
A Comparative Study on the Bug-Proneness of
Different Types of Code Clones

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Code clones are defined to be the exactly or nearly
similar code fragments in a software system’s code-base. The
existing clone related studies reveal that code clones are likely
to introduce bugs and inconsistencies in the code-base. However,
although there are different types of clones, it is still unknown
which types of clones have a higher likeliness of introducing
bugs to the software systems and so, should be considered more
important for managing with techniques such as refactoring or
tracking. With this focus, we performed a study that compared
the bug-proneness of the major clone-types: Type 1, Type 2,
and Type 3. According to our experimental results on thousands
of revisions of seven diverse subject systems, Type 3 clones
exhibit the highest bug-proneness among the three clone-types.
The bug-proneness of Type 1 clones is the lowest. Also, Type 3
clones have the highest likeliness of being co-changed consistently
while experiencing bug-fixing changes. Moreover, the Type 3
clones that experience bug-fixes have a higher possibility of
evolving following a Similarity Preserving Change Pattern (SPCP)
compared to the bug-fix clones of the other two clone-types. From
the experimental results it is clear that Type 3 clones should
be given a higher priority than the other two clone-types when
making clone management decisions. We believe that our study
provides useful implications for ranking clones for refactoring
and tracking.

I. INTRODUCTION

Code cloning is a common yet controversial software en-
gineering practice which is often employed by programmers
during software development and maintenance for repeating
common functionalities. Cloning refers to the task of copying
a code fragment from one place of a code-base and pasting it
to some other places with or without modifications [42]. The
original code fragment (i.e., the code fragment from which
the copies were made) and the pasted code fragments become
clones of one another. Two exactly or nearly similar code
fragments form a clone pair. A group of similar code fragments
forms a clone class.

Code clones are of great importance from the perspectives
of software maintenance and evolution. A great many studies
[1], [2], [9]–[11], [13], [15], [17], [19]–[22], [24], [25], [35],
[36], [48], [50] have already been conducted on the impacts of
clones on the evolution and maintenance of software systems.
While some of these studies [1], [10], [11], [17], [19]–[21]
identify some positive impacts of code clones, a number of
studies [2], [9], [13], [15], [22], [24], [25], [35], [36], [48]
have shown empirical evidence of strong negative impacts
of code clones such as hidden bug propagation [22], late
propagation [2], unintentional inconsistencies [2], [9], and high
instability [36]. Because of these negative impacts, code clones

are considered to be the number one bad smell in a software
system’s code-base.

According to a number of studies [2], [4], [9], [12], [13],
[22], [23], [48], [53], code clones are directly related to
bugs and inconsistencies in a software system. However,
although there are different types of code clones, none of the
existing studies investigate the comparative bug-proneness of
these different clone-types. Such an investigation is important
because it can help us identify which type(s) of clones have the
highest tendency of exhibiting bug-proneness and thus, should
be considered to be the most important ones for management
such as refactoring and tracking. Focusing on this issue in this
research work we investigate the comparative bug-proneness
of the major types of code clones: Type 1, Type 2, and Type 3
(defined in Section II). In particular, we answer four important
research questions listed in Table I. According to our in-depth
investigation on thousands of revisions of seven diverse subject
systems written in two different programming languages (C
and Java) we can state that:

(1) Type 3 clones have a higher bug-proneness compared to
Type 1 and Type 2 clones. The bug-proneness of Type 1 clones
is the lowest among the three clone-types. Our statistical
significance tests show that Type 3 clones have a significantly
higher bug-proneness than Type 1 clones.

(2) Type 3 clones have the highest likeliness of being co-
changed (i.e., getting changed together) consistently among
the three clone-types when changed to fix a bug.

(3) Type 3 bug-fix clones have the highest possibility of
evolving following a Similarity Preserving Change Pattern
called SPCP. According to our previous studies [33], [34],
SPCP clones (i.e., clones that evolve following a Similarity
Preserving Change Pattern) are the most important ones to
consider for clone management.

Our experimental results imply that Type 3 clones should
be given a higher priority than the other two clone-types when
making clone management decisions (such as clone refactor-
ing, or tracking) and our findings (points 2 and 3 above) can
be used to rank code clones during clone management. In
our previous studies [33], [34] we detected and ranked SPCP
clones for refactoring and tracking on the basis of their co-
change tendencies. However, we should also consider their
bug-proneness. Our implemented prototype tool is capable
of automatically detecting SPCP clones that exhibited bug-
proneness during evolution. Thus, it can help us rank clones
considering their bug-proneness too.



TABLE I
RESEARCH QUESTIONS

SL Research Question
RQ 1 Which clone types have a higher possibility of experiencing

bug fixing changes?
RQ 2 Do the clone fragments from the same clone class co-change

(i.e., change together) consistently during a bug-fix?
RQ 3 What proportion of the clone fragments that experienced bug-

fixing changes are SPCP clones?

The rest of the paper is organized is as follows: Section
II describes the terminology, Section III discusses the exper-
imental steps, Section IV answers the research questions by
presenting and analyzing the experimental results, Section V
mentions the possible threats to validity, Section VI discusses
the related work, and finally, Section VII concludes the paper
by mentioning possible future work.

II. TERMINOLOGY

Types of clones. We conduct our experiment considering
both exact (Type 1) and near-miss clones (Type 2 and Type
3 clones). As is defined in the literature [42], [43], if two
or more code fragments in a particular code-base are exactly
the same disregarding the comments and indentations, these
code fragments are called exact clones or Type 1 clones of
one another. Type 2 clones are syntactically similar code
fragments. In general, Type 2 clones are created from Type
1 clones because of renaming identifiers or changing data
types. Type 3 clones are mainly created because of additions,
deletions, or modifications of lines in Type 1 or Type 2 clones.

Similarity Preserving Change Pattern (SPCP). In our
previous studies [33], [34] we showed that the code clones
that evolve following a Similarity Preserving Change Pattern
(SPCP) are the most important ones for refactoring or tracking.
A Similarity Preserving Change Pattern consists of a Similar-
ity Preserving Change and/or a Re-synchronizing Change.

