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Abstract Traditional code search engines (e.g., Krugle) often do not perform
well with natural language queries. They mostly apply keyword matching between
query and source code. Hence, they need carefully designed queries containing ref-
erences to relevant APIs for the code search. Unfortunately, preparing an e↵ective
search query is not only challenging but also time-consuming for the developers
according to existing studies. In this article, we propose a novel query reformu-
lation technique–RACK–that suggests a list of relevant API classes for a natural
language query intended for code search. Our technique o↵ers such suggestions
by exploiting keyword-API associations from the questions and answers of Stack
Overflow (i.e., crowdsourced knowledge). We first motivate our idea using an ex-
ploratory study with 19 standard Java API packages and 344K Java related posts
from Stack Overflow. Experiments using 175 code search queries randomly chosen
from three Java tutorial sites show that our technique recommends correct API
classes within the Top-10 results for 83% of the queries, with 46% mean average
precision and 54% recall, which are 66%, 79% and 87% higher respectively than
that of the state-of-the-art. Reformulations using our suggested API classes im-
prove 64% of the natural language queries and their overall accuracy improves by
19%. Comparisons with three state-of-the-art techniques demonstrate that RACK
outperforms them in the query reformulation by a statistically significant margin.
Investigation using three web/code search engines shows that our technique can
significantly improve their results in the context of code search.
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1 Introduction

Studies show that software developers on average spend about 19% of their de-
velopment time in web search. On the web, they frequently look for relevant code
snippets for their tasks [16]. Online code search engines–Open Hub, Koders, GitHub
and Krugle– index thousands of large open source projects, and these projects are a
potential source for such code snippets [46]. However, these traditional code search
engines mostly employ keyword matching. Hence, they often do not perform well
with unstructured natural language (NL) queries due to vocabulary mismatch be-
tween NL query and source code [14]. They retrieve code snippets based on lexical
similarity between a search query and the project source code. That means, these
engines require the queries to be carefully designed by the users and to contain rel-
evant API references. Unfortunately, preparing an e↵ective search query that con-
tains information on relevant APIs is not only challenging but also time-consuming
for the developers [16, 38]. A previous study [38] also suggested that on average,
developers regardless of their experience levels performed poorly in coming up
with good search terms for code search. Thus, an automated technique that com-
plements a natural language query with a list of relevant API classes or methods
(i.e., search-engine friendly query) can greatly assist the developers in perform-
ing the code search. Our paper addresses this particular research problem–query
reformulation with relevant API classes–by exploiting the crowdsourced knowledge
stored at Stack Overflow programming Q & A site.

Existing studies on API recommendation accept one or more natural language
queries, and return relevant API classes and methods by mining feature request
history and API documentations [72], large code repositories [84], API invocation
graphs [22], library usage patterns [71], code surfing behaviour of the developers
and API invocation chains [46]. McMillan et al. [46] first propose Portfolio that
recommends relevant API methods for a given code search query and demonstrates
their usage from a large codebase. Chan et al. [22] improve upon Portfolio by
employing further sophisticated graph-mining and textual similarity techniques.
Thung et al. [72] recommend relevant API methods to assist the implementation
of an incoming feature request. Although all these techniques perform well in
di↵erent working contexts, they share a set of limitations and thus fail to address
the research problem of our interest. First, each of these techniques [22, 46, 72]
exploits lexical similarity measure (e.g., Dice’s coe�cients [22]) for candidate API
selection. This warrants that the search query should be carefully prepared, and it
should contain keywords similar to the API names. In other words, the developer
should or must possess a certain level of experience with the target APIs to actually
use these techniques [13]. Second, API names and search queries are generally
provided by di↵erent developers who may use di↵erent vocabularies to convey the
same concept [39]. Furnas et al. [25] named this the vocabulary mismatch problem.
Lexical similarity based techniques often su↵er from this problem. Hence, the
performance of these techniques is not only limited but also subject to the identifier
naming practices adopted in the codebase under study. We thus need a technique
that overcomes the above limitations, and recommends relevant or appropriate
APIs for natural language queries from a wider vocabulary.

