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ABSTRACT
A number of studies investigated providing change sugges-
tions to programmers on the basis of the evolution history
of a software system. While existing studies provide change
suggestions considering code fragment level or even line level
granularities, we investigate providing change suggestions at
the method level. Providing a suggestion to change the en-
tire method at one time is intuitively more time saving for
developers compared to providing suggestions separately for
different fragments of a method. In this research we empir-
ically investigate whether we can infer change suggestions
at the method level by analyzing the past evolution history
of a software system through detection of method clones,
and if so, then how we can rank the method level change
suggestions.

According to our investigation on thousands of commits
of seven diverse subject systems, we can provide change sug-
gestions at the method level with up to 83% precision and
13.49% recall. Moreover, for up to 34% of the commits we
can provide correct method level change suggestions. Com-
pared to the existing fragment level change suggestion tech-
niques, our method level change suggestion technique has
promising precision and recall. We investigate the ranking
of method level change suggestions and find that recency
ranking (i.e., ranking on the basis of how recently the change
suggestions appeared in the past) is a better choice than
frequency ranking (ranking considering how frequently the
suggestions appeared). We believe that while a method level
change suggestion technique can never be a replacement for
the existing fine grained change suggestion techniques, it can
complement these existing ones.

1. INTRODUCTION
Repetition of changes is a common phenomenon during

software maintenance and evolution. A change that oc-
curred to a particular code fragment in the past can often
be necessary for a similar code fragment in the future. A
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number of preexisting studies [25, 29, 11, 17, 24, 7] revealed
this fact. Nguyen et al. [25] reports that repetitiveness of
changes can be as high as 70-100% during system evolu-
tion. Researchers have developed change recommendation
systems [25, 29] by exploiting the repetition tendencies of
changes. The central idea behind these recommendation
systems is simple and is explained as follows.

Let us assume that a programmer is currently working on
a code snippet CScurrent. She wants to make some changes
to it. However, it is possible that a similar code snippet
CSprevious was previously modified in the same way she is
now thinking, and in this case, the change that occurred to
CSprevious can be recommended to the programmer for mak-
ing a similar change to the target code snippet CScurrent.
The two existing change recommendation systems developed
by Nguyen et al. [25] and Ray et al. [29] work according to
this idea and can recommend changes with reasonable accu-
racy. Nguyen et al. and Ray et al. investigated different sets
of subject systems and reported precisions of up to 30% and
59.91% respectively in providing change recommendations.

The existing change suggestion techniques [25, 29] pro-
vide code fragment level or even line level change sugges-
tions. While such fine-grained change suggestions can per-
form well in helping programmers during development and
maintenance, we were interested in improving the suggestion
making capabilities of these techniques on the basis of the
following facts.

(1) Changes might often need to be implemented in dif-
ferent parts/fragments of a method in a scattered way. The
existing tecniques [25, 29] can provide suggestions for chang-
ing each fragment separately. However, getting suggestions
for different fragments separately, identifying the most suit-
able suggestions, and applying them to the fragments one
by one can often be very time consuming. In such a sit-
uation, it would be better if we could provide a complete
method as a suggestion to the programmer such that the
suggested method will be an updated version of the target
method (i.e., the method that she wants to change) and will
contain all the changes she wants to implement. In presence
of such method level suggestions, a programmer can often
avoid the difficulties of implementing multiple changes in
multiple fragments of the target method in a time efficient
manner.

(2) A particular code fragment is generally expected to
be related to its context (i.e., the surrounding code). Two
code fragments from two different methods might be similar.
However, if the contexts of these two fragments are different,



then the change that occurred to one fragment might not be
suitable for the other one. If we can provide change sug-
gestions at the method level, we can actually consider the
contexts of the changes (i.e., the other parts of the method
will work as the context). Thus, method level change sug-
gestions are expected to be more precise than the fragment
level suggestions. Our experimental results in Section 4.5
implies this.

Focusing on these facts, in our research we investigate
the possibility of providing change suggestions considering
method level granularity. When a programmer attempts
to change a method (i.e., the target method), our goal is
to provide her with suggestions where each suggestion will
be an updated version of the target method containing the
possible changes the programmer might want to implement.

When a target method is attempted to be changed we au-
tomatically analyze the method change history of the soft-
ware system and identify whether any similar method (i.e.,
similar to the target method) was previously changed. The
changed versions of such similar methods are considered as
the change suggestions for the target method. For extract-
ing the method change history of a software systen we detect
and continuously update the genealogies of all the methods
in the system as the system evolves through the commits.
The genealogy of a particular method helps us understand
how the method evolved through the commits by experienc-
ing changes. We define method genealogy in Section 2.2.

For the purpose of our empirical study we implement our
idea of providing method level change suggestions and apply
the implementation on thousands of commits of seven di-
verse subject systems written in two different programming
languages. We also investigate the ranking of method level
change suggestions. In particular we answer the following
two research questions.

Y RQ 1: Can we infer change suggestions at the method
level for changing a target method by analyzing the
past evolution history of the software system?

Y RQ 2: How can we rank method level change sugges-
tions for a target method?

According to our experimental results and analysis we
have the following findings:

(1) While the existing studies [25, 29] analyze and
report the extent of fragment level change repetitions,
we find that repetition of method level change is also
a common phenomenon during system evolution. A
target method might often need to be changed (includ-
ing changes in multiple fragments) in the same way
a similar method was changed in the past. Accord-
ing to our subject systems, up to 13.49% (recall) of
the method changes occur in this way during evolution.
Thus, method level change suggestions can also be in-
ferred from the evolution history of a software system.

