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Abstract—Code clones are defined to be the identical or nearly
similar code fragments in a code-base. According to a number
of existing studies, code clones are directly related to bugs and
inconsistencies in software systems. Code cloning (i.e., creating
code clones) is suspected to propagate temporarily hidden bugs
from one code fragment to another. However, there is no study
on the intensity of bug-propagation through code cloning. In
this paper we present our empirical study on bug-propagation
through code cloning.

We define two clone evolution patterns that reasonably indi-
cate bug propagation through code cloning. We first identify code
clones that experienced bug-fix changes by analyzing software
evolution history, and then determine which of these code clones
evolved following the bug propagation patterns. According to
our study on thousands of commits of four open-source subject
systems written in Java, up to 33% of the clone fragments that
experience bug-fix changes can contain propagated bugs. Around
28.57% of the bug-fixes experienced by the code clones can occur
for fixing propagated bugs. We also find that near-miss clones are
primarily involved with bug-propagation rather than identical
clones. The clone fragments involved with bug propagation are
mostly method clones. Bug propagation is more likely to occur in
the clone fragments that are created in the same commit operation
rather than in different commits. Our findings are important for
prioritizing code clones for refactoring and tracking from the
perspective of bug propagation.

I. INTRODUCTION

Code cloning (i.e., copy/pasting) is a common yet contro-
versial software engineering practice which is often employed
by the programmers during development and maintenance for
repeating common functionalities. Such a practice results the
existence of identical or nearly similar code fragments, also
known as code clones, in a code-base. Two code fragments
that are similar to each other form a clone-pair. A group of
similar code fragments forms a clone group or a clone class.

Code clones are of great importance from software main-
tenance perspectives. A great many studies [1], [2], [7], [8],
[9], [14], [15], [17], [18], [19], [22], [23], [29], [30], [42],
[20], [40], [12] have investigated the impacts of code clones
on software evolution. While a number of studies [1], [8], [9],
[15], [17], [18], [19] have identified some positive impacts
of code clones, other studies [2], [14], [22], [7], [23], [29],
[30], [20], [40], [12] have shown strong empirical evidence of
negative impacts too. Code clones can be directly related to
bugs and inconsistencies in the code-base [20], [21], [40]. It
is commonly suspected that bugs can be propagated through
code cloning. If a particular code fragment in a code-base
contains a temporarily hidden bug, and a programmer copies
that fragment to several other places being unaware of the
presence of the bug, the bug in the original fragment gets
propagated. Fig. 1 shows a possible way of bug-propagation
through code cloning.

Fig. 1. A possible way of bug-propagation through code cloning

In Fig. 1, we can see the evolution of two clone fragments
CF1 and CF2. As indicated in the figure, CF1 was created
in commit operation Ci, and was changed in Ci+1. CF2 was
created in commit Ci+2 from CF1, and the two fragments,
CF1 and CF2, made a clone-pair. In commit Ci+4, both of the
clone fragments experienced a bug-fix change. Let us assume
that the fragments were changed in the same way for bug-
fixing. Thus, after experiencing bug-fixing changes, CF1 and
CF2 remained as a clone-pair. From such a phenomenon we
realize that CF1 contained a bug before CF2 was created
from it. The bug might be introduced to CF1 at the time of
its creation (i.e. in commit Ci) or in commit Ci+1 (i.e., when
CF1 was changed). However, the bug was not discovered just
after being introduced. When CF2 was created from CF1
(in commit Ci+2), the bug in CF1 was propagated to CF2.
Finally, in commit Ci+4 the bug was fixed by making similar
changes to CF1 and CF2.

Researchers suspect that code cloning can be responsible
for propagating bugs. However, there is no study on how fre-
quently bug-propagation occurs during code cloning. Without
studying the intensity of bug-propagation we cannot properly
realize the impacts of code clones on software evolution and
maintenance. Focusing on this we perform an empirical study
on bug-propagation in code clones. To the best of our knowl-
edge, our study is the first one to investigate bug-propagation
through code cloning. We have the following contributions:

• We define two patterns of bug propagation through
code cloning.

• We propose an automatic mechanism of detecting
these two bug propagation patterns. Our proposed
mechanism works in two steps: (i) detecting bug-fix
changes in code clones, and (ii) determining whether
the bug-fix changes occurred for fixing propagated
bugs by analyzing the evolution histories of the code
fragments that experienced the bug-fix changes.



TABLE I. RESEARCH QUESTIONS

SL Research Question
RQ 1 What percentage of code clones in different clone-types can be involved

with bug propagation?
RQ 2 What percentage of the bugs that are experienced by different clone-

types can be propagated bugs?
RQ 3 Which pattern of bug-propagation is more intense during evolution?

• We implement our bug propagation detection mech-
anism, apply it to four open-source subject sys-
tems written in Java, and investigate bug propagation
through code cloning in these systems.

We answer three important research questions (Table I)
regarding bug-propagation in code clones. According to our
investigation on thousands of revisions of four subject systems:

• A considerable proportion of the code clones in a
subject system can contain propagated bugs. We see
that up to 33% of the code clones that experience bug-
fixes can be involved with bug propagation.

• Near-miss clones (Type 2 and Type 3 clones) exhibit a
higher intensity of bug-propagation compared to iden-
tical clones (Type 1 clones). Thus, near-miss clones
should be given a higher priority for management from
the perspective of bug-propagation.

• Around 28.57% of the bug-fix changes experienced by
the code clones can occur for fixing propagated bugs.

• According to our manual analysis, the clone fragments
that are involved with bug propagation are mostly
method clones. Moreover, bug propagation primarily
occurs to the clone fragments that are created together
in the same revision (i.e., in the same commit op-
eration). Thus, we suggest programmers to prioritize
refactoring method clones that were created in the
same revision.

We believe that bug-propagation should be taken into
proper consideration when making clone management (such as
clone refactoring or tracking) decisions. Our prototype tool that
we have implemented for our study can be used for identifying
code clones that are likely to contain propagated bugs. Thus,
it can help programmers in managing code clones from the
perspective of bug-propagation.

