
Does Cloned Code Increase Maintenance Effort?

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—In-spite of a number of in-depth investigations
regarding the impact of clones in the maintenance phase there
is no concrete answer to the long lived research question,
“Does the presence of code clones increase maintenance effort?”.
Existing studies have measured different change related metrics
for cloned and non-cloned regions, however, no study calculates
the maintenance effort spent for these code regions.

In this paper, we perform an in-depth empirical study in
order to compare the maintenance efforts required for cloned and
non-cloned code. For the purpose of our study we implement a
prototype tool which is capable of estimating the effort spent by a
developer for changing a particular method. It can also predict
effort that might need to be spent for making some changes
to a particular method. Our estimation and prediction involve
automatic extraction and analysis of the entire evolution history
of a candidate software system. We applied our tool on hundreds
of revisions of six open source subject systems written in three
different programming languages for calculating the efforts spent
for cloned and non-cloned code. According to our experimental
results: (i) cloned code requires more effort in the maintenance
phase than non-cloned code, and (ii) Type 2 and Type 3 clones
require more effort compared to the efforts required by Type 1
clones. According to our findings, we should prioritize Type 2
and Type 3 clones when making clone management decisions.

I. INTRODUCTION
During the evolution of a software system, the frequent copy
paste activities performed by the programmers cause multiple
copies of exactly or nearly similar code fragments to co-exist
in the code base. According to the literature, these same or
nearly similar code fragments are termed as clones. Beside
the copy-paste activities some other factors such as unrealistic
deadlines of projects, programmer behaviours like laziness and
tendency to repeat common solutions, technology limitations,
code evolvability, code understandability and external business
forces have influences on code cloning [13]. Whatever may be
the reasons behind cloning, the impacts of clones are of great
importance from the perspective of software maintenance.

On the basis of a number of existing investigations clones
have mixed impacts in the maintenance phase. The studies in
favour of clones argued that clones are not harmful [2], [10],
[14], [15], [29] instead clones can be helpful from different
perspectives [13]. On the other hand, there are empirical
evidences that clones can introduce temporarily hidden faults
[11], bugs [20] and unintentional inconsistent changes [3], [4],
[9] to the software system. A number of studies [11], [22]–
[25] also show that clones can exhibit higher instability than
non-clone code in the maintenance phase.

Motivation. Focusing on the negative impacts of code
clones researchers suspect that code clones can possibly
increase software maintenance effort and costs. However, there
is no empirical evidence regarding this. By analyzing the
negative impacts of code clones we see that each of these
leads to an increased modification to the source code. Fixation

of a previously introduced bug or fault or propagation of
a particular change to ensure consistency ultimately result
in additional source code changes as well as efforts in the
maintenance phase. However, bugs or faults can also be
introduced in the non-cloned code. So, by measuring the
source code change efforts of cloned and non-cloned code
in the maintenance phase and comparing these efforts we
can determine whether clones can really increase maintenance
efforts compared to non-cloned code or not. Unfortunately,
none of the existing studies have compared efforts required
for cloned and non-cloned code. We identify the following
issues of the existing clone impact studies.

(1) Existing studies have only quantified the amount of
modifications in the source code without considering how
much time or effort has been spent for understanding prior to a
particular change. There are many situations where most of the
time regarding a particular change is spent for understanding
where to make that change and how to make that change. A
little amount of change might require a considerable amount
of understanding time if the responsible programmer is new to
the particular project. Thus, only the amount of lines or tokens
changed in a code region (cloned or non-cloned) can never be
a good estimator of the total effort spent for that region.

(2) Most of the studies did not compare the impacts of
different types of clones. Comparison among clone-types is
important because, if a particular clone-type requires more
effort than the other types, we can suggest programmers to
avoid that particular clone type or to take extra care of it.

A number of effort estimation models such as: COCOMO
[5], function point based model [1], use case based models
[18], and analogy based model [19] currently exist. However,
such models cannot be used to calculate the efforts required for
cloned and non-cloned code of a software system separately.

Contribution. Focusing on the above issues we perform
an empirical study for determining and comparing the main-
tenance efforts of cloned and non-cloned code. Our study
involves: (i) estimation of efforts for already happened changes
to a particular method, and (ii) prediction of efforts that
might need to be spent for changing a particular method.
We implement our estimation and prediction procedures being
inspired by the effort estimation models [1], [5], [18], [19].
While our estimation might not be 100% accurate, it gives an
overall idea of the effort. Also, our primary goal is to compare
the maintenance effort required for cloned and non-cloned
code. We believe that our implementation can be used for this
purpose. We emphasize two things in our implementation: (i)
amount of source code (in terms of tokens) that has been (or
might be) changed in a particular method, and (ii) amount
of source code that might need to be understood for making
changes to a particular method. For determining which other

methods we need to understand for changing a particular
method we extracted method co-change information by mining
the evolution history of the candidate software system.

