tracking or refactoring. SPCP-
Miner can do this by analyzing the evolutionary coupling of
the SPCP clones. Also, the SPCP clone detection strategy of
SPCP-Miner is significantly improved than that of MARC.

II. AN EXAMPLE USE CASE

Let us assume that a software system has been in the
maintenance phase for a long time without clone management.
Recently, the client reported a bug saying that certain function-
ality in a certain module of the software system is not working
in the expected way. A developer was appointed to fix the bug.
After investigating the bug in the reported module she fixes it
by modifying a piece of code in that module.

However, after some days the client again reports a similar
bug in another module. The project manager asks the developer
to fix it and investigate why the same bug is being reported
even after fixing. After investigating the programmer reports
that there was a similar piece of buggy code in the newly
reported module. She also fixed it in the similar way. Then, the
project manager suspects that the similar piece of buggy code
might even exist in some other places not yet reported. So, he
asks the developer to search for those in the whole code-base.
The developer investigates and finds that some other similar
pieces of code with the same bug really exist in the code-base
and these code fragments also need to be fixed.

From this the project manager realizes that the code-base
might have many other groups of similar code fragments. He
feels the necessity of refactoring each of these groups so that
in order to fix such a bug in future a developer does not need
to change in too many places. He asks the developer to at
first detect code clones in the software system using a clone
detection tool and then, to refactor those clones.

The developer downloads the clone detection and refac-
toring tools. She applies a clone detector and detects a large
amount of clones grouped into different clone groups from
the system. Then, she attempts to apply a refactoring tool on
the detected clones. However, she experiences that there are

many situations where the refactoring tools cannot refactor
the clone fragments. She can manually refactor in some of
these situations. Also, during manual checking she understands
that many clones might not be important to be refactored
and also many clones are not even refactorable. Moreover,
while deciding to refactor some clones she feels the necessity
of understanding how they evolved in the past. She realizes
that she should primarily focus on those clones that are more
change-prone and have a tendency of co-evolving preserving
their similarity. The clones that never changed in the past might
be kept in the system as they are because they have very low
probability of getting changed in future. She also understands
that some clone fragments are eligible to be refactored on the
basis of their syntactic structure however, they are closely
related to their surrounding non-clone fragments, and thus
removal of these clone fragments through refactoring might
not be a wise decision. Removal of such clone fragments
might negatively affect the future evolution of the related non-
clone fragments. Such clone fragments might be important
for tracking using a clone tracker. However, to consider all
these things she needs to analyze the clone evolution history.
She understands that deciding important refactoring as well
as tracking candidates by analyzing the evolution histories
of a large set of clones might even take several months to
complete. She feels helpless and realizes the necessity of a
tool that can automatically analyze the clone evolution history
and identify the important clones to be refactored or tracked.
We believe that our tool SPCP-Miner can be her best friend in
this situation. SPCP-Miner automatically mines and analyzes
the evolution histories of the clone fragments and reports the
most important clones to be refactored or tracked by ranking
them according to the necessity of refactoring or tracking.

III. CONCEPT BEHIND THE TOOL

SPCP-Miner automatically mines the past evolution history
of the clone fragments in a code-base and analyzes which
clone fragments evolved by following a Similarity Preserv-
ing Change Pattern (SPCP). A Similarity Preserving Change
Pattern consists of only Similarity Preserving Change and/or
Re-synchronizing Change.

Similarity Preserving Change. Let us consider two code
fragments that are clones of each other in a particular revision
of a subject system. A commit operation was applied on this
revision, and any one or both of these code fragments (i.e.,
clone fragments) received some changes. However, in the next
revision (created because of the commit operation) if these two
code fragments are again considered as clones of each other
(i.e., the code fragments preserve their similarity), then we say
that the code fragments received Similarity Preserving Change
in the commit operation.

Re-synchronizing Change. Let us consider two code frag-
ments that are clones of each other in a particular revision. A
commit operation was applied on this revision, and any one
of both of the fragments received some changes in such a
way that the code fragments were not considered as clones
of each other (i.e., the code fragments diverged) in the next
revision. However, in a later commit operation any one or both
of the code fragments received some changes, and because of
these changes the code fragments again became clones of each
other (i.e., the code fragments converged). Such a diverging
change followed by a converging change is termed as a re-
synchronizing change. Fig. 1 shows a Similarity Preserving



Change Pattern containing Similarity Preserving Change and
Re-synchronizing Change.

