An Empirical Study on Change Recommendation

Manishankar Mondal
Department of Computer

Chanchal K. Roy
Department of Computer

Kevin A. Schneider
Department of Computer

Science Science Science
University of Saskatchewan, University of Saskatchewan, University of Saskatchewan,
Canada Canada Canada

mam815@mail.usask.ca

ABSTRACT

Recommending changes to programmers by exploiting their
repetition tendencies during system evolution has been in-
vestigated by a number of studies. In our research we per-
form a change type (additions, deletions, and modifications)
based analysis of the efficiency of change recommendation.
We also investigate the programmer sensitivity of the re-
peated changes (i.e., the extent the same changes are re-
peated by the same programmers) of different change types.
The existing studies did not perform such investigations.
However, these investigations can be important for efficient
ranking (i.e., prioritizing) and filtering of recommendations.
According to our investigation on thousands of commits of
five diverse subject systems we observe that modifications
have a very low tendency (around 1.3%) of being repeated.
We should primarily focus on recommending additions, and
deletions. More importantly, overall 71% of the repeated
changes are programmer sensitive. We believe that a change
recommendation system that prioritizes recommendations
considering programmer sensitivity can help programmers
reuse previous changes in a time-efficient manner.

1. INTRODUCTION

Software systems will undergo changes during evolution.
However, making changes to a software system is often chal-
lenging [24,25]. First, manual implementation of the changes
is often time consuming. Second, program comprehension
may take additional time for even experienced programmers
for a reasonably large system before making the changes.
Third, a complete understanding of the change requirements
is required for making the changes, and fourth, any inac-
curate changes might have severe negative impacts on the
maintenance and evolution of a software system. In such a
situation, it would be beneficial if we could automatically
provide change suggestions to a programmer when she is go-
ing to make some changes to a code snippet.

A number of studies [32,37] have investigated the possi-
bility of change recommendations on the basis of the past

Copyright (C) 2015 Manishankar Mondal, Chanchal K. Roy, and Kevin A.
Schneider. Permission to copy is hereby granted provided the original copy-
right notice is reproduced in copies made.

chanchal.roy@usask.ca

kevin.schneider@usask.ca

evolution history of a software system. The main idea be-
hind these existing approaches is simple. Let us assume
that a programmer is currently working on a code snippet
C'Scurrent- She wants to make some changes to it. However,
it is possible that a similar code snippet C'Sprevious Was pre-
viously modified in the same way she is now thinking, and in
this case, the change that occurred to C'Sprevious can be rec-
ommended to the programmer for making a similar change
to the target code snippet CScurrent-

Although the existing change recommendation techniques
[32,37] are good at providing useful recommendations dur-
ing software development and maintenance, we conduct the
following two investigations in order to improve the recom-
mendation efficiencies of the existing techniques. None of
the existing studies on change recommendation performed
such investigations.

(1) Investigating the efficiency of change recom-
mendation considering different change types. An
investigation on the comparative efficiency of recommend-
ing different types of changes (i.e., additions, deletions, and
modifications) is important. If it is observed that the rec-
ommendation efficiency regarding a particular change type
is very low or negligible compared to the other change types,
then we might decide to filter out the recommendations of
that particular change type. Such discarding of recommen-
dations can reduce the number of false positives, and thus,
can minimize the cognitive burden of the programmers in
selecting the most suitable one from too many recommenda-
tions. However, the previous studies did not focus on such
an investigation. Nguyen et al. [32] investigated repetition
tendencies of changes in different program constructs (such
as If, For, While). They did not investigate the three change
types: additions, deletions, and modifications. Thus, from
their investigation we cannot infer the comparative efficien-
cies in recommending these three types of changes.

(2) Investigating programmer sensitivity of the re-
peated changes of different change types. If most of
the repeated changes are programmer sensitive (i.e., if the
same repeated changes are generally made by the same pro-
grammers), then we can exploit this fact in order to rank the
recommendations for changing a target code fragment. If a
particular programmer is going to change a particular tar-
get code snippet, then we can prioritize change suggestions
inferred from those previous changes where that particular
programmer changed similar code snippets (i.e., similar to
the target snippet). Such prioritizations can also minimize
the cognitive burden of the programmers in understanding
and selecting the most suitable change suggestion from the
whole list of suggestions. However, the existing studies did

not investigate this matter.

Focusing on the above two issues we perform a change
type (additions, deletions, and modifications) based analy-
sis on the recommendation efficiency and programmer sensi-
tiveness of change recommendations. First, we implement a
light-weight change suggestion mechanism that provides sug-
gestions by analyzing the past evolution history of a software
system. We implement our mechanism using UNIX diff and
considering the exact similarity of code fragments. Then, we
apply our implementation on thousands of commits of five
diverse subject systems for performing our investigations.
We answer the following two research questions from our
investigations.

e RQ 1: Which type(s) of changes can be suggested
more effectively compared to others?

e RQ 2: Are the repeated changes generally program-
mer sensitive?

According to our experimental results we can state that:

(1) Modifications have an almost negligible tendency
(1.3%) of being repeated. We can possibly exclude mod-
ifications from consideration while providing change rec-
ommendations. We should primarily focus on recom-
mending additions and deletions.

(2) We find that around 71% of the repeated changes
are programmer sensitive. In other words, the same re-
peated changes are usually made by the same program-
mers during evolution. Thus, while ranking change sug-
gestions for a particular programmer, we should priori-
tize those suggestions that are inferred from the previous
changes made by that particular programmer.

The rest of the paper is organized as follows. Section 2
elaborates on the procedure that we follow for providing au-
tomatic change suggestions, Section 3 discusses the exper-
imental steps, Section 4 answers the research questions by
presenting and analyzing the experimental results, Section 5
discusses the related work, Section 6 mentions the possible
threats to validity, and finally, Section 7 concludes the paper
by mentioning possible future work.