One possible way to tackle the above challenges is to leverage the knowledge
or experience of a large technical crowd on the usage of particular API classes and
methods. Let us consider a natural language query–“Generating MD5 hash of a Java
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Fig. 1: An example of (a) Stack Overflow question and (b) its accepted answer

string.” Now, we mine thousands of Q & A posts from Stack Overflow that discuss
relevant APIs for this task and then recommend APIs from them. For instance, the
Q & A example in Fig. 1 discusses on how to generate an MD5 hash (Fig. 1-(a)),
and the accepted answer (Fig. 1-(b)) suggests that MessageDigest API should be
used for the task. Such usage of the API is also recommended by at least 305
technical users from Stack Overflow, which validates the appropriateness of the
usage. Our approach is thus generic, language independent, project insensitive,
and at the same time, it overcomes the vocabulary mismatch problem su↵ered by
the past studies. One can argue in favour of Google which is often used by the
developers for searching code on the web. Unfortunately, recent study [59] shows
that developers need to spend more e↵orts (i.e., two times) in code search than
in web search while using Google search engine. In particular, they need to re-
formulate their queries more frequently and more extensively for the code search.
Such finding suggests that the general-purpose web search engines (e.g., Google)
might be calibrated for the web pages only, and they perform sub-optimally with
the source code, especially due to vocabulary mismatch issues [29, 32]. Thus, au-
tomatic tool supports in the query formulation for code search is still an open
research problem that warrants further investigation.

In this paper, we propose a query reformulation technique–RACK–that ex-
ploits the associations between query keywords and di↵erent API classes used in
Stack Overflow and translates a natural language query intended for code search
into a set of relevant API classes. First, we motivate our idea of using crowd-
sourced knowledge for API recommendation with an exploratory study where we
analyse 172,043 questions and their accepted answers from Stack Overflow. Sec-
ond, we construct a keyword-API mapping database using these questions and
answers where the keywords (i.e., programming requirements) are extracted from
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questions and the APIs (i.e., programming solutions) are collected from the corre-
sponding accepted answers. Third, we propose an API recommendation technique
that employs three heuristics on keyword-API associations and recommends a
ranked list of API classes for a given query for its reformulation. The baseline idea
is to capture and learn the responses from millions of technical users (e.g., devel-
opers, researchers, programming hobbyists) for di↵erent programming problems,
and then exploit them for relevant API suggestion. Our technique (1) does not
rely on the lexical similarity between query and source code of projects for API
selection, and (2) addresses the vocabulary mismatch problems by using a large
vocabulary (i.e., 20K) produced by millions of users of Stack Overflow. Thus, it
has a great potential for overcoming the challenges faced with the past studies.

An exploratory study with 172,043 Java related Q & A threads (i.e., question +
accepted answer) from Stack Overflow shows that (1) each answer uses at least two
di↵erent API classes on average (RQ1), and (2) about 65% of the classes from each
of the 11 core Java API packages are used in these answers (RQ2). Such findings
clearly suggest the potential of using Stack Overflow for relevant API suggestion.
Experiments using 175 code search queries randomly chosen from three Java tu-
torial sites–KodeJava, Java2s and Javadb–show that our technique can recommend
relevant API classes with an accuracy of 83%, a mean average precision@10 of 46%
and a recall@10 of 54%, which are 66%, 79% and 87% higher respectively than
that of the state-of-the-art [72] (RQ4, RQ8). Query reformulations using our sug-
gested API classes improve 46%–64% of the baseline queries (i.e., contain natural
language only), and their overall code retrieval accuracy improves by 19% (RQ9).
Comparisons with the state-of-the-art techniques on query reformulation [51, 84]
also demonstrate that RACK o↵ers 48% net improvement in the baseline query
quality as opposed to 26% by the state-of-the-art, which is 87% higher (RQ10).
Our investigations with Google, Stack Overflow native search, and GitHub native
code search also report that our reformulated queries can improve their results
by 22%–26% in precision and 12%–28% in reciprocal rank in the context of code
example search (RQ11).

Novelty in Contribution: This paper is a significantly extended version of our
earlier work [58] which employed two heuristics (KAC and KKC, Section III-B),
experimented with 150 queries, and answered seven research questions. This work
extends the earlier work in various aspects. First, we improve the earlier heuristics
by recalibrating their weights and thresholds (i.e., RQ7). Second, we introduce
a novel heuristic– Keyword Pair API Co-occurrence (KPAC, Section III-B)–that
leverages word co-occurrences for candidate API selection more e↵ectively. In fact,
this one performs better than the earlier two. Third, we conduct experiments with
a larger dataset containing 175 distinct queries, and further evaluate them in terms
of their code retrieval performance (i.e., missing in the earlier work). Fourth, we
extend our earlier analysis and answer 11 research questions (i.e., as opposed to
seven questions answered by the earlier work). Fifth, we investigate the potential
application of our approach in the context of code search using popular web search
engines (e.g., Google) and code search engines (e.g., GitHub).