Findings. We applied our implementation on hundreds of
revisions of six open source software systems of diverse nature
covering three programming languages (Java, C and C#) and
estimated the maintenance efforts of cloned and non-cloned
code. According to our analysis: Cloned code requires more
effort in the maintenance phase than non-cloned code. Type
3 and Type 2 clones require more effort compared to Type 1
clones. Our findings imply that cloned code can often increase
software maintenance costs compared to non-cloned code.
When taking clone management decisions we should primarily
focus on Type 3 and Type 2 clones. Our effort estimation tool
can always be helpful to the managers as well as programmers
in determining and predicting source code change efforts.

The rest of the paper is organized as follows: Section II
describes our effort estimation technique, Section III discusses
co-changed method groups, Section IV describes the experi-
mental steps, Section V contains experimental results and anal-
ysis, Section VI evaluates the usefulness of our procedure for
predicting code change effort, Section VII discusses possible
threats to validity, Section VIII discusses the related word, and
Section XI concludes the paper by mentioning future work.

II. EFFORT ESTIMATION PROCEDURE
We implement our effort estimation procedure empha-

sizing two things: (i) calculation of effort required by the
changes which have already taken place, and (ii) prediction
of effort that might be required for a future change in a
particular method. There are several factors such as type and
complexity of the candidate project, programmer expertise,
effort for finding a bug or fault, software testing effort and so
on which have not been considered in our study. There are two
reasons why we have not considered these - (i) determination
of project type and programmer expertise requires manual
investigation and also, as we are comparing the efforts for
cloned and non-cloned code these factors will be neutralized,
and (ii) calculation of bug finding and testing efforts cannot be
fully automated. Our effort estimation procedure is described
below.
A. Calculating Effort for Changes that Occurred in a Method

For calculating effort spent for changes that previously
occurred in a particular method we need to calculate two types
of efforts - (i) understanding effort, and (ii) change effort.

Understanding effort. This type of effort is spent for
understanding relevant methods. We need to spend time for
understanding the following five types of methods:

(1) The particular method to be changed.
(2) The user defined methods called from this method.
(3) The user defined methods which have called this

particular method.
(4) The methods which contain some fragments that are

cloned with some fragments of this particular method. We
need to understand the cloned methods because these methods
might need to be changed to ensure consistency of cloned
fragments.

(5) The methods that have high probability of being co-
changed with this particular method. Co-changed methods
(explained in Section III) are those methods that are changed
in a single commit operation to achieve a goal. Generally,

co-changed methods implement different functionalities of a
particular goal.

Change effort. This type of effort is spent for making
changes to the particular method and some other methods
which are cloned or co-changed with that particular method.
Calculation of change effort involves measuring the follow-
ings.

(1) Number of tokens changed in the particular method.
(2) Number of tokens changed in the co-changed methods.
(3) Number of tokens changed to ensure consistency in

the cloned portions of other methods that are cloned with this
particular method.
B. Predicting Effort for Future Changes in a Method

Prediction of effort for changing a particular method in
future includes the understanding efforts (described in Section
II-A) for this method. We also need to predict the number of
tokens that might need to be changed in the particular method
as well as in the methods that are co-changed (i.e., changed
together) with it. We do not predict the number of tokens to
be changed in the cloned methods because we do not know
whether the changes will take place to the cloned or non-
cloned portions of this particular method.

Predicting the number of tokens to be changed is tricky.
Suppose, we want to predict the efforts for changing a partic-
ular method m which has been co-changed with several other
methods during evolution. To predict the efforts for changing
m we also need to predict the efforts for changing the co-
changed methods. Suppose, mco is a method which has been
co-changed with m. We need to predict the followings.

● How many tokens might need to be changed in the
particular method m.

● How many tokens might need to be changed in the
co-changed method mco.

We predict the number of tokens that might need to be
changed in m by determining the average number of tokens
changed in m per revision. The revisions that we consider for
this case are those where m has received some changes. If m
has been changed in r number of previous revisions during
evolution, and the total number of tokens (of m) changed
(added, deleted or modified) in these r revisions is T , we
predict the number of tokens in m that might need to be
changed in the current revision by Eq. 1.