2. CHANGE SUGGESTION MECHANISM

For the purpose of our empirical study we implement a
light-weight change suggestion mechanism using UNIX diff
and considering the exact similarity of the code fragments.
A number of change suggestion techniques [32,37] already
exist. These techniques are based on the syntactic similarity
of code fragments. As a result, the suggestions they pro-
vide are sometimes templates (i.e., suggestions with dummy
variable names and literal values) and cannot be readily ap-
plied to the target code fragment [37]. Sometimes automatic
program generation tools [13,19,22,23] can help us adapt a
suggested template to the relevant change context. How-
ever, an accurate adaptation can often require interactions
from the programmers. We wanted to avoid template sug-
gestions in our study in order to find the precise answers to
our research questions. For this reason we implemented our
change suggestion technique considering exact similarity of
code fragments. The suggestions that we provide can always
be readily applied to the target fragment. In the following
subsections we describe our change suggestion mechanism.

2.1 Change Detection

We detect the changes using the UNIX diff command. A
number of change detection tools [3, 18] are currently avail-
able. However, we use diff in our experiment because it
is light-weight. Let us assume that a number of files were
changed in a particular commit operation. We consider a
particular file F' from these changed files. We obtain two
instances, Fpefore and Fyser Of the file F' where Fpefore 1S the
file in the revision before the commit operation and Fagter
is the file in the revision created after the commit. We de-
termine the diff of these two files. We get three types of
changes from diff output. These are: addition, deletion, and
modification. We provide a simple example in Fig. 1 for
demonstrating these change types.

Fig. 1 shows two files, File 1 and File 2, and the output
after applying diff on these two files. We show the line num-
bers for the lines in the files File 1 and File 2. These line
numbers help us understand the diff output. From the diff
output we realize that there are three types of changes: addi-
tion, deletion, and modification. diff indicates these change-
types by ‘@’ (for addition), ‘d’ (for deletion), and ‘¢’ (for
modification) respectively. We should note that the letter
‘c’ in the first line ‘3,4c3,4’ of diff output indicates change
or modification of existing lines. In the rest of the paper we
will use the term modification for this.

We now analyze the diff output. The first line ‘3,4c3,4’
in the output indicates that the lines 3 and 4 of File 1 were
modified. The corresponding lines in File 2 after the mod-
ification are also 3 and 4. The lines before and after the
modification are shown afterwards. The line ‘6,7d5’ indi-
cates that the lines 6 and 7 in File 1 were deleted, and this
deletion happened just after the 5th line in File 2. The
deleted lines are also shown in the diff output. The line
‘9a8,9’ indicates that two lines were added after line 9 in
File 1. These two lines correspond to lines 8 and 9 in File
2. Finally, line ‘10all’ indicates that a new line was added
after line 10 in File 1. This newly added line corresponds to
line 11 in File 2.

2.2 Change Suggestion

Let us assume that a particular programmer wants to
make some changes to the code-base of a particular software
system. She at first identifies the place where to implement
the change and finally, clicks a line L from where she wants
to begin the change. She can do the following three types of
changes as defined in Section 2.1.

(1) Addition of one or more lines after L.

(2) Deletion of one or more consecutive lines beginning
with the particular line L.

(3) Modification or changing of a code snippet consisting
of one or more consecutive lines beginning with L.

In such a situation, we provide a list of change sugges-
tions to the programmer so that she can choose a particu-
lar suggestion and can apply the corresponding change. As
there are three types of changes, we also provide three types
of change suggestions to the programmer. In the following
subsections we describe the mechanisms that we follow for
providing change suggestions.

2.2.1 Suggesting Addition.

We have already mentioned that the programmer clicks
the line L she wants to start changing from. In this sub-
section we discuss how we provide automatic suggestions for

1: A 1. A
2: B 2: B
3: this line will be modified 1 3:
4: this line will be modified 2 4:
5 C 5 C
6: this line will be deleted 1 6: D
7: this line will be deleted 2 7. E
8 D 8:
9. E 9:
10: F 10: F
11: G
12: H 12:. G
13: H

this line is modified 1
this line is modified 2 —

a new line is added 1
a new line is added 2

11: a new line is added 3

3,4c3,4
< this line will be modified 1
< this line will be modified 2

> this line is modified 1

> this line is modified 2
6,7d5

< this line will be deleted 1
< this line will be deleted 2
9a8,9

> a new line is added 1

> a new line is added 2
10all

> a new line is added 3

(a) File 1

(b) File 2

(c) diff between File 1 and File 2

Figure 1: An example of diff output showing the three types of change: addition, deletion, and modification.

making additions after line L. We first assume that we have
a database containing all the additions made during the past
evolution of the software system. Each occurrence of addi-
tion is stored with the following information: (1) the line
after which the addition was made, and (2) the lines that
were added. We get these from the diff output as described
in Section 2.1. We automatically examine each of the addi-
tions recorded in the database and identify those ones where
the line after which the addition was made is similar (simi-
larity is defined later in this section) to L. These identified
occurrences of addition are the suggested additions for the
programmer.

2.2.2 Suggesting Modification.

In this section, we discuss our mechanism for suggesting
modifications for line L (i.e., the line from which the pro-
grammer wants to start changing) or for a set of consecutive
lines starting from line L.

We assume that we have a database of all the modifications
that occurred during the past evolution of the system. A par-
ticular occurrence of a modification stored in the database
contains the following two pieces of information.

(1) The prior code snippet. This is the code snippet
(i-e., a code block containing one or more consecutive lines)
prior to the occurrence of the modification.

(2) The posterior code snippet. This is the code snip-
pet that was obtained after the occurrence of the modifica-
tion to the prior code snippet.

We obtain this information from the diff output as dis-
cussed in Section 2.1. We now automatically examine the
modifications stored in the database and identify each mod-
ification occurrence where the prior code snippet is similar
to a code snippet of the same length beginning from line L
in the code-base the programmer is now working on. We
consider these identified modifications as suggestions for the
programmer.

2.2.3 Suggesting Deletion.

Lastly, we discuss our mechanism for suggesting deletion
of the line L or of a set of consecutive lines starting from
L. As before we again assume that we have a database con-
taining all the occurrences of deletions from the evolution
history. Each occurrence of deletion stored in the database

contains a code snippet (i.e., one or more than one con-
secutive lines) that was deleted. We examine the deletions
stored in the database and select each deletion occurrence
where the deleted code snippet is similar to a code snippet
of the same length starting from the line L that the pro-
grammer clicked. These selected occurrences of deletion are
considered the suggested deletions for the programmer.