The rest of the paper is organized as follows. Section II
contains the terminology, Section III discusses the experimen-
tal steps, Section IV defines the bug propagation pattern in
code clones, Section V answers our research questions by
presenting and analyzing our experimental results, Section VII
discusses the related work, Section VIII mentions possible
threats to validity, and Section IX concludes the paper by
mentioning future work.

II. TERMINOLOGY

A. Types of Clones
We investigate bug propagation considering both exact

(Type 1) and near-miss clones (Type 2 and Type 3 clones) [35],
[34]. According to the literature, if two or more code fragments
in a particular code-base are exactly the same disregarding the
comments and indentations, these code fragments are called
exact clones or Type 1 clones of one another. Type 2 clones
are syntactically similar code fragments in a code-base. In
general, Type 2 clones are created from Type 1 clones because

of renaming identifiers and/or changing data types. Type 3
clones are mainly created because of additions, deletions, or
modifications of lines in Type 1 or Type 2 clones. Type 3
clones are also known as gapped clones.

Clone-pair: If two code fragments in a particular code-
base are similar to each other according to the above definitions
of code similarity, we call them a clone-pair. A clone-pair can
be of Type 1, Type 2, or Type 3.

B. Clone Fragment
We frequently use the term ‘clone fragment’ in our paper. A

clone fragment is a particular code fragment which is exactly
or nearly similar to one or more other code fragments in a
code-base. Each member in a clone group or a clone-pair is a
clone fragment.

C. Clone Genealogy
We detect clone genealogies for the purpose of our inves-

tigations. We define a clone genealogy in the following way.
Let us assume that a clone fragment was created in a particular
revision and was alive in a number of consecutive revisions.
Thus, each of these revisions contains a snapshot of the clone
fragment. The genealogy of this clone fragment consists of the
set of its consecutive snapshots from the consecutive revisions
where it was alive. Each clone fragment in a particular revision
belongs to a particular clone genealogy. In other words, a
particular clone fragment in a particular revision is actually
a snapshot in a particular clone genealogy. By examining
the genealogy of a clone fragment we can determine how it
changed during evolution.

We automatically detect clone genealogies using the SPCP-
Miner [25] tool. In our research, by examining the genealogy
of a clone fragment we determine which commit operation(s)
made changes to it.

D. Bug Propagation through Code Cloning
Existing studies [20], [21], [40] reveal that code clones can

be related to bugs in software systems. It is also suspected that
bugs in a code-base can get propagated through code cloning
(copy/pasting). If a particular code fragment contains a bug
which has not been discovered yet, then creating copies of
that code fragment (i.e., cloning that code fragment) actually
propagates the bug in all the created copies. If this bug gets
discovered at a particular point of evolution, it should be
fixed in each of the clone fragments that contains it. Thus,
code cloning can increase bug-fixing effort during software
evolution. Bug propagation tendencies of code clones should
be considered when prioritizing them for management. Code
clones with higher tendencies should be given higher priorities.
Section IV discusses the details on bug propagation patterns.
In our definition of bug propagation patters, we use the
term Similarity Preserving Co-change. We discuss similarity
preserving co-change in the following subsection.

E. Similarity Preserving Co-change of Clone Fragments
Mondal et al. [28] introduced the term similarity preserv-

ing co-change. We describe this in the following way. Let
us consider two code fragments, CF1 and CF2, which are
clones of each other in revision r of a subject system. A
commit operation was applied on revision r and both of these
two fragments were changed (i.e., the clone fragments co-
changed) in such a way that they were again considered as



TABLE II. SUBJECT SYSTEMS

Systems Lang. Domains LLR Revs

jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
LLR = LOC in the Last Revision Revs = No. of Revisions

clones of each other in the next revision r + 1 (i.e., created
because of the commit). In other words, the clone fragments
preserved their similarity even after experiencing changes in
the commit operation. Thus, this co-change of clone fragments
(i.e., change of more than one clone fragment together) is a
Similarity Preserving Co-change (SPCO).

Mondal et al. [28] showed that in a similarity preserving
co-change (SPCO) more than one clone fragment from the
same clone class are changed together consistently (i.e., the
clone fragments are changed in the same way).

III. EXPERIMENTAL STEPS

We perform our investigation on four Java systems listed
in Table II. We download these systems from an on-line SVN
repository [31]. We select our subject systems emphasizing
their diversity in sizes and revision history lengths. We also
see that the systems are of three different application domains.

A. Experimental Steps
We perform the following experimental steps before ana-

lyzing bug propagation in code clones: (1) Extraction of all
revisions (as mentioned in Table II) of each of the subject
systems from the online SVN repository; (2) Method detection
and extraction from each of the revisions using CTAGS [6];
(3) Detection and extraction of code clones from each revision
by applying the NiCad [5] clone detector; (4) Detection of
changes between every two consecutive revisions using diff ;
(5) Locating these changes to the already detected methods
as well as clones of the corresponding revisions; (6) Locating
the code clones detected from each revision to the methods of
that revision; (7) Detection of method genealogies considering
all revisions using the technique proposed by Lozano and
Wermelinger [23]; (8) Detection of clone genealogies by
identifying the propagation of each clone fragment through
a method genealogy; (9) Detecting clone fragments that expe-
rienced bug-fix changes; and (10) Analyzing the evolution of
bug-fix clones to identify bug propagation. For completing the
first eight steps we use the tool SPCP-Miner [25]. In Section
III-B we will discuss the technique that we apply for detecting
bug-fix changes in code clones. We will define possible bug
propagation patterns, and discuss how we detect such patterns
in Section IV.

Clone Detection. We use the well-known NiCad [5] clone
detector for detecting clones because it can detect all major
types (Type 1, Type 2, and Type 3) of clones with high
precision and recall [37], [38]. Using NiCad we detect block
clones including both exact (Type 1) and near-miss (Type
2, Type 3) clones of a minimum size of 10 LOC with
20% dissimilarity threshold and blind renaming of identifiers.
For different settings of a clone detector the clone detection
results can be different and thus, the experimental findings
can also be different. For this reason selection of reasonable
settings (i.e., detection parameters) is important. We used the
mentioned settings in our research, because in a recent study

[41] Svajlenko and Roy show that these settings provide us
with better clone detection results in terms of both precision
and recall. We should note that before using the NiCad outputs
for Type 2 and Type 3 cases, we pre-processed them in the
following way.