Similarity Preserving Change. Let us consider two code
fragments that are clones of each other in a particular revision
of a subject system. A commit operation was applied to this
revision, and any one or both of these code fragments (i.e.,
clone fragments) received some changes. However, in the next
revision (created because of the commit operation) if these two
code fragments are again considered clones of each other (i.e.,
the code fragments preserve their similarity), then we say that
the code fragments received a Similarity Preserving Change
in the commit operation.

Re-synchronizing Change. A re-synchronizing change con-
sists of a diverging change followed by a converging change.
Let us consider two code fragments that are clones of each
other in a particular revision. A commit operation Ci was
applied to this revision, and any one or both of the fragments
received some changes in such a way that the code fragments
were not considered clones of each other in the next revision.
We say that the code fragments experienced a diverging
change. However, in a later commit operation Ci+n (n >=
1) any one or both of the code fragments received some
changes, and because of these changes the code fragments
again became clones of each other. We say that the code

TABLE II
SUBJECT SYSTEMS

Systems Lang. Domains LLR Revisions
Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 170
BRL-Cad C 3-D Modeling 39,309 735
jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545

LLR = LOC in the Last Revision

fragments experienced a converging change in commit Ci+n.
A diverging change followed by a converging change is termed
a re-synchronizing change.

III. EXPERIMENTAL STEPS

We perform our investigation on seven subject systems
(Table II) downloaded from an on-line SVN repository [39].

A. Preliminary Steps
We perform the following preliminary steps before an-

alyzing bug-proneness: (1) Extraction of all revisions (as
mentioned in Table II) of each of the subject systems from the
online SVN repository; (2) Method detection and extraction
from each of the revisions using CTAGS [6]; (3) Detection
and extraction of code clones from each revision by applying
the NiCad [5] clone detector; (4) Detection of changes between
every two consecutive revisions using diff ; (5) Locating these
changes to the already detected methods as well as clones
of the corresponding revisions; (6) Locating the code clones
detected from each revision to the methods of that revision;
(7) Detection of method genealogies considering all revisions
using the technique proposed by Lozano and Wermelinger
[25]; (8) Detection of clone genealogies by identifying the
propagation of each clone fragment through a method geneal-
ogy; and (9) Detection of SPCP clone fragments by analyzing
clone change patterns. For completing these steps we use the
tool SPCP-Miner [30]. For the details of these steps we refer
the interested readers to our earlier work [32].

We use NiCad [5] for detecting clones because it can detect
all major types (Type 1, Type 2, and Type 3) of clones with
high precision and recall [45], [46]. Using NiCad we detect
block clones including both exact (Type 1) and near-miss
(Type 2, Type 3) clones of a minimum size of 10 LOC with
20% dissimilarity threshold and blind renaming of identifiers.
These settings are explained in detail in our earlier work [32].
For different settings of a clone detector the clone detection
results can be different and thus, the findings regarding the
bug-proneness of code clones can also be different. Thus,
selection of reasonable settings (i.e., detection parameters) is
important. We used the mentioned settings in our research,
because in a recent study [49] Svajlenko and Roy show that
these settings provide us with better clone detection results in
terms of both precision and recall.

Clone Genealogies of Different Clone-Types. SPCP-Miner
[30] detects clone genealogies considering each clone-type
(Type 1, Type 2, and Type 3) separately. Considering a



particular clone-type it first detects all the clone fragments of
that particular type from each of the revisions of the candidate
system. Then, it performs origin analysis of these detected
clone fragments and builds the genealogies. Thus, all the
instances in a particular clone genealogy are of a particular
clone-type. An instance is a snap-shot of a clone fragment in
a particular revision. A detailed elaboration of the genealogy
detection approach is presented in our previous study [33]. As
we obtain three separate sets of clone genealogies for three
different clone-types, we can easily determine and compare
the bug-proneness of these clone-types.

Tackling Clone-Mutations. Xie et al. [53] found that
mutations of the clone fragments (i.e., a particular clone
fragment may change its type) might occur during evolution.
If a particular clone fragment is considered of a different
clone-type during different periods of evolution, SPCP-Miner
extracts a separate clone-genealogy for this fragment for
each of these periods. Thus, even with the occurrences of
clone-mutations, we can clearly distinguish which bugs were
experienced by which clone-types.

B. Bug-proneness Detection Technique

For a particular candidate system, we first retrieve the com-
mit messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically infer the commit messages using
the heuristic proposed by Mockus and Votta [29] in order to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other
words, the clone fragment(s) are related to the bug. In this
way we examine the commit operations of a candidate system,
analyze the commit messages to retrieve the bug-fix commits,
and identify those clone fragments that are related to the bug-
fix. We also determine the number of changes that occurred
to such a clone fragment in a bug-fix commit using the UNIX
diff command. For the details of change detection we refer
the interested readers to our earlier work [32].

The way we detect the bug-fix commits was also previously
followed by Barbour et al. [2]. Barbour et al. [2] detected bug-
fix commits in order to investigate whether late propagation
in clones is related to bugs. They at first identified the
occurrences of late propagations and then analyzed whether
the clone fragments that experienced late propagations are
related to bug-fix. In our study we detect bug-fix commits
in the same way as they detected, however, our study is not
limited to the late propagation clones only. We investigate the
bug-proneness of all clone fragments in a software system.
Also, Barbour et al. [2] did not investigate Type 3 clones in
their study. We consider Type 3 clones in our bug-proneness
analysis. Moreover, we compare the bug-proneness of different
types of code clones from different perspectives. None of the
existing studies do such comparisons.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We present and analyze our experimental results in the
following subsections in order to answer the research questions
mentioned in Table I.

RQ 1: Which clone types have a higher possibility of experi-
encing bug fixing changes?

Rationale. It is important to know which types of clones
have a higher probability of experiencing bug-fix changes
compared to the others. The code clones exhibiting higher bug-
proneness should be given higher priorities when making clone
management decisions (such as refactoring and tracking).
Refactoring or tracking of such clone fragments (i.e., highly
bug-prone clones) could help us minimize the probability of
the occurrences of bugs or inconsistencies in these fragments
in the future. In a previous study [36] we found Type 1 and
Type 2 clones to be more unstable (i.e., change-prone) than
Type 3 clones. However, there is no empirical study on the
correlation between change-proneness and bug-proneness of
code clones. Thus, we should not infer the bug-proneness
of clone types from their change-proneness. A comparative
study on the bug-proneness of different types of code clones
is important. We perform our investigations for answering RQ
1 in the following two ways.