2.2.4 Storing the changes that occurred during the
past evolution of the software system.

We examine each of the commit operations that occurred
to the code-base of the software system. Let us consider a
particular commit C'. While examining the commit opera-
tion C' we determine which source code files were modified in
this commit. For each of these files we collect two snap-shots:
(1) the snapshot of the file in the revision on which the com-
mit C' was applied, and (2) the snap-shot of the file in the
revision that was created after the application of the commit
operation C'. We apply diff on these two snap-shots. From
the diff output we identify all the changes (additions, dele-
tions, or modifications) that occurred to the file in commit
C. In this way we identify all the changes that occurred to
all the files modified in commit C'. We store these changes
in the database as mentioned in Section 2.2.1, 2.2.2, and
2.2.3. Each occurrence of a change is stored in the database
along with the commit-ID. We do this for the purpose of our
empirical study.

2.2.5 Detection of Similarity between Code Snippets.

We have mentioned that we detect similarity between code
snippets. For this purpose we use an adapted version of
NiCad [6,40] technology where we can detect the similarity
of two given code snippets of any granularity (i.e., block or
method). Let us assume that we have two code snippets, s1
and s2. We consider that these two code snippets are similar
if NiCad detects them as exact clones of each other. We use
NiCad in our study, because NiCad is capable of detecting
clones with high precision and recall [38-40].

3. EXPERIMENTAL STEPS

We perform our investigation on the five subject systems
listed in Table 1. We see that the starting revisions for jEdit

Table 1: Subject Systems

Sys. | Lang. | Domains | LLR | SRev | ERev

Camellia| C Image Processing | 88,033 1 170
Library

jEdit Java | Text Editor 191,804 | 3791 | 4000

Freecol Java | Game 91,626 | 1000 | 1950

Carol Java | Game 25,091 1| 1700

Jabref Java | Reference Manage- | 45,515 1| 1545
ment

SRev = Starting Revision ERev = End Revision
LLR = LOC in the Last Revision

and Freecol are respectively 3791 and 1000. The reason be-
hind this is that the SVN repository location from which
we obtained the code-base did not contain the code for the
missing revisions. This might happen as a result of changing
the directory structure just after the revisions 3790, and 999
in case of jEdit and Freecol respectively. We perform the
following preliminary steps for each of the systems:

(1) Download each revision (as noted in Table 1) of the
systems from the on-line SVN repository [35],

(2) Preprocessing of the source code files in each revision
by removing comments, blank lines, and indentations,

(3) Detect changes (additions, deletions, and modifica-
tions) between the corresponding preprocessed source code
files of every two consecutive revisions by applying UNIX
diff,

(4) Store the changes in the database with the respective
commit-IDs. We store each of the three types (additions,
deletions, and modifications) of changes in the database.
The details of which pieces of information are stored for each
type of change is described in Section 2.

(5) Determine which developer made which changes over
the evolution by using the SVN log command. This com-
mand not only retrieves the log message for each commit
operation but also shows which developer was responsible
for which commit. We retrieve this information for answer-
ing RQ 2.

We perform preprocessing of the source code files because
we wanted to investigate change recommendations for the
source code lines only (i.e., not for the comments). After
applying the above experimental steps on the subject sys-
tems we get the experimental results. We then analyze these
experimental results for answering the research questions.

4. EXPERIMENTAL RESULTS

In this section we answer the two research questions men-
tioned in the introduction by presenting and analyzing our
experimental results. Before answering research questions,
it is important to analyze and report the accuracy of our
implemented change suggestion mechanism. In the follow-
ing paragraphs we describe the procedure of evaluating our
change suggestion mechanism.

Evaluating our Change Suggestion Mechanism

Our evaluation procedure is a variation of the n-fold cross-
validation technique in which we sequentially examine the
commit operations starting from the very first revision men-
tioned in Table 1. While examining a particular commit op-
eration C, we determine whether we can suggest the changes
that occurred in this commit (i.e., C') by analyzing the changes

that occurred in the previous commit operations (i.e., the
commits from 1 to C' — 1).

Let us consider that we are currently examining the com-
mit operation C. A change ccurrent Occurred to a particular
code snippet Scurrent in this commit. If we can suggest this
change (i.e., Ccurrent) for this code snippet (i.e., Scurrent) by
analyzing the previous commits, 1 to C — 1, then we can
say that we can provide accurate change suggestions using
our approach. Thus, in this context our goal is to deter-
mine whether and to what extent we can suggest the change
Ceurrent fOr the code snippet Scurrent by analyzing the previ-
ous evolution history. The following three cases can happen
in such a situation.

Case 1. We can provide change suggestions that
include the accurate change (Ccurrent). We automatically
mine the evolution history consisting of the commits 1 to
C —1 and find that one or more similar (similarity is defined
in Section 2.2.5) code snippets were previously changed. We
extract these previous changes and provide these as sugges-
tions for changing the current code snippet Scurrent- The
suggestions include the particular change ccurrent. Thus, in
this case the change suggestions that we provide contain the
accurate change to be implemented. We can easily under-
stand that an accurate change suggestion is possible only in
the case that there are repeated changes.

Case 2. We can provide change suggestions, how-
ever these suggestions do mot include the accurate
change (ccurrent). We mine the evolution history and find
that one or more similar code snippets were previously changed.
We provide these changes as suggestions for changing the
current code snippet Scurrent- However, the suggestions do
not include the particular change ccurrent. Thus, in this case
we cannot provide an accurate change suggestion.

Case 3. We cannot provide any change suggestion.
In this case we find that no similar code snippets were pre-
viously changed. Thus, we cannot provide any suggestions
for changing the particular code snippet Scurrent-

For the first and second cases above, we need to check
whether a change appearing in the suggested list is similar to
the particular change ccurrent that occurred to the code snip-
pet Scurrent in commit C. We check the similarity between
two changes, Ccurrent and Cprevious (Occurred in a previous
commit Cprevious Where Cprevious < C), in the following way.