(1) Every Type 2 clone class that exactly matched any Type
1 clone class was excluded from Type 2 outputs.

(2) Every Type 3 clone class that exactly matched any Type
1 or Type 2 class was excluded from Type 3 outputs.

We performed these preprocessing steps because we
wanted to investigate bug propagation in each of the three
types of clones separately.

Clone Genealogies of Different Clone-Types. We use
SPCP-Miner [25] to detect clone genealogies considering each
clone-type (Type 1, Type 2, and Type 3) separately. Consider-
ing a particular clone-type this tool first detects all the clone
fragments of that particular type from each of the revisions of
the candidate system. Then, it performs origin analysis of these
detected clone fragments and builds the genealogies. Thus, all
the instances in a particular clone genealogy are of a particular
clone-type. An instance is a snap-shot of a clone fragment
in a particular revision. As we obtain three separate sets of
clone genealogies for three different clone-types, we can easily
determine the bug propagation intensities in these clone-types.

Tackling Clone-Mutations. Xie et al.[44] found that mu-
tations of the clone fragments (i.e., a particular clone fragment
may change its type) might occur during evolution. If a par-
ticular clone fragment is considered of a different clone-type
during different periods of evolution, SPCP-Miner extracts a
separate clone-genealogy for this fragment for each of these
periods. Thus, even with the occurrences of clone-mutations,
we can clearly distinguish which bugs were experienced by
which clone-types.

B. Bug Detection in Code Clones
For a particular candidate system, we first retrieve the com-

mit messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically examine the commit messages
using the heuristic proposed by Mockus and Votta [24] to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other words,
the clone fragment(s) are related to the bug. In this way we
examine the commit operations of a candidate system, analyze
the commit messages to retrieve the bug-fix commits, and
identify those bug-fix commits that affected code clones.

The way we detect the bug-fix commits was also previously
followed by Barbour et al. [2]. They detected bug-fix commits
in order to investigate whether late propagation in clones
is related to bugs. They at first identified the occurrences
of late propagations and then analyzed whether the clone
fragments that experienced late propagations are related to
bug-fix. In our study we detect bug-fix commits in the same
way as they detected, however, our study is not limited to late
propagation clones only. We perform our study considering all
clone fragments of a software system. Barbour et al. did not
investigate bug-propagation. We investigate bug-propagation



through code cloning in our study. Also, they did not consider
Type 3 clones in their study. We consider Type 3 clones in our
bug-propagation study.

After detecting bug-fix changes in code clones, we auto-
matically detect whether the bug-fix clones evolved following
a bug-propagation pattern.

IV. BUG PROPAGATION PATTERNS

In the following two subsections we first provide formal
definitions of two bug-propagation patterns, and then describe
an automatic procedure that we have used for detecting these
patterns. We should note that the two patterns we are going to
describe include all possible ways of bug propagation through
code cloning where the propagated bug was fixed in at least
two clone fragments from the same clone class. Intuitively,
a propagated bug should be fixed in the clone fragment that
primarily contained the bug, and also, in the other clone
fragments where the bug was propagated.

A. The First Bug Propagation Pattern
Propagation Pattern. Let us consider that two code

fragments were created in a particular revision. These code
fragments are similar to each other, and thus form a clone-
pair. We also assume that a similar code fragment was not
preexisting. As these two fragments were created in the same
revision (i.e., in the same commit operation) it is likely that
one fragment was first created by the programmer, and then
she created the second one from the first one (possibly by
copy/pasting). In this case, any bug that was introduced in
the first fragment during its creation can be propagated to the
second one. Considering such a way of bug-propagation we
define the following bug-propagation pattern.

Pattern Definition. Let us consider that a clone-pair
consisting of two clone fragments, CF1 and CF2, resides in
revision r of a subject system. For fixing a bug, these clone
fragments were changed together (i.e., were co-changed) in
the commit operation c which was applied on revision r. We
consider that this bug-fix change experienced by the two clone
fragments in commit c is the fixing of a propagated bug if the
following conditions hold:

• Condition 1: The two clone fragments, CF1 and
CF2, were created in the same revision rcreated. Here,
rcreated < r (i.e., rcreated is older than r). No other
similar code fragment was preexisting. In other words,
a code fragment which is similar to CF1 and CF2 was
not existing in revision rcreated−1. Here, rcreated−1
is the revision which was created just before the
revision rcreated.

• Condition 2: None or only one of the two clone
fragments was changed during the evolution from
rcreated to r. In other words, none or only one of
the two fragments was changed in any of the commits
that were applied on the revisions rcreated to r − 1.
Here, r−1 is the revision that was created just before
revision r.

• Condition 3: The two clone fragments, CF1 and CF2,
experienced a similarity preserving co-change in the
bug-fix commit operation c which was applied on
revision r. We have defined similarity preserving co-
change in Section II. In a similarity preserving co-
change, the clone fragments are updated consistently

(i.e., the fragments are changed in the same way).

The first condition (Condition 1) implies the likeliness that
one of the two fragments was created from the other one
(possibly by copy/pasting). Condition 2 confirms that after
being created, at least one of the two fragments remained
unchanged before they were both changed in the bug-fix
commit c. Condition 3 implies that each of the clone fragments
was changed in the same way for fixing the bug, and thus, each
fragment contained the same bug.