• Investigation 1: Investigation regarding the proportion of
bug-fix changes experienced by the code clones.

• Investigation 2: Investigation regarding the proportion of
code clones experiencing bug-fix changes.

Investigation 1. Investigating what proportion of the
changes that occurred to the clone fragments of different
clone-types are related to a bug-fix.

Considering the code clones of a particular clone-type of
a particular subject system, we first determine how many
changes occurred to the code clones during the period of
evolution (consisting of the revisions mentioned in Table II).
Then we identify which of these changes were related to a bug-
fix. Finally, we calculate the percentage of changes related to
a bug-fix considering each clone-type of each of the candidate
systems using the following equation.

PCB = NBC ∗ 100 / TNC (1)
TNC is the total number of changes that occurred to the code
clones of a particular clone type of a particular subject system,
NBC is the number of bug-fix changes that occurred to those
code clones, and lastly, PCB denotes the percentage of changes
related to a bug-fix with respect to all the changes (TNC) that
occurred to those code clones. Table III shows the TNC and
PCB for each clone-type of each of the subject systems. We
also plot the percentages (PCB) in the graph of Fig. 1 to get
a visual understanding regarding their comparison.

From Fig. 1 we see that for six out of seven subject systems
(i.e., except Camellia) the percentage of bug-fix changes is
the lowest for the Type 1 case. For four systems (Ctags,
Camellia, Freecol, and Carol) the percentage regarding the
Type 3 case is the highest among the three cases (Type 1,
Type 2, and Type 3). For the remaining three systems, the



TABLE III
PERCENTAGE OF CHANGES RELATED TO BUG-FIX

Type 1 Type 2 Type 3
Systems TNC PCB TNC PCB TNC PCB
Ctags 40 10% 84 11.90% 161 14.29%
Camellia 21 9.52% 20 0% 259 14.67%
BRL-Cad 322 0.93% 41 19.51% 215 7.9%
Freecol 134 20.89% 126 21.43% 766 30.42%
jEdit 1594 25.91% 145 47.59% 1265 43.08%
Carol 245 14.69% 279 21.86% 1123 23.15%
Jabref 304 4.27% 244 6.56% 1164 6.44%
TNC = Total Number of Changes that occurred to the Clones
PCB = Percentage of Changes related to a Bug-fix.

Ctags Camellia BRL-Cad Freecol jEdit Carol Jabref Overall
0

20

40

Percentage of Changes related to a Bug-fix (PCB) for Type 1 case

Percentage of Changes related to a Bug-fix (PCB) for Type 2 case

Percentage of Changes related to a Bug-fix (PCB) for Type 3 case

Fig. 1. Comparison regarding the percentage of bug-fix changes that occurred
to the clone fragments.

percentage regarding the Type 2 case is the highest. The figure
also shows the overall percentages (i.e., measured over all the
subject systems) for the three clone-types. We see that the
percentage of bug-fix changes is the highest in Type 3 case.
The overall percentages regarding the other two cases (Type
1, and Type 2) are almost the same. We calculate the overall
percentages using the following equation.

OPType i =
100 ∗

∑
for all systems NBCType i∑

for all systems TNCType i
(2)

OPType i is the overall percentage of bug-fix changes oc-
curred to the Type i clones. NBCType i is the number of bug-
fix changes to the Type i clones of a particular subject system.
TNCType i is the total number of changes that occurred to
the Type i clones of a subject system.

Investigation 2. Investigating what proportion of the clone
fragments in different clone-types are related to bug-fix
changes?

We mentioned (in Section III) that we determine the ge-
nealogies of the detected clone fragments. Considering each
clone-type of each of the subject systems we determine how
many clone genealogies were created during the evolution and
how many of these experienced a bug-fix. From these two
values we determine the percentage of clone genealogies that
experienced bug-fixing changes using a similar equation to
Eq. 1. Table IV shows the total number of clone genealogies
(the column TNCG) as well as the percentage of bug-fix clone
genealogies (the column PCGB) for each clone-type of each of
the candidate systems. We also plot the percentages (PCGB) in
the graph of Fig. 2 for easily understanding the comparison of
bug-proneness among the three clone-types. The figure also
shows the overall percentages of clone genealogies related

TABLE IV
PERCENTAGE OF CLONES RELATED TO BUG-FIX

Type 1 Type 2 Type 3
Systems TNCG PCGB TNCG PCGB TNCG PCGB
Ctags 52 7.69% 88 4.55% 155 9.03%
Camellia 300 0.67% 48 0% 177 6.21%
BRL-Cad 136 2.2% 28 7.14% 127 7.87%
Freecol 239 5.86% 162 7.41% 752 14.23%
jEdit 7398 0.99% 399 5.01% 2688 6.85%
Carol 415 7.47% 211 15.17% 682 19.65%
Jabref 483 1.66% 228 6.14% 1363 2.27%
TNCG = Total Number of Clone Genealogies created during evolution.
PCGB = Percentage of Clone Genealogies related to a Bug-fix.

Ctags Camellia BRL-Cad Freecol jEdit Carol Jabref Overall
0

5

10

15

20

% of clone genealogies related to a bug-fix (PCGB) for Type 1 case

% of clone genealogies related to a bug-fix (PCGB) for Type 2 case

% of clone genealogies related to a bug-fix (PCGB) for Type 3 case

Fig. 2. Comparison regarding the percentage of clone fragments that experi-
enced bug-fixing changes.

bug-fix for each clone-type. Overall percentages were calcu-
lated using a similar equation to Eq. 2.

From Fig. 2 we see that for all of the subject systems except
Jabref, the percentage of clones related to bug-fix is the highest
in the Type 3 case. Also, the percentage of bug-fix clones is the
lowest in the Type 1 case for most of the systems except Ctags,
and Camellia. The overall percentages of the bug-fix clones in
the three clone-types provide such implications. Finally, the
graph in Fig. 2 implies that Type 3 clones generally have
a much higher tendency of experiencing bug-fixing changes
compared to the clone fragments of the other two clone-types.