(1) Let us consider that each of ccurrent and Cprevious is an
addition. These two changes are similar if the following two
conditions hold: (i) the two lines after which the additions
were made in the two cases are similar, and also, (ii) the two
code snippets (containing one or more lines) added in these
two cases are similar. We detect exact textual similarity
following the procedure described in Section 2.2.5.

(2) Let us consider that ccurrent and Cprevious are deletions.
These two changes are similar if the two code snippets that
were deleted in the two cases are similar.

(3) Let us consider that ccurrent and Cprevious are modifi-
cations. These two changes are similar if the following two
conditions hold: (i) the two code snippets that were modi-
fied in the two cases are similar, and also, (ii) the two code
snippets obtained after the modifications in the two cases
are similar.

We automatically examine each of the changes that oc-
curred in a particular commit C and determine whether
we can accurately suggest these changes by analyzing the
changes that occurred in the previous commits 1 to C' — 1.

Table 2: Statistics Regarding Change Suggestion During the
Evolution of our Subject Systems

Camellia | jEdit | Freecol | Carol Jabref
TC 3115 6235 16308 8241 14901
TS 445 1187 4969 1573 2630
RC 65 200 753 370 375

TC = Total number of changes during system evolution.

TS = Total number of cases where we can provide
one or more change suggestions.

RC = Total number of repeated changes during evolution.
This is the total number of cases where our suggestions
contain the actual change to be implemented.

By examining all the changes that occurred in all the com-
mit operations during the evolution of a software system we
determine the followings and record these in Table 2.

(1) TC (in Table 2) is the total number of changes that
occurred during these commits. This number is the total
number of occurrences of Case 1, Case 2, and Case 3 (de-
scribed earlier in this subsection) during evolution.

(2) TS is the total number of cases for each of which
we could provide one or more change suggestions (whether
accurate or not). This number is the number of occurrences
of Case 1 and Case 2 during evolution.

(3) RC is the total number of cases for each of which we
could provide an accurate change suggestion. This number
is the number of occurrences of Case I during evolution.
An accurate change suggestion is possible only in the case
of change repetition. Thus, the total number of accurate
change suggestions is the total number of repeated changes
during evolution. We define a repeated change in the follow-
ing way.

Repeated Change. If a particular change ¢ occurred in
a particular commit operation C' is similar to one or more
changes that occurred in the past commits 1 to C — 1, then
we say that the change ¢ in commit C is a repeated change.
We have already described the similarity of two changes.

We also determine the following three percentages consid-
ering the values recorded in Table 2.

(1) The percentage of cases where we can provide
one or more change suggestions. This percentage (i.e.,
TS x 100 / TC from Table 2) is shown in Fig. 2. We see that
for each of the subject systems we can provide change sug-
gestions for a considerable percentage of cases. The overall
value (i.e., considering all subject systems) of this percent-
age is 22.14%. In the case of our subject system Freecol, this
percentage (i.e., around 30.47%) is the highest.

(2) The percentage of cases where the suggestions
that we provide contain the actual change (i.e., the
accurate suggestion) to be implemented. This percent-
age (i.e., RC x 100 / TS) is shown in Fig. 3 and it indicates
how often the change suggestions that we provide can con-
tain the actual change to be implemented. In other words,
this percentage determines the precision of our approach in
providing change suggestions. According to Fig. 3, the over-
all probability (in percentage) that the change suggestions
that we provide will contain the accurate change to be imple-
mented is around 16%. This probability is the highest (23%)
for Carol. In Nguyen et al.’s [32] study this percentage was

1] Percentage of cases where we can provide change sugges-

tions
|

1 1 1 1
I ‘ I ‘ I ‘ ‘
Jabref Overall

30 |-

20 |-

1OJ
0 T

Camellia jEdit

Freecol Carol

Figure 2: Percentage of cases where we can provide one or
more change suggestions.

BIEThe probability that the change suggestions that we
provide will contain the actual change to be imple-

mented.
|
T

| |
Jabref

20

1O/I I I I
0 T T T T

Camellia jEdit

|

Overall

Freecol Carol

Figure 3: The probability (in percentage) that the change
suggestions that we provide will contain the actual change
to be implemented.

around 30% which is larger than our overall percentage. The
reason is that they considered syntactic similarity in their
approach. They report their accuracy in suggesting change
templates (i.e., suggestions with dummy variable names and
literal values) rather than suggesting the actual change to be
implemented [32,37]. However, in our research we wanted to
exclude the template suggestions in order to find precise an-
swers to our research questions. Thus, we limited ourselves
to exact similarity, and find the accuracy of our mechanism
in suggesting the actual change to be implemented.

(3) The percentage of repeated changes during the
whole period of evolution. This percentage (i.e., RC X
100 / TC) is shown in Fig. 4. The figure implies that the
percentage of repeated changes is considerable although very
low for some subject systems (such as Camellia). Such a
finding complies with the findings from the previous studies
[32,37]. This percentage is around 5% for our subject system
Freecol. The overall value of this percentage is 3.62%.

From our above discussion and analysis regarding the
evaluation of our implemented change suggestion mech-
anism we can state that our implemented mechanism
can provide actual change suggestions (the change sug-
gestions that can be readily applied to the target code
snippets) with a precision of up to 23% which is rea-
sonable with respect to our considerations and to the

In Percentage of Repeated Changes During the Whole Pe-

riod of Evolution
]

lhi

Camellia jEdit

(V]

Freecol Carol Jabref Overall

Figure 4: The Percentage of Repeated Changes During the
Whole Period of Evolution.

results reported by the previous studies.

We will now answer the two research questions (i.e., men-
tioned in the introduction) through experiments performed
using our implemented change suggestion mechanism.

RQ 1: Which type of changes can be suggested
more effectively compared to the others?