Tpredict = T / r (1)

Here, Tpredict is the predicted number of tokens to be
changed in m. For predicting the number of tokens to be
changed in the co-changed method mco we calculate:

● The average number of tokens that have been changed
in mco per revision (we consider only those revisions
where mco has changed) during the evolution

● The probability by which mco co-changes with m.
Suppose, the total number of revisions where mco has been

changed is rco, the total number of tokens changed in mco in
these revisions is Tco, the total number of revisions where m
has been changed is r and the total number of revisions where
both m and mco have been changed is Rco. We predict the
number of tokens to be changed in mco using Eq. 2.

Tpredict co−change =
Tco

rco
× Rco

r
(2)

Here, Tpredict co−change is the predicted number of tokens
to be changed in mco. Two quantities are multiplied in the
above equation. The first quantity is the average number of
tokens changed so far in mco and the second quantity is the
probability of mco to be co-changed with m.
C. Effort Calculation and Prediction

Suppose we are calculating the maintenance effort required
for some changes that occurred in a method in a particular
revision of a software system. Before the occurrence of
changes, the method had T tokens. The user defined methods
called from this method had Tcalled tokens and the user defined
methods calling this method had Tcalling tokens. Also, the
unique co-changed method groups (explained in Section III)
excluding this method had Tco tokens in total. The methods
that were cloned with this method but not in co-changed
method group had Tcloned tokens. Because of the changes,
Tc tokens were added in, modified or deleted from cloned
portions of this method. In the same way, Tn tokens were
added in, modified or deleted from non-cloned portions of
this method. Tcoc tokens were changed in all other methods
in the co-changed groups. Tclonedc tokens were changed in
the cloned portions of the cloned methods (that are not in the
co-changed group) to maintain consistency. The maintenance
effort for the changes that occurred in this particular method
can be calculated according to the following equations.

UE = (T + Tcalled + Tcalling + Tco + Tcloned) × a ×E (3)

TCE = (Tc + Tn + Tcoc + Tclonedc) × b (4)

TE = UE + TCE (5)

Here, UE, TCE and TE are respectively the understand-
ing effort, token change effort and total effort. All the operands
in the above equations excluding a, b and E are quantifiable
by examining the revisions of the subject system. The constant
a is the effort to understand a single token. Constant b is the
effort to add, delete or modify a single token. E quantifies the
expertise of the responsible programmer. The value of E spans
between 0 and 1. E = 1 means that the programmer is totally
new in changing the particular method and E = 0 means that
the programmer is expert enough in changing this method,
and thus, he / she does not need understanding effort. We can
also separate the efforts spent for cloned and non-cloned code
in the following way.

CE = UE + (Tc + Tcoc + Tclonedc) × b (6)

NE = (T +Tcalled+Tcalling+Tco)×a×E+(Tn+Tcoc)×b (7)

Here CE is the effort spent for cloned code and NE is
the effort for non-cloned code.

While predicting the efforts for changing a particular
method we first predict the number of tokens to be changed
in that method and in the co-changed methods using the
equations Eq. 1 and Eq. 2 and then we predict the efforts
according to the following equation.

PE = UE + (Tp + Tpco) × b (8)
Here PE is the predicted effort, Tp is the probable number

of tokens that might need to be changed in the particular
method and Tpco is the number of tokens that might be
changed in the co-changed methods. We see that the predicted
effort also includes the understanding effort UE.

D. Assignment of Values to The Constants
We can assign the values for a and b in terms of time

but these values depend on several factors including type
and complexity of the candidate project and expertise of the
responsible programmer. The effects of these factors on a and
b cannot be determined automatically. As our main focus is
on the comparison of the efforts required for cloned and non-
cloned portions, we do not need to know the exact values
of a and b. Instead we need to assume the ratio between
these two constants so that we can convert both the number
of tokens to understand and the number of tokens to change
to a common unit. We can then add the understanding and
changing efforts of a particular code region (cloned or non-
cloned) of a subject system to get the total effort for that
region of the system. In our experiment, we select the ratio
between a and b to be 3 (a/b = 3) as was assumed in a
previous study [6]. We also consider E = 1 which means that
the programmer who is responsible for changing a particular
method has no prior knowledge about the method and other
relevant methods. While it is true that the understanding efforts
for Tcalled, Tcalling, Tco, and Tcloned in Eq. 3 should be treated
differently from the perspective of program comprehension, in
our experiment we consider that the responsible programmer
for making changes has no prior knowledge about the code-
base. Thus, similar treatment of the understanding effort for
Tcalled, Tcalling, Tco, and Tcloned is reasonable.