By analyzing the second condition (Condition 2) we realize
that if none of the clone fragments got changed during the
intermediate evolution (i.e., in the commits that were applied
on the revisions rcreated to r−1), then the bug that was fixed in
the two fragments in the commit operation c (the commit c was
applied on revision r) was certainly introduced to them at the
time of their creation (i.e., in the revision rcreated). However,
we see that Condition 2 allows only one of the fragments to
be changed in the intermediate evolution. Even with such a
flexibility in the condition it is still confirmed that the bug that
was fixed by consistently changing CF1 and CF2 in commit
c was not introduced by any change during the intermediate
evolution. Let us assume that the fragment CF2 was changed in
a commit in the intermediate evolution. However, Condition 3
confirms that both of the fragments were changed in the same
way for bug-fixing in commit c. In other words, each of the
changed fragment (i.e., CF2) and unchanged fragment (i.e.,
CF1) contained the same bug. Reasonably, any change in the
intermediate evolution did not introduce the bug that was fixed
in commit c, because CF1 also experienced the same fix even
after remaining unchanged in the intermediate evolution. The
bug was introduced (in one fragment) and propagated (to the
other fragment) at the time of creation of the two fragments.

B. The Second Bug Propagation Pattern
Propagation Pattern. Let us assume that a code fragment

CF2 was created in a particular revision from a similar
preexisting code fragment CF1 (possibly by copy/pasting).
Consequently, these two clone fragments made a clone-pair. In
such a phenomenon it is possible that an unreported bug (i.e., a
bug which has not yet been discovered) which was preexisting
in the fragment CF1 will be transferred (i.e., propagated) to
CF2. Considering this way of bug propagation we define the
following bug propagation pattern.

Pattern Definition. Let us consider that two clone frag-
ments, CF1 and CF2, make a clone-pair in revision r of
a subject system. These two fragments were created at two
different revisions: rcreated1 and rcreated2 respectively. Here,
rcreated1 < r and rcreated2 < r. In other words, both
rcreated1 and rcreated2 are older than r. We also assume that
rcreated1 < rcreated2. Thus, CF1 was preexisting (i.e., CF1 is
older than CF2). For fixing a bug, these two clone fragments
were changed together (i.e., were co-changed) in the commit
operation c which was applied on revision r. We consider
that this bug-fix change experienced by the two fragments in
commit c is the fixing of a propagated bug if the following
three conditions hold:
• Condition 1: Just after the creation of the younger

fragment (i.e., CF2), it was considered similar to the
older one (i.e., CF1). Thus, CF1 and CF2 made a
clone-pair from revision rcreated2. We should note that
rcreated2 is older than r.



• Condition 2: None or only one of the two clone
fragments was changed during the evolution period
between the revisions rcreated2 and r. In other words,
none or only one of the fragments was changed in the
commit operations applied on the revisions rcreated2
to r− 1. We have already mentioned that the revision
r experienced the commit operation c which made
changes to CF1 and CF2 for fixing a bug.

• Condition 3: The co-change of the two clone frag-
ments (i.e., CF1 and CF2) in the commit operation c
is a similarity preserving co-change.

As the clone fragments (CF1 and CF2) were created
at two different commits, it implies the possibility that the
younger code fragment CF2 might be created from the similar
preexisting code fragment CF1. Condition 1 implies that the
bug that was fixed in commit c was introduced to CF2 at the
time of its creation. Condition 2 and Condition 3 are similar
to the corresponding conditions in the first pattern described
in Section IV-A. This section (i.e., Section IV-A) also contains
the discussions of these two conditions. Finally, the above
three conditions reasonably imply the fixing of a bug that was
preexisting in the older fragment CF1 and was propagated to
the fragment CF2 through code cloning.

C. Automatic Detection of Bug Propagation Patterns
By following the procedure described in Section III-B we

detect the bug-fix commits that affected code clones. Let us
consider such a bug-fix commit which we call BFC. Let us
further assume that a clone-pair was changed (i.e., both of
the clone fragments in the pair were changed) in this commit
for fixing a bug. We first determine whether the clone-pair
experienced a similarity preserving co-change in the bug-fix
commit BFC (i.e., we check Condition 3 in each of the two
patterns we have just described). If it did, then we analyze
the genealogies of the two clone fragments in the pair. We
previously mentioned that we use the tool SPCP-Miner [25]
for detecting clone genealogies. By automatically examining
the genealogies of the clone fragments we determine how
they evolved in the past (i.e., how they evolved before the
occurrence of the bug-fix commit BFC). We check each of the
first two conditions of each of the two patterns by analyzing
their genealogies. If no clone-pair experienced a similarity
preserving co-change in the bug-fix commit BFC, then we
consider that the clone related bug that was fixed in BFC is
not a propagated bug.

D. An Example of Bug Propagation
In Fig. 2 we provide an example of fixing a propagated

bug. The figure shows the similarity preserving co-change of
two clone fragments (Clone Fragment 1, and Clone Fragment
2) in a bug-fix commit operation which was applied on revision
1349 of our candidate system Jabref. Our implemented proto-
type tool detects the evolution pattern of these two clone frag-
ments as a bug-propagation pattern of the first category (i.e.,
defined in Section IV-A). Each of these two clone fragments
were created in revision 1344. We see that the clone fragments
have almost the same implementation except the condition
parts of their if-statements. Clone Fragment 1 contains a NOT
operator (!) which is not present in Clone Fragment 2. In such
a phenomenon it is likely that one of these fragments was
created from the other (possibly by copy/pasting), and thus

the bug that was introduced in one fragment propagated to
the other one. After being created in revision 1344, each of
the fragments remained unchanged up to revision 1349. The
commit operation which was applied on revision 1349 fixed the
bug in these two clone fragments. From Fig. 2 and its caption it
is clear that each of the fragments contained the same bug, and
the fragments experienced a similarity preserving co-change
for the purpose of bug-fixing. The changes that occurred to
the clone fragments are also highlighted in the figure.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We apply our experimental steps on each of our subject
systems and identify bug propagation patterns in each of the
three types of code clones (Type 1, Type 2, and Type 3)
separately. In the following subsections we answer the research
questions by presenting and analyzing our experimental results.

A. Answering RQ 1
RQ 1: What percentage of code clones in different clone-

types can be involved with bug propagation?
Rationale. Answering RQ 1 is important. Bug propagation

has always been considered a negative impact of code cloning.
However, none of the existing studies investigated the intensity
of bug propagation in code clones. Without investigating bug
propagation intensities in different clone-types, we cannot
properly realize the impact of code cloning on software evolu-
tion and maintenance. In RQ 1 we determine bug propagation
intensity in each of the three major clone-types (Type 1, Type
2, and Type 3), and then make a comparative analysis of the
intensities to determine which clone-type exhibits the highest
intensity. We perform our investigation in the following way.

