Identifying Code Clones having High Possibilities of
Containing Bugs

Manishankar Mondal

Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science and Engineering, University of Saskatchewan, Canada
{mshankar.mondal, chanchal.roy, kevin.schneider} @usask.ca

Abstract—Code cloning has emerged as a controversial term in
software engineering research and practice because of its positive
and negative impacts on software evolution and maintenance.
Researchers suggest managing code clones through refactoring
and tracking. Given the huge number of code clones in a software
system’s code-base, it is essential to identify the most important
ones to manage. In our research, we investigate which clone
fragments have high possibilities of containing bugs so that
such clones can be prioritized for refactoring and tracking to
help minimize future bug-fixing tasks. Existing studies on clone
bug-proneness cannot pinpoint code clones that are likely to
experience bug-fixes in the future.

According to our analysis on thousands of revisions of four
diverse subject systems written in Java, change frequency of
code clones does not indicate their bug-proneness (i.e., does not
indicate their tendencies of experiencing bug-fixes in future). Bug-
proneness is mainly related with change recency of code clones.
In other words, more recently changed code clones have a higher
possibility of containing bugs. Moreover, for the code clones that
were not changed previously we observed that clones that were
created more recently have higher possibilities of experiencing
bug-fixes. Thus, our research reveals the fact that bug-proneness
of code clones mainly depends on how recently they were changed
or created (for the ones that were not changed before). It inval-
idates the common intuition regarding the relatedness between
high change frequency and bug-proneness. We believe that code
clones should be prioritized for management considering their
change recency or recency of creation (for the unchanged ones).

I. INTRODUCTION

Code cloning is a common yet controversial software
engineering practice which is often employed by programmers
during software development and maintenance for repeating
common functionalities. Cloning refers to the task of copying
a code fragment from one place of a code-base and pasting it
to some other places with or without modifications [40]. The
original code fragment (i.e., the code fragment from which
the copies were made) and the pasted code fragments become
clones of one another. Two exactly or nearly similar code
fragments form a clone pair. A group of similar code fragments
forms a clone class.

Code clones are of great importance from the perspectives
of software maintenance and evolution. A great many studies
(11, [2], [10], [11], [13], [18], [19], [21], [22], [23], [27],
(28], [391, [49], [25], [47], [16], [45], [51], [33], [35], [52]
have already been conducted on the impacts of clones on
the evolution and maintenance of software systems. While
some of these studies [1], [11], [13], [19], [21], [22], [23]
identify some positive impacts of code clones, a number of
studies [2], [18], [27], [10], [28], [25], [47], [16] have shown
empirical evidence of strong negative impacts of code clones
such as hidden bug propagation [25], late propagation [2],
unintentional inconsistencies [2], [10], and high instability

[28]. Because of these negative impacts, code clones are
considered to be the number one bad smell in the code-base
of a software system.

Motivation. When considering the negative impacts of
code clones, researchers recommend managing code clones
by refactoring [50] and tracking [9]. However, a software
system may contain a large number of code clones, and it
is impractical to consider all these clones for refactoring or
tracking [20]. Clone refactoring is time consuming, and clone
tracking is resource intensive. In such a situation, prioritizing
code clones for refactoring and tracking is important. Bug-
proneness of code clones should be taken into proper consid-
eration when prioritizing code clones. Code clones with high
possibilities of containing bugs should be given a high priority
for management. Refactoring or tracking of such clones can
help us minimize future bug-fix effort in the following ways:

(1) If the clone fragments in a clone class have a possibility
of containing bugs, then it is better to merge (i.e., refactor)
the fragments in that class into a single fragment. Any future
bug-fixing change will then need to be implemented in just a
single fragment instead of implementing and propagating the
same fixing change to multiple fragments in the clone class.

(2) If merging the clone fragments in a bug-prone clone
class is impossible, then considering them for tracking with
simultaneous editing support [9] can help us implement any
future bug-fixing change to the fragments with minimal effort.

There are a number of studies [25], [26], [47], [5], [16],
[14], [54], [2], [10] on clone bug-proneness, however, none
of these existing studies can identify which of the clone
fragments residing in a software system’s code-base have high
possibilities of containing bugs (i.e., have high possibilities
of experiencing bug-fixes in future). Focusing on this, in
our research we investigate which clone fragments have high
possibilities of containing bugs. In particular, we analyze
whether and how we can infer bug-prone clones (i.e., clones
having possibilities of experiencing bug-fixes in future) from
the clone evolution history of our candidate software system.
We answer four important research questions listed in Table I
in order to discover how change-proneness of code clones can
be related to their bug-proneness.

Experiment and Findings. We detect the bug-fix changes
in the three major types of clones (Type 1, Type 2, and Type 3)
residing in thousands of revisions of four open-source subject
systems written in Java. We determine the change-proneness of
code clones during system evolution, and analyze whether and
how their change-proneness can be related to the occurrence
of bug-fixes to them. According to our experimental results
and analysis we have the following findings:

Although code clones that were changed in the past
have a significantly higher probability of containing bugs
(i.e., have a significantly higher probability of experienc-
ing bug-fixes) compared to code clones that were not
changed before, we discover that change frequency of
code clones is not related to their bug-proneness. In other
words, high change frequency of code clones is not an
indication of clone bug-proneness. Bug-proneness of code
clones is mainly related to their change recency (i.e.,
how lately a clone fragment was changed). More recently
changed clones have higher tendencies of experiencing
bug-fixes in future. Moreover, for the clone fragments
that were not changed in the past we observe that the
more recently created ones have higher probabilities of
experiencing bug-fixes. Thus, our research invalidates the
common belief regarding the relatedness of high change
frequency with bug-proneness, and reveals the fact that
clone bug-proneness mainly depends on how recently
the clone fragments were modified or created (for the
unchanged clone fragments). Our findings are supported
by statistical significance tests.

According to our findings we suggest that code clones
that have been created or modified recently should be
given high priorities for management (refactoring and
tracking), because such code clones have high possibilities
of containing bugs.

Our prototype tool can order code clones according to their
recency of creation and modification, and thus, it can help us
prioritize code clones for management from the perspective of
clone bug-proneness.

A number of studies [55], [4], [24] have investigated
scheduling for clone refactoring activity. Given a number of
clone fragments for refactoring, these studies aim to find an
optimal schedule for refactoring tasks so that refactoring gain
is maximized and refactoring effort is minimized. However,
these studies cannot identify which of the huge number of
code clones in a software system should be given a high im-
portance for refactoring. Our research objective is to prioritize
code clones for refactoring or tracking considering their bug-
proneness. Thus, we believe that our study can complement
the existing clone scheduling studies and techniques by pin
pointing the most important ones to be scheduled.

The rest of the paper is organized as follows: Section
IT describes the terminology, Section III elaborates on the
experimental steps, Section IV presents and analyzes the
experimental results, Section V presents a discussion of our
findings, Section VI discusses the related work, Section VII
mentions the possible threats to validity, and Section VIII
concludes the paper by mentioning the future work.

II. TERMINOLOGY
A. Clone-types
We investigate both identical (Type 1) and near-miss code
clones (Type 2 and Type 3 clones) in our research. We provide
definitions of these three types of code clones in the following
way according to the literature [41], [40].

e Type 1 Clones. The identical code fragments residing
in a software system’s code-base are called Type 1

TABLE 1. RESEARCH QUESTIONS

SL Research Question

RQ 1 What is the probability that a clone fragment that was changed (or was not
changed) will experience a bug-fix change?