(2) Our precision in providing method level change
suggestions can be as high as 83%.
(3) According to our investigated systems, we can

provide correct method level change suggestions for up
to 34% of the commit operations during the whole pe-
riod of evolution. Thus, a method level change sugges-
tion technique can often help programmers by providing

correct change suggestions during software development
and maintenance.

(4) While the existing techniques [25, 29] rank the
fragment level change suggestions using frequency rank-
ing (i.e., ranking on the basis of how frequently a sug-
gested change occurred in the past), we find that recency
ranking (i.e., ranking on the basis of how recently a sug-
gested change occurred in the past) is a better choice
than frequency ranking when ranking change sugges-
tions at the method level.

With respect to the existing fine grained (i.e., fragment
level) change recommendation studies [25, 29], our imple-
mented change suggestion mechanism performs reasonably
well (in terms of both precision and recall) in providing sug-
gestions at the method level. Nguyen et al. [25] and Ray
et al. [29] show that recall can be as low as 2% and 12.59%
respectively. They studied fine grained change suggestions.
They also report that recall decreases rapidly with the in-
crease of fragment size. We investigate providing change
suggestions at the method level which is a higher granular-
ity compared to the fragment level granularity investigated
in the existing studies. From this point of view we believe
that our recall is reasonable. Our precision is promising,
and is better compared to the existing studies. Thus, our
technique can often provide accurate method level change
suggestions. While a method level change suggestion mech-
anism can never be a replacement of the existing ones [25,
29], it can complement the existing techniques in providing
better suggestions.

The rest of the paper is organized as follows. Section 2 de-
scribes our mechanism of providing method level change sug-
gestions, Section 3 describes the experimental steps, Section
4 presents our investigation on the possibility of providing
method level change suggestions and answers RQ 1, in Sec-
tion 5 we investigate the ranking of the method level change
suggestions and answer RQ 2, Section 6 describes related
work, Section 7 discusses the possible threats to validity, and
Section 8 concludes the paper.

2. PROVIDING CHANGE SUGGESTIONS AT
THE METHOD LEVEL

In this section we describe the implementation of our idea
of providing change suggestions at the method level. As we
indicated in the introduction, method genealogy detection
is an essential part in providing change suggestions at the
method level. Ray et al.’s [29] approach does not involve
the detection of method genealogies. Although Nguyen et
al. [25] detect method genealogies, they provide change sug-
gestions at the fragment level. Moreover, their genealogy
detection technique, OAT [23], can only be used for Java
systems [23]. The genealogy detection technique [18] that
we use in our study is language independent. Table 1 shows
that we also investigate a C# system in our study. In the
following subsections we describe our mechanism of inferring
method level change suggestions for a target method.

A Target Method. Let us assume that a programmer
is going to make some changes to a method in the work-
ing code-base (i.e., the most recent code-base) of a software
system. We call this method a target method in our paper.



2.1 Method Change Detection
In this research we consider the changes to the source code

of a method disregarding the comments and indentations.
Let us assume a particular method mR in revision R. A
commit operation C was applied to revision R, and revision
R� 1 was created because of this commit. The snap-shot of
mR in revision R�1 is mR�1. We remove the comments and
indentations from each of these two snap-shots (i.e., mR,
and mR�1). Then we compare these two preprocessed snap-
shots using UNIX diff. If the preprocessed snap-shots are
different according to the diff output, then we consider that
mR was changed in the commit operation C.

2.2 Detection of Method Genealogies
Let us assume that a particular method was created in

a particular revision of a subject system, and was alive in
a number of consecutive revisions. Each of these revisions
contains a snap-shot of the method. Detecting the genealogy
of a particular method involves identifying the sequence of
snap-shots of that method from those revisions where it was
alive during system evolution. Our change suggestion mech-
anism involves the detection of method genealogies consid-
ering all the revisions of a candidate system. For detecting
method genealogies, we follow the genealogy detection ap-
proach proposed by Lozano and Wermelinger [18].

From the genealogy of a particular method we can deter-
mine how it changed during the evolution of the software
system by detecting the changes between every two consec-
utive snap-shots of it. Different methods might be created
in different revisions. As a software system evolves through
the commit operations, we extract as well as update the ge-
nealogies of all the methods in the system. We obtain the
method change history of a software system by analyzing its
method genealogies. We develop and continuously update a
change suggestion database from the method change history
of a candidate system as the system evolves.

2.3 Developing a Database for Providing Change
Suggestions

For the purpose of suggesting changes we develop a database
that contains the method change history of the past com-
mits. We populate the database in such a way that we can
easily mine it to infer change suggestions for changing a tar-
get method. At the very beginning of the development phase
of a software system, this database remains empty. Each
time a software system experiences a commit operation a
new revision is created and we extract as well as update the
genealogies of all the methods in the system. By analyz-
ing these updated genealogies we determine which methods
have been changed in this commit. We update the change
suggestion database considering each occurrence of method
change in this commit operation.

Let us assume that a particular method m has been changed
in a commit operation C. From the genealogy of this method
we retrieve the following two snap-shots of it and store these
snap-shots in the database.

Y The prior snap-shot. This is the snap-shot of the
method m just before the commit operation C. We call
this prior snap-shot mprior.

Y The posterior snap-shot. This is the snap-shot of
m just after the commit operation C. We call this pos-
terior snap-shot mposterior.