Methodology: For a particular subject system we deter-
mine all the bug-fix commits by applying the procedure de-
scribed in Section III-B. Considering each clone-type we select
those bug-fix commits where code clones of that particular type
were changed for fixing bugs. For such a bug-fix commit for
a particular clone-type, we determine whether a clone-pair has
been changed (i.e., whether the two clone fragments in a clone-
pair have been changed together or co-changed) in the commit.
Considering each of the clone-pairs that have been changed
in the bug-fix commit we automatically determine whether
the two clone fragments in the pair evolved by following
a bug propagation pattern defined in Section IV. In Section
IV-C we described an automatic procedure for detecting a bug
propagation pattern. If a clone-pair evolved by following a bug
propagation pattern, we call this pair a bug propagation clone
pair. Considering all the bug-fix commits affecting a particular
clone-type we determine all the bug propagation clone pairs.
For a particular clone-type of a subject system we determine
the following measures, and report these in Table III.
• CF (Clone Fragment): The total number of distinct

clone fragments (i.e., of the particular clone-type) that
were created during the whole period of evolution of
the subject system. This number is actually the total
number of clone genealogies during system evolution.

• BC (Bug-fix Commit): The total number of bug-
fix commits that affected clone fragments of that
particular clone-type.

• BCF (Bug-fix Clone Fragment): The total number
of clone fragments that experienced changes in the
bug-fix commits. A particular clone fragment might



Fig. 2. The figure shows a similarity preserving co-change of two clone fragments (Clone Fragment 1, and Clone Fragment 2) in the commit operation which
was applied on revision 1349 of our subject system Jabref. The commit operation that was applied on revision 1349 is a bug-fix commit. The commit message
says ‘JabRef 2.0: fixed some Bugs’. We provide the snapshots of the two clone fragments in two revisions, 1349 and 1350, and highlight the differences between
the snapshots. From the figure it is clear that the two clone fragments contained the same bug, and the fragments were changed in the same way for fixing
the bug. This bug is a propagated bug, because the clone fragments evolved by following the first bug-propagation pattern defined in Section IV. We see that
the difference between the two clone fragments lies in the condition part of the if-statement. Clone Fragment 1 contains a NOT operator (!) which is absent in
Clone Fragment 2.

experience changes in more than one bug-fix commit.
We determine the number of distinct clone fragments
that experienced bug-fix changes. By analyzing the
genealogy of a clone fragment we can identify which
bug-fix commits it was changed in.

• BPCP (Bug Propagation Clone Pair): The number
of distinct bug propagation clone pairs (i.e., the clone
pairs that evolved following a bug propagation pattern
defined in Section IV).

• BPCF (Bug Propagation Clone Fragment): The
number of distinct clone fragments involved in the bug
propagation clone pairs. We can easily understand that
this number is the total number of clone fragments that
were involved with bug propagation.

For each clone-type of each of the subject systems, we
also determine the following two percentages considering the
above measures.

• PCFBP (Percentage of Clone Fragments involved
with Bug Propagation): This is the percentage of
clone fragments that are involved with bug propaga-
tion with respect to all clone fragments in the system.
We determine this using the following equation.

PCFBP =
BPCF × 100

CF
(1)

The bar graph in Fig. 3 shows this percentage for each
clone-type of each of the subject systems.

• PBCFBP (Percentage of Bug-fix Clone Fragments
involved with Bug Propagation): This is the per-
centage of clone fragments that are involved with
bug propagation with respect to all bug-fix clone
fragments. We calculate this in the following way.

PBCFBP =
BPCF × 100

BCF
(2)

Fig. 4 shows this percentage for each clone-type of
each of the candidate systems.

From Fig. 3 we realize that Type 1 clones have the lowest
possibility of being involved with bug propagation. For two
subject systems, jEdit and Jabref, Type 1 clone fragments were
not at all involved with bug propagation. It seems that bug
propagation mainly occurs in Type 2 and Type 3 clones. We
also show the overall percentages for three clone-types con-
sidering all subject systems. According to the overall scenario,
Type 2 and Type 3 clones have comparable probabilities of
propagating bugs. Bug propagation is negligible in Type 1
clones. We also see that the percentages plotted in Fig. 3 are
generally very low. The reason behind this is that we calculate
these percentages with respect to all clone fragments that were
created during evolution. We know that a significant proportion
of the code clones do not get changed at all during evolution
[16]. The percentage of code clones that experience bug-fixes
is generally very low (up to 19% according to a previous study
[26]). The percentage of clone fragments that are involved
with bug propagation should be even lower, because such



TABLE III. STATISTICS REGARDING BUG PROPAGATION IN DIFFERENT CLONE-TYPES

Type 1 Type 2 Type 3
Systems CF BC BCF BPCP BPCF CF BC BCF BPCP BPCF CF BC BCF BPCP BPCF
Carol 415 8 31 1 2 211 8 32 2 4 682 22 134 130 39
Freecol 239 7 14 2 4 162 10 12 2 4 752 46 107 15 25
jEdit 7398 37 73 0 0 399 10 20 1 2 2688 42 184 4 8
Jabref 483 6 8 0 0 228 6 14 0 0 1363 23 31 1 2
CF = Total number of distinct clone fragments (i.e., clone genealogies) of a particular clone-type that were created during the whole period of evolution.
BC = Total number of bug-fix commits that affected clone fragments of a particular clone-type.
BCF = Total number of distinct clone fragments of a particular clone-type that experienced bug-fix commits (i.e., that experienced bug-fixes).
BPCP = Total number of distinct clone-pairs of a particular clone-type that evolved following a bug propagation pattern.
BPCF = Total number of distinct clone fragments of a particular clone-type that were evolved in the bug-propagation clone-pairs.
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tion with respect to all Type 2 clones

Percentage of Type 3 clones that were involved with bug propaga-
tion with respect to all Type 3 clones

Fig. 3. Percentage of clone fragments that were involved with bug propagation
with respect to all clone fragments considering each clone-type.

clone fragments must be bug-fix clones and evolve following
particular evolution patterns (defined in Section IV).