RQ 2 Do clone fragments that were changed more frequently in the past have
higher possibilities of experiencing bug-fixes?

RQ 3 Do the clone fragments that were changed more recently in the past have
higher possibilities of experiencing bug-fixes?

RQ 4 Which of the clone fragments that were not changed in the past have higher
possibilities of experiencing bug-fixes?

clones. More elaborately, if two or more code frag-
ments in a code-base are exactly the same disregarding
their comments and indentations, then we call these
code fragments identical clones or Type 1 clones of
one another.

e Type 2 Clones. Syntactically similar code fragments
residing in a software system’s code-base are known
as Type 2 clones. Type 2 clones are generally created
from Type 1 clones because of renaming identifiers
and/or changing data types.

o Type 3 Clones. Type 3 clones, also known as gapped
clones, are generally created from Type 1 or Type 2
clones because of additions, deletions, or modifica-
tions of lines in these clones.

B. Clone Fragment

We frequently use the term ‘clone fragment’ in our paper. A
clone fragment is a particular code fragment which is exactly
or nearly similar to one or more other code fragments in a
code-base. In the introduction we defined a ‘clone-pair’ and a
‘clone class’. Each member in a clone class or a clone-pair is
a clone fragment.

C. Clone Genealogy

We detect clone genealogies [20] for the purpose of our
investigations. We define a clone genealogy in the following
way. Let us assume that a clone fragment was created in a
particular revision and was alive in a number of consecutive
revisions. Thus, each of these revisions contains a snapshot
of the clone fragment. The genealogy of this clone fragment
consists of the set of its consecutive snapshots from the
consecutive revisions where it was alive. Each clone fragment
in a particular revision belongs to a particular clone genealogy.
In other words, a particular clone fragment in a particular
revision is actually a snapshot in a particular clone genealogy.
By examining the genealogy of a clone fragment we can
determine how it changed during evolution.

We automatically detect clone genealogies using the SPCP-
Miner [32] tool. In our research, by examining the genealogy
of a clone fragment we determine which commit operation(s)
made changes to it.

ITII. EXPERIMENTAL STEPS
We perform our investigation on four Java systems down-
loaded from an on-line SVN repository [37]. We list these
systems in Table II. We select these systems focusing on

Revision 1051 Revision 1052

if ({tempUnit.isPioneer() && !tempUnit.isMissionary() && tempUnit.canArm()) if ({tempUnit.isPioneer() && !tempUnit.isMissionary() && tempUnit.canArm())
{ {
if (tempUnit.isArmed())

Clone Fragment 1, Clone Fragment 1,

if (tempUnit.isArmed())

{ menultem = new JMenultem("Disarm"); } { menultem = new JMenultem("Disarm"); }
else else
{ {
if (tempUnit.getLocation() instanceof Europe) —_ if (tempUnit.getTile() == null)
{ {
menultem = new JMenultem("Arm (" + Change menultem = new JMenultem("Arm (" +
tempUnit.getGame().getMarket().getBidPrice(Goods.MUSKETS, 50) + " gold)"); tempUnit.getGame().getMarket().getBidPrice(Goods.MUSKETS, 50) + " gold)");
} }
else else
{ menultem = new JMenultem("Arm"); } { menultem = new JMenultem("Arm"); }

} }

menultem.setActionCommand(String.valueOf(UnitLabel. ARM)); menultem.setActionCommand(String.valueOf(UnitLabel. ARM));
menultem.addActionListener(unitLabel); menultem.addActionListener(unitLabel);
menu.add(menultem); menu.add(menultem);

Revision 1051 Revision 1052

if (ItempUnit.isPioneer() && !tempUnit.isMissionary() && tempUnit.canMount()) if ({tempUnit.isPioneer() && !tempUnit.isMissionary() && tempUnit.canMount())
{ {
if (tempUnit. isMounted())

Clone Fragment 2, Clone Fragment 2,

if (tempUnit. isMounted())

{ menultem = new JMenultem("Remove Horses"); } { menultem = new JMenultem("Remove Horses"); }
else else
{ {
if (tempUnit.getLocation() instanceof Europe) e if (tempUnit.getTile() == null)
{ {
menultem = new JMenultem(" Mount (" + Change menultem = new JMenultem(" Mount (" +
tempUnit.getGame().getMarket().getBidPrice(Goods.HORSES, 50) + " gold)"); tempUnit.getGame().getMarket().getBidPrice(Goods.HORSES, 50) + " gold)");
} }
else else
{ menultem = new JMenultem("Mount"); } { menultem = new JMenultem("Mount"); }

} }

menultem.setActionCommand(String.valueOf(UnitLabel. MOUNT));
menultem.addActionListener(unitLabel);
menu.add(menultem);

menultem.setActionCommand(String.valueOf(UnitLabel. MOUNT));
menultem.addActionListener(unitLabel);
menu.add(menultem);

Fig. 1. The commit operation that was applied on revision 1051 of our subject system Freecol was detected as a bug-fix commit by our described bug detection
technique. Two clone fragments residing in revision 1051 were changed in this commit operation. The figure shows the snapshots of these clone fragments both
in revision 1051 and 1052. The changes that occurred to these clone fragments have also been highlighted. The commit message says, ‘Fixed the bug reported
by: [1261640] Equipping boarded European units - v0.41cvs’. From the commit message we understand that the commit was applied for fixing a reported bug.
We see that each of the clone fragments was changed in the same way to fix the bug.

TABLE II SUBIJECT SYSTEMS TABLE IIL NICAD SETTINGS FOR THREE CLONE-TYPES
Systems [Lang. [Domains [LLR Revs Detection Parameter Type 1 Type 2 Type 3
JEdit Java Text Editor 191,804 4000 Identifier Renaming none blindrename blindrename
Freecol Java | Game 91,626 | 1950 Dissimilarity Threshold 0% 0% 20%
Carol Java Game 25,091 1700 Clone Granularity block block block
Jabref Java Reference Management 45,515 1545

LLR = LOC in the Last Revision Revs = No. of Revisions

the file paths and the starting and ending line numbers

their diversity in sizes and revision history lengths. Table II of the changes, methods, and clones.

also shows that the systems belong to three different applica-

tion domains. Before investigating the bug-proneness of code * Mapping the code clones detected from each revision
clones in these systems we sequentially perform the following to the methods of that revision by using the file
preliminary steps. Eilglhsoa(llrslda:ll(llecslt:;l;g:g and ending line numbers of the
e Extracting all revisions (mentioned in Table II) of each e Detecting method genealogies considering all revi-
candidate system from the online SVN repository. sions using the technique proposed by Lozano and
. Det.efzting apd extracting methods from each of the Wermelinger [28].
revisions using CTAGS [7]. e Detecting clone genealogies considering each clone-
e Detecting three types (Type 1, Type 2, and Type 3) of type separately by identifying the propagation of each
code clones from each revision by applying the NiCad clone fragment through a method genealogy.
[6] clone detector. e Detecting bug-fix changes in code clones.

e Detecting changes between every two consecutive
revisions using UNIX diff.

e Mapping these changes to the already detected meth-
ods and clones of the corresponding revisions by using

We use the tool called SPCP-Miner [32] to automatically
perform all these steps except the last one. The last step will
be discussed later in this section.