Statistical Significance Tests. We were also interested to
investigate whether Type 3 clones have a significantly higher
tendency of experiencing bug-fixing changes compared to the
clones of the other two types. We performed Mann-Whitney-
Wilcoxon (MWW) tests [27] considering the percentages of
the bug-fix clone genealogies of the three cases (Type 1,
Type 2, and Type 3) as recorded in Table IV. We first
determine whether the percentages regarding the Type 3 case
are significantly higher than those of the Type 1 case. Our
MWW test result implies that the percentages regarding Type
3 case are significantly higher than the percentages regarding
Type 1 case with a p-value of 0.026 (for two tailed test) which
is less than 0.05. However, we observe that the percentages for
the Type 3 case are not significantly higher than those of the
Type 2 case. The MWW test is non-parametric and does not
require the samples to be normally distributed [26]. This test
can be applied to both small and large sample sizes [38]. In our
research, we perform this test considering a significance level
of 5%. Finally, it appears that the percentage of Type 3 clones
that experience bug-fixing changes is significantly higher than
the percentage of bug-fix clones in the Type 1 case.



Answer to RQ 1. From our investigations we can state that
while Type 3 clones have a higher bug-proneness compared
to the other two clone-types in general, the bug-proneness of
Type 1 clones is the lowest for most of our subject systems. Our
statistical significance test results indicate that Type 3 clones
have a significantly higher bug-proneness compared to Type
1 clones.

In general, the total number of Type 3 clones in a software
system is higher compared to the other two clone-types as is
evident in Table IV (except Camellia, jEdit, and BRL-Cad).
Also, our investigation results indicate that Type 3 clones
have the highest possibility of introducing bugs. Finally, our
findings imply that possibly Type 3 clones should be managed
(i.e., refactored or tracked) with the highest priority.

A possible reason behind why Type 3 clones exhibit the
highest bug-proneness is that these are gapped clones (i.e.,
there are some non-clone lines in the Type 3 clone fragments).
Thus, copy-pasting and consistently changing a Type 3 clone
fragment is not as straight forward as in the cases of Type 1
and Type 2 clones. Also, because of the gaps in the Type 3
clones, refactoring of such clones might sometimes be difficult,
and it causes an increased number of Type 3 clones in the
software systems (i.e., as can be seen from our experimental
results). Because of the existence of the gaps, possibly tracking
is the best suitable management technique for Type 3 clones.

RQ 2: Do the clone fragments from the same clone class co-
change (i.e., change together) consistently during a bug-fix?

Rationale. From our answer to RQ 1 we understand that
code clones of each clone-type have a tendency of experienc-
ing bug-fixing changes, and Type 3 clones have the highest
tendency. However, it is also important to know whether two
or more clone fragments from the same clone class co-changed
(i.e., changed together) consistently (i.e., the clone fragments
were modified in the same way) during bug-fixes. Such clones
are more important for clone management than those clones
that did not experience consistent co-change during bug-fixes
for the following reasons.

(1) If more than one clone fragments from the same clone
class are changed together consistently during a bug-fix, then it
is an implication that those clone fragments contained the same
bug and fixing of that bug required those clone fragments to be
modified together consistently. Unification of these clone frag-
ments (i.e., that co-changed consistently during bug-fixes) into
a single one through refactoring can possibly help us fix future
bugs or inconsistencies with reduced effort, because in that
case the bug-fixing changes will require to be implemented in
a single code fragment rather than implementing/propagating
the same changes to multiple similar code fragments.

(2) If only a single clone fragment from a particular clone
class is modified for fixing a bug leaving the other fragments
in that class as they are, then it is an implication that
this particular clone fragment does not require to maintain
consistency with the other clone fragments in its class, and
it has a tendency of evolving independently. Such a fragment
might not be regarded as a member of the class if it continues

to evolve independently, and in that case it should not be
considered for clone management.

For this research question we investigate whether clone
fragments from the same clone class have a tendency of co-
changing consistently during a bug-fix, and if so, how this
tendency differs across the clone-types. The clone-type with a
higher tendency should be given a higher priority when making
clone management decisions.

Methodology. In a previous study [33] we showed that
if two or more clone fragments from the same clone class
experience a similarity preserving co-change (we define it in
the next paragraph) in a particular commit operation, then it
is an implication that they co-changed consistently (i.e., they
were changed in the same way) in that commit. Considering
this fact we answer this research question by automatically
examining the bug-fix commits and determining whether two
or more clone fragments from the same clone class experi-
enced similarity preserving co-changes in these commits. If
such clone fragments really exist, then these should be given
higher priorities for management as we have just discussed.

Similarity Preserving Co-change. Let us consider that two
code fragments CF1 and CF2 are clones of each other in
revision R. A commit operation C was applied on this revision
and both of these two code fragments were changed (i.e.,
the clone fragments were co-changed) in this commit. If in
revision R+1 (created because of the commit operation C)
these two code fragments are again considered as clones of
each other (i.e., if they preserve their similarity), then we
say that CF1 and CF2 experienced a similarity preserving co-
change in the commit operation C.

Considering each clone-type of each of the subject systems
we determine which clone fragments experienced bug-fix com-
mits and which of these clone fragments received similarity
preserving co-changes in the bug-fix commits. Finally, we
determine the percentage of clone fragments that received
similarity preserving co-changes in the bug-fix commits with
respect to all clone fragments related to bug-fix. Table V
shows the total number of clones related to bug-fix and
the percentage of bug-fix clones that experienced similarity
preserving co-changes during bug-fix commits. We also show
these percentages in Fig. 3 to do a visual comparison of the
percentages regarding different clone-types.

From Fig. 3 we see that there are no vertical bars for Type
2 and Type 3 cases of Ctags, and also, for Type 2 case of
Camellia. The reason is that the number of bug-fix clones
that experienced similarity preserving co-changes is zero for
each of these cases. This is also evident from Table V. From
the overall percentages we see that bug-fix clones of Type 3
have the overall highest tendency of experiencing similarity
preserving co-changes in the bug-fix commits. The tendency
for Type 2 case is also very near to that of the Type 3
case. Bug-fix clones of Type 1 have the lowest tendency of
experiencing similarity preserving co-changes during bug-fix.