Fig. 4 shows the percentage of bug propagation clone
fragments with respect to all bug-fix clones. We see that
the percentages plotted in this graph are higher compared to
the percentages plotted in the graph of Fig. 3. The overall
comparative scenario of bug propagation in three clone-types
presented in Fig. 4 is similar to that in Fig. 3. Fig. 4 also
shows that up to 33% of the clone fragments that experience
bug-fixing changes can be involved with bug propagation. The
overall percentages of the bug-propagation clone fragments
with respect to the bug-fix clones are 4.76%, 12.82%, and
16.22% for Type 1, Type 2, and Type 3 cases respectively.

Answer to RQ 1. From our experimental results and
analysis we can state that a considerable proportion of the
clone fragments that experience bug-fixes can be involved
with bug-propagation. According to our subject systems,
up to 33% of the bug-fix clones contained propagated
bugs. Type 1 clones exhibit the lowest possibility of being
involved with bug propagation. Bug propagation is mainly
observed in Type 2 and Type 3 clones with Type 3 clones
showing the highest intensity of propagation.
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0

10

20

30

Percentage of Type 1 clones that were involved with bug propaga-
tion with respect to all Type 1 clones related to bug-fix

Percentage of Type 2 clones that were involved with bug propaga-
tion with respect to all Type 2 clones related to bug-fix

Percentage of Type 3 clones that were involved with bug propaga-
tion with respect to all Type 3 clones related to bug-fix

Fig. 4. Percentage of clone fragments that were involved with bug propagation
with respect to all bug-fix clone fragments considering each clone-type.

Our findings imply that the possibility of bug-propagation
through exact copy/paste activities is very low, because identi-
cal clones have a very low possibility of containing propagated
bugs. However, a considerable proportion of the near-miss
clones can be involved with bug-propagation. Thus, near-miss
clones should be considered more important for management
(such as refactoring or tracking) than the identical clones from
the perspective of bug-propagation. The prototype tool that
we have implemented for our research can be customized for
identifying code clones that are likely to contain hidden but
propagated bugs. We believe that the comparative intensities
of bug-propagation in different clone-types should be taken
into proper consideration when making clone management
decisions. Our prototype tool can help us make such decisions.

Manual Analysis of the Bug Propagation Patterns: We
manually analyzed the evolution patterns of all the 133 bug
propagation clone pairs (1 pair from Type 1 case + 2 pairs from
Type 2 case + 130 pairs from Type 3 case) from our subject
system Carol. We have the following observations from our
manual analysis.

(1) For most of the bug propagation clone pairs (for 132
out 133), the two clone fragments in the pair did not get any
change before experiencing the bug-fix change in the bug-fix
commit. In other words, after getting created the first change
that the two clone fragments experienced was the bug-fix
change for most of the pairs. From the two patterns defined in
Section IV we see that we allow only one of the two fragments
to be changed before experiencing the bug-fix change. We



found only one pair where one of the two fragments got
changed before both experienced the bug-fix change.

(2) For most of the bug propagation clone pairs (for 131
out 133), the two clone fragments are full methods. It seems
that bug propagation mainly occurs in method clones. For
the remaining two pairs, the clone fragments were if-blocks
and try-catch blocks respectively. Fig. 2 shows fixing of a
propagated bug in two method clones. We provide this example
from our subject system Jabref.

B. Answering RQ 2
RQ 2: What percentage of the bugs that are experienced

by different clone-types can be propagated bugs?
Rationale. From our answer to the previous research

question (i.e., RQ 1) we realize what proportions of the clone
fragments in different clone-types can be involved with bug
propagation. However, we still do not know what percentage
of the bugs experienced by code clones can be propagated
bugs. Without this information we cannot fully realize the
bug propagation scenarios in different clone-types. In RQ 2
we first determine what percentage of the bugs experienced
by each clone-type can be propagated bugs, and then make a
comparison considering the percentages regarding three clone-
types of each of the subject systems. We investigate in the
following way.

Methodology. We first identify the bug-fix commit opera-
tions for a subject system following the procedure described
in Section III-B. Considering a particular clone-type we select
those commits where code clones of that particular type were
changed. For such a commit we identify whether a clone-
pair was changed (i.e., whether both of the clone fragments
in the pair were co-changed) in it. Considering each such
pair we determine whether the participating clone fragments
evolved following a bug propagation pattern. The procedure for
determining whether a clone-pair followed a bug propagation
pattern has been discussed in Section IV-C. If a bug-fix
commit modifies a clone-pair that evolved following a bug
propagation pattern, we consider that the bug that was fixed in
that commit is a propagated bug. We analyze each of the bug-
fix commits that affected code clones of a particular clone-type
and determine which bugs were propagated bugs. Considering
each clone-type of each of the subject systems we determine
the following two measures, and report these in Table IV:

• BC (Bug-fix Commit): The total number of bug-fix
commits (i.e., the number of bugs) experienced by the
code clones of that particular clone-type.

• BCPB (Bug-fix Commit indicating fixing of a Prop-
agated Bug): The number of bug-fix commits that
indicate fixing of propagated bugs.

For a particular clone-type of a particular subject sys-
tem, we also determine the percentage of bug-fix commits
that indicate fixing of a propagated bug (this percentage =
(BCPB × 100)/BC), and show this percentage in the bar
graph of Fig. 5.

From Fig. 5 we see that none of the bug-fix commits in
two subject systems, jEdit and Jabref, indicates fixing of a
propagated bug in Type 1 clones. However, the percentage
of bug-fix commits indicating fixing of propagated bugs is the
highest (28.57%) in Type 1 case of our subject system Freecol.
From Table IV we see that two out of seven bug-fix commits

TABLE IV. STATISTICS REGARDING THE NUMBER OF PROPAGATED
BUGS IN DIFFERENT CLONE-TYPES

Type 1 Type 2 Type 3
Systems BC BCPB BC BCPB BC BCPB
Carol 8 1 8 2 22 4
Freecol 7 2 10 2 46 9
jEdit 37 0 10 1 42 3
Jabref 6 0 6 0 23 1

BC = Total number of bug-fix commits that affected clone
fragments of a particular clone-type.