A. Clone Detection

We detect three types (Type 1, Type 2, and Type 3) of
code clones using the NiCad [6] clone detector. NiCad can
separately detect these clone-types with high precision and
recall [43], [44]. We setup NiCad to detect block clones of
Type 1, Type 2, and Type 3 with a minimum size of 10 LOC.
The detection parameters for three clone-types are shown in
Table III. According to a recent study [48], these settings
provide us with better clone detection results in terms of both
precision and recall. We should note that before using the
NiCad outputs for Type 2 and Type 3 cases, we pre-processed
them in the following way.

e Each Type 2 clone class that exactly matched any Type
1 clone class was excluded from Type 2 outputs.

e Each Type 3 clone class that exactly matched any Type
1 or Type 2 class was excluded from Type 3 outputs.

We performed these steps because we wanted to investigate
bug-proneness of each of the three types of clones separately.

B. Detecting Clone Genealogies of Different Clone-Types

SPCP-Miner first applies the NiCad clone detector to detect
code clones of each clone-type separately from each revision
of a candidate system. Then, considering each clone-type
separately it performs origin analysis of the clone fragments
of that type detected from different revisions and builds the
genealogies. Thus, each clone genealogy contains instances
of one particular clone-type only. Here, an instance refers to
the snapshot of a clone fragment in a particular revision. We
finally get three separate sets of clone genealogies for three
different clone-types of a subject system. By considering the
genealogies in each set we analyze the bug-proneness of the
corresponding clone-type.

C. Handling Clone-Mutations

According to a study of Xie et al.[54], a clone fragment
may change its clone-type during evolution. This phenomenon
is called clone-mutation. If a clone fragment is considered of
different clone-types during different periods of evolution, then
SPCP-Miner builds a separate genealogy for this fragment
for each of these periods. Thus, even in presence of clone-
mutations, we can distinguish which bug-fixes were experi-
enced by which clone-types.

D. Detecting Bug-fixes in Code Clones

We detect bug-fix changes in code clones using the follow-
ing two steps:

Step 1. We obtain the commit messages of a subject system
using the ‘SVN log’ command. We automatically examine the
commit messages, and identify the bug-fix commits using the
heuristic proposed by Mockus and Votta [31].

Step 2. We determine which of the bug-fix commits
(identified in Step 1) made changes to clones. If one or more
clone fragments get affected (i.e., are changed) by a particular
bug-fix commit for fixing a bug, then it implies that the clone
fragment(s) previously contained the bug and modification of
these fragment(s) was necessary for fixing the bug.

Fig. 1 shows the bug-fix changes that occurred to two clone
fragments in revision 1051 of our subject system Freecol. The
figure caption contains necessary descriptions regarding the
figure, and mentions the bug-fix commit message.

TABLE IV. NUMBER OF CLONE GENEALOGIES AND BUG-FIX COMMITS

Type 1 Type 2 Type 3
System CG NBFC | CG | NBFC CG NBFC
jEdit 7398 37 399 10 2688 42
Freecol 239 7 162 10 752 46
Carol 415 8 211 8 682 22
Jabref 483 6 228 6 1363 23

CG = No. of clone genealogies
NBFC = No. of bug-fix commits where clone fragments were changed

Previously Barbour et al. [2] used the same technique that
we have used for detecting bug-fix commits. They investigated
whether late propagation in code clones is related to bugs.
Their study involved only the late propagation clones (i.e.,
the clones that experienced late propagations), and the bug-
fixes experienced by these late propagation clones. However,
our study is not limited to late propagation clones only. We
investigate bug-proneness of all code clones of a software
system. Barbour et al.[2] did not consider Type 3 clones in their
study. We investigate Type 3 clones in our study. Moreover,
we investigate prioritizing code clones for management con-
sidering their bug-proneness. Barbour et al.[2] did not perform
such an investigation.

IV. EXPERIMENTAL RESULTS

In this section we describe our experiments and answer
each of the four research questions (Table I) in our discussion
of the experimental results. Table IV shows, for each system,
the total number of clone genealogies (CG) and the total
number of bug-fix commits (NBFC), by clone type. The clone
genealogies are determined for each system’s entire evolution
period. Section II defines a clone genealogy. In Section III
we discussed that we automatically build clone genealogies
from the clone fragments in different revisions using the
SPCP-Miner [32] tool. Clone genealogies help us analyze how
clone fragments were modified during evolution. NBFC is the
number of those bug-fix commits that modified one or more
clone fragments. A bug-fix commit may affect clone fragments
of more than one clone-type, and this is reflected in the number
of bug-fix commits (NBFC) for each clone type. That is, if a
single bug-fix commit changes clone fragments of more than
one clone type, the NBFC count for each of these clone types
will be incremented.

There is a one-to-one relationship between revisions and
commits. When a particular revision experiences a commit
operation, the next revision is created. Consider the set of bug-
fix commits that affected (i.e., made changes to) code clones
of a particular clone-type. Each of these commits was applied
to a particular revision, and one or more clone fragments in
that revision were changed. For this set of bug-fix commits we
identify a corresponding set of revisions that experienced these
commits. We refer to this set as BR (see Table V) and use it in
our investigations described in the following subsections. We
use r to represent a member of the set BR.

RQ 1: What is the probability that a clone fragment that was
changed (or not changed) will experience a bug-fix change?
Motivation. The primary goal of our research is to in-
vestigate which clone fragments in different clone-types have
high possibilities of containing bugs (i.e., high possibilities
of experiencing bug-fixes). In RQ 1 we automatically analyze

TABLE V. DEFINITIONS

Term Definition

BR The set of all those revisions that experienced bug-fix commits that affected
code clones (i.e., clone fragments) of a particular clone-type. That is, a
particular revision r in the set BR experienced a bug-fix commit, and one
or more clone fragments of a particular clone-type residing in revision r
were changed in this bug-fix commit.

r A member of the set BR. That is, a revision that experienced a bug-fix
commit that changed one or more clone fragments in this revision.

whether the clone fragments that were changed in the past have
higher possibilities of experiencing bug-fixes compared to the
clone fragments that were not changed before. Answer to RQ
1 can help us understand whether and to what extent change-
proneness of code clones is related to clone bug-proneness.

Methodology. We first determine the bug-fix commit op-
erations following the procedure described in Section III-D,
and then, determine the set BR (defined in Table V) for a
particular clone-type of a particular subject system. Let us
consider a particular revision r in the set BR. The bug-fix
commit operation which was applied on revision r is BFC,.
One or more clone fragments residing in revision r were
changed by this bug-fix commit operation. We determine the
following four measures considering revision r:

e NCC,: This is the number of clone fragments, each
of which satisfies the following two conditions: (1)
it (i.e., the clone fragment) resides in revision r, and
(2) it was changed in the past (i.e., it was changed in
any of the commit operations that occurred before the
occurrence of the bug-fix commit BFC,.). Whether a
clone fragment residing in revision r was changed in
the past is determined by examining its genealogy.

e NCN;: This is the number of clone fragments, each
of which obeys the following two conditions: (1) it
resides in revision r, and (2) it was not changed in
the past (i.e., it was not changed in any of the commit
operations that occurred prior to the occurrence of the
bug-fix commit operation BFC.).

e NCCB;: This is the number of clone fragments, each
of which fulfills the following three conditions: (1) it
resides in revision r, (2) it was changed in the past,
and (3) it was changed in the bug-fix commit BFC,.
which was applied on revision r.

e NCNB,: This is the number of clone fragments, each
of which satisfies the following three conditions: (1)
it resides in revision r, (2) it was not changed in the
past, and (3) it was changed in the bug-fix commit
BFC, which was applied on revision r.