Separating the SPCP clones into two subsets. SPCP-
Miner analyzes the evolutionary coupling of the SPCP clones,
and separates these SPCP clones into two disjoint subsets:
(1) cross-boundary SPCP clones, and (2) non-cross-boundary
SPCP clones on the basis of this analysis. The SPCP clones
in the first subset have evolutionary couplings (i.e., change
couplings) with other code fragments (non-clone fragments or
clone fragments from other clone classes) beyond their class
boundaries. Thus, removal of such an SPCP clone fragment
through refactoring might negatively affect the future evolution
of the related code fragments beyond its class boundary [12].
Our empirical study [12] shows that cross-boundary SPCP
clones are the most suitable ones for tracking. For the details
on how we detect cross-boundary SPCP clones using associ-
ation rules and constrained support and confidence values we
refer the readers to our previous work [12].

Non-cross-boundary SPCP clones are the most suitable
ones for refactoring. SPCP-Miner also makes groups of the
non-cross-boundary SPCP clones. We conducted an in-depth
empirical study [12] on the cross-boundary and non-cross-
boundary SPCP clones. SPCP-Miner ranks the cross-boundary
as well as non-cross-boundary SPCP clones on the basis of
their change-proneness [12].

IV. TOOL DESCRIPTION

Our tool [15] (SPCP-Miner) works on the output of a clone
detector. Given the SVN repository URL of a subject system,
our tool at first automatically extracts all the revisions of the
system from the repository using export command of SVN, and
then applies the clone detector to detect clones from each of
the revisions. The user only specifies the SVN repository URL.
The rest of the task is automatically done by our tool. After
detecting clones from each of the extracted revisions SPCP-
Miner performs eight sequential steps (c.f., Fig. 2) in order to
detect the SPCP clone fragments. These steps are: (1) Method
detection and extraction from each of the revisions using
CTAGS1, (2) Extraction of code clones for each revision from
the clone detection results of the clone detector. (3) Detection
of changes between every two consecutive revisions using diff,
(4) Locating these changes to the already detected methods as
well as clones of the corresponding revisions, (5) Locating the
code clones detected from each revision to the methods of
that revision, (6) Detection of method genealogies considering
all revisions using the technique proposed by Lozano and
Wermelinger [11], (7) Detection of clone genealogies by
identifying the propagation of each clone fragment through a
method genealogy, and (8) Detection of SPCP clone fragments
by analyzing clone change patterns. For the first seven steps
we refer the interested readers to our earlier work [13].

Detection of SPCP Clone Fragments. Our tool considers
clone fragments residing within methods. Before detecting
SPCP clone fragments, SPCP-Miner detects method genealo-
gies and clone genealogies considering all the revisions of
the subject system. Detecting the genealogy for a particular
method involves identifying each instance of that method in
each of the revisions where the method was alive. By detecting
the genealogy of a method, we can determine how it changed
during evolution. We detect clone genealogies by locating the

1CTAGS: http://ctags.sourceforge.net/

clones detected from each revision to the already detected
methods of that revision. The genealogy of a particular clone
fragment also helps us determine how it evolved through the
commits. We assign unique IDs to the method genealogies
and clone genealogies to recognize them across revisions.
As we detect changes between revisions and reflect these
changes to the methods as well as clones, we can examine
how two clone fragments from a particular clone class changed
during evolution by examining their genealogies. If these two
clone fragments always received similarity preserving changes
and/or re-synchronizing changes during evolution, then these
are considered as a pair of SPCP clone fragments.

We determine all the SPCP clone pairs by examining all the
clone genealogies. We merge these pairs to determine SPCP
clone groups. If two different SPCP clone pairs have a common
SPCP clone fragment, then we can say that the three clone
fragments in these two pairs together followed a similarity
preserving change pattern and thus, we can merge these pairs
to make a group of three SPCP clone fragments. This group
can also be merged with another pair or group if they share
common SPCP clone fragments.

After detecting the SPCP clone groups, we analyze the
evolutionary coupling of each of the SPCP clone fragments in
each of these groups. If one or more SPCP clone fragments in
a group have cross-boundary evolutionary couplings, then we
consider this group for tracking. Otherwise, we consider the
group for refactoring.