We also manually analyzed the similarity preserving co-
changes that occurred to the bug-fix clones of each clone-type
of Freecol during the bug-fix commits to see whether the clone



TABLE V
PERCENTAGE OF BUG-FIX CLONES THAT EXPERIENCED SIMILARITY

PRESERVING CO-CHANGE IN THE BUG-FIX COMMITS

Type 1 Type 2 Type 3
Systems CGBF BFCS CGBF BFCS CGBF BFCS
Ctags 4 50% 4 0% 14 0%
Camellia 2 100% 0 0% 11 45.45%
BRL-Cad 3 66.67% 2 100% 10 60%
Freecol 14 57.14% 12 50% 107 51.4%
jEdit 73 8.21% 20 30% 184 24.45%
Carol 31 38.7% 32 50% 134 50.74%
Jabref 8 25% 14 28.57% 31 67.74%
CGBF = Number of Clone Genealogies related to a Bug-fix.
BFCS = Percentage of Bug-fix Clone genealogies that experienced

similarity preserving co-change in bug-fix commits.

Ctags Camellia BRL-Cad Freecol jEdit Carol Jabref Overall
0

20

40

60

80

100

% of bug-fix clone fragments that experienced similarity preserving co-
changes (BFCS) in bug-fix commits (Type 1 case)

% of bug-fix clone fragments that experienced similarity preserving co-
changes (BFCS) in bug-fix commits (Type 2 case)

% of bug-fix clone fragments that experienced similarity preserving co-
changes (BFCS) in bug-fix commits (Type 3 case)

Fig. 3. Comparison regarding the percentage of bug-fix clones that experi-
enced similarity preserving co-changes during bug-fix commits.

fragments were really modified consistently (i.e., whether the
clone fragments were modified in the same way). According
to our manual analysis in each case of similarity preserving
co-change, the clone fragments were changed together consis-
tently. Fig. 4 shows an example of similarity preserving co-
change of two Type 3 clone fragments in the bug-fix commit
operation applied to revision 1075 of Freecol. We show the
instances of these two clone fragments in revisions 1075 and
1076 and highlight the changes that occurred to them. We see
that the clone fragments changed together consistently (i.e., in
the same way) in the bug-fix commit operation. The commit
log as stated by the programmer is “Fixes a bug relating to
giving units equipment while onboard a carrier in Europe”.
We see that the bug-description is relevant to the context. Fig.
4 shows that both the clone fragments contained the same bug
and were fixed in the same way. The example reveals the fact
that unification of these two clone fragments into a single one
could help us fix future bugs with reduced effort.

During our manual investigation of the bug-fixes that oc-
curred to code clones, the categories of bug-fixes that ap-
peared frequently are as follows: fixing the same semantically
incorrect implementation in multiple clone fragments from the
same class, addition of the same missing implementations in
multiple clone fragments of the same class, and fixing the
same GUI related error in multiple clone fragments.

Answer to RQ 2. Our investigation results show that clone
fragments from the same clone class have a tendency of co-
changing (i.e., changing together) consistently during the bug-

fix commit operations. Considering all of the subject systems,
bug-fix clones of Type 1 exhibit the lowest tendency. The
tendencies regarding both Type 2 and Type 3 cases are higher
compared to Type 1 case. According to our findings, we should
possibly prioritize Type 3 and Type 2 clones over Type 1
clones when making refactoring or tracking decisions.

Through our investigation of this research question (RQ
2) we suggest to consider higher priorities for managing
those clones that experienced similarity preserving co-changes
during bug-fixes. Our findings are important for ranking clones
for both refactoring and tracking. However, we require further
investigations of the evolution histories of the bug-fix clones
because of the following two issues.

Issue 1. The clone fragments that experienced similarity
preserving co-changes in bug-fix commits might evolve in-
dependently afterwards. In that case we should possibly not
consider these clone fragments important for management.

Issue 2. A clone fragment that was changed in a bug-
fix commit without experiencing a similarity preserving co-
change might co-evolve consistently with the other fragments
in its class afterwards. In that case this clone fragments should
be considered important for management.

In order to address these two issues, we need to investigate
the entire evolution histories of the bug-fix clones to analyze
whether they co-evolved with the other clone fragments in
their respective clone classes following a similarity preserving
change pattern which we called SPCP in our previous studies
[33], [34]. We perform such an investigation in RQ 3.

RQ 3: What proportion of the clone fragments that experienced
bug-fixing changes are SPCP clones?

Rationale. From our discussion at the end of RQ 2 we real-
ize that it is important to analyze whether the clone fragments
that experienced bug-fixes also have the tendencies of evolving
following a similarity preserving change pattern called SPCP
(defined in Section II). As the bug-fix clones have tendencies
of experiencing similarity preserving co-changes (revealed
from RQ 2), we suspect that they might have tendencies of
following SPCP too. In other words, bug-fix clones might
also be regarded as SPCP clones. In our previous studies [33],
[34] we empirically showed that SPCP clones are important
candidates for refactoring or tracking. The clone fragments
that do not follow SPCP either evolve independently or are
rarely changed during evolution. Thus, the non-SPCP clones
should not be considered important for clone management.

To address the research question we investigate which
of the bug-fix clones are also SPCP clones. Such clone
fragments (i.e., the SPCP clones that experienced bug-fixes)
should be given the highest priorities for management. In our
previous studies [33], [34] we ranked the SPCP clones on
the basis of their co-change tendencies. We did not consider
the bug-proneness of the SPCP clones. We believe that bug-
proneness should also be considered for ranking the SPCP
clones. However, ranking of SPCP clones considering both
bug-proneness and co-change tendencies is not our main focus
in this research. We focus on investigating whether bug-fix



Fig. 4. An example of a similarity preserving co-change of two Type 3 clone fragments (i.e., Clone Fragment 1, and Clone Fragment 2) of Freecol in a
bug-fix commit operation applied to revision 1075. Each of these two clone fragments is a method clone (i.e., the whole method is a clone fragment). The
figure shows that they were changed consistently in the bug-fix commit and were again considered as Type 3 clones of each other in revision 1076.

clones also have the possibility of following an SPCP, and if
so, how this possibility differs across different clone-types.