If we divide NCCB, by NCC,, then we get the probability
that a clone fragment that was changed previously will be
changed in the bug-fix commit BFC, (i.e., will experience
a bug-fix change). NCC, is the number of clone fragments
that were changed previously, and NCCB; is the number of
previously changed clone fragments that were also changed
in the bug-fix commit BFC,.. In the same way, if we divide
NCNB,; by NCN,, then we get the probability that a clone
fragment that was not changed previously will be changed
in the bug-fix commit BF(C,. (i.e., will experience a bug-fix
change). We determine these two probabilities in percentage
considering all the revisions in the set BR according to the
following two equations.

[[] Probabilityl (The probability (in percentage) that a clone fragment
that was changed previously will experience a bug-fix)

0o Probability2 (The probability (in percentage) that a clone fragment
that was not changed previously will experience a bug-fix)

10 |- -

IEI

o o
T
-
 ———
=
[
&
 E—
 —
]
=
 — |
 —
=
e
Type 2
[
=]
|

- &N N = & 0 —= A o — g all-types
5] L 5] Q (5] Q [} 5] [5] 5]
S5 HEEHEE 55 55 =
EEFEEEFEFEE BB &

jEdit Freecol Carol Jabref Overall

Fig. 2. Comparison of the probabilities that a clone fragment that was changed
or not changed previously will experience a bug-fix change.

100 x Y, , pp NCCB,

Probabilityl = 1
To0a bty ZTEBRNCCT (H
100 x 3 NCNB
Probability2 = rc BR -)
v ZT e BR NCNT

The sums for NCC,, NCN,;, NCCB,, and NCNB, are
shown in Table VI in the columns NCC, NCN, NCCB, and
NCNB respectively. Probabilityl is the probability that a clone
fragment that was changed in the past will experience a bug-fix
change. Probability2 is the probability that a clone fragment
that not was changed in the past will experience a bug-fix
change. We show these probabilities in the graph of Fig.
2. From the graph it is clear that Probabilityl is always
higher than Probability2. We wanted to determine whether
Probabilityl is significantly higher than Probability2. Our test
details are given below.

Statistical Significance Tests. From Fig. 2 we see that for
each clone-type of each of the subject systems we get two
probabilities: Probabilityl and Probability2. If we consider
all the clone-types (i.e., three clone-types) of all the subject
systems we get 12 cases (4 systems x 3 clone-types) in total.
We perform Wilcoxon Signed-Rank Test [29] to determine
whether the 12 values of Probabilityl (i.e., from the 12 cases)
are significantly different than the 12 values of Probability?2.
Wilcoxon Signed-Rank Test is non-parametric, and thus it does
not require the samples to be normally distributed [30]. We ap-
ply this test because the data in our two samples are paired (i.e.,
from each of the 12 cases we obtain two probability values:
Probabilityl and Probability2). In our research, we perform
this test considering a significance level of 5%. According to
our test, the values of Probabilityl are significantly different
than the values of Probability2 with a p-value of 0.002 for
the 2-tailed test case and 0.001 for the 1-tailed test case. As

TABLE VI.

CODE CLONE MEASURES FOR INVESTIGATION REGARDING RQ 1

Type 1 Type 2 Type 3
Subject System NCC NCN NCCB NCNB NCC NCN NCCB NCNB NCC NCN NCCB NCNB
jEdit 592 75497 3 69 230 1652 8 16 4802 33164 129 121
Freecol 24 394 3 12 82 305 7 9 2039 7259 43 87
Carol 106 226 17 15 149 282 26 8 1033 1702 86 66
Jabref 101 444 4 4 72 100 6 8 712 2395 19 17

NCC = From all revisions in the set BR (defined in Table V), NCC is the total number of clone fragments that were changed in the past.

NCN = From all revisions in the set BR, NCN is the total number of clone fragments that were not changed in the past.

NCCB = From all revisions in the set BR, NCCB is the total number of clone fragments that were changed in the bug-fix commits, and also, were changed in the past.

NCNB = From all revisions in the set BR, NCNB is the total number of clone fragments that were changed in the bug-fix commits, but were not changed previously.

Probabilityl is always greater that Probability2 (Fig. 2) we can
say that Probabilityl is significantly higher than Probability2.
In other words, the probability that a clone fragment that
was changed previously will experience a bug-fix change is
significantly higher than the probability that a clone fragment
that was not changed previously will experience a bug-fix.

Answer to RQ 1: The clone fragments that were
changed in the past have a significantly higher possibility
of experiencing bug-fix changes compared to the clone
fragments that were not changed in the past.

Our finding implies that when taking clone management
decisions we should primarily focus on the code clones that
were changed in the past. From our manual observation on
the bug-fix changes that occurred to the code clones of Freecol
and Jabref we experience that bug-fix changes are often related
to method calls in the clone fragments. The bug-fix changes
in Fig. 1 are also related to method calls. In future we will
manually analyze and classify the bugs and bug-fix changes in
different types of code clones.

Although our answer to RQ 1 implies that code clones
that were changed in the past have high possibilities of
experiencing bug-fixes, it is still unknown whether change
frequency of code clones is related to their bug-proneness. The
common intuition is that frequent changes in a program entity
are likely to introduce bugs in that entity. However, there is
no empirical evaluation regarding this. We investigate this in
our second research question (RQ 2).

RQ 2: Do clone fragments that were changed more frequently
in the past have higher possibilities of experiencing bug-fixes?

Motivation. From the answer to RQ 1 we understand
that the clone fragments that were changed in the past have
higher possibilities of experiencing bug-fix changes compared
to the clone fragments that were not changed in the past.
However, we still do not know whether high change fre-
quency is the primary reason behind clone bug-proneness.
We investigate this in RQ 2. We perform our investigation
considering the clone fragments that were changed in the past.
We investigate whether the clone fragments that were more
frequently changed in the past have higher probabilities of
experiencing bug-fix changes. Intuitively, program entities with
higher change frequency have higher possibilities of being
related to bugs. We evaluate this common intuition for code
clones. Our method of investigation has been described below.

Methodology. For each clone-type of each of the subject
systems we determine the set BR (defined in Table V). We

consider a particular revision » in this set. One or more
clone fragments in revision r were changed by the bug-fix
commit which was applied on revision r. Considering the clone
fragments in revision r, we determine the following two sets:

e SCCB;: This set contains clone fragments, each of
which satisfies the following three conditions: (1) it
resides in revision r, (2) it was changed in the past
(i.e., it was changed in any of the commits that
occurred before the occurrence of the bug-fix commit
on revision r), and (3) it was changed in the bug-fix
commit which was applied on revision r.

e SCCN;: This set contains clone fragments, each of
which fulfills the following three conditions: (1) it
resides in revision r, (2) it was changed in the past, and
(3) it was not changed in the bug-fix commit which
was applied on revision r.