Implementation and Data Storage. We implement our
tool using Java. Our tool stores data using files. While ex-
amining each revision of a subject system, it extracts the
methods and clones in that revision and creates two separate
files to store those. The changes between every two consecutive
revisions are also stored in separate files. For a particular
method we store the method name, signature, file path, starting
and ending line numbers, class name (if any), and package
name (if any). For each clone fragment we store the file path,
starting and ending line numbers, and the clone class ID.
After detecting the method and clone genealogies we provide
unique IDs to the methods and clones. We update the files
of methods and clones with these IDs. Here, we should note
that we neither store the whole method body nor the actual
clone fragment in the files. As we have just described we store
enough information for a method or clone fragment so that we
can get the corresponding code using the information.

Our experience during implementation. We would like
to share our experience that we at first developed our tool
using MySQL database for storing data. However, for subject
systems with thousands of revisions each containing thousands
of methods, the database becomes heavy-weight resulting in
long response-times for complex queries. Then, we migrated
from MySQL to simple file storage system and experienced
that the implementation with file storage system is faster than
the implementation with MySQL database by several folds.
Currently SPCP-Miner supports four programming languages:
C, Java, C#, and Python. However, we are working on it to
support other languages too.

Improvements over Previous Implementation. We have
already noted that we previously implemented MARC for the
purpose of an empirical study [14]. MARC can also detect
SPCP clones. However, it cannot separate the SPCP clones into
cross-boundary (i.e., important for tracking) and non-cross-
boundary (i.e., important for refactoring) groups. SPCP-Miner



can do this. Also, the SPCP clone detection strategy of SPCP-
Miner is significantly improved as described below.

While detecting SPCP clone pairs MARC considers the
following two constraints: (1) the two constituent SPCP clone
fragments in a pair must co-change at least once during
evolution, and (2) the two SPCP clone fragments in a pair
must remain in two different methods. However, we implement
SPCP-Miner such that it does not follow these constraints
now. Firstly, according to the definition of similarity preserving
change pattern (SPCP), two clone fragments from a particular
clone class can follow an SPCP without being co-changed
at all. So, we implement SPCP-Miner to detect all those
SPCP clone pairs where the constituent clone fragments in
a particular pair might not co-change at all. Secondly, two
clone fragments remaining in the same method can also follow
a similarity preserving change pattern and can be important
candidates for refactoring. For this reason, we implement
SPCP-Miner to consider the same method case too.

Tool Output. By working on all revisions of a subject
system our tool generates: (1) An XML file containing the
groups of all SPCP clones, (2) An XML file containing the
groups of non-cross-boundary SPCP clones, and (3) An XML
file containing the cross-boundary SPCP clones along with
their coupled code fragments beyond their class boundaries.
The groups of non-cross-boundary SPCP clones are important
for refactoring. The cross-boundary SPCP clones are important
for tracking along with the cross-boundary relationships.

Graphical User Interface. Fig. 3 shows a graphical
user interface of SPCP-Miner. After running SPCP-Miner we
specify the following things: the SVN repository URL of
the subject system, the directory path to store the extracted
revisions, the implementation language of the system, and
the starting and ending revision numbers as shown in the
figure. We save these information by clicking the button Save
System Information. Then we click the button named Extract
Revisions (at the left hand side of Fig. 3) to extract and store
all the revisions of the subject system to the directory path
that was input by the user. After the extractoin is done, we
click the button named Detect Clones from Revisions. The tool
then automatically detects clones from each of the extracted
revisions by applying the clone detector. Here we should note
that SPCP-Miner currently works with the NiCad [3] clone
detector. NiCad helps us detect clones of major three types
(Type 1, Type 2, Type 3) separately. Also, it is easy to extend
SPCP-Miner for other clone detectors too.

At the left hand side of Fig. 3 there are five buttons
in the section named Preliminary Steps and four buttons in
the section Detection of SPCP Clones. The buttons in the
preliminary steps are used for detecting and storing methods as
well as method genealogies, extracting clones of different types
(Type 1, Type 2, Type 3, or the combination of all types) from
the clone detection results, detection of clone genealogies, and
storing clone information along with clone genealogies. After
completing these steps we can detect SPCP clones of different
clone types using the buttons in the section Detection of SPCP
Clones. If we click a button in this section, the tool will detect
the SPCP clones of the corresponding clone type and store
them in three XML files as we mentioned previously. The tool
also shows all the SPCP clones along with the important ones
for refactoring or tracking in three tables at the right hand side
of the button panel as shown in the figure.