III. CO-CHANGED METHOD GROUPS
During the evolution of a software system multiple revi-

sions of it are created. We denote the revisions by revision(i)
where 1 ≤ i ≤ n. Here n is the total number of revisions
of the software system created so far. A commit opera-
tion commit(i) on revision(i) causes the next revision
revision(i+1) to be created. For most of the cases a particular
commit operation consists of several changes to the source
code. An important fact here is that if the changes in a
particular commit operation are not atypical [23], they are
made to achieve a particular goal (or functionality) and hence,
these changes are related. So, the methods in which these
changes have occured are also related. These methods, that are
changed in a particular commit operation, form a co-changed
method group. While making some changes to a particular
method, a developer should also be concerned about other
methods in those co-changed method groups to which that
particular method belongs.

Detecting Co-changed Method Groups. To determine the
co-changed method group for a particular commit operation
commit(i) we accomplish several tasks - (1) detection of
all methods in revision(i) with corresponding beginning and
ending line numbers, (2) determination of changes happened
to revision(i) with corresponding line numbers, (3) mapping
these changes to the detected methods of revision(i), and at
last (4) retrieval of the changed methods. For a sequence of
n revisions of a subject system we get a sequence of n − 1
commit operations. After discarding the commit operations
with atypical changes we get our target commit operations.
We discarded commits with atypical changes following the
technique of Lozano and Wermelinger [23]. If the count of
the target commit operations is t, we get t co-changed method
groups. But, it is very likely that a particular co-changed
method group will appear multiple times in this sequence

Fig. 1. Experimental steps and their interdependencies in calculating maintenance efforts for cloned and non-cloned code

TABLE I. SUBJECT SYSTEMS

Systems Domains LOC Revisions

Ja
va Ant-Contrib Web Server 12,621 176

Carol Game 25,092 1699

C Ctags Code Def. Generator 33,270 774
QMail Admin Mail Management 4,054 317

C
GreenShot Multimedia 37,628 999

Capital Resource Database Management 75,434 122

TABLE II. NICAD SETTINGS

Clone Types Identifier Renaming Dissimilarity Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

of t groups because, changes in multiple commit operations
might be centered around the same or similar goals. So, we
need to determine the unique co-changed method groups for
a sequence of commit operations.

Algorithm for detecting unique co-changed method
groups: Suppose, we have already detected some unique co-
changed method groups by examining some commit opera-
tions. We call this list of existing groups existing list. After
getting a new group from the next commit operation, we first
check whether this group is a proper subset of any group in
the existing list. If this is true, we ignore this new group,
otherwise we check the existing list to find any group which
is a proper subset of this new group. We discard these groups
from the existing list and add the new group to it. Then, we
proceed with the next commit operation. However, at the very
begining of this process (while examining the first commit),
the existing list remains empty.

IV. EXPERIMENTAL STEPS
We conduct our experiment on six subject systems listed

in Table I. We download these systems from an on-line SVN
repository1. The subject systems are diverse, differing in size,
spanning six different application domains, and covering three
different programming languages. We have implemented our
effort estimation procedure as a tool using Java programming
language with MySQL as the back-end database server and
then applied the tool on each of the subject systems in Table I
for calculating maintenance efforts of cloned and non-cloned
code. The calculation has been done in the following steps as
demonstrated in Fig. 1: (1) Preprocessing source code of each
revision of a subject system by applying two preprocessing
steps - (i) rearranging lines so that an isolated left or right
brace (if a left or right brace remains in a line associated with
no other character) gets deleted and added to the previous
line (creating a blank line), and (ii) deleting blank lines and
comments, (2) Detecting methods from each of the revisions

1On-line SVN Repository: https://sourceforge.net/

of the candidate system by applying CTAGS2, (3) Detecting
method genealogies considering all the revisions of a subject
system by applying the technique proposed by Lozano and
Wermelinger [23], (4) Detecting code clones from each of the
revisions by applying the NiCad clone detector [8], [27], (5)
Mapping clones in each revision to the methods in that revision
using their start and end line numbers, (6) Detecting changes
between every two consecutive revisions using UNIX diff,
and mapping these changes to the methods in these revisions,
(7) Detecting co-changed method groups by analyzing the
evolution history of the subject system, and (8) Calculating
maintenance effort for cloned and non-cloned code.