We store these snap-shots in the database along with the
commit number C. Thus, each entry in the database consists
of three things: the two snap-shots, and the commit opera-
tion where the prior snap-shot was changed to the posterior
snap-shot. In the following subsection we describe how we
mine our change suggestion database for inferring method
level change suggestions for changing a target method.

2.4 Inferring Change Suggestions for a Target
Method from the Database

Let us assume that a programmer is now working on the
code-base (i.e., the most recent code-base) of a software
system. She identifies a particular method mtarget where
she needs to implement the changes. We call this method,
mtarget, the target method. Our goal is to provide her with
a list of change suggestions for changing her target method
mtarget so that she can select a particular change suggestion
and can apply the corresponding changes to mtarget. We
provide change suggestions at the method level by mining
our change suggestion database. Each of our change sugges-
tions can be regarded as an updated version of the target
method containing all possible changes that the program-
mer might intend to implement in the target method. Our
mechanism for inferring change suggestions for mtarget is
described below.

We mine the change suggestion database and determine
whether the target method mtarget is similar to any of the
stored prior snap-shots. If mtarget is similar to a prior
snap-shot mprior, then the corresponding posterior snap-
shot mposterior is considered as a method level change sug-
gestion for mtarget. By mining the change suggestion database
we determine all the prior snap-shots that are similar to
mtarget. The corresponding posterior snap-shots are consid-
ered as the method level change suggestions for mtarget.

2.5 Detecting Similarity between two Methods
From our previous description we understand that detec-

tion of similarity between methods is an important part of
providing change suggestions at the method level. We de-
tect both exact and near-miss similarity between methods
using the NiCad clone detector[5].

Exact similarity between methods. Let us consider
two methods m1 and m2. If these two methods are the same
disregarding the comments and indentations, we consider
that the methods exhibit exact similarity.

Near-miss similarity between methods. Let us con-
sider two methods m1 and m2. If these two methods have
the same syntactic structure, however, the identifier names
in one method are different compared to the other one, we
consider that these two methods exhibit near-miss similarity.

We can easily understand that two methods that exhibit
exact similarity also have the same syntactic structure. Thus,
by considering the above two types of similarity we actually
consider the syntactic similarity between methods. The ex-
isting change recommendation studies [25, 29] considered
syntactic similarity between code fragments for providing
fragment level change suggestions. We consider syntactic
similarity between methods for providing method level change
suggestions. We use NiCad [5] for detecting similarity in
our research, because NiCad has been shown to detect the
mentioned similarities (i.e., exact as well as near-miss simi-
larities) with high precision and recall [31, 32, 35].



Table 1: Subject Systems
Systems Lang. Domains LLR SRev ERev

jEdit Java Text Editor 191,804 3791 4000

GreenShot C# Screen Capturing Tool 37,628 1 999

Carol Java Game 25,091 1 1700

JHotDraw Java Graphics 143,339 1 500

Ant-Contrib Java Web Server 12,621 1 176

Java-ML Java Machine Learning Library 16,428 1 1200

DNSJava Java DNS Protocol 23,373 1 1635

SRev = Starting Revision ERev = End Revision

LLR = LOC in the Last Revision

3. EXPERIMENTAL STEPS
We perform our empirical study using our implemented

change suggestion mechanism described in Section 2. We
apply our implementation on the thousands of revisions of
seven diverse subject systems listed in Table 1. We down-
load these systems from an open-source SVN repository1.
For each of the subject systems we perform the following
experimental steps: (1) Download all the revisions of the
subject system as mentioned in Table 1, (2) Extract methods
from each of the revisions using Ctags2, (3) Extract method
genealogies considering all the revisions using the technique
proposed by Lozano and Wermelinger [18], (4) Analyzing
the method genealogies by comparing the consecutive snap-
shots using UNIX diff to identify the changes each method
experienced in each commit operation during system evolu-
tion, (5) Build the change suggestion database considering
the methods changed in each commit, and finally, (6) Inves-
tigate whether and to what extent we can provide method
level change suggestions for changing a target method. We
perform our investigation corresponding to Step-6 in Sec-
tion 4. We investigate the ranking of method level change
suggestions in Section 5.

4. INVESTIGATING METHOD LEVEL
CHANGE SUGGESTIONS

In this section we answer the first research question by
presenting and analyzing our experimental results.

RQ 1: Can we infer change suggestions at the method
level for changing a target method by analyzing the evolution
history of the software system?

Answering this question is the primary goal of our re-
search. In the introduction we discussed that method level
change suggestions can sometimes be more beneficial than
fragment level suggestions. We answer RQ 1 by using our
implemented change suggestion mechanism (Section 2).

4.1 Methodology
For answering RQ 1 we apply a variant of the n-fold cross-

validation technique. We examine the commit operations of
a subject system from the very first one. While examining a
commit operation we first identify which methods changed
in this commit. Then, we analyze whether we can infer
these method-changes from the past evolution history of the
system.

Let us assume that we are currently examining the com-
mit operation C of a subject system. The commit C was
applied on revision R and a method mR was changed in

1
Open-Source SVN Repository: http://www.sourceforge.net

2
Exhuberant Ctags: http://ctags.sourceforge.net/

this commit. We can easily determine which changes oc-
curred to this method by retrieving the snap-shot mR�1 of
the method in the next revision R � 1. However, our goal is
to determine whether and to what extent we can infer the
snap-shot mR�1 by analyzing the method change history of
the previous commits 1 to C�1 stored in the change sugges-
tion database. Here, the method mR is our target method.