A clone fragment that experienced a bug-fix (whether
through a similarity preserving co-change or not) might not
evolve following an SPCP afterwards (related to Issue 1 stated
in RQ 2). In this case we understand that the particular clone
fragment evolved independently and thus, is not important
from the perspectives of clone management.

Methodology. Considering each clone-type of each of the
subject systems we determine the SPCP clones using SPCP-
Miner [30]. We also determine those clone fragments that
experienced bug-fixes following the procedure described in
Section III. Then we identify which of these bug-fix clones
also appear in the list of SPCP clones. Finally, we determine
the percentage of bug-fix clones that have also been selected as
the SPCP clones. We determine the following four measures
for each clone-type of each candidate system and show these
measures in Table VI.

• Measure 1: The total number of bug-fix clones (The
column CGBF in Table VI).

• Measure 2: The total number of SPCP clones (The
column CGSPCP in Table VI).

• Measure 3: The total number of bug-fix clones which
have also been selected as SPCP clones (The column
CGBFSPCP in Table VI).

• Measure 4: The total number of bug-fix clones which
have been selected as SPCP clones and are alive in the
last revision (The column CGBFSPCPL in Table VI).
We determine and present this measure because while
making refactoring or tracking decisions we are primarily

concerned with those clone fragments that are alive in the
last revision (i.e., the most recent revision) of the system.

It might be the case that only a single clone fragment
from a clone class got changed in a bug-fix commit operation
however, the clone fragment later co-evolved with the other
clone fragments in its class by preserving similarity and
thus, can be selected as an SPCP clone fragment (related
to Issue 2 stated in RQ 2). Such examples are evident in
Type 3 case of Ctags. From Table V we see that the bug-
fix clone fragments (14 in total) of Type 3 case of Ctags
did not experience similarity preserving co-changes. However,
Table VI shows that some of these clone fragments (6 in
total) evolved following SPCPs (similarity preserving change
patterns). If we compare Table V and VI we can discover some
other examples of such cases.

We also determine the following two percentages from the
above four measures considering each clone-type of each of
the candidate system.

(1) The percentage of the bug-fix clones that are selected
as SPCP clones. This percentage (Measure 3 * 100 / Measure
1) is shown in Fig 5.

(2) The percentage of the bug-fix clones that have been
selected as SPCP clones and are also present in the last
revision with respect to all bug-fix clones. This percentage
(Measure 4 * 100 / Measure 1) is shown in Fig. 6.

From Fig. 5 we see that for most of the subject systems
except Ctags and Camellia, the percentages regarding Type
2 and Type 3 cases are higher compared to the percentage
regarding Type 1 case. The overall percentages for the three
clone-types also reflect this. From these overall percentages



TABLE VI
NO. OF BUG-FIX CLONES THAT EVOLVED FOLLOWING AN SPCP (SIMILARITY PRESERVING CHANGE PATTERN)

Type 1 Type 2 Type 3
Systems CGBF CGSPCP CGBFSPCP CGBFSPCPL CGBF CGSPCP CGBFSPCP CGBFSPCPL CGBF CGSPCP CGBFSPCP CGBFSPCPL
Ctags 4 20 4 2 4 27 0 0 14 85 6 1
Camellia 2 4 2 2 0 2 0 0 11 36 10 0
BRL-Cad 3 42 2 2 2 8 2 2 10 41 8 4
Freecol 14 43 9 3 12 49 10 2 107 331 80 10
jEdit 73 50 0 0 20 63 11 2 184 614 157 96
Carol 31 82 16 0 32 73 20 3 134 325 117 22
Jabref 8 104 5 2 14 51 11 0 31 293 25 10
CGBF = Total number of Clone Genealogies (i.e., clones) that are related to a Bug-fix.
CGSPCP = Total number of Clone Genealogies that followed an SPCP (Similarity Preserving Change Pattern).
CGBFSPCP = Total number of bug-fix clones (i.e., the clones that were changed in bug-fix commits) that followed an SPCP.
CGBFSPCPL = Total number of bug-fix clones that followed an SPCP and are also alive in the last revision.

Ctags Camellia BRL-Cad Freecol jEdit Carol Jabref Overall
0

20

40

60

80

100

% of bug-fix clones that have also been selected as SPCP clones with
respect to all bug-fix clones (Type 1 case)

% of bug-fix clones that have also been selected as SPCP clones with
respect to all bug-fix clones (Type 2 case)

% of bug-fix clones that have also been selected as SPCP clones with
respect to all bug-fix clones (Type 3 case)

Fig. 5. Comparison regarding the percentage of clone fragments that have
experienced bug-fixes and have also been selected as SPCP clones.

Ctags Camellia BRL-Cad Freecol jEdit Carol Jabref Overall
0

20

40

60

% of bug-fix clones that are SPCP clones and are also alive in the last
revision w.r.t. all bug-fix clones (Type 1 case)

% of bug-fix clones that are SPCP clones and are also alive in the last
revision w.r.t. all bug-fix clones (Type 2 case)

% of bug-fix clones that are SPCP clones and are also alive in the last
revision w.r.t. all bug-fix clones (Type 3 case)

Fig. 6. Comparison regarding the percentage of bug-fix clones that have been
selected as SPCP clones and are also present in the last revision.

we can see that the bug-fix clones of the Type 3 case have the
highest possibility of evolving following an SPCP (Similarity
Preserving Change Pattern). The possibility regarding the Type
1 case is the lowest among the three cases. Such an overall
scenario can also be observed in Fig. 6.

Answer to RQ 3. From our investigations we can state
that a considerable proportion of the clone fragments that
experienced bug-fixing changes have a tendency of evolving
by following a similarity preserving change pattern (SPCP)
and thus, are the most important candidates for refactoring or
tracking. We also observe that the bug-fix clones of the Type
3 case generally have the highest probability of following an

SPCP. Thus, we again infer that Type 3 clones should be given
the highest priority for management.