Thus, this journal article makes the following contributions:

– An exploratory study that suggests the potential of using Stack Overflow for
relevant API suggestion against an NL query intended for code search.
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Table 1: API Packages for Exploratory Study

Package #Class Package #Class
Core Packages

java.lang 255 java.net 84
java.util 470 java.security 148
java.io 105 java.awt 423
java.math 09 java.sql 29
java.nio 189 javax.swing 1,195
java.applet 05

Non-Core Packages
java.beans 62 java.rmi 67
javax.xml 327 javax.annotation 17
java.text 44 javax.print 123
javax.sound 56 javax.management 201

Total API Classes: 3,809

– A keyword-API mapping database that maps 655K question keywords to 551K
API classes from Stack Overflow.

– A novel technique–RACK–that exploits query keyword-API associations stored
in the crowdsourced knowledge of Stack Overflow, and reformulates a natural
language query using a set of relevant API classes from Stack Overflow.

– Comprehensive evaluation of the proposed technique with five performance
metrics, and comparison with the state-of-the-art techniques and contemporary
web search engines (e.g., Google, Stack Overflow native search) and code search
engines (e.g., GitHub native code search).

Structure of the Article: The rest of article is organized as follows: Section 2
discusses design and findings of our exploratory study, and Section 3 describes our
proposed technique for query reformulation. Section 4 focuses on our conducted
evaluation and validation, Section 5 on threats to validity, Section 6 on related
work from the literature, and finally Section 7 concludes the article with future
research directions projected by this work.

2 Exploratory Study

Our technique relies on the mapping between natural language keywords from the
questions of Stack Overflow and API classes from corresponding accepted answers
for translating a code search query into relevant API classes. Thus, an investigation
is warranted whether such answers contain any API related information and the
questions contain any search query keywords. We perform an exploratory study
using 172,043 Q & A threads from Stack Overflow, and analyse the usage and
coverage of standard Java API classes in them. We also explore if the question
titles are a potential source of suitable keywords for code search. We particularly
answer three research questions as shown in Table 2.

2.1 Data Collection

We collect 172,043 questions and their accepted answers from Stack Overflow using
StackExchange data explorer [3] for our investigation. Since we are interested in
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Table 2: Research Questions Answered using Exploratory Study

Research Questions Targeting API Coverage
RQ1: To what extent do the accepted answers from Stack Overflow refer to
standard Java API classes?
RQ2: To what extent are the API classes from each of the core Java packages
covered (i.e., mentioned) in the accepted answers from Stack Overflow?

Research Question on Search Keyword Matching
RQ3: Do the titles from Stack Overflow questions contain potential query
keywords (i.e., technical terms) for code snippet search?

Java APIs, we only collect such questions that are annotated with java tag. In
addition, we apply several other constraints–(1) each of the questions should have
at least three answers (i.e., average answer count) with one answer being accepted
as the solution, in order to ensure that the questions are answered substantially and
successfully [45], and (2) the accepted answers should contain code like elements
such as code snippets or code tokens so that API information can be extracted
from them. We identify the code elements with the help of <code> tags in the
HTML source of the answers (details in Section 2.2), and use Jsoup1, a popular
Java library, for HTML parsing and content extraction.

We repeat the above steps, and construct another dataset by collecting 440K
Q & A threads from one of our recent works [56]. This dataset is a superset of
the above collection, and it contains more recent threads from Stack Overflow. We
call it the extended dataset in the remaining sections of the exploratory study.

We collect a total of 3,809 Java API classes for our study from 19 packages of
standard Java edition 7. While 2,912 classes are taken from 11 core Java packages2,
the remaining classes have come from 8 non-core Java packages. The goal is to find
out if these classes are referred to in Stack Overflow posts, and if yes, to what extent
they are referred to. We first use Java Reflections [10], a runtime meta data analysis
library, to collect the API classes from JDK 7, and then apply regular expressions
on their fully qualified names for extracting the class name tokens. Table 1 shows
class statistics of the 19 API packages selected for our investigation.