We apply our change suggestion mechanism to mine the
method change occurrences in the change suggestion database.
We investigate all the method changes that occurred in the
previous commits 1 to C � 1. Let us consider that such a
method change occurred in the commit operation C � n (n
A� 1). This commit was applied on revision R � n. The
method mR�n (i.e., the prior snap-shot) in this revision was
changed in this commit. The snap-shot of the method in the
next revision R � n � 1 is mR�n�1 (i.e., the posterior snap-
shot). We analyze whether this method change can be used
for inferring a change suggestion for our target method mR.
We analyze in the following way.

Y If we observe that the target method mR is similar
(similarity is defined in Section 2.5) to mR�n, then we
select mR�n�1 as the change suggestion for our target
method mR.

Y If we observe that the target method mR is similar to
mR�n and also, mR�1 is similar to mR�n�1, then we
consider mR�n�1 as the correct change suggestion for
the target method mR.

Y If we see that the target method mR is not similar to
mR�n, then we do not select mR�n�1 as the change
suggestion for mR.

In this way while examining a particular commit C, we
analyze how many of the method changes that occurred in
this commit can be correctly suggested by analyzing the
method changes in the previous commits 1 to C � 1.

4.2 Experimental Results
We analyze each occurrence of method change in each of

the commits of a subject system using our change suggestion
mechanism. For the purpose of explaining our experimental
results we define a case in the following way.

A Case. A case is an occurrence of a method change. It
consists of the following four things:

(1) A particular method m,
(2) A commit operation C where m was changed,
(3) The changed version mchanged of the method m after

the application of the commit operation C, and
(4) A list of method level change suggestions inferred by

our change suggestion mechanism by analyzing the previous
commits 1 to C � 1 for changing the method m. The list of
change suggestions might be empty. Let us consider a case
with a non-empty list of method level suggestions. If a sug-
gested method msuggested (i.e., a method level suggestion)
from the list is similar to mchanged, then we understand that
our mechanism can provide the correct change suggestion for
changing m in this case.

We identify all the cases from the entire evolution history
of a subject system and determine the following three sets.

Y AC (All Cases): This set includes each of the cases
that we identify by examining the evolution history of a
subject system. In other words, this set includes all the



Table 2: Statistics for Method Change Suggestions

jEdit Greenshot Carol JHotDraw Ant Java-ML DNSJava

Contrib

NAC 2616 1999 2864 8335 60 1778 3770

NCS 543 262 246 1820 6 328 513

NCCS 353 113 74 822 5 145 157

NAC = No. of Cases in the set AC. AC is defined in Section 4.2.

NCS = No. of cases where we can provide one or more

change suggestions. This is the number of cases in the set CS.

NCCS = No. of cases where the suggestions that we provide include the

correct change suggestion (i.e., no. of cases in the set CCS).

occurrences of method change. If n methods experience
changes (additions, deletions, and/or modifications) in
a particular commit, then we identify n cases from this
commit.

Y CS (Cases with Suggestions): Each case for which
we can provide one or more change suggestion is in-
cluded in this set. Let us consider a case where a
method m was changed in a commit operation C. If
our method change suggestion mechanism can infer
one or more change suggestions for changing m by ana-
lyzing the previous commits 1 to C�1, then we include
this case in the set CS.

Y CCS (Cases with Correct Suggestions): Each
case where the change suggestions provided by our
mechanism include the correct suggestion is included
in this set. CCS is a proper subset of CS.

The number of cases in each of the above sets from each of
our subject system is shown in Table 2. On the basis of these
sets we present our analysis in the following subsections.

4.3 Analyzing the percentage of repeated cases
(i.e., the repetitiveness of method change)

We can easily understand that if the change suggestions
inferred by our mechanism for a particular case include the
correct suggestion (i.e., if this case was included in the set
CCS), then this case is an example of a repeated case. We
define a repeated case in the following way.

A Repeated Case. Let us consider a case casecurrent
where a method mcurrent was changed to mcurrent,changed

because of the commit operation Ccurrent. We also consider
another case caseprevious from a previous commit Cprevious
where a method mprevious was changed to mprevious,changed.
We say that casecurrent is a repetition of caseprevious if
mcurrent is similar to mprevious, and also, mcurrent,changed

is similar to mprevious,changed.
An Example of a Repeated Case. Fig. 1 shows an ex-

ample of a repeated case from our subject system JavaML.
The changes experienced by a method named paintCompo-
nent from class VisualTestXMeans.ClusterLabel (file = Vi-
sualTestXMeans.java) in commit operation 52 were also ex-
perienced by another similar method with the same name
from class VisualTestSimpleKMeans.ClusterLabel (file = Vi-
sualTestSimpleKMeans.java) in commit operation 61. We
see that the snap-shots of the method in VisualTestXMeans.-
ClusterLabel just before and after the commit operation 52
are similar to the corresponding snap-shots of the method in

class VisualTestSimpleKMeans.ClusterLabel just before and
after commit 61.

Providing the correct change suggestion for a particular
case is possible only if this case is a repeated case. The per-
centage of repeated cases during the whole period of evolu-
tion of a software system was calculated using Eq. 1.

% of Repeated Cases � Recall �
SCCSS � 100

SAC S
(1)

The percentage of repeated cases for each of our subject
sytems is shown in Table 3. This percentage is the highest
(13.49%) for our candidate system jEdit.