If the changes of a particular type (additions, deletions, or
modifications) are repeated more frequently than the changes
of the other change-types, then we can say that the changes
of that particular type can be suggested more effectively
compared to the other change-types. Thus, for answering
this research question (i.e., RQ 1) we compare the likeliness
of the repetition of the changes of different change-types.
Nguyen et al. [32] compared change repetitions in different
language constructs. However, we compare change repeti-
tion considering the three change types: addition, modifi-
cation, and deletion. Such an investigation is important,
because the findings from this investigation can provide us
with helpful insights for developing a change suggestion plug-
in. If it is observed that the likeliness of the repetitions of
the changes of a particular change-type is very low or neg-
ligible, then we can exclude the changes of that particular
type from consideration while developing the plug-in. Such
an exclusion can assist in faster execution of the plug-in.

Methodology. Using our implemented change sugges-
tion tool we examine the changes that occurred to each of
the commit operations sequentially starting from the very
first one. While examining the changes in a particular com-
mit operation C, we determine which of these changes we can
accurately suggest by analyzing the previous commits (1 to
C —1). A change cCcurrent in the current commit C' can only
be accurately suggested if it occurred in at least one of the
previous commits, that is, if ccurrent 1S a repeated change.
We determine which of the changes occurring in commit C
are repeated changes. We separate these repeated changes
into three disjoint sets:

e The set of repeated additions,
e The set of repeated deletions, and

e The set of repeated modifications

0o Percentage of Repeated Additions during the whole pe-
riod of evolution

0o Percentage of Repeated Deletions during the whole pe-
riod of evolution

1] Percentage of Repeated Modifications during the whole
evolution period

10 | | | | |

e L e |

T T T T T
Camellia jEdit Freecol Carol Jabref Overall

Figure 5: Comparison of the tendency of repetition of dif-
ferent types of changes.

In this way we examine each of the commit operations oc-
curred during the evolution of a subject system and identify
the repeated addition, deletions, as well as modifications.
We determine the likeliness of the repetition of additions in
the following way.

100 x Zfo'r all commits |SRA‘
Zfor all commits ‘SA‘

Here, LRA is the likeliness of the repetition of additions
during the evolution of a particular subject system. SA is
the set of all additions in a particular commit operation, and
SRA is the set of all repeated additions in that commit op-
eration. In the same way we also determine the likeliness
of the repetition of deletions and modifications. From the
equation we see that we determine the likeliness as a per-
centage. We plot three percentages (i.e., corresponding to
the three change types) for each of the subject systems in
the graph of Fig. 5.

From the graph (Fig. 5) we understand that modifications
have the lowest tendency of being repeated among the three
change types. For two subject systems, jEdit and Carol, this
tendency is even smaller than one. The repetition tenden-
cies of additions and deletions are much higher than that of
modifications for each of the subject systems. Also, dele-
tions exhibit the highest tendency of repetitions. The graph
shows the overall repetition tendencies of the three types of
changes. We see that while modifications have the lowest
overall tendency of repetition, the overall tendency of dele-
tions is the highest.

Statistical Significance Test. We wanted to inves-
tigate whether the repetition tendencies of additions and
deletions are significantly higher compared to the repeti-
tion tendency of modifications. We perform Mann-Whitney-
Wilcoxon (MWW) tests [21] for this purpose. Using this
test we determine whether the five repetition tendencies of
additions from five subject systems are significantly differ-
ent than the five repetition tendencies of modifications from
these systems. We should note that MWW test is a non-
parametric test and it does not require the samples to be
normally distributed [33]. This test can be applied to both
large and small sample sizes [20]. We perform our test con-

LRA =

(1)

Table 3: The number of authors involved in the commits

Camellia jEdit Freecol Carol | Jabref

CR| 1-170 |3791 - 4000 | 1000 - 1950 |1 - 1700 |1 - 1545
CA 1 3 17 25 18

CR = Commit Range.
CA = Count of Authors involved in the commits.

sidering a significance level of 5%. According to our test,
the repetition tendencies of additions are significantly dif-
ferent than the repetition tendencies of modifications with a
p-value of 0.0128 (for two-tailed test case) which is smaller
than 0.05, and with a large effect size [10] of 0.79. The ef-
fect size calculation procedure for MWW test is available
on-line [11]. From our test results we can say that the repe-
tition tendency of additions is significantly higher than the
repetition tendency of modifications. From a similar test
we also find that the deletions have a significantly higher
repetition tendency than modifications.

Answer to RQ 1. According to our experimen-
tal results and analysis, deletions can possibly be sug-
gested more effectively compared to the other two types
of changes. The repetition tendency of additions is also
considerable for most of the subject systems. However,
the likeliness of the repetition of modifications is the low-
est among the three change types. Our statistical signifi-
cance tests show that modifications exhibit a significantly
smaller tendency of repetition compared to the repetition
tendencies of additions and deletions.

Our experimental results imply that while developing a
change suggestion tool or plug-in we should primarily focus
on repeated additions and deletions. The overall percentage
of repeated modifications is very low (around 1.3%). Such
a finding implies that we can possibly ignore modifications
while providing change suggestions. However, in order to
generalize this finding we need to investigate more subject
systems of different programming languages. We plan to do
this as a future work.

RQ 2: Are the repeated changes generally pro-
grammer sensitive?

If it is observed that most of the repeated changes are pro-
grammer sensitive (i.e., the same repeated changes are gen-
erally made by the same programmers), then we can use this
fact to build a change suggestion tool that can provide pro-
grammer sensitive change suggestions. Refining or ranking
of the change suggestions on the basis of the programmer
who is currently working on the code-base, can not only as-
sist in faster execution of the change suggestion tool but
also can assist programmers select change suggestions from
a more precise list.

Methodology. For determining which programmer is re-
sponsible for which changes we retrieve and analyze the SVN
commit log by applying the SV N log command. The log for
a particular commit operation contains information about
which programmer made the changes in that commit. In
Table 3 we show the numbers of authors involved in the
commits in the commit-ranges (as recorded in Table 1) of

[| Percentage of Programmer Sensitive Repeated Changes

0 Percentage of Programmer Insensitive Repeated Changes

100

60 [

40 |-

20 [

JEdit Freecol Carol Jabref All Systems

Figure 6: Percentage of Programmer Sensitive Repeated
Changes During Software Evolution.