For each clone fragment in these two sets we determine
its change frequency in the past. Change frequency is the
number of times (i.e., the number of commits) a particular
clone fragment was changed in the past.

For each revision r in the set BR (defined in Table V),
we determine the above two sets, SCCB, and SCCN,, and
the change frequencies of the clone fragments in these sets.
Considering all the clone fragments in all the SCCB, sets we
determine the average change frequency per clone fragment.
We call this average frequency ACF-SCCB. We understand
that ACF-SCCB is the average change frequency of the clone
fragments that were changed in the past, and also, were
changed in the bug-fix commits. In the same way we determine
ACF-SCCN which is the average change frequency of the
clone fragments that were changed in the past, but were not
changed in the bug-fix commits. In Fig. 3 we show these two
averages for each clone-type of each of the subject systems.

From Fig. 3 we understand that the change frequency of
a clone fragment in the past does not necessarily influence its
possibility of experiencing bug-fixes. We see that for six cases
(for example, Type 2 case of Freecol) the clone fragments that
were changed more frequently in the past did not experience
bug-fix changes. The opposite is true for five cases (for
example, Type 3 case of jEdit). For Type 1 case of Freecol,
the two average frequencies are the same.

Statistical Significance Tests. We also wanted to deter-
mine whether the two frequencies ACF-SCCB and ACF-
SCCN are significantly different. We performed the Wilcoxon
Signed-Rank Test [29], [30] in the same way as we did in RQ
1. According to our test result, the difference between these
two frequencies is not statistically significant.

I 0 ACF-SCCB (Average change frequency of the clone fragments that were
changed in the past and also were changed in the bug-fix commits)

D [ACF-SCCN (Average change frequency of the clone fragments that were
changed in the past but were not changed in the bug-fix commits)

0
— N o — (gl o — o - N o
(o] Q 5] (o] L Q 5] (0] L Q 5] (0]
& & & 2 2 8 & B 2 2 & &
SN < S < =< = N < N < N < N < N <
jEdit Freecol Carol Jabref
Fig. 3. Comparing the change frequencies of the clone fragments that

experienced or did not experience bug-fix changes.

Answer to RQ 2. According to our experimental re-
sults, change frequencies of code clones do not necessarily
indicate their possibilities of experiencing bug-fixes.

From our answer to RQ 1 we realized that the clone
fragments that were changed in the past are highly likely to
experience bug-fixes in future. However, the change frequen-
cies of such clone fragments cannot be used for prioritizing or
ranking them according to their likeliness of experiencing bug-
fixes. Such a finding invalidates the common belief regarding
the relatedness of high change frequency with bug-proneness.
In RQ 3 we investigate whether change recency of clones can
indicate their bug-proneness during system evolution.

RQ 3: Do the clone fragments that were changed more recently
in the past have higher possibilities of experiencing bug-fixes?

Motivation. From the answer to RQ 2 we understand
that change frequency of a clone fragment cannot be a good
indicator of the possibility that it will experience a bug-fix.
We wanted to investigate whether change recency of the clone
fragments can help us understand further details regarding the
possibilities of bug-fixes in code clones.

Methodology. We proceed in the same way as we did in
RQ 2. For each clone-type of each of the subject systems we
determine the set BR (defined in Table V). For each revision r
in BR, we determine the two sets: SCCB, (i.e., the set of all
those clone fragments in revision r that were changed in the
past and were also changed in the bug-fix commit which was
applied on revision r), and SCCN; (i.e., the set of all those
clone fragments in revision r that were changed in the past but
were not changed in the bug-fix commit applied on revision
r). For each clone fragment in these two sets we determine
how recently it was changed in the past. For this purpose we
determine the oldness of change for each clone fragment.

Let us assume that the bug-fix commit that was applied on
revision r is BFC'.. A clone fragment CF in revision r belongs
to the set SCCB; or SCCN;. The clone fragment CF might
change a number of times in the past. The last commit where it
was changed before the occurrence of BFC'. is Cprevious- This
last commit was applied on revision 7yeyious. The oldness of

change (OC) of the clone fragment CF with respect to r is
calculated using the following equation.
OCCF =T

— Tprevious (3)

From the equation we understand that the smaller the
oldness of change (OC) for a clone fragment with respect
to r, the more lately it was changed in the past. Considering
all the clone fragments in all the SCCB, sets obtained from
all the revisions in the set BR (i.e., from all the revisions
that experienced bug-fix commits affecting code clones), we
determine the average oldness of change per clone fragment.
We call this average AOC-SCCB. We understand that AOC-
SCCB is the average oldness of change of the clone fragments
that were changed in the past and also were changed in the bug-
fix commits. In the same way we also determine AOC-SCCN.
In Fig. 4 we plot these two averages for each clone-type of
each of the subject systems.

From Fig. 4 we see that for most of the cases (10 cases
out of 12, excluding Type 2 case of Freecol, and Type 1 case
of Jabref), AOC-SCCB is smaller than AOC-SCCN. In other
words, the clone fragments that experienced bug-fixes were
changed more recently in the past compared to others that did
not experience bug-fixes. Thus, more recently changed clone
fragments have higher possibilities of experiencing bug-fixes.

Statistical Significance Tests. From Fig. 4 we find that
AOC-SCCB is generally smaller than AOC-SCCN. We also
wanted to see whether AOC-SCCB is significantly smaller
than AOC-SCCN. The values of AOC-SCCB and AOC-
SCCN are paired as demonstrated in Fig. 4. For this reason
we perform the Wilcoxon Signed-Rank Test [29] as we did
in RQ 1. Our test result is significant for one-tailed test case
with a p-value of 0.041 (< 0.05). Such a result implies that
AOC-SCCB is significantly smaller than AOC-SCCN.

Answer to RQ 3. From our investigation and analysis
we can say that the clone fragments that were more
recently changed in the past have higher possibilities of
experiencing bug-fixes in future evolution. Our finding is
significant according to our statistical significance test.

From our answer to RQ 3 we realize that change recency
of the clone fragments that were changed before can be
used for prioritizing them according to their likeliness of
experiencing bug-fix changes in future. In RQ 4 we investigate
the possibilities of occurring bug-fixes in the clone fragments
that were not changed in the past.

RQ 4: Which of the clone fragments that were not changed in
the past have higher possibilities of experiencing bug-fixes?
From our investigations regarding RQ 1 we realize that
bug-fix changes can also occur to the clone fragments that
were not changed in the past. In RQ 4 we investigate which
of such clone fragments (i.e., the previously non-changed ones)
have higher possibilities of experiencing bug-fix changes. In
particular, we analyze whether the more recently created clone
fragments have higher possibilities of experiencing bug-fixes.
We perform our investigation in the following way.
Methodology. We first identify the set BR (defined in Table
V) considering each clone-type of each of the subject systems.
Let us consider a particular revision r in this set. One or more

I B AOC-SCCB (Average oldness of change of the clone fragments that were
changed in the past and also were changed in the bug-fix commits)

D [AOC-SCCN (Average oldness of change of the clone fragments that were
changed in the past but were not changed in the bug-fix commits)

300 - | n
200 | n
I

100 -

=}
-
=
_—
—]
_—
—
-
—
Type 3 u—

Type 2 —

o
Q
5

=

— [\l [<a) — (o] — — N (g
Q 5] (o] (o] Q (o] 5] (o] L
s &£ 8 & & = = & &
== < < & BB &
jEdit Freecol Carol Jabref

Fig. 4. Comparing the change recency of the clone fragments that experienced
or did not experience bug-fix changes.

clone fragments in revision r were changed by the bug-fix
commit which was applied on revision r. Considering the clone
fragments in revision r, we determine the following two sets:

e SCNB;: This set contains clone fragments, each of
which satisfies the following three conditions: (1) it
resides in revision r, (2) it was not changed in the past
(i.e., it was not changed in any of the commits that
occurred before the occurrence of the bug-fix commit
on revision r), and (3) it was changed in the bug-fix
commit which was applied on revision r.

e SCNN;: This set contains clone fragments, each of
which fulfills the following three conditions: (1) it
resides in revision r, (2) it was not changed in the
past, and (3) it was not changed in the bug-fix commit
which was applied on revision r.