For the details of the steps 2 to 6 we refer the interested
readers to our earlier work [26]. Step 7 has been elaborated in
Section III. Method genealogy detection step (i.e., Step 3) was
essential for detecting the co-changed method groups. Step 8
will be elaborated below. Fig. 1 shows the interdependency
among the eight experimental steps. An arrow from one
rectangle to another means that the activity in the second
rectangle depends on the output from the activity in the
first one.

NiCad Setup. Using NiCad we detected block clones with
a minimum size of 5 LOC. We used the NiCad settings in
Table II for detecting three types of clones (Type 1, Type 2,
and Type 3). For all the settings NiCad was shown to have
high precision and recall [28].

Calculation of maintenance efforts. Suppose we are
calculating the maintenance efforts for some changes occurred
in a particular method in revision R. We need to determine two
things: (1) the number of tokens that need to be understood
for changing this particular method, and (2) the number of
tokens that have actually been changed in this method and its
co-changed methods. For determining these, we find whether
there is any stored co-changed method group (in the database)
to which this method belongs. We also find the methods which
are cloned with this method by querying the clone detection
result. In this way, we calculate the number to tokens to
understand and the number of tokens actually changed for
each of the methods changed in this revision. We calculate
the efforts required for changing a particular method as well
as for changing cloned code and non-cloned code according
to the equations Eq. 5, Eq. 6 and Eq. 7.

In our experiment, we have not identified the caller-callee
relationships among methods. These relationships are only
necessary for understanding purpose. We detect co-changed
method groups. By querying these groups we identify which
methods need to be understood for changing which method.

2CTAGS: http://ctags.sourceforge.net/

TABLE III. EFFORTS REQUIRED FOR CLONED AND NON-CLONED
CODE

Type 1 Type 2 Type 3

Systems Efc Efn R Efc Efn R Efc Efn R

Ant-Cont. 0 1450.6 ⊕ 2259 1414.68 ⊖ 318 1496.95 ⊕
Carol 1784.37 1327.40 ⊖ 2008.61 1351.97 ⊖ 1229.61 1165.19 ⊖
Ctags 1720.62 1665.92 ⊖ 2006.78 1658.52 ⊖ 2365.09 1676.83 ⊖
QMail Ad. 6780.39 4205.67 ⊖ 36993.6 3260.8 ⊖ 10852.85 2799.18 ⊖
GreenShot 2806.31 3521.54 ⊕ 2879.92 3295.67 ⊕ 3121.93 3331.77 ⊕
Capital Res. 0 344.27 ⊕ 0 344.27 ⊕ 1043.16 349.03 ⊖
Efc= Effort Required for Cloned Code Efn= Effort Required for Non-Cloned Code

⊕= Efc <Efn ⊖= Efc >Efn R = Remark

Type 1 Type 2 Type 3
0

20

40

60

% of systems where cloned code requires more effort

% of systems where non-cloned code requires more effort

Fig. 2. Comparing efforts of non-cloned code and three types of cloned
code

V. EXPERIMENTAL RESULTS AND ANALYSIS
We have applied our effort estimation tool on six open

source subject systems and got the efforts for modifying
cloned and non-cloned code. When considering code clones
of a particular clone-type, the rest of the code-base (i.e., the
code that we get by excluding code clones of that particular
clone-type) was considered as the non-cloned code. The efforts
are shown in the Table III. However, the efforts listed in the
Table III are the summations of corresponding understanding
and changing efforts. We call these efforts the total efforts. In
the following subsections we provide our analysis on the total
effort, understanding effort, and changing effort.

Overall analysis of experimental result. We can interpret
Table III as consisting of 18 cases where each case consists
of a particular subject system and a particular clone type.
For each case, there are two efforts in the table - (i) effort
for cloned code (Efc), and (ii) effort for non-cloned code
(Efn) and a remark (⊖ or ⊕). The symbol ‘⊖’ indicates
that cloned code required more effort than the non-cloned
code and ‘⊕’ indicates the opposite. According to our result,
for 61.11% cases (11 cases in total) cloned code required
more effort than non-cloned code and the opposite is true
for the remaining 38.89% cases. The difference between
these percentages indicates that cloned code requires more
effort than the non-cloned code in general. Obviously, our
investigation is not exhaustive and the result might be skewed
by selecting another set of subject systems. However, our
investigation and experimental results provide an evidence that
cloned code often requires more effort in the maintenance
phase than non-cloned code.