[| Percentage of Programmer Sensitive Repeated Additions

0 Percentage of Programmer Insensitive Repeated Addi-

tions
| i | i ' |

jEdit Freecol Carol Jabref

100

80 [

60 |-

All Systems

Figure 7: Percentage of Programmer Sensitive Repeated Ad-
ditions During Software Evolution.

the subject systems. We see that only one author committed
during our investigated commit range (1 to 170 as mentioned
in Table 1) of Camellia. For this reason we exclude Camellia
from consideration for avoiding possible bias in determining
the programmer sensitiveness of repeated changes. We per-
form our investigation by applying our implemented change
suggestion mechanism in the following way.

Let us consider that we are now examining the changes
in a particular commit C. The programmer who performed
this commit operation is Pc. We identify all the repeated
changes in this commit operation using our implemented
change suggestion mechanism. Suppose, Crepeated IS @ par-
ticular repeated change. We determine the older commits
where Crepeatea Occurred before. For each of these older com-
mits we determine the corresponding programmer who per-
formed the commit. We check whether the same program-
mer (i.e., Pc) who performed the commit operation C' also
performed any of these older commits. If this is true, then
we mark the repeated change crepeated @s a programmer sen-
sitive repeated change. Otherwise, we mark crepeated as a
programmer insensitive repeated change. By examining the
repeated changes in a particular commit C' we determine the
following measures.

(1) The number of all repeated changes.

(2) The number of programmer sensitive repeated changes.

| Percentage of Programmer Sensitive Repeated Deletions

O Percentage of Programmer Insensitive Repeated Dele-
tions

100

80 |-

60 |-

40 |-

20 |-

jEdit Freecol Carol Jabref All Systems
Figure 8: Percentage of Programmer Sensitive Repeated
Deletions During Software Evolution.

Considering all repeated changes in all the commit oper-
ations we determine the overall percentage of programmer
sensitive repeated changes using the following equation.

100 x Zfo'r all commits PSRC

Zfor all commits RC

In the above equation, RC' denotes the number of repeated
changes in a particular commit. PSRC is the number of pro-
grammer sensitive repeated changes in that particular com-
mit. We also determine the overall percentage of programmer
insensitive repeated changes using Eq. 3.

% of PSRC =

% of PIRC =100 — (% of PSRC) 3)

We plot these two percentages in a stacked bar graph
shown in Fig. 6. From the graph we see that for each of
the subject systems the percentage of programmer sensitive
repeated changes is much higher than the percentage of pro-
grammer insensitive repeated changes. In case of our largest
system jEdit, all of the repeated changes were programmer
sensitive. The overall percentage (considering all systems)
of programmer sensitive repeated changes is around 71%.

We also wanted to investigate how the programmer sensi-
tivity of the repeated changes differs across the three change
types (additions, deletions, and modifications). Considering
each type of change separately, we determine the percentages
of programmer sensitive as well as programmer insensitive
repeated changes and plot these percentages in a graph simi-
lar to the graph in Fig. 6. For three change types - addition,
deletion, and modification we show three such graphs in Fig.
7, 8, and 9 respectively.

The graphs in Fig. 7 and 9 imply that the repeated ad-
ditions and modifications are mostly programmer sensitive.
The overall percentage of repeated additions as well as re-
peated modifications is around 80%. From Fig. 8 we also see
that the overall percentage of programmer sensitive repeated
deletions is higher than the overall percentage of program-
mer insensitive repeated deletions. We see that in case of
only one system, Carol, the repeated deletions are mostly
(54.71% of the repeated deletions) programmer insensitive.

Answer to RQ 2. According to our analysis and
discussion for this research question we can state that

[| Percentage of Programmer Sensitive Repeated Modifica-
tions

O Percentage of Programmer Insensitive Repeated Modifi-
cations

100

60 |-

40 |-

20

jEdit Freecol Carol Jabref All Systems

Figure 9: Percentage of Programmer Sensitive Repeated
Modifications During Software Evolution.

most of the repeated changes (i.e., around 71% of the
repeated changes) that occurred during the evolution of
a software system are programmer sensitive. In other
words, the same repeated changes are usually made by
the same programmers.

Our investigation on different change types implies
that the repeated changes of each of the change-types are
mostly programmer sensitive. More specifically, around
80% of the repeated additions as well as of the repeated
modifications are programmer sensitive.

Our findings from R@ 2 can help us rank the change sug-
gestions for a particular code snippet considering the pro-
grammer who is going to change that snippet. We can as-
sume higher priorities for those change suggestions that are
inferred from changes previously made by the working pro-
grammer. However, investigating such a ranking mechanism
is not our main concern in this exploratory study. We plan
to do this in the future.

S. RELATED WORK

Recommending changes to the programmers by analyzing
the past evolution history of a software system is not new.
Nguyen et al. [32] studied the repetitiveness of changes to the
source code and found that small changes can be repeated at
a high rate (70% to 100%) during software evolution. Repe-
tition of changes decreases exponentially with the increase of
change size. They implemented a change recommendation
system exploiting the repetition tendencies of changes. They
investigated the extent of change repetitions at different lan-
guage constructs. However, in our study we investigate and
compare the recommendation efficiencies for three types of
changes: additions, deletions, and modifications. We also
investigate the programmer sensitivity of repeated changes
considering these three change types. Nguyen et al. [32] did
not perform such investigations. Our investigations are im-
portant for priotizing and filtering change recommendations.

Ray et al. [37] developed a change recommendation sys-
tem which stores and recommends changes that affect at
least 50 tokens (7/8 lines). They did not perform a change
type based analysis of recommendation efficiencies. In our
study we investigate the recommendation efficiencies con-

sidering the three types of changes. We also investigate the
programmer sensitivity of repeated changes. Ray et al. [37]
did not perform this investigation.

In another study Nguyen et al. [31] investigated recurring
bug-fixes as well as recurring changes. They implemented a
system to identify code peers (i.e., code fragments that per-
form similar functionalities) and to automatically suggest
changes to a code fragment where the changes were experi-
enced by a peer code fragment. They use AST differencing
algorithms for the purpose of change detection and recom-
mendation. However, we use diff in our experiment. We also
perform a change-type based analysis of the recommendation
efficiencies and repetition tendencies of changes. Nguyen et
al. [31] did not perform such investigations.