We also collect a set of 18,662 real life search queries from the Google search
history of the first author over the last eight years, which are analysed to answer
the third research question. Although the queries come from a single user, they
contain a large vocabulary of 9,029 distinct natural language search keywords, and
the vocabulary is built over a long period of time. Thus, a study using these queries
can produce significant intuitions and help answer the third research question.

2.2 API Class Name Extraction

Several existing studies [12, 24, 60] extract code elements such as API packages,
classes and methods from unstructured natural language texts (e.g., forum posts,

1 https://jsoup.org/
2 https://goo.gl/A6gEqA
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Fig. 2: Frequency distribution for core API classes – (a) API frequency PMF, (b) API
frequency CDF

Fig. 3: Frequency distribution for core and non-core API classes over the extended dataset –
(a) API frequency PMF, (b) API frequency CDF

Fig. 4: Frequency distribution of unique API classes from core packages – (a) Distinct API
frequency PMF, (b) Distinct API frequency CDF

mailing lists) using information retrieval (e.g., TF-IDF) and island parsing tech-
niques. In the case of island parsing, they apply a set of regular expressions de-
scribing Java language specifications [27], and isolate the land (i.e., code elements)
from water (i.e., free-form texts). We borrow their parsing technique [60], and ap-
ply it to the extraction of API elements from Stack Overflow posts. Since we are
interested in the API classes only, we adopt a selective approach for identifying
them in the post contents. We first isolate the code like sections from HTML
source of each of the answers from Stack Overflow using <code> tags. Then we
split the sections based on white spaces and punctuation marks, and collect the
tokens having the camel-case notation of Java class (e.g., HashSet). According to
the existing studies [24, 60], such parsing of code elements sometimes introduces
false positives. Thus, we restrict our exploratory analysis to a closed set of 3,809
API classes from 19 Java packages (details in Table 1) to avoid false positives (e.g.,
camel-case tokens but not valid API classes).
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Fig. 5: Frequency distribution of unique API classes from core and non-core packages – (a)
Distinct API frequency PMF, (b) Distinct API frequency CDF

2.3 Answering RQ1: Use of APIs in the accepted answers of Stack Overflow

Since our API suggestion technique exploits keyword-API associations from Stack
Overflow, we investigate whether the accepted answers actually use certain API
classes of interest in the first place. According to our investigation, out of 172,043
accepted answers, 136,796 (79.51%) answers refer to one or more Java API class-
like tokens. About 61.02% of the answers actually use API classes from 11 core
Java packages whereas 9.94% of them use the classes from 8 non-core packages as a
part of their solution. We analyse the HTML contents from Stack Overflow answers
with tool supports and then detect the occurrences of 3,809 standard API classes
(Table 1) in each of the accepted answers using a closed-world assumption [60].
We then examine the statistical properties or distribution of such API occurrence
frequencies (i.e., total appearances, unique appearances) and attempt to answer
our first research question.

Fig. 2 shows (a) probability mass function (PMF) and (b) cumulative density
function (CDF) for the total occurrences of API classes per SO answer where the
API classes belong to the core Java API packages. Both density curves suggest that
the frequency observations derive from a heavy-tailed distribution, and majority
of the densities accumulate over a short frequency range. That is, most of the
time only a limited number of API classes co-occur in each answer from Stack
Overflow. The empirical CDF curve also closely matches with the theoretical CDF
[1] (i.e., red dots in Fig. 2-(b)) of a Poisson distribution. Thus, we believe that
the observations are probably taken from a Poisson distribution. We get a 95%
confidence interval over [5.27, 5.37] for mean frequency, � = 5.32, which suggests
that the API classes from the core packages are referred to at least five times on
average in each of the answers from Stack Overflow. We also get 10th quantile at
frequency=2 and 97.5th quantile at frequency=10 which suggest that only 10%
of the frequencies are below 3 and only 2.5% of the frequencies are above 10.
When our investigation is repeated for non-core classes, we get a mean frequency,
� = 0.36, with 95% confidence interval over [0.35, 0.37]. When 11 core and 8
non-core packages are combined and employed against the extended dataset, we
get a 95% confidence interval over [23.62, 23.87] for the mean frequency, �=23.75
with a similar distribution (i.e., Fig. 3). Fig. 4 shows density curves of the core
API class occurrences per answer where only unique API classes are considered.
These observations are also drawn from a heavy-tailed distribution. We get a
95% confidence interval over [2.35, 2.38] for the mean frequency, � = 2.37, which
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Fig. 6: Coverage of API classes from core packages by Stack Overflow answers