We have also analyzed the results for each of the three
types of clones individually and the findings have been pre-
sented using a bar graph (Fig. 2). From this graph we see
that both Type 2 and Type 3 clones required more effort than
non-cloned code for greater proportion of subject systems.
According to this graph, each of the three types of clones can
require more effort than the non-cloned code during software
evolution. The changes in Type 2 and Type 3 clones have

Ant-Contrib Carol Ctags QMail. Capital Res. GreenShot
0

5,000

10,000

Total effort for Type 1 clones Total effort for Type 2 clones

Total effort for Type 3 clones

Fig. 3. Total effort for three types of code clones.

Ant-Contrib Carol Ctags QMail. Capital Res. GreenShot
0

5,000

10,000

Understanding effort for Type 1 clones

Understanding effort for Type 2 clones

Understanding effort for Type 3 clones

Fig. 4. Understanding effort for three types of code clones.

higher probabilities of requiring more effort than those in Type
1 clones.

Overall Analysis Result: According to Table III and Fig.
2 we realize that cloned code can increase maintenance effort
during software evolution compared to non-cloned code.

Type centric analysis of experimental result. As cloned
code can increase maintenance efforts, this is important to
analyze the variability of efforts required by different types of
clones to identify which types of clones should be given more
care. For this purpose, we have drawn the graph shown in Fig.
3 containing each of the six candidate systems with respective
efforts for three clone-types. From this graph we see that for
each of the three subject systems, Ctags, Capital Resource and
Greenshot, the effort required for Type 3 clones was greater
than the effort required for each of the other two types of
clones. For the remaining three subject systems, the efforts
required for Type 2 clones were the greatest ones. From this
scenario we can come to the decision that Type 2 and Type 3
clones generally require more effort than Type 1 clones.

We also analyzed the understanding and modification
efforts for each type of clones individually. For this purpose,
we have drawn two more graphs in Fig. 4 and Fig. 5 showing
the comparison of understanding and modification efforts for
three types of clones respectively. Fig. 4 shows the comparison
of understanding efforts for three clone-types. We see that
understanding efforts exactly follow the total efforts (under-
standing + modification) (Fig.3). From this we decide that the
total amount of efforts required for source code changes is
mainly driven by the understanding efforts. From the other
graph in Fig. 5 we see that for five subject systems excluding
QMailAdmin, token change efforts for Type 3 clones were
greater than those of the other two types of clones. We also
see that for both cloned and non-cloned code, understanding
efforts are always greater than modification efforts.

Type Centric Analysis Result: From the type centric anal-
ysis we learn that both Type 2 and Type 3 clones require more
effort (both understanding and modification) than the effort

Ant-Contrib Carol Ctags QMail. Capital Res. GreenShot
0

200

400

600

800

1,000

Modification effort for Type 1 clones

Modification effort for Type 2 clones

Modification effort for Type 3 clones

Fig. 5. Modification effort for three types of code clones.

required by Type 1 clones. Also, Type 3 clones require more
modification efforts than the other two types. So, Type 2 and
Type 3 clones should be given more care during development.
More importantly, when taking clone management (such as
clone refactoring or tracking) decisions we should primarily
focus on Type 2 and Type 3 clones.

VI. ACCURACY IN PREDICTING CODE CHANGE EFFORT
We calculate the accuracy of our effort estimation tool in

predicting code change effort in the following way. Suppose,
the subject system on which we are working has R revisions in
total. We consider a revision r which is not the most recent one
(1<r<R). Suppose, several methods in this revision have been
modified to create the immediate next revision. We calculate
the actual number of tokens that were changed while changing
these methods in revision r to create the next revision. We
also use our tool to predict the number of tokens that might
need to be changed in these methods in revision r using the
co-change history of these methods as described in Section
II-B. In this way, for all the revisions we have worked on, we
calculate - (i) the count of actually changed tokens, (ii) count
of tokens predicted to be changed, and (iii) the total count
of methods changed. From these, we calculate the number of
tokens actually changed per method and the number of tokens
predicted to be changed per method. We calculate these two
quantities for each of our candidate subject systems. We find
the Pearson correlation between these two quantities.

The calculated values and the correlation result are shown
in Table IV. From the table we see that there is a high cor-
relation between these two quantities (the Pearson correlation
co-efficient = 0.888754). If we disregard Capital Resource (it
does not comply with the other five systems), the correlation
coefficient becomes 0.9864. We also see that our tool is
underestimating the count of tokens to be changed for most
of the cases (except for Capital Resource). The reason behind
this is explained in the following way.