We understand that the above two sets are disjoint, and
from their union we can get all those clone fragments in
revision r that were not changed in the past. For each clone
fragment in each of these two sets we determine the revision
in which it was created (i.e., added). Let us consider a clone
fragment CF in the set SCNB, or SCNN;. This clone fragment
was created in revision 7¢egeq Where repeqteq < 7 . Using the
following equation we determine how recently the fragment
CF was created with respect to r.

OCRcF =71 — Tereated 4

Here, OCRcp is the oldness of creation of the clone
fragment CF with respect to the revision r. For each of the
clone fragments in the two sets, SCNB, and SCNN,, we
determine its oldness of creation with respect to r. From Eq.
4 we see that the oldness of creation of a particular clone
fragment with respect to a particular revision r depends on
Tereated Where the clone fragment was created. The smaller
the value of 7.reqteq 1S (i.€., the older the 7.;cqteq 1S), the
higher is the oldness of creation of the clone fragment (i.e.,
the older is the clone fragment).

For each revision r in the set BR (Table V), we determine
the sets SCNB; and SCNN;. For each clone fragment in the
sets SCNB, and SCNN; we determine its oldness of creation.
Considering all the clone fragments in all the SCNB, sets we
determine the average oldness of creation per clone fragment.
We call this average AOCR-SCNB. Thus, AOCR-SCNB is

I AOCR-SCNB (Average oldness of creation of the clone fragments that
were not changed before but were changed in the bug-fix commits)

D [J AOCR-SCNN (Average oldness of creation of the clone fragments that
were not changed before and were not changed in the bug-fix commits

300 —
200 -
v I I H I H
o Lml IH IH 1 I I | ID I

— N o — N on — (gl o — (gl o

Q o 0] [0} Q o 0] [0} Q o (0] L

S & &5 &5 5 &5 & &5 &£ &5 £ &

EE B EF R B EFE F FE EF B

jEdit Freecol Carol Jabref

Fig. 5. Comparison of the average oldness of creation of the clone fragments
that were not changed in the past.

the average oldness of creation of the clone fragments that
were changed in the bug-fix commits but were not changed
previously. In the same way we also determine AOCR-SCNN
considering all SCNN; sets. Fig. 5 shows these two averages
for each clone-type of each of the systems.

Fig. 5 shows that AOCR-SCNB (i.e., the average oldness
of creation of the clone fragments in the SCNB; sets) is always
smaller than corresponding AOCR-SCNN (i.e., the average
oldness of creation of the clone fragments in the SCNN;
sets) except for Type 1 case of Jabref. In other words, the
clone fragments in the set SCNB, are generally more recently
created compared to the clone fragments in the corresponding
SCNN; set. Thus, more recently created clone fragments are
more likely to experience bug-fix changes.

Statistical Significance Tests. In Fig. 5 we see that there
are 12 cases (4 subject systems x 3 clone-types) in total,
and for each case we show two values: AOCR-SCNB and
AOCR-SCNN. We wanted to determine whether the 12 values
of AOCR-SCNB are significantly different than the 12 values
of AOCR-SCNN. As the values of AOCR-SCNB and AOCR-
SCNN are paired, we again perform the Wilcoxon Signed-
Rank Test [29], [30] considering a significance level of 5%
as we did in RQ 1. According to our tests, the 12 values
of AOCR-SCNB are significantly different than the 12 values
of AOCR-SCNN with a p-value of 0.0028 for two-tailed test
case and 0.0014 for the one-tailed test case. Thus, the values
of AOCR-SCNB are significantly smaller than the values of
AOCR-SCNN. In other words, regarding the clone fragments
that were not changed before we see that the clone fragments
that experienced bug-fixes were created significantly more
recently compared to the other clone fragments that did not
experience bug-fix.

Answer to RQ 4. According to our experiment re-
garding the clone fragments that were not changed before
the bug-fix commits we find that the clone fragments
that are more recently created have higher possibilities
of experiencing bug-fix changes.

From our answer to RQ 4 we realize that recency of
creation of the clone fragments that were not changed before

can be used for prioritizing them according to their likeliness
of experiencing bugs in future evolution.

V. DISCUSSION REGARDING OUR FINDINGS

We have answered four research questions through our
investigation. The answers imply whether and how change-
proneness of code clones can be related to their bug-proneness
and how code clones can be prioritized for managing consid-
ering their bug-proneness.

Significance of our findings. While our finding regarding
RQ 1 complies with the intuition that code clones that were
changed previously exhibit a higher bug-proneness than the
code clones that were not changed in the past, our findings
from RQ 2 and RQ 3 are interesting. Our finding from RQ
2 goes against the common belief regarding the relatedness
between high change frequency and bug-proneness. We realize
that change frequency of clone fragments cannot imply their
tendencies of containing bugs (i.e., experiencing bug-fixes in
future). Our investigation in RQ 3 discovers the fact that
bug-proneness of code clones is primarily related to their
change recency. More recently changed code clones have a
higher possibility of containing bugs. Our finding from RQ
4 regarding the previously unchanged code clones complies
with the finding from RQ 3, and reveals that more recently
created clones have higher possibilities of containing bugs. We
finally discover that bug-proneness of code clones primarily
depend on the recency of their creation (for those that were
not modified previously) or modification (for those that were
modified in the past).

Implication of our findings. Our findings are important
for prioritizing code clones for refactoring and tracking from
the perspective of clone bug-proneness. We suggest that code
clones should be prioritized according to their recency of
creation or modification so that the most recent one gets the
highest priority. Our implemented prototype tool can rank
code clones according to their bug-proneness at any point of
evolution of a software system. Thus, it can help us in better
management of code clones.

A number of factors such as clone size, location, and
complexity can have important impacts on the bug-proneness
of code clones. However, in our research we wanted to perform
an in-depth investigation regarding how change-proneness of
code clones affects their bug-proneness. We plan to investigate
the effects of such factors in future.

VI. RELATED WORK

We discuss the existing studies related to our research from
the following perspectives.