Toomin et al. [44] performed a study on simultaneous edit-
ing of multiple clone fragments in the working code-base of
a software system. CloneTracker [9] also supports simulta-
neous editing of the clone fragments tracked by it. While
these studies mainly deal with propagating a change that
occurred in one clone fragment to a peer clone fragment,
they do not deal with inferring future changes to a partic-
ular code fragment. Our study, on the other hand, deals
with inferring change recommendations for any target code
snippet whether it is a clone or not in the current revision.

There are also some studies [12,15,37] on the repetitiveness
of code fragments in the software systems. A number of clone
detection tools [5,7,40] also exist for detecting code reuse.
In our study, we investigate the reuse of changes.

There are also a number of studies [1,8,17,26-28,47] that
recommend peer code artifacts for co-changing (i.e., chang-
ing together) while changing a particular artifact on the basis
of the past evolution history. However, our study is differ-
ent. We do not recommend co-change artifacts. We deal
with suggesting future changes to any code snippet.

A number of studies [2,4,14,16,29, 30, 34, 36,41, 46] have
also been done on code completion, particularly on method
call completion or method body completion. In code comple-
tion, the programmer first writes a portion of the code and
then, the completion engine provides suggestions to com-
plete the rest of the code. Our study is different in the sense
that we do not deal with the completion of the incomplete
code. We deal with providing change recommendations for a
target code snippet just after the programmer has clicked it.
We perform a change-type based investigation on the recom-
mendation efficiencies and repetition tendencies of changes.

In our empirical study, we address two important issues,
repetition tendencies of the three different types of changes
detected by UNIX diff and programmer sensitiveness of these
three types of repeated changes, with interesting outcomes.
Our investigation reveals the fact that repeated changes are
mostly programmer sensitive. Consideration of this fact can
help us develop a programmer sensitive change recommen-
dation plug-in that can perform faster as well as provide a
better ranking of the recommended changes.

6. THREATS TO VALIDITY

In our experiment we only consider the changes that oc-
curred to the source code lines of the code fragments. We
disregard the changes that occurred to the comments. We
believe that comments are essential parts of a code-base.
Sometimes commenting takes a longer time than writing
code. However, in this research our primary aim was to deal
with providing change suggestions to the code fragments,

not to the comments. Thus, we disregard comments in our
experiment. In future we plan to investigate on suggesting
changes to the comments too.

We use the NiCad clone detector [6] in our experiment.
While clone detectors suffer from the confounding configura-
tion choice problem [45], NiCad has been found to perform
fairly well [39,40]. Also, in a recent study [42] Svajlenko and
Roy show that NiCad is a very good choice for detecting
clones compared to other modern clone detectors.

The subject systems studied in this research are not enough
to make a concrete decision about recommendation efficien-
cies and programmer sensitiveness of changes. However, our
subject systems are of diverse variety in terms of application
domains, system size (LOC), and the number of revisions.
Thus, we believe that the outcome of our study cannot be
attributed to chance. Our findings are useful for improving
the existing change recommendation techniques to provide
more precise recommendations.

7. CONCLUSION

Providing change recommendations to programmers on
the basis of the past evolution history of a software system
has been investigated by a number of existing studies. In
our research we investigate two important issues regarding
change recommendations: (1) the comparative effectiveness
in recommending three types of changes - additions, dele-
tions, and modifications, and (2) the programmer sensitiv-
ity of repeated changes considering those three change types.
These two investigations are important for filtering and pri-
oritizing change recommendations. The existing studies did
not perform such investigations. From our in-depth investi-
gation on thousands of commits of five diverse subject sys-
tems we can state that:

(1) Among the three change types (addition, deletion,
and modification), modifications have the lowest tendency
(1.3%) of being repeated. Possibly, a change recommenda-
tion tool should primarily focus on suggesting additions, and
deletions disregarding the modifications.

(2) The same changes are generally implemented by the
same programmers during software evolution. More specifi-
cally, around 71% of the repeated changes are programmer
sensitive. Thus, when suggesting changes to a particular
programmer we should prioritize those changes that were
previously done by that programmer. A programmer sensi-
tive change suggestion tool can help minimize the cognitive
burden of the programmers in selecting the most suitable
suggestion.

We believe that our findings are important for prioritizing
as well as refining the change recommendations in order to
get more precise recommendations. In future we would like
to develop a change recommendation system considering our
findings in this research.

8. REFERENCES

[1] A. Alali, B. Bartman, C. D. Newman, J. I. Maletic, “A
Preliminary Investigation of Using Age and Distance
Measures in the Detection of Evolutionary Couplings”,
Proc. MSR, 2013, pp. 169 — 172.

[2] M. Asaduzzaman, C. K. Roy, K. Schneider, D. Hou,
“CSCC: Simple, Efficient, Context Sensitive Code
Completion”, Proc. ICSME, 2014, pp. 71 — 80.

[3] M. Asaduzzaman, C. K. Roy, K. Schneider, M. Di
Penta, “LHDiff: A Language-Independent Hybrid

Approach for Tracking Source Code Lines”, Proc.
ICSM, 2013, pp. 230 — 239.

[4] M. Bruch, M. Monperrus, M. Mezini, “Learning from
examples to improve code completion systems”, Proc.
FSE, 2009, pp. 213 — 222.

[5] CCFinderX:
http://www.ccfinder.net/ccfinderx.html

[6] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”,
Proc. ICPC Tool Demo, 2011, pp. 219 — 220.

[7] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, T. Xie,
“XTAO: Tuning Code Clones at Hands of Engineers in
Practice”, Proc. ACSAC, 2012, pp. 369 — 378.

[8] E. Duala-Ekoko, M. P. Robillard,“Tracking Code Clones
in Evolving Software”, Proc. ICSE, 2007, pp. 158 — 167.

[9] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool
Support for Code Clone Management”, Proc. ICSE,
2008, pp.