We see that the percentages regarding some of the sub-
ject systems (such as Carol, GreenShot) are low. The pri-
mary reason behind such low percentages is the granularity
of change suggestions that we infer. We provide a whole
method as a suggestion. When a change that occurred to
a particular fragment of a previous method can be applica-
ble to a similar fragment of the target method, the whole
target method might not replaceable by the changed version
of the previous method. However, although the percentages
of repeated cases are low for some subject systems, we see
that this percentage can sometimes be considerable (For ex-
ample, our system jEdit). Moreover, these percentages are
reasonable when compared with the existing change recom-
mendation studies [25, 29].

Nguyen et al. [25] reports that the percentage of repeated
changes can be as high as 70-100% for small changes. This
percentage drops exponentially with the increase of change
size. For large changes, the repetitiveness is below 2%. They
measured the extent of fragment level change repetitions in
their study. In other words, they determined the extent to
which a change in a code fragment is repeated. However, in
our study we measure the repetitiveness of cases, that is the
repetitiveness of the whole method change. In a repeated
case, there can be repetitions of changes to multiple code
fragments remaining inside a method. Thus, the percentage
of repeated cases will reasonably be smaller than the per-
centage of repeated fragment level changes. However, our
experimental results show that the percentage of repeated
cases can often be considerable. Thus, method level change
suggestions has the potential to help programmers during
software evolution.

Ray et al. [29] investigate the repetitiveness of changes in
three subject systems. The percentages of repeated changes
in their systems were 17.44%, 25.18%, and 12.59% respec-
tively. Their granularity of investigation was in the frag-
ment level. They only considered fragments of at least 50
tokens. The changes that occurred to any smaller fragments
were disregarded in their study. On the other hand we in-
vestigate the repetitiveness of cases (i.e., repetition of the
occurrence of a whole method change), and also consider all
the changes that occurred during evolution. With such dif-
ferences in considerations we believe that the percentages of
repeated cases in our subject systems are reasonably well.

We finally believe that the oftenness of the repetition
of cases is considerable during software evolution. Thus,
change suggestions at the method level can be helpful to the
programmers during development and maintenance.

We can also easily understand that the percentage of re-
peated cases (calculated using Eq. 1) is the recall in provid-
ing change suggestions in the method level. We call it recall



Figure 1: The figure shows an example of a repeated case from our subject system JavaML. We see that the
changes that occurred to a method in the commit applied on revision 52 were also experienced by a similar
method in the commit on revision 61.

Table 3: The percentage of repeated cases
jEdit Greenshot Carol JHotDraw Ant Java-ML DNSJava

Contrib

PRC 13.49% 5.65% 2.58% 9.86% 8.33% 8.16% 4.16%

PRC = Percentage of repeated cases.

because it is the percentage of those cases (method changes)
for which we can provide accurate method level change sug-
gestions with respect to all cases. Thus we believe that our
recall in providing method level change suggestions is rea-
sonable compared to the existing studies.

4.4 Manual analysis of the repeated cases (i.e.,
the cases in the set CCS)

We also manually analyze the repeated cases to deter-
mine whether the changes that were previously experienced
by a particular method in a commit operation cprevious can
again occur to a similar method in a later commit opera-
tion clater. In the previous subsection we explained that
the cases in the set CCS are the repeated cases. We manu-
ally analyze 20 such cases from each of the subject systems
except Ant-Contrib. For this system, the total number of
cases in CCS is 5. From our analysis on 125 cases in total
we can state that in each of the cases the changes were re-
peated. We realize that the changes that previously occurred
to a particular method can again occur to a similar method
in future. Fig. 1 shows an example of a repeated case from
the subject system JavaML.

4.5 Analyzing the precision in providing method
level change suggestions

Precision is the percentage of cases where the change sug-
gestions provided by our implemented mechanism include
the correct change suggestion with respect to all those cases
where we can provide one or more suggestions. We calculate
precision in the following way.

Precision � �SCCSS � 100� ~ SCSS (2)

Fig. 2 shows how precisely we can provide method level
change suggestions for each of our subject systems. We see

that the precision is considerable for each of our candidate
systems. Considering all the subject systems we also calcu-
late the overall precision using the following equation.

Overall Precision �

100 �Ps ε Systems SCCSsS

Ps ε Systems SCSsS
(3)

Here, s is a particular subject system, and CCSs and CSs
are respectively the sets CCS and CS from this system.

The overall value of precision is around 44.88% in our
study. In case of Nyguen et al.’s study [25], this overall
value was around 30%. Ray et al. [29] reported a preci-
sion of up to 59.91% in their study. However, in our study
we see that this precision can be as high as 83% (for Ant-
Contrib). For our largest system jEdit, the precision is 65%.
Although our change suggestion mechanism is not directly
comparable with the existing ones [25, 29] because of the
difference between the granularities of change suggestion,
we believe that our mechanism performs reasonably well in
providing change suggestions at the method level. Also, as
the suggestions provided by our mechanism are full meth-
ods, a programmer can often readily use (i.e., using without
any change) the correct suggestion (i.e., the correctly sug-
gested method that already contains the expected changes)
by replacing the target method she attempted to change.

4.6 Analyzing the percentage of cases where
we can provide one or more change sug-
gestions at the method level

We calculate this percentage using the following equation.