A. Bug detection in code clones

Li and Ernst [25] developed a tool called CBCD (Cloned
Buggy Code Detector) that detects code clones of a given
piece of buggy code by applying graph isomorphism over
the PDG (program dependency graph) of the source code of
a software system. CBCD was evaluated on three software
systems, and was found to be effective in detecting clones
of buggy code fragments. Li et al. [26] developed CP-Miner
with the capability of detecting bugs related to inconsistencies
introduced during copy/paste activities. Steidl and Gode [47]
applied a machine learning technique for identifying instances
of incompletely fixed bugs in near-miss code clones. Gdde and

Koschke [10] investigated changes that occurred to the code
clones of three mature software systems and found that 14.8%
of these changes were unintentionally inconsistent. According
to a study of Moden et al. [36] on an industrial software
system, software modules containing code clones appear to
be less maintainable than the modules having no code clones.
Chatterji et al. [5] investigated bug localization in code clones
through a user study on a number of programmers. Jiang et
al. [16] developed an algorithm for automatically detecting
context based inconsistencies related to clones. They applied
their algorithm on two software systems and detected previ-
ously unknown bugs. Inoue et al. [14] investigated a mobile
software system, and detected bugs related to inconsistent
changes to the identifiers in code clones by developing a
tool named ‘Clonelnspector’. Xie et al. [54] analyzed clone
mutation and migration considering Type 3 clones of three
open-source software systems, and observed that mutation of
code clones to Type 2 and Type 3 is risky.

We see that none of the studies discussed above can help us
understand which of the clone fragments residing in a software
system’s code-base have high possibilities of experiencing bug-
fixes in future. Thus, these studies cannot help us prioritize
code clones on the basis of their bug-proneness.

B. Scheduling for clone refactoring

Zibran and Roy [55] proposed a conflict aware optimal
scheduling algorithm for clone refactoring on the basis of
constraint programming. They showed that their scheduling
algorithm is superior to the other algorithms those are based
on genetic algorithm approaches, greedy approaches and linear
programming. Bouktif et al. [4] considered the clone refac-
toring problem as a constrained knapsack problem where the
knapsack consists of all the clones to be refactored. They
found an optimal schedule for refactoring the clones in the
knapsack by applying a genetic algorithm. Lee et al. [24] also
proposed a genetic algorithm based technique for scheduling
clone refactoring activities.

We see that while these existing clone scheduling studies
[4], [55], [24] can find an optimal schedule for refactoring a
given set of clone fragments, these studies cannot determine
which of the huge number of code clones in a code-base
should be given a higher priority for refactoring or tracking. We
investigate clone bug-proneness for identifying which clone
fragments are likely to experience bug-fixes in future. We
suggest prioritizing such code clones for management such
as refactoring and tracking. Thus, our study can complement
the clone scheduling studies by identifying which code clones
should be given high priorities for scheduling.

C. Analyzing bug-proneness of code clones

Rahman et al. [38] compared bug-proneness of clone and
non-clone code residing in four subject systems using the clone
detector DECKARD [17], and found non-clone code to be
more bug-prone than clone code. However, their investigation
was based on monthly snapshots (revisions) of their subject
systems, and thus, they have the possibility of missing buggy
commits. In our study, we consider all the snap-shots/revisions
(i.e., without discarding any revisions) of a subject system from
the beginning one. Thus, we do not miss any bug-fix commits.
Also, our goal in this study is different. We investigate how
bug-proneness of code clones is affected by their change-

proneness and how to prioritize clones considering their bug-
proneness, whereas they compared bug-proneness of clone and
non-clone code in their study.

Selim et al. [46] investigated defect-proneness of code
clones using Cox hazard models and found that their defect-
proneness is system dependent. Their investigation was based
only on Type 1 and Type 2 method clones. However, we
consider all major types (Type 1, 2, and 3) of block clones in
our study. They studied only two subject systems, whereas we
conduct our investigation on four systems. Also, we investigate
clone prioritization considering clone bug-proneness. Selim et
al. [46] did not perform this investigation.

Existing studies have also investigated whether clone bug-
proneness is related to late propagation. Aversano et al.[1]
reported that late propagation in code clones can be directly
related to bugs on the basis of their investigation on two
subject systems. Barbour et al.[2] mined and analyzed eight
late propagation patterns in Type 1 and Type 2 clones of three
subject systems and identified the highly bug-prone patterns.

Two existing studies [15], [34] compared bug-replication
and bug-densities in three types of code clones: Type 1, Type
2, and Type 3. However, these studies did not investigate how
change-proneness of code clones can affect their possibilities
of containing bugs. Thus, our research is significantly different
from these existing studies [15], [34].

The tool called SPCP-Miner [32] introduced by Mondal et
al. can identify the important code clones for refactoring and
tracking on the basis of their evolutionary coupling. However,
it does not consider clone bug-proneness for ranking code
clones. We believe that clone bug-proneness should also be
considered for prioritizing code clones for management. Our
study presented in this paper considers bug-proneness of code
clones. More specifically, we investigate whether and how bug-
proneness of code clones can be related with their change-
proneness. None of the existing studies on clone bug-proneness
investigated this matter.

Hasan and Holt [12] investigated predicting bugs in open
source systems and found that subsystems that were more
frequently modified were more bug-prone compared to the
more recently modified ones. In our investigation we analyze
bug-proneness considering code fragment level granularity
which is a finer granularity compared to subsystem level
granularity in Hasan and Holt’s study. More specifically, we
analyze the bug-proneness of code clones in our candidate
systems. We found that more recently changed code clones
have higher tendencies of containing bugs.

D’ Ambros et al. [8] compared a number of bug-prediction
approaches and found that their proposed approaches: WCHU
and LDHH show promising prediction efficiencies. However,
they investigated bug-proneness considering the class level
granularity. We analyze bug-proneness considering code frag-
ment level granularity which is a finer granularity compared
to class level granularity. Moreover, we investigate the bug-
proneness of code clones disregarding the non-clone code
fragments. We find that change recency of code clones can
be a good predictor of bugs in them.

We see that existing studies have detected and investigated
bug-proneness of code clones in different ways. However,
none of these studies focus on whether and how change-
proneness of code clones can be related to their bug-proneness.

Thus, these existing studies cannot identify which of the clone
fragments residing in the code-base of a software system are
more likely to contain bugs. Focusing on this we perform an in-
depth investigation on the bug-proneness of code clones in this
research. Our experimental results are promising and provide
useful implications for ranking code clones according to their
likeliness of containing bugs.

VII. THREATS TO VALIDITY

We conduct our investigations by detecting code clones
using the NiCad clone detector [6]. While all clone detectors
suffer from the confounding configuration choice problem [53]
and might provide different clone detection results for different
settings of the tools, the settings that we have used for NiCad
are considered standard [42]. According to a recent study
[48] NiCad can detect code clones with high precision and
recall with these settings. Thus, we believe that our findings
in this experiment are important for prioritizing code clones
considering their bug-proneness.

We detect bug-fix commits in our experiment. The tech-
nique that we used for detecting such commits is similar to
that followed by Barbour et al. [3]. Such a technique proposed
by Mocus and Votta [31] can sometimes detect a non-bug-fix
commit as a bug-fix commit mistakenly. However, Barbour et
al. [3] showed that this probability is very low. According to
their investigation, the technique has an accuracy of 87% in
detecting bug-fix commits.