BCPB = The number of bug-fix commits that indicate fixing of
a propagated bug.
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Fig. 5. Percentage of bug-fix commits that indicate fixing of propagated bugs
in different clone-types

indicate fixing of propagated bugs. Looking at the data in this
table it seems that bug-fix commits affecting Type 2 and Type
3 clones have higher possibilities of fixing propagated bugs
compared to the bug-fix commits affecting Type 1 clones.
We observe such a scenario from the overall percentages. We
see that the overall percentages of bug-fix commits that fix
propagated bugs in Type 2 and Type 3 clones are much higher
compared to the percentage regarding Type 1 clones. Type
2 clones have the highest possibility of experiencing bug-fix
commits that fix propagated bugs.

Answer to RQ 2: According to our experimental
results and analysis, a considerable proportion of the bugs
experienced by code clones can be propagated bugs. This
percentage can be up to 28.57% according to our subject
systems. The overall percentage of propagated bugs is
the highest in Type 2 case, and the lowest in Type 1 case.
However, this percentage regarding Type 3 case is also
very near to that of Type 2 case.

Our findings from RQ 2 are similar to those from RQ
1. We find that near-miss clones (Type 2 and Type 3) have
higher possibilities of containing propagated bugs compared
to Type 1 clones. Thus, near-miss clones should be given a
higher priority for management.

C. Answering RQ 3
RQ 3: Which pattern of bug-propagation is more intense

during evolution?
Rationale. We have defined two bug propagation patterns

in Section IV. It is important to investigate which pattern is
more intense during evolution. If a particular pattern appears
to be more intense than the other one, then we can prioritize



TABLE V. STATISTICS REGARDING THE NUMBER OF CLONE-PAIRS
FOLLOWING DIFFERENT BUG PROPAGATION PATTERNS

Type 1 Type 2 Type 3
Systems PF PS PF PS PF PS
Carol 1 0 1 1 128 2
Freecol 2 0 1 1 6 9
jEdit 0 0 1 0 2 2
Jabref 0 0 0 0 1 0

PF = Number of clone pairs that followed the first pattern
PS = Number of clone pairs that followed the second pattern

refactoring of clone fragments that have evolved as well as
that have the possibility of evolving following that pattern.
We perform our investigation in the following way.

Methodology. Considering each clone-type of each of the
subject systems we identify the bug-propagation clone-pairs
as we did for answering our previous two research questions.
Then, we determine the following two measures: (i) the
number of clone-pairs that followed the first bug propagation
pattern defined in Section IV-A, and (ii) the number of clone-
pairs that followed the second bug propagation pattern defined
in Section IV-B. These two measures for each clone-type of
each of the subject systems have been reported in Table V.
Using the data in Table V we also draw a stacked bar graph in
Fig. 6 showing the percentage of bug propagation clone-pairs
following each pattern.

From both Table V and Fig. 6 it is clear that bug prop-
agation of the first category (defined in Section IV-A) is
more likely to occur compared to the second one (defined
in Section IV-B) during evolution. From the overall scenario
(i.e., considering all subject systems) we realize that all the
bug propagation clone pairs in Type 1 case (3 in total from
Table V) followed the first pattern. For Type 2 case, 60% of
the bug propagation clone pairs (i.e., 3 out of 5 pairs) followed
the first pattern of propagation. At last, overall 91% of the bug
propagation pairs in Type 3 case followed the first pattern.

Answer to RQ 3: According to our investigation,
the first bug propagation pattern where the two clone
fragments in the bug propagation clone pair were created
in the same revision is more likely to occur compared to
the second pattern where the two clone fragments were
created in two different revisions.

Our finding implies that clone fragments that are created
together in the same commit operation have higher possibil-
ities of containing propagated bugs compared to the clone
fragments that were created in different revisions. Thus, for
minimizing bug propagation we prioritize refactoring of clone
fragments that were created together.

VI. IMPLICATIONS FROM OUR FINDINGS

Although existing studies [30], [26], [33], [34] on code
clone detection and analysis suspect that code cloning can be
responsible for bug-propagation, none of the existing studies
investigated it. Our study is the first one to show that bug-
propagation is a fact. As bug-propagation occurs through code
cloning, it is important to know which types of clones are more
involved with bug-propagation so that programmers can avoid
making such clones during programming. Also, if such clones
are already existing in the code-base, we should consider
refactoring or tracking them with high priority. Our answer
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Fig. 6. Comparing the likeliness of occurrence of two bug propagation
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to RQ 1 implies that near-miss clones are more involved with
bug-propagation compared to exact clones. Thus, programmers
should be careful when making near-miss clones. We should
consider managing (refactoring or tracking) near-miss clones
with higher priorities compared to exact clones. Our finding
from RQ 3 implies that the first bug-propagation pattern is
more frequent than the second one. Thus, making clones from
an old code fragment is safer than making clones from a
newly created code fragment. Intuitively, code fragments that
served for a longer duration flawlessly should be considered
for copying. The possibility that such fragments will contain
bugs is lower compared to the newly created ones. Our manual
analysis implies that method clones have high possibilities
of being involved with bug-propagation. Thus, refactoring or
tracking method clones can help us minimize bug-propagation.