PCS � �SCSS � 100� ~ SAC S (4)

Here, PCS is the percentage of cases where we can provide
one or more change suggestions. The PCS for each of the
subject systems has been shown in Fig. 3.

Fig. 3 implies that the percentage of cases where we
can provide method level change suggestions is considerable
for most of the subject systems. The percentage regarding
JHotDraw (i.e., 21.84) is the highest. We also calculated
the overall percentage considering all subject systems using
an equation similar to Eq. 3. This overall value is around
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Figure 3: Percentage of cases where we can provide
one or more change suggestions at the method level

17.36%. We believe that our implemented mechanism has
the potential to help programmers by providing method level
change suggestions during development and maintenance,
and thus, can complement the existing fine-grained change
suggestion techniques [25, 29].

4.7 Analyzing the percentage of commit oper-
ations with correct change suggestions

This is the percentage of commits where we can provide
the correct change suggestions at the method level with re-
spect to all commits. This percentage can help us under-
stand how often our change suggestion mechanism can help
programmers by providing them the correct suggestions at
the method level. A number of methods might be changed
in a particular commit operation. If we can provide correct
change suggestion for any of these methods, then we con-
sider this commit for our calculation. We calculate this in
the following way.

POCCS � �SCCCSS � 100� ~ SCMC S (5)

Here, POCCS is the percentage of commits where we
can provide correct change suggestions at the method level.
CMC is the set of those commits where one or more meth-
ods were changed. The set CCCS includes each of those
commits where we can provide the correct change sugges-
tion(s) at the method level. We plot the percentage POCCS
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Figure 4: The percentage of commits where the
change suggestions that we provide include the cor-
rect suggestion at the method level.

for each of the subject systems in the graph of Fig. 4. For
our subject system JHotDraw, this percentage is the high-
est (34%). We also calculate the overall value of POCCS
considering all the subject systems using an equation simi-
lar to Eq. 3. This overall value is around 11%. From our
experimental results we can say that our change suggestion
mechanism can often provide correct suggestions (i.e., at the
method level) to the programmers during system evolution.

4.8 Answer to RQ 1
According to our analysis involving manual investigation

in the previous subsections we can state that:

(1) Repetition of method change is a common phe-
nomenon during system evolution. A target method
might often need to be changed in the same way a simi-
lar method was changed previously. According to our in-
vestigated systems, up to 13.49% of the method changes
occur in this way during system evolution. This per-
centage is the recall in providing method level change
suggestions. The overall recall considering all subject
systems is around 7.8%. With respect to the existing
fine grained change suggestion techniques [25, 29], our
method level change suggestion technique shows a rea-
sonable recall value for each of our subject systems.

(2) Our implemented change suggestion technique
can provide change suggestions at the method level for
up to 21.8% of the cases. Our precision in providing
method level change suggestions can be as high as 83%.
The overall precision is around 44.89% considering all
candidate systems.

(3) The overall percentage of commits where we can
provide correct change suggestions is also considerable
(11%). This percentage can be as high as 34% according
to our investigated systems. Thus, change suggestions
at the method level can often help programmers in mak-
ing changes during software evolution.

A method level change suggestion inferred by our imple-
mented mechanism can contain multiple changes at multi-
ple fragments of it. By using UNIX diff or other existing
program differentiation tools [16, 3] we can easily identify
the differences between a target method and a suggested



Table 4: Average number of method level change
suggestions per target method
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ANS 1.59 2.08 1.86 7.02 1.5 1.99 2.97

ANS = Average number of change suggestions at the method level.

method. Here, we should note that there can be situations
where some of the changes in a method level change sugges-
tion might not be suitable for the target method. However,
even in such a situation the suggestion can be helpful to the
programmer. She can consider only those changes which
are suitable for her target method disregarding the remain-
ing ones. She can see her intended changes implemented in
a similar context as of her target method.

5. RANKING OF CHANGE SUGGESTIONS
In this section we answer the second research question (RQ

2) by presenting and analyzing our experimental results.
RQ 2: How can we rank method level change suggestions

for a target method?
From our answer to the previous research question we see

that we can provide change suggestions at the method level
for changing a target method by analyzing the software evo-
lution history. In RQ 2 we investigate how we can rank the
method level change suggestions provided by our technique.
We perform our investigation in the following way.

5.1 Investigating the average number of change
suggestions per target method

Table 4 shows the average number of change suggestions
per target method for each of our subject systems. We see
that for our subject system JHotDraw this average number
is the highest (7.02). Although the average number of sug-
gestions for some systems are small, we found that the num-
ber of change suggestions for some target methods could be
high. For jEdit, GreenShot, Carol, Java-ML, and DNSJava
the highest numbers of suggestions for a target method can
be 8, 10, 19, 17, and 12 respectively. From such a scenario
we believe that efficient ranking of the method level change
suggestions is important. In the following subsections we
discuss the ranking of change suggestions.

5.2 Ranking of change suggestions
We discuss and compare the following two ranking mech-

anisms for ranking the method level change suggestions for
a target method.

Y Frequency Ranking: Ranking change suggestions
on the basis of their frequencies of occurrences.

Y Recency Ranking: Ranking change suggestions on
the basis of their recency of occurrence.

The existing studies [25, 29] only used frequency ranking
for ranking change suggestions. However, their suggestions
were fine grained (i.e., at the fragment level). We provide
suggestions at the method level. In our study we investi-
gate whether frequency ranking or recency ranking can be a
better choice for ranking method level suggestions.