[10] Effect Size:
http://en.wikipedia.org/wiki/Effect_size

[11] Effect Size Calculation for Mann-Whitney-Wilcoxon
Test: http://www.let.rug.nl/ heeringa/statistics/
stat03_2013/lect09.pdf

[12] M. Gabel, Z. Su, “A study of the uniqueness of source
code”, Proc. F'SE, 2010, pages 147 — 156.

[13] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. IEEE Trans. Software Eng., 2012, 38(1):54 - 72.

[14] R. Hill, J. Rideout, “Automatic method completion”,
Proc. ASE, 2004, pp. 228 — 235.

[15] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. T.
Devanbu, “On the naturalness of software”, Proc.
ICSE, 2012, pp. 837 — 847.

[16] D. Hou, D. M. Pletcher, “An evaluation of the
strategies of sorting, filtering, and grouping API
methods for Code Completion”, Proc. ICSM, 2011, pp.
233 — 242.

[17] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L.
Collard,“Blending Conceptual and Evolutionary
Couplings to Support Change Impact Analysis in
Source Code”, Proc. WCRE, 2010, pp. 119 — 128.

[18] M. Kim, D. Notkin, “Discovering and Representing
Systematic Code Changes”, Proc. ICSE, 2009, pp. 309 —
319.

[19] D. Kim, J. Nam, J. Song, S. Kim, “Automatic patch
generation learned from human-written patches”, Proc.
ICSE, 2013, pp. 802 — 811.

[20] Mann-Whitney-Wilcoxon Test: http://en.
wikipedia.org/wiki/Mann}%E2%807%93Whitney_U_test

[21] Mann-Whitney-Wilcoxon Test Online:
http://www.socscistatistics.com/tests/
mannwhitney/Default2.aspx

[22] N. Meng, M. Kim, K. S. McKinley, “Sydit: Creating
and applying a program transformation from an
example”, Proc. ESEC/FSE, 2011, pp. 440 — 443.

[23] N. Meng, M. Kim, K. S. McKinley, “Lase: Locating
and applying systematic edits by learning from
examples”, Proc. ICSE, 2013, pp. 502 — 511.

[24] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity
of Co-change Method Groups: A Case Study on
Open-Source Systems”, Proc. CASCON, 2012, pp. 205 —
219.

[25] M. Mondal, C. K. Roy, K. A. Schneider, “Insight into
a method co-change pattern to identify highly coupled
methods: An empirical study”, Proc. ICPC, 2013, pp.
103 — 112.

[26] M. Mondal, C. K. Roy, K. A. Schneider, “A
Fine-Grained Analysis on the Evolutionary Coupling of
Cloned Code”, Proc. ICSME, 2014, pp. 51 — 60.

[27] M. Mondal, C. K. Roy, K. A. Schneider. “Prediction
and Ranking of Co-change Candidates for Clones”,
Proc. MSR 2014, pp. 32 - 41 .

[28] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic
Identification of Important Clones for Refactoring and
Tracking”, Proc. SCAM, 2014, pp. 11 — 20.

[29] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A.
Tamrawi, H. V. Nguyen, J. Al-Kofahi, T. N. Nguyen,
“Graph-based pattern-oriented, context sensitive source
code completion”, Proc. ICSE, 2012, pp. 69 — 79.

[30] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T.
Nguyen, M. Kim, T. N. Nguyen, “A graph-based
approach to API usage adaptation”, ACM Sigplan
Notices, 45(10): 302 - 321.

[31] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J.
Al-Kofahi, T. N. Nguyen, “Recurring bug fixes in
object-oriented programs”, Proc. ICSE, 2010, pp. 315 —
324.

[32] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N.
Nguyen, H. Rajan, “A Study of Repetitiveness of Code
Changes in Software Evolution”, Proc. ASE, 2013, pp.
180 — 190.

[33] Nonparametric Tests: http://sphweb.bumc.bu.edu/
otlt/MPH-Modules/BS/BS704_Nonparametric/mobile_
pages/BS704_Nonparametric4.html

[34] T. Omori, H. Kuwabara, K. Maruyama, “A study on
repetitiveness of code completion operations”, Proc.
ICSM, 2012, pp. 584 — 587.

[35] On-line SVN Repository: http://sourceforge.net/

[36] D. M. Pletcher, D. Hou, “BCC: Enhancing code
completion for better API usability”, Proc. ICSM, 2009,
pp- 393 — 394.

[37] B. Ray, M. Nagappan, C. Bird, N. Nagappan, T.
Zimmermann, “The Uniqueness of Changes:
Characteristics and Applications”, Microsoft Research
Technical Report, 2014, pp. 1 — 10.

[38] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and
Evaluation of Code Clone Detection Techniques and
Tools: A Qualitative Approach”; Science of Computer
Programming, 2009, 74 (2009): 470 — 495.

[39] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based
Automatic Framework for Evaluating Code Clone
Detection Tools”, Proc. Mutation, 2009, pp. 157 — 166.

[40] C. K. Roy, J. R. Cordy, “Scenario-based Comparison
of Clone Detection Techniques”, Proc. ICPC, 2008,
pp.153 — 162.

[41] R. Robbes, M. Lanza, “How Program History Can
Improve Code Completion”, Proc. ASE, 2008, pp. 317 —
326.

[42] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone
Detection Tools”, Proc. ICSME, 2014, pp. 321 — 330.

[43] W. Takuya, H. Masuhara, “A Spontaneous Code
Recommendation Tool Based on Associative Search”,
Proc. SUITE, 2011, pp. 17 — 20.

[44] M. Toomim, A. Begel, S. L. Graham, “Managing
Duplicated Code with Linked Editing”, Proc. VL/HCC,
2004, pp. 173 — 180.

[45] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for
better configurations: a rigorous approach to clone
evaluation”, Proc. ESEC/FSE, 2013, pp. 455 — 465.

[46] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J.
Zhao, P. Ou, “Automatic parameter recommendation
for practical API usage”, Proc. ICSE, 2012, pp. 826 —
836.

[47] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller,
“Mining version histories to guide software changes”,

Proc. ICSE, 2004, pp. 563-572.