VII. RELATED WORK

Bug-proneness of code clones has already been investigated
by a number of studies. Li and Ernst [20] performed an em-
pirical study on the bug-proneness of clones by investigating
four software systems and developed a tool called CBCD
on the basis of their findings. CBCD can detect clones of a
given piece of buggy code. Li et al. [21] developed a tool
called CP-Miner which is capable of detecting bugs related
to inconsistencies in copy-paste activities. Steidl and Göde
[40] investigated on finding instances of incompletely fixed
bugs in near-miss code clones by investigating a broad range
of features of such clones involving machine learning. Göde
and Koschke [7] investigated the occurrences of unintentional
inconsistencies to the code clones of three mature software
systems and found that around 14.8% of all changes occurred
to the code clones are unintentionally inconsistent. Chatterji
et al.[4] performed a user study to investigate how clone
information can help programmers localize bugs in software
systems. Jiang et al.[12] performed a study on the context
based inconsistencies related to clones. They developed an
algorithm to mine such inconsistencies for the purpose of lo-
cating bugs. Using their algorithm they could detect previously
unknown bugs from two open-source subject systems. Inoue
et al.[10] developed a tool called ‘CloneInspector’ in order to
identify bugs related to inconsistent changes to the identifiers
in the clone fragments. They applied their tool on a mobile
software system and found a number of instances of such bugs.



Xie et al.[44] investigated fault-proneness of Type 3 clones
in three open-source software systems. They investigated two
evolutionary phenomena on clones: (1) mutation of the type
of a clone fragment during evolution, and (2) migration of
clone fragments across repositories and found that mutation
of clone fragments to Type 2 or Type 3 clones is risky. We
see that a number of studies investigated bug-proneness in
code clones. However, none of these studies focus on bug
propagation through code cloning.

Islam et al. [11] investigated bug-replication in code clones.
They identified which of the clone fragments in a clone class
contains the same bug. If more than one clone fragment in
a clone class contain the same bug, they considered that the
bug is a replicated one. However, it does not imply that this
bug is a propagated bug. It might be the case that similar
buggy changes occurred to the clone fragments in a clone class
during evolution. Such a bug will be considered as a replicated
bug according to Islam et al.’s [11] consideration. However,
this is not a propagated bug. Bug propagation only occurs
when a particular code fragment contains a bug, and this code
fragment is copied to several other places in the code-base
being unaware of the presence of the bug. In our study, we
define two bug-propagation patterns and propose an automatic
mechanism for identifying propagated bugs in code clones.
Thus, our bug propagation study is significantly different from
Islam et al.’s study [11].

In another study, Mondal et al. [26] compared the bug-
proneness of three types of code clones. They investigated
which types of code clones experience bug-fixes more fre-
quently. However, they did not investigate bug-propagation in
their study.

Rahman et al. [32] made a comparison of the bug-
proneness of clone and non-clone code and found that clone
code is less bug-prone than non-clone code. They performed
their investigation on the evolution history of four subject
systems using DECKARD [13] clone detector. However, they
did not investigate bug-propagation through code cloning.
Thus, our study on the intensity of bug-propagation in different
types of code clones is different from their study.

Selim et al. [39] used Cox hazard models in order to assess
the impacts of cloned code on software defects. They found
that defect-proneness of code clones is system dependent.
However, they considered only method clones in their study.
We consider block clones in our study. While they investigated
only two subject systems, we consider four subject systems
in our investigation. Also, we investigate bug propagation in
different types of code clones. Selim et al. [39] did not perform
such an investigation.

A number of studies have also been done on the late
propagation in clones and its relationships with bugs. Aversano
et al.[1] investigated clone evolution in two subject systems
and reported that late propagation in clones is directly related
to bugs. Barbour et al.[2], [3] investigated eight different
patterns of late propagation considering Type 1 and Type 2
clones of three subject systems and identified those patterns
that are likely to introduce bugs and inconsistencies.

We see that different studies have investigated clone related
bugs in different ways and have developed different bug
detection tools. However, none of these studies investigate
the intensity of bug-propagation through code cloning. Inves-

tigating bug-propagation through code cloning is important.
Without such an investigation we cannot properly realize
the impacts of code cloning on software maintenance and
evolution. Focusing on this issue we define and investigate
two bug propagation patterns in code clones in our study. Our
investigation involving manual analysis of the clone fragments
that evolved following the bug-propagation patterns results
interesting findings which are important for better management
of code clones.

VIII. THREATS TO VALIDITY

We used the NiCad clone detector [5] for detecting clones.
For different settings of NiCad, the statistics that we present
in this paper might be different. Wang et al. [43] defined this
problem as the confounding configuration choice problem and
conducted an empirical study to ameliorate the effects of the
problem. However, the settings that we have used for NiCad
are considered standard [36] and with these settings NiCad can
detect clones with high precision and recall [37], [38], [41].
Thus, we believe that our findings on bug propagation through
code cloning are of significant importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
followed by Barbour et al.[3]. Such a technique proposed by
Mocus and Votta [24] can sometimes select a non-bug-fix
commit as a bug-fix commit mistakenly. However, Barbour
et al.[3] showed that this probability is very low. According to
their investigation, the technique has an accuracy of 87% in
detecting bug-fix commits.

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the comparative
bug-proneness of clone-types. However, we selected our candi-
date systems emphasizing their diversity in sizes and revision
history lengths. Thus, we believe that our findings cannot be
attributed to a chance. Our findings are important from the
perspectives of clone management and can help us in better
ranking of code clones for refactoring and tracking.

IX. CONCLUSION

In this study we investigate the intensity of bug-propagation
through code cloning. We define two bug-propagation patterns,
and automatically mine these patterns by analyzing the entire
evolution history of our subject systems. We perform our
investigation on thousands of revisions of four subject systems
and answered three important research questions. According to
our analysis, up to 33% of the code clones that experience bug-
fix changes can be related with bug-propagation. Near-miss
clones (Type 2, and Type 3 cones) have a higher tendency
of being involved with bug-propagation compared to identical
clones (Type 1 clones). Thus, near-miss clones should be given
a higher priority for management from the perspective of bug-
propagation. We also observe that up to 28.57% of the bug-fix
changes in code clones can occur for fixing propagated bugs.
We manually investigate the occurrences of bug-propagation
in code clones and discover that method clones are mostly
involved with bug-propagation. Bug-propagation primarily oc-
curs in the clone fragments that got created together in the
same commit operation. Our prototype tool implemented for
this study can assist programmers in identifying code clones
that are likely to contain propagated bugs. Thus, our tool can be
helpful for prioritizing code clones considering their likeliness
of being involved with bug-propagation.
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