Frequency Ranking. Let us assume that our change
suggestion technique obtains a number of method level change

Table 5: Frequency and recency ranking examples
S1 S2 S3 S4 S5 S6 S7

Frequency 2 2 1 3 4 4 4

Recency 101 190 103 190 98 101 74

Frequency based ordering S5 S6 S7 S4 S1 S2 S3

Recency based ordering S2 S4 S3 S1 S6 S5 S7

S1 to S7 are the distinct change suggestions.

Recency is the most recent commit operation where a change suggestion

occurred.

suggestions for a target method by analyzing the past evo-
lution history. However, more than one change suggestions
retrieved from the same or different commits might be sim-
ilar (similarity is defined in Section 2.5) to one another. We
first identify the distinct suggestions. For each of these dis-
tinct suggestions we determine how many times it occurred
in the past evolution history. We call this number the fre-
quency of occurrence of the suggestion. We sort the distinct
change suggestions in decreasing order of their frequencies.
In frequency ranking we assume higher priorities for those
suggestions that occurred more frequently in the past com-
pared to the others.

Recency Ranking. In this ranking mechanism we first
identify the distinct change suggestions, and then, for each
distinct suggestion we determine the last commit operation
where it occurred. We call this last commit the recency
of the suggestion. We sort the suggestions in decreasing
order of their recency. In recency ranking change suggestions
with higher recency values (i.e., the change suggestions that
occurred more recently) are given higher priorities compared
to the others. In a previous study [20] we used recency
ranking for ranking the co-change candidates for clones.

Examples of frequency and recency ranking. Table
5 shows the ranking of seven distinct change suggestions, S1
to S7. We can see the frequency as well as the recency of
each suggestion. In the frequency based ordering we see that
the suggestions: S5, S6, and S7 with the highest frequency
(i.e., 4) come first (i.e., at the left). In case of recency based
ordering, the most recent suggestions (i.e., S2, and S4) have
been given the highest priorities.

5.3 Comparing frequency ranking and recency
ranking.

We compare frequency and recency ranking mechanisms
for ranking method level change suggestions provided by our
change suggestion technique. For the purpose of our descrip-
tion we define an eligible case in the following way.

An Eligible Case. Let us consider a case (we provide
the definition of a case in Section 4) where the method level
suggestions provided by our change suggestion technique in-
clude the correct suggestion. We call this case an eligible
case. For the purpose of comparing frequency and recency
ranking mechanisms we investigate all the eligible cases of a
subject system.

Comparing ranking mechanisms using an eligible
case. Let us consider an eligible case. We order the list
of non-empty change suggestions corresponding to this case
using each of the two ranking mechanisms. We can easily un-
derstand that the ranking mechanism that assigns a better
rank to the correct change suggestion should be considered
the superior one for this eligible case. We explain this using
a very simple example.

Fig. 5 shows a list of six change suggestions: S1 to S6.



Figure 5: Comparing the ranking mechanisms, RM1
and RM2

We identify the correct suggestion. We also show two possi-
ble orderings of these suggestions using two ranking mech-
anisms: RM1 and RM2. We see that in the ordering per-
formed by RM1, the correct suggestion has a serial number
of 5. Also, in the ordering performed by RM2, the correct
suggestion has a serial number of 2. Thus, in this example
RM2 is superior to RM1, because RM2 assigns a higher pri-
ority (smaller serial) to the correct change suggestion com-
pared to RM1.

Comparing frequency and recency ranking. By ex-
amining the evolution history of a subject system we identify
all the eligible cases and determine the following measures
by analyzing these cases.

Y The number of cases where frequency ranking assigns
better ranks to the correct change suggestions com-
pared to recency ranking.

Y The number of cases where recency ranking assigns
better ranks to the correct change suggestions com-
pared to frequency ranking.

Y The number of cases where both ranking mechanisms
assign the same rank to the correct suggestions.

We show the above measures in Table 6. We see that for
most of the eligible cases of each of the subject systems, fre-
quency ranking and recency ranking provide the same rank
to the correct change suggestion. Fig. 6 shows a visual com-
parison between the percentages of cases where frequency
ranking or recency ranking performs better. We see that for
three subject systems: jEdit, Carol, and Java-ML recency
ranking performs better than frequency ranking. For each of
the eligible cases of Ant-Contrib, both ranking mechanisms
assigned the same rank to the correct suggestion. For Green-
Shot the percentages regarding the two ranking mechanisms
are the same. For two systems, JHotDraw and DNSJava, fre-
quency ranking performs better than recency ranking. We
also determined the overall values of the two percentages
for each of the subject systems. We find that recency rank-
ing performs better than frequency ranking for overall 3.22%
higher number of the cases. From such a scenario we can de-
cide that in general recency ranking is better than frequency
ranking for ranking method level change suggestions.
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Figure 6: Comparing frequency ranking and recency
ranking.

5.4 Answer to RQ 2
From our analysis and discussion in the previous subsec-

tions we come to the following conclusion.

Recency ranking is possibly a better choice compared
to frequency ranking when ranking change suggestions
at the method level.

6. RELATED WORK
Change recommendation by exploiting the repetition ten-

dencies of changes during system evolution has been inves-
tigated by a number of studies.

Nguyen et al.[25] investigated fragment level change rep-
etitions. They developed a change recommendation tech-
nique that can provide fragment level change suggestions to
a programmer when she attempts to change a code fragment.
They ranked the fragment level suggestions using frequency
ranking. In our study we investigate method level change
repetitions and develop a change recommendation system
that can provide change suggestions at the method level.
We also show that recency ranking is better than frequency
ranking in case of ranking method level change suggestions.