VIII. CONCLUSION

In this research we investigate the clone evolution history
from thousands of revisions of four subject systems written
in Java, and analyze how change-proneness of code clones
can be related with their possibilities of containing bugs.
We answer four important research questions by analyzing
our experimental results and find that code clones that were
changed in the past have a significantly higher possibility of
containing bugs (i.e., experiencing bug-fixes) compared to the
code clones that were not changed previously. While such
a finding complies with the common intuition, our research
discovers that change frequencies of clone fragments do not
indicate their possibilities of containing bugs. This finding
invalidates the common belief regarding the relatedness of bug-
proneness of with high change frequency. We discover that
bug-proneness of code clones is primarily related with their
change recency. More recently changed clones are more likely
to experience bug-fixes. Regarding the clone fragments that
were not changed previously we find that the more recently
created ones have higher tendencies of experiencing bug-fixes.
Our research establishes the fact that bug-proneness of code
clones is mainly influenced by their recency of creation (for
clones that were not previously modified) or modification (for
clones that were previously modified). We suggest that code
clones should be prioritized for management (refactoring and
tracking) considering their recency of creation and modifica-
tion from the perspective of their bug-proneness. In the future
we plan to investigate the effects of a number of factors such
as clone size, location, and complexity on the bug-proneness
of code clones.

Acknowledgments: This work is supported in part by the

Natural Science and Engineering Research Council of Canada
(NSERC).

(1]
(2]

(3]

(4]

(3]

(6]

(71
(8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]
[21]
[22]

[23

[t

[24]

[25]

[26]

[27]
(28]
[29]

[30]

REFERENCES

L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study”, Proc. CSMR, 2007, pp. 81 — 90.

L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 — 282.

L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late
propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 — 1165.

S. Bouktif, G. Antoniol, E. Merlo, M. Neteler, “A Novel Approach to
Optimize Clone Refactoring Activity”, Proc. GECCO, 2006, pp. 1885 —
1892.

D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring
the Efficacy of Code Clone Information in a Bug Localization Task: An
Empirical Study”, Proc. ESEM, 2011, pp. 20 — 29.

J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool
Demo, 2011, pp. 219 — 220.

CTAGS: http://ctags.sourceforge.net/

M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches”, Proc. MSR, 2010, pp. 31 — 41.

E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code
Clone Management”, Proc. ICSE, 2008, pp. 843 — 846.

N. Gode, Rainer Koschke, “Frequency and risks of changes to clones”,
Proc. ICSE, 2011, pp. 311 — 320.

N. Gode, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 — 74.

A. E. Hassan, R. C. Holt, “The top ten list: Dynamic fault prediction”,
Proc. ICSM, 2005, pp. 263 — 272.

K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software”, Proc. EVOL/IWPSE,
2010, pp. 73 — 82.

K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W.
Park, E. Lee, “Experience of Finding Inconsistently-Changed Bugs in
Code Clones of Mobile Software”, Proc. IWSC, 2012, pp. 94 — 95.

J. F. Islam, M. Mondal, C. K. Roy, “Bug Replication in Code Clones:
An Empirical Study”, Proc SANER, 2016, pp. 68 — 78.

L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related
Bugs”, Proc. ESEC-FSE, 2007, pp. 55 — 64.

L. Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones”, Proc. ICSE, 2007, pp.
96 - 105.

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485 — 495.

C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software”, Empirical Software Engineer-
ing, 2008, 13(6): 645 — 692.

M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of
code clone genealogies”, Proc. ESEC-FSE, 2005, pp. 187 — 196.

J. Krinke, “A study of consistent and inconsistent changes to code
clones”, Proc. WCRE, 2007, pp. 170 — 178.

J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57 — 66.

J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC,
2011, pp. 28 — 33 .

S. Lee, G. Bae, H. S. Chae, D. Bae, Y. R. Kwon, “Automated scheduling
for clone-based refactoring using a competent GA”, SOFTWARE PRAC-
TICE AND EXPERIENCE, 2011, 41:521 — 550.

J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE,
2012, pp. 310 — 320.
Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding

Copy-paste and Related Bugs in Operating System Code”, Proc. OSDI,
2004, pp. 20 - 20.

A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC,
2010, pp. 65 - 72.

A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227 — 236.

Wilcoxon Signed-Rank Test On-line: http://www.socscistatistics.com/
tests/signedranks/Default2.aspx

Wilcoxon signed-rank test: https://en.wikipedia.org/wiki/Wilcoxon_
signed-rank_test

[31] A. Mockus, L. G. Votta, “Identifying Reasons for Software Changes
using Historic Databases”, Proc. ICSM, 2000, pp. 120 — 130.

M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for
Mining Code Clones that are Important for Refactoring or Tracking”,
Proc. SANER, 2015, pp. 484 - 488.

M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of
Important Clones for Refactoring and Tracking”, Proc. SCAM, 2014, pp.
11 - 20.

M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study on the
Bug-Proneness of Different Types of Code Clones”, Proc. ICSME, 2015,
pp. 91 - 100.

M. Mondal, C. K. Roy, and K. A. Schneider. “A comparative study
on the intensity and harmfulness of late propagation in near-miss code
clones”, Software Quality Journal, 24(4): 883 — 915.

A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto, “Software
Quality Analysis by Code Clones in Industrial Legacy Software”, Proc.
METRICS, 2002, pp. 87 — 94.

Online SVN repository: http://sourceforge.net/

F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc.
MSR, 2010, pp. 72 - 81.

D. C. Rajapakse and S. Jarzabek, “Using Server Pages to Unify Clones
in Web Applications: A Trade-off Analysis”, Proc. ICSE, 2007, pp. 116
- 126.

C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”, Proc. CSMR-
WCRE, 2014, pp. 18 — 33.

C. K. Roy, “Detection and analysis of near-miss software clones”, Proc.
ICSM, 2009, pp. 447 — 450.

C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion”, Proc. ICPC, 2008, pp. 172 — 181.

C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74 (2009): 470 — 495.

C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. Mutation,
2009, pp. 157 — 166.

R. K. Saha, C. K. Roy, K. A. Schneider, “An Automatic Framework for
Extracting and Classifying Near-Miss Clone Genealogies”, Proc. ICSM,
2011, pp.293 - 302.

G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y.
Zou, “Studying the Impact of Clones on Software Defects”, Proc. WCRE,
2010, pp. 13 - 21.

D. Steidl, N. Gode, “Feature-Based Detection of Bugs in Clones”, Proc.
IWSC, 2013, pp. 76 — 82.

J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”,
Proc. ICSME, 2014, pp. 321 — 330.

S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical
study on the maintenance of source code clones”, Empirical Software
Engineering, 2009, 15(1): 1 — 34.

N. Tsantalis, D. Mazinanian, G. P. Krishnan, “Assessing the Refac-
torability of Software Clones”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 2015, 41(11): 1055 — 1090.

R. D. Venkatasubramanyam, S. Gupta, H. K. Singh, “Prioritizing code
clone detection results for clone management”, Proc. IWSC, 2013, pp.
30 - 36.

X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, H. Mei, “Predicting
Consistency-Maintenance Requirement of Code Clones at Copy-and-
Paste Time”, Proc. IEEE Transactions on Software Engineering, 2014,
40(8): 773 — 794.

T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455 — 465.

S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 —
158.

M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code
Clone Refactoring”, IET Software, 2013, 7(3): 167 — 186.

[32]

(33]

[34]

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471
[48]

[49]

[50]

[51]

[52]

(53]

[54]1

[55]