V. LIMITATIONS AND FUTURE WORK

SPCP-Miner can detect cross-boundary SPCP clones which
are more suitable for tracking rather than refactoring. However,
SPCP-Miner does not yet support tracking of these clones. One
interesting future work would be to build an Eclipse plug-in
on top of SPCP-Miner to support tracking of such clones.

VI. CONCLUSION

In this paper we present a tool called SPCP-Miner which
is capable of automatically identifying SPCP clones (i.e., the
important clones from the perspectives of clone management)
by examining the clone evolution history of a software sys-
tem. SPCP-Miner also analyzes the evolutionary couplings of
the SPCP clones and separates these SPCP clones into two
disjoint sets. The clone fragments in one set are important for
refactoring, and the clones in the other set are important for
tracking. SPCP-Miner ranks the clones in these two sets on the
basis of the necessity of refactoring and tracking. Our tool is
the pioneer one in detecting important clones for refactoring
and tracking. We believe that SPCP-Miner can complement
the existing clone detection, refactoring, and tracking tools and
thus, can help us in better management of code clones. SPCP-
Miner is available on-line [15] with all necessary instructions
for running it using an example subject system.

REFERENCES
[1] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,

Proc. ICSM, 2011, pp. 273 – 282.
[2] S. Bouktif, G. Antoniol, E. Merlo, M. Neteler, “A Novel Approach to

Optimize Clone Refactoring Activity”, Proc. GECCO, 2006, pp.1885-
1892.

[3] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc ICPC Tool
Demo, 2011, pp. 219 – 220.

[4] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code
Clone Management”, Proc. ICSE, 2008, pp. 843 – 846.

[5] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Refactoring support
based on code clone analysis”, Lecture Notes in Computer Science, 2004,
3009: 220 – 233.

[6] Y. Higo, S. Kusumoto, “Identifying Duplicate Code Removal Opportu-
nities Based on Co-Evolution Analysis”, Proc. IWPSE, 2013, 5pp.

[7] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE”, Proc. Eclipse
Technology Exchange at OOPSLA, 2007.

[8] C. Kapser and M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software”, ESE 13(6), 2008, pp. 645-692.

[9] M. Kim, V. Sazawal, D. Notkin, G. Murphy, “An empirical study on
code clone genealogies”, Proc. FSE, 2005, pp. 187 – 196.

[10] G. P. Krishnan, N. Tsantalis, “Unification and Refactoring of Clones”,
Proc. CSMR-WCRE, 2014, pp. 104 - 113.

[11] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on
changeability”, Proc. ICSM, 2008, pp. 227-236.

[12] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic Identification
of Important Clones for Refactoring and Tracking”, Proc. SCAM, 2014,
pp. 11 – 20.

[13] M. Mondal, C. K. Roy, and K. A. Schneider, “Connectivity of Co-
changed Method Groups: A Case Study on Open Source Systems”, Proc.
CASCON, 2012, pp. 205-219.

[14] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic Ranking of
Clones for Refactoring through Mining Association Rules”, Proc. CSMR-
WCRE, 2014, pp. 114 - 123.

[15] SPCPMiner. https://homepage.usask.ca/∼mam815/spcpminer/index.php
[16] R. Tairas, and J. Gray, “Increasing clone maintenance support by

unifying clone detection and refactoring activities”, Information and
Software Technology, 2012, 54(12):1297 – 1307.

[17] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with
linked editing”, Proc. IEEE Symposium on Visual Languages and Human
Centric Computing, 2004, pp. 173 – 180.

[18] M. F. Zibran, and C. K. Roy, “Conflict Aware Optimal Scheduling of
Prioritised code clone refactoring”, IET Software, 2013, pp. 167 – 186.



Fig. 1. A Similarity Preserving Change Pattern (SPCP) followed by two clone fragments CF1 and CF2. We see that CF1 and CF2 received Similarity Preserving
Changes in commits: Ci and Ci+1. They received diverging change at commit Ci+3. However, they again converged after the changes in commit Ci+5.

Fig. 2. The steps in detecting SPCP clones. There are eight processing steps in detecting SPCP clones. The rectangles in this figure indicate these steps.

Fig. 3. The snap-shot of SPCP-Miner. In order to apply SPCP-Miner on a software system we input the system’s SVN repository URL, the directory to store
the revisions extracted from the SVN repository, the starting and ending revision numbers, and the implementation language. Then, we save these information
by clicking the button Save System Information. We use the buttons at the left hand side to extract revisions, detect clones, and detect SPCP clones.