Ray et al. [29] also developed a change recommendation
system considering fragment level granularity. They ranked
the fragment level change suggestions using frequency rank-
ing as was done by Nguyen et al. [25]. In our study we de-
velop a method level change recommendation system. From
our investigation on the ranking of method level suggestions
we see that recency ranking performs better than frequency
ranking.

In another study Nguyen et al. [24] investigated recurring
bug-fixes as well as recurring changes. They implemented
a system to identify code peers (i.e., code fragments that
perform similar functionalities) and to automatically sug-
gest changes to a code fragment where the changes were
experienced by a peer code fragment. They use AST differ-
encing algorithms for the purpose of change detection and
recommendation. In our study we investigate method level



Table 6: Statistics regarding ranking of change suggestions using frequency and recency ranking

jEdit Greenshot Carol JHotDraw Ant-Contrib Java-ML DNSJava

F A R 3 4 0 104 0 13 7

R A F 38 4 16 99 0 16 2

R � F 312 105 58 619 5 116 148

F A R = No. of cases where frequency ranking is better than recency ranking.

R A F = No. of cases where recency ranking is better than frequency ranking.

‘R � F’ is the no. of cases where both ranking provides the same rank.

change recommendations. We use diff in our experiment
for change detection. Nguyen et al. did not use any ranking
mechanism for ranking the change suggestions. We investi-
gate frequency ranking and recency ranking for ranking our
method level change suggestions, and find recency ranking
to be the better one.

Toomim et al. [37] performed a study on simultaneous
editing of multiple clone fragments in the working code-base
of a software system. CloneTracker [9] also supports simul-
taneous editing of the clone fragments tracked by it. While
these studies mainly deal with propagating a change that
occurred in one clone fragment to a peer clone fragment,
they cannot infer which changes might occur in a particular
code fragment in future. Moreover, they do not deal with
any ranking mechanism. Our study, on the other hand, deals
with inferring method level change suggestions for any target
method whether it is a clone or not in the current revision.
We also investigate the ranking of change suggestions.

There are also some studies [13, 29, 10] on the repetitive-
ness of code fragments in the software systems. A number
of clone detection tools [28, 6, 5, 33] also exist for detecting
code reuse. In our study, we investigate the reuse of changes.

There are also a number of studies [8, 15, 1, 40, 19, 20,
21] that recommend peer code artifacts for co-changing (i.e.,
changing together) while changing a particular artifact on
the basis of the past evolution history. However, our study
is different. We do not recommend co-change artifacts. We
recommend possible future changes to a target method.

A number of studies [2, 12, 39, 4, 14, 34, 27, 26, 22, 23]
have also been done on code completion, particularly on
method call completion or method body completion. In code
completion, the programmer first writes a portion of the
code and then, the completion engine provides suggestions
to complete the rest of the code. Our study is different in
the sense that we do not deal with the completion of the
incomplete code. Our goal is to provide change suggestions
for a target method just after the programmer has clicked
it. Our change suggestions are the changed versions of the
previously changed similar methods (similar to the target).

Our experimental results imply that we can infer method
level change suggestions for a target method with compara-
ble accuracy with respect to the accuracies reported in the
existing studies [25, 29]. We believe that our method level
change suggestion mechanism can complement the existing
fine grained change suggestion techniques in providing bet-
ter change suggestions to programmers.

7. THREATS TO VALIDITY
We use the NiCad clone detector [5] in our experiment.

While clone detectors suffer from the confounding configu-
ration choice problem [38], NiCad has been found to perform

fairly well [32, 33]. Also, in a recent study [35] Svajlenko and
Roy show that NiCad is a very good choice for detecting
clones compared to other modern clone detectors.

We provide change suggestions at the method level. For
long methods it might be difficult for the programmers to
identify the differences between a target method and a sug-
gested method. However, different program differentiation
tools [16, 3] are currently available. These tools or even
UNIX diff can help us identify the differences easily.

The subject systems studied in this research are not enough
to make a concrete decision about method level change sug-
gestions and their ranking. However, our subject systems
are of diverse variety in terms of application domains, sys-
tem size (LOC), and the number of revisions. Thus, we
believe that the outcome of our study cannot be attributed
to chance, and our findings are significant.

8. CONCLUSION
In this paper we present our study on method change rep-

etitions during system evolution. By exploiting the repeti-
tion tendencies of method changes we develop a change sug-
gestion mechanism that can provide change suggestions at
the method level. According to our experimental results on
thousands of commits of seven diverse subject systems, we
can provide method level change suggestions for up to 21.8%
of the cases (i.e., method changes). Our precision and recall
in providing method level change suggestions can be as high
as 83% and 13.49% respectively. The overall values of these
two measures (i.e., precision and recall) are around 44.89%
and 7.8%. With respect to the existing studies our accu-
racy in providing change suggestions is reasonable. Method
level change suggestions can often be useful to programmers
during software development and maintenance, because for
up to 34% of the commits our mechanism provides correct
method level change suggestions.

We also investigate the ranking of method level change
suggestions and find that recency ranking performs better
than frequency ranking. Finally, we believe that while method
level change suggestions can never be a replacement of the
fine grained (i.e., fragment level) change suggestions, our
change suggestion mechanism can complement existing tech-
niques in providing better suggestions.
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