suggests that at least two distinct classes are used on average in each answer. 30th

quantile at frequency = 1 and 80th quantile at frequency = 4 suggest that 30%
of the Stack Overflow answers refer to at least one API class whereas 20% of the
answers refer to at least four distinct API classes from the core Java packages under
our study. In the case of non-core classes, we get 90th quantile at frequency = 1,
which suggests that their frequencies are negligible. When the same investigation
is repeated with 19 (11 core + 8 non-core) packages against the extended dataset,
we get a 95% confidence interval over [3.44, 3.46] for �=3.45 with a similar heavy
tailed distribution (i.e., Fig. 5).

At least two di↵erent API classes from the core Java packages are referred to
in each of the 61% accepted answers that are collected from Stack Overflow.
These classes are mentioned at least five times on average in each answer.
API classes from non-core packages are discussed in ⇡10% of the answers.
Furthermore, our observations derived from 172K answers are similar to that
derived from an extended dataset of 440K answers from Stack Overflow.

2.4 Answering RQ2: Coverage of API classes in the accepted answers from Stack
Overflow Q & A site

Since our technique exploits inherent mapping between API classes in Stack Over-
flow answers and keywords from corresponding questions for API suggestion, we
need to investigate if such answers actually use a significant portion of the API
classes from the standard packages as a part of the solution. We thus identify the
occurrences of the API classes from core and non-core packages (Table 1) in Stack
Overflow answers, and determine the API coverage for these packages.
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Fig. 7: Coverage of API classes from (a) core and (b) non-core packages by Stack Overflow
answers (extended dataset)

Fig. 6 shows the fraction of the API classes that are used in Stack Overflow an-
swers for each of the 11 core packages under study. We note that at least 60% of the
classes are used in Stack Overflow for nine out of 11 packages. The remaining two
packages–java.math and javax.swing have 55.56% and 37.41% class coverage re-
spectively. Among these nine packages, three large packages– java.lang, java.util
and java.io have a class coverage over 70%. Thus, on average, 65% of the classes
are mentioned at least once in Stack Overflow. In Fig. 7, when our investigations
are repeated using 19 (11 core + 8 non-core) packages and an extended dataset, we
get a 95% confidence interval over [56.11, 73.01] for mean coverage, µ=64.56% with
a normal distribution. We note that at least 40% of the classes from seven non-core
packages are used in Stack Overflow. The remaining package, javax.management,
has a class coverage of ⇡ 20%. Fig. 8 shows the fraction of Stack Overflow answers
(under study) that use API classes from each of the core 11 packages. We see that
classes from java.lang package are used in over 50% of the answers, which can be
explained since the package contains a number of frequently used and basic classes
such as String, Integer, Method, Exception and so on. Two packages– java.util

and java.awt that focus on utility functions (e.g., unzip, pattern matching) and
user interface controls (e.g., radio button, check box) respectively have a post cov-
erage over 20%. We also note that classes from java.io and javax.swing packages
are used in over 10% of the Stack Overflow answers, whereas the same statistic for
the remaining six packages is less than 10%. When our investigations are repeated
using 19 (11 core + 8 non-core) packages with the extended dataset, most of the
above findings on core packages are reproduced, as shown in Fig. 9-(a). However,
as in Fig. 9-(b)), we see that API classes from all eight non-core packages except
javax.xml are used in less than 5% of the Stack Overflow answers under study.
Thus, although a significant amount (e.g., 40%) of the classes from non-core pack-
ages are mentioned in Stack Overflow at least for once (i.e., Fig. 7-(b)), as a whole,
they are less frequently discussed compared to the core classes. Such finding can
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Fig. 8: Use of core API packages in the Stack Overflow answers

Fig. 9: Use of (a) core and (b) non-core API packages in the Stack Overflow answers
(extended dataset)

also be explained by the highly specific functionalities (e.g., RMI, print) of the
classes from non-core packages under study.