Our findings from Fig. 6 also imply that for most of the
subject systems a considerable proportion of the bug-fix clones
that evolve following a similarity preserving change pattern
remain alive in the last revision (i.e., the most recent revision)
of the subject systems. Such clones should be given the highest
importance for management, because programmers are mostly
concerned with the last revision of the code-base (i.e., the
working copy). The findings from this research question and
also, from the previous one are important for ranking clones
considering their bug-proneness. In future, on the basis of
these findings we would like to propose a clone ranking
mechanism considering both the co-change tendencies and
bug-proneness of code clones.

V. THREATS TO VALIDITY

We used the NiCad clone detector [5] for detecting clones.
For different settings of NiCad, the statistics that we present
in this paper might be different. Wang et al. [52] defined this
problem as the confounding configuration choice problem and
conducted an empirical study to ameliorate the effects of the
problem. However, the settings that we have used for NiCad
are considered standard [44] and with these settings NiCad
can detect clones with high precision and recall [45], [46],
[49]. Thus, we believe that our findings on the bug-proneness
of code clones are of significant importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
followed by Barbour et al. [3]. Such a technique proposed
by Mocus and Votta [29] can sometimes select a non-bug-fix
commit as a bug-fix commit mistakenly. However, Barbour et
al. [3] showed that this probability is very low. According to
their investigation, the technique has an accuracy of 87% in
detecting bug-fix commits.

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the comparative
bug-proneness of clone-types. However, our candidate systems
were of diverse variety in terms of application domains, sizes
and revisions. Thus, we believe that our findings are important



from the perspectives of clone management and can help us
in better ranking of code clones for refactoring and tracking.

VI. RELATED WORK

Bug-proneness of code clones has already been investigated
by a number of studies. Li and Ernst [22] performed an em-
pirical study on the bug-proneness of clones by investigating
four software systems and developed a tool called CBCD
on the basis of their findings. CBCD can detect clones of
a given piece of buggy code. Li et al. [23] developed a tool
called CP-Miner which is capable of detecting bugs related
to inconsistencies in copy-paste activities. Steidl and Göde
[48] investigated on finding instances of incompletely fixed
bugs in near-miss code clones by investigating a broad range
of features of such clones involving machine learning. Göde
and Koschke [9] investigated the occurrences of unintentional
inconsistencies to the code clones of three mature software
systems and found that around 14.8% of all changes occurred
to the code clones are unintentionally inconsistent. Chatterji
et al. [4] performed a user study to investigate how clone
information can help programmers localize bugs in software
systems. Jiang et al. [13] performed a study on the context
based inconsistencies related to clones. They developed an
algorithm to mine such inconsistencies for the purpose of lo-
cating bugs. Using their algorithm they could detect previously
unknown bugs from two open-source subject systems. Inoue
et al. [12] developed a tool called ‘CloneInspector’ in order to
identify bugs related to inconsistent changes to the identifiers
in the clone fragments. They applied their tool on a mobile
software system and found a number of instances of such bugs.
Xie et al. [53] investigated fault-proneness of Type 3 clones
in three open-source software systems. They investigated two
evolutionary phenomena on clones: (1) mutation of the type of
a clone fragment during evolution, and (2) migration of clone
fragments across repositories and found that mutation of clone
fragments to Type 2 or Type 3 clones is risky.

Rahman et al. [40] found that bug-proneness of cloned code
is less than that of non-cloned code on the basis of their inves-
tigation on the evolution history of four subject systems using
DECKARD [14] clone detector. However, they considered
monthly snap-shots (i.e., revisions) of their systems and thus,
they have the possibility of missing buggy commits. In our
study, we consider all the snap-shots/revisions (i.e., without
discarding any revisions) of a subject system as mentioned in
Table II from the beginning one. Thus, we believe that we are
not missing any bug-fix commits. Moreover, our goal in this
study is different. We compare the bug-proneness of different
types of code clones.

Selim et al. [47] used Cox hazard models in order to assess
the impacts of cloned code on software defects. They found
that defect-proneness of code clones is system dependent.
However, they considered only method clones in their study.
We consider block clones in our study. While they investigated
only two subject systems, we consider seven diverse subject
systems in our investigation. Also, we compare the bug-

proneness of different types of clones. Selim et al. [47] did
not perform a type centric analysis in their study.

A number of studies have also been done on the late
propagation in clones and its relationships with bugs. Aversano
et al. [1] investigated clone evolution in two subject systems
and reported that late propagation in clones is directly related
to bugs. Barbour et al. [2] investigated eight different patterns
of late propagation considering Type 1 and Type 2 clones of
three subject systems and identified those patterns that are
likely to introduce bugs and inconsistencies to the code-base.

We see that different studies have investigated clone re-
lated bugs in different ways and have developed different
bug detection tools. However, none of these studies make a
comparison of the bug-proneness of different types of code
clones. Comparing the bug-proneness of different clone-types
is important from the perspectives of clone management. The
clone-type with a higher bug-proneness can be given a higher
priority when making clone management decisions. Focusing
on this issue we make a comparison of the bug-proneness
of the major types (Type 1, Type 2, Type 3) of clones from
different perspectives and identify which types of clones have
a higher bug-proneness and thus, should be given a higher
priority for management. None of the existing studies made
such a comparison. Our study also provides useful implications
regarding ranking of code clones for refactoring and tracking.

VII. CONCLUSION

In this paper we present an empirical study on the com-
parative bug-proneness of different types of code clones.
According to our investigation on the major types of code
clones: Type 1 (Exact clones), Type 2 (Near-miss clones), and
Type 3 (Near-miss clones) in thousands of revisions of seven
diverse subject systems written in two different programming
languages (C, and Java) we can state that:

(1) Type 3 clones exhibit the highest bug-proneness among
the three clone-types. The bug-proneness of Type 3 clones is
significantly higher than that of Type 1 clones.

(2) Also, Type 3 clones have the highest likeliness of co-
changing (i.e., changing together) consistently during the bug-
fixing changes.