For a particular method, while we predict the number of
tokens to be changed in any one of its co-changed methods
we multiply two quantities: (i) the number of tokens that
is likely to be changed in the co-changed method, and (ii)
the probability by which this method co-changes with the
particular method. The probability becomes less than one
if this co-changed method has not changed each time the
particular method has changed in the past. This probability
is underestimating the count of tokens to be changed in a
co-changed method. We have seen that the count of tokens
actually changed is around five times larger than the count of
tokens predicted to be changed for our subject systems. Thus,
in-spite of underestimation we realize that it is possible to

TABLE IV. CORRELATION BETWEEN TOKEN COUNTS
Ant-Contrib Carol Ctags Qmail Admin Greenshot Capital Resource

CACT 154.51 152.18 101.67 557.55 277.82 30.87

CTPC 31.33 18.1 21.84 100.93 45.66 40.23

Pearson Correlation Coefficient between CACT and CTPC = 0.888754

CACT = Count of Actually Changed Tokens

CTPC = Count of Tokens Predicted to be Changed

predict the number to tokens that might need to be changed for
changing a particular method using our effort estimation tool.

VII. THREATS TO VALIDITY
We conduct our investigations by detecting code clones

using NiCad [8]. While all clone detectors suffer from the
confounding configuration choice problem [31] and might pro-
vide different clone detection results for different settings, the
settings that we have used for NiCad are considered standard
[27]. NiCad can detect code clones with high precision and
recall with these settings [27], [28]. Thus, we believe that our
findings in this experiment are important.

Our experimental results are based on only six open source
subject systems which is not sufficient for taking any concrete
decision. However, our selected systems are varying in size,
application domains, revisions and programming languages.
We selected the systems in this way intentionally to avoid pos-
sible bias of system size, domain and programming language
on effort. Thus we believe that our investigation has brought
out some important insights regarding the maintenance efforts
for cloned and non-cloned code.

VIII. RELATED WORK
Hotta et al. [10] studied the impact of clones by measur-

ing the modification frequencies of the duplicated and non-
duplicated code segments. They conducted a fairly large study
using different tools and subject systems which suggests that
the presence of clones does not introduce extra difficulties
to the maintenance phase. Krinke [15] investigated Java, C
and C++ code bases considering Type-I clones, and analyzed
how consistently code clones are changed during maintenance.
He found that clone groups changed consistently through
half of their lifetime. In other two experiments [16], [17]
he showed that cloned code is more stable than non-cloned
code. Lozano and Wermelinger [21]–[23] conducted a number
of experiments using CCFinder [12] to assess the effects of
clones on the change-proneness of software systems. They
found that code clones can often exhibit higher change-
proneness than non-cloned code. Juergens et al.’s [11] study
with large scale commercial systems suggests that inconsistent
changes are very frequent to the cloned code and nearly every
second unintentional inconsistent change to a clone leads to a
fault. Kapser and Godfrey [13] identified different patterns of
cloning and experienced that around 71% of the clones could
be considered to have a positive impact on the maintainability
of the software system. Aversano et al. [2] combined clone de-
tection and modification transactions on open source software
repositories to investigate how clones are maintained during
the evolution and bug fixing. Their study reports that most of
the cloned code is consistently maintained. In another similar
but extended study, Thummalapenta et al. [30] indicated that
most of the cases clones are changed consistently and for the
remaining inconsistently changed cases clones mainly undergo
independent evolution.

We see that different studies have tried to investigate the
impacts of clones in different ways, however, no studies have
measured how much effort is spent for cloned and non-cloned
portions of a code base. In this paper we investigate this issue
and try to find a concrete answer to the question ‘Does the
presence of clones increase maintenance effort?’. Our findings
establish that cloned code often requires higher maintenance
effort compared to non-cloned code. We also compare the
maintenance efforts required by three types (Type 1, Type
2, and Type 3) of code clones and find that Type 2 and
Type 3 clones require higher efforts than Type 1 clones. None
of the existing studies have compared different clone-types
considering the maintenance efforts they require. Our findings
are important for prioritizing code clones for management.

IX. CONCLUSION
In this paper, we present an empirical study to determine

and compare the maintenance efforts required for cloned and
non-cloned code. For the purpose of our study we implement
a prototype tool which is capable of performing two tasks:
(i) calculation of effort for changes that previously occurred
in a particular method, and (ii) prediction of effort that might
need to be spent for future changes to a particular method. Our
experimental results on six candidate subject systems written
in three different programming languages show that:

● Cloned code often requires a higher amount of change
effort during maintenance compared to non-cloned
code.