On average, 65% of the API classes from each of the 19 (core + non-core) Java
packages are used in Stack Overflow accepted answers. Each of these packages
is referred to (using their classes) by at least 10%–12% of the answers under
our study. Such findings clearly suggest a significant presence of standard API
classes in Stack Overflow posts, and thus, signal their high potential.
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Table 3: Keywords Intended for Code Search

java code example
sql server file
string mvc web
add type lucene
android table programmatically

Fig. 10: Coverage of keywords from the collected queries in Stack Overflow questions

Fig. 11: Collected search query keywords in Stack Overflow– (a) Keyword frequency PMF (b)
Keyword frequency CDF

2.5 Answering RQ3: Presence of code search keywords in the title of questions
from Stack Overflow

Our technique relies on the mapping between natural language terms from Stack
Overflow questions and API classes from corresponding accepted answers for aug-
menting a code search query with relevant API classes. Thus, an investigation is
warranted on whether keywords used for code search are present in the SO question
texts or not. We are particularly interested in the title of a Stack Overflow ques-
tion since it summarizes the technical requirement precisely using a few important
words, and also resembles a search query. We analyse the titles of 172,043 Stack
Overflow questions and 18,662 real life queries used for Google search (Section 2.1).
Since we are interested in code related queries, we only select such queries that
were intended for code search. Rahman et al. [59] recently used popular tags from
Stack Overflow questions to separate code related queries from non-code queries
that were submitted to a general-purpose search engine, Google. We use a subset
of their selected tags (shown in Table 3) for identifying the code related queries.
We discover 3,073 such queries from our query collection (Section 2.1) where the
queries contain a total of 2,001 unique search keywords.
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Table 4: Code Search Keywords Found in Tutorial Sites

Website #Pages #Terms Source Matched

Javatpoint 1,291
784 Title 20.54%

10,099 Title+Body 60.12%

Tutorialspoint 2,219
1,292 Title 20.14%
14,930 Title+Body 63.62%

Stack Overflow 172,043 20,391 Title 69.22%

Matched=Overlap between extracted terms and code search keywords

According to our analysis, 172,043 question titles contain 20,391 unique terms
after performing natural language preprocessing (i.e., stop word removal, splitting
and stemming). These terms match 69.22% of the keywords collected from our
code search queries. Fig. 10 shows the fraction of the search keywords that match
with the terms from Stack Overflow questions for the past eight years starting
from 2008. On average, 62.69% of the code search keywords from each year match
with Stack Overflow vocabulary derived from its question titles.

Fig. 11 shows (a) probability mass function, and (b) cumulative density func-
tion of keyword frequency in the question titles. We see that the density curve
shows the central tendency like a normal curve (i.e., bell shaped curve), and the
empirical CDF closely matches with the theoretical CDF (i.e., red curve) of a nor-
mal distribution with mean, µ = 3.22 and standard deviation, � = 1.60. We also
draw 172,043 random samples from a normal distribution with equal mean and
standard deviation, and compare with the keyword frequencies. Our Kolmogorov-
Smirnov test reported a p-value of 2.2e-16<0.05 which suggests that both sample
sets belong to the same distribution. Thus, we believe that the keyword frequency
observations come from a normal distribution. We get a mean frequency, µ = 3.22
with 95% confidence interval over [3.21, 3.23], which suggests that each of the
question titles from Stack Overflow contains at least three code search keywords
on average. Furthermore, a recent query classification model that leverages Stack
Overflow tags for separating code queries from non-code queries achieves a promis-
ing accuracy of 87% precision and 86% recall [59]. Such findings further suggest
the potential of Stack Overflow vocabulary for improving the code search.

We also collect all the Q & A threads from two other popular tutorial sites–
Javatpoint3 and Tutorialspoint4, construct two baseline vocabularies from them, and
then contrast with the vocabulary of Stack Overflow. Table 4 shows the statistics
on downloaded pages and unique terms extracted from them. For example, Tuto-
rialspoint has a total of 2,219 web pages, and they form a vocabulary of 14,930
unique terms when both title and body of the pages are considered. It encompasses
various programming domains including Java, C/C++, and C#. On the contrary,
when titles from only Java related questions of Stack Overflow are considered, they
form a vocabulary of 20K. We also note that terms from Tutorialspoint page titles
match only ⇡20% of the code search keywords. On the contrary, such matching
ratio is 69% for Stack Overflow which is 237% higher. Surprisingly, when analysed
from a granular perspective, Stack Overflow might not be better than these two
sites. For example, titles from Javatpoint and Tutorialspoint provide 15.91% and
9.08% of search keywords as opposed to <1.00% by Stack