(3) Moreover, the bug-fix clones of Type 3 exhibit the high-
est tendencies of evolving following a similarity preserving
change pattern (SPCP). The existing studies [33], [34] show
that the SPCP clones (i.e., the clone fragments that evolve
following a similarity preserving change pattern) are important
for refactoring and tracking.

Our experimental results imply that Type 3 clones should
be given the highest priority when making clone management
decisions. Our findings regarding the consistent co-change
of bug-prone clones and also, regarding their tendencies of
following SPCP can be considered for ranking code clones for
refactoring and tracking. We plan to investigate such a ranking
as future work using our technologies from this research. We
also plan to investigate classifying the bugs that occurred to
the code clones.



REFERENCES

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study”, Proc. CSMR, 2007, pp. 81 – 90.

[2] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 – 282.

[3] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late
propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 – 1165.

[4] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring
the Efficacy of Code Clone Information in a Bug Localization Task: An
Empirical Study”, Proc. ESEM, 2011, pp. 20 – 29.

[5] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool
Demo, 2011, pp. 219 – 220.

[6] CTAGS: http://ctags.sourceforge.net/
[7] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code

Clone Management”, Proc. ICSE, 2008, pp. 843 – 846.
[8] E. Duala-Ekoko, M. P. Robillard, “Tracking Code Clones in Evolving

Software”, Proc. ICSE, 2007, pp. 158 – 167.
[9] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”,

Proc. ICSE, 2011, pp. 311 – 320.
[10] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 – 74.
[11] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More

Frequently Modified than Non-duplicate Code in Software Evolution?: An
Empirical Study on Open Source Software”, Proc. EVOL/IWPSE, 2010,
pp. 73 – 82.

[12] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W.
Park, E. Lee, “Experience of Finding Inconsistently-Changed Bugs in
Code Clones of Mobile Software”, Proc. IWSC, 2012, pp. 94 – 95.

[13] L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related
Bugs”, Proc. ESEC-FSE, 2007, pp. 55 – 64.

[14] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones”, Proc. ICSE, 2007, pp. 96
- 105.

[15] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485 – 495.

[16] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE”, Proc. Eclipse
Technology Exchange at OOPSLA, 2007, pp. 16 - 20.

[17] C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software”, Empirical Software Engineer-
ing, 2008, 13(6): 645 – 692.

[18] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of
code clone genealogies”, Proc. ESEC-FSE, 2005, pp. 187 – 196.

[19] J. Krinke, “A study of consistent and inconsistent changes to code
clones”, Proc. WCRE, 2007, pp. 170 – 178.

[20] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57 – 66.

[21] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC,
2011, pp. 28 – 33 .

[22] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE,
2012, pp. 310 – 320.

[23] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, Proc. OSDI,
2004, pp. 20 – 20.

[24] A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC,
2010, pp. 65 – 72.

[25] A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227 – 236.

[26] Mann-Whitney-Wilcoxon Test. http://en.wikipedia.org/wiki/Mann%
E2%80%93Whitney U test

[27] Mann-Whitney-Wilcoxon Test Online. http://elegans.som.vcu.edu/
∼leon/stats/utest.cgi

[28] R. C. Miller, B. A. Myers. “Interactive simultaneous editing of multiple
text regions.”, Proc. USENIX 2001 Annual Technical Conference, 2001,
pp. 161 – 174.

[29] A. Mockus, L. G. Votta, “Identifying Reasons for Software Changes
using Historic Databases”, Proc. ICSM, 2000, pp. 120 – 130.

[30] M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for
Mining Code Clones that are Important for Refactoring or Tracking”,
Proc. SANER, 2015, 5pp. (to appear).

[31] M. Mondal, C. K. Roy, K. A. Schneider, “Late Propagation in Near-Miss
Clones: An Empirical Study”, Electronic Communications of the EASST,
63(2014):1 – 17.

[32] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed
Method Groups: A Case Study on Open Source Systems”, Proc. CAS-
CON, 2012, pp. 205 – 219.

[33] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones
for Refactoring through Mining Association Rules”, Proc. CSMR-WCRE,
2014, pp. 114 – 123.

[34] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of
Important Clones for Refactoring and Tracking”, Proc. SCAM, 2014, pp.
11 – 20.

[35] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234.

[36] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone
Stability”, ACM SIGAPP Applied Computing Review, 2012, 12(3): 20 –
36.

[37] M. Mondal, C. K. Roy, K. A. Schneider, “Prediction and Ranking of
Co-change Candidates for Clones”, Proc. MSR, 2014, pp. 32 – 41.

[38] Nonparametric Tests. http://sphweb.bumc.bu.edu/otlt/MPH-Modules/
BS/BS704 Nonparametric/mobile pages/BS704 Nonparametric4.html

[39] Online SVN repository: http://sourceforge.net/
[40] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc.

MSR, 2010, pp. 72 – 81.
[41] D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A System-

atic Review”, Information and Software Technology, 2013, 55(7): 1165 –
1199.

[42] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”, Proc. CSMR-
WCRE, 2014, pp. 18 – 33.

[43] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc.
ICSM, 2009, pp. 447 – 450.

[44] C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss In-
tentional Clones Using Flexible Pretty-Printing and Code Normalization”,
Proc. ICPC, 2008, pp. 172 – 181.

[45] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74 (2009): 470 – 495.

[46] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. Mutation,
2009, pp. 157 – 166.

[47] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y.
Zou, “Studying the Impact of Clones on Software Defects”, Proc. WCRE,
2010, pp. 13 - 21.

[48] D. Steidl, N. Göde, “Feature-Based Detection of Bugs in Clones”, Proc.
IWSC, 2013, pp. 76 – 82.

[49] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”,
Proc. ICSME, 2014, pp. 321 – 330.

[50] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical
study on the maintenance of source code clones”, Empirical Software
Engineering, 2009, 15(1): 1 – 34.

[51] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with
linked editing”, Proc. IEEE Symposium on Visual Languages and Human
Centric Computing, 2004, pp. 173 – 180.

[52] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455 – 465.

[53] S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 –
158.

[54] M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code
Clone Refactoring”, IET Software, 2013, 7(3): 167 – 186.