● Both Type 2 and Type 3 clones require more mainte-
nance effort than Type 1 clones.

We also observe that Type 3 clones generally require a
higher amount of modifications (in terms of tokens) compared
to the other two clone-types (Type 1, and Type 2). According
to our findings we decide that Type 2 and Type 3 clones should
be given more care during development. These two types of
code clones should be prioritized for management.

We also evaluate our tool’s predictability and observe that
it can be used to predict the number of tokens that might
need to be changed for changing a particular method. Our
effort estimation tool can be helpful from both managerial and
development perspectives. Managers will be able to calculate
developer efforts spent on source code modifications. Devel-
opers can estimate effort for changing any existing method
and can decide whether to modify existing methods or to
create new ones for incorporating some changes to a particular
project. As a future work, we are planning to integrate our tool
with Eclipse IDE as a plug in.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC).

REFERENCES
[1] Y. Ahn, J. Suh, S. Kim, H. Kim, “The software maintenance project

effort estimation model based on function points”, Journal of Software
Maintenance and Evolution: Research and Practice, 2003, 15(2):71-85.

[2] L. Aversano, L. Cerulo, M. D. Penta, “How clones are maintained: An
empirical study,” Proc. CSMR, 2007, pp. 81-90.

[3] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 – 282.

[4] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late
propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 – 1165.

[5] B. W. Boehm, R. Madachy, and B. Steece, Software Cost Estimation
with Cocomo II. Upper Saddle River, NJ: Prentice Hall, 2000.

[6] S. Bouktif, G. Antoniol, E. Merlo, M. Neteler“A Novel Approach to
Optimize Clone Refactoring Activity”, GECCO, 2006, pp. 1885 - 1892.

[7] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” Proc. 11th IEEE International Software
Metrics Symposium, 2005, p. 29 – 37.

[8] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool
Demo, 2011, pp. 219 – 220.

[9] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”,
Proc. ICSE, 2011, pp. 311 – 320.

[10] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software,” Proc. EVOL/IWPSE,
2010, pp. 73–82.

[11] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code
Clones Matter?,” Proc. ICSE, 2009, pp. 485– 495.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
TSE, 28(7), 2002, pp. 654–670.

[13] C. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: patterns of cloning in software,” Emp. Soft. Eng.
13(6), 2008, pp. 645–692.

[14] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical
study of code clone genealogies,” Proc. ESEC-FSE, 2005, pp. 187–196.

[15] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” Proc. WCRE, 2007, pp. 170–178.

[16] J. Krinke, “Is cloned code more stable than non-cloned code?,” Proc.
SCAM, 2008, pp. 57–66.

[17] J. Krinke, “Is Cloned Code older than Non-Cloned Code?,” Proc.
IWSC, 2011, pp. 28–33.

[18] Y. Ku, J. Du, Y. Yang, Q. Wang, “Estimating Software Maintenance
Effort from Use Cases: an Industrial Case Study”, in Proc. ICSM, 2011,
pp. 482 - 491

[19] H. Leung, “Estimating maintenance effort by analogy,” Empirical
Software Engineering, vol. 7, 2002, pp. 157-175.

[20] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE,
2012, pp. 310 – 320.

[21] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the
Harmfulness of Cloning: A Change Based Experiment,” Proc. MSR,
2007, pp. 18–21.

[22] A. Lozano and M. Wermelinger, “Tracking clones imprint,” Proc.
IWSC, 2010, pp. 65–72.

[23] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on
changeability,” Proc. em ICSM, 2008, pp. 227–236.

[24] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234.

[25] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone
Stability”, SIGAPP Applied Computing Review, 2012, 12(3): 20 – 36.

[26] M. Mondal, C. K. Roy, K. A. Schneider, Connectivity of Co-changed
Method Groups: A Case Study on Open Source Systems, Proc. CAS-
CON, 2012, pp. 205 – 219.

[27] C.K. Roy and J.R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion,” Proc ICPC, 2008, pp. 172–181.

[28] C. K. Roy and J. R. Cordy, “A mutation / injection-based automatic
framework for evaluating code clone detection tools,” Proc. Mutation,
2009, pp. 157–166.

[29] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A.
Schneider, “Evaluating code clone genealogies at release level: An
empirical study,” Proc. SCAM, 2010, pp. 87–96.

[30] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
empirical study on the maintenance of source code clones,” ESE, 15(1),
2009, pp. 1–34.

[31] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT

FSE, 2013, pp. 455 – 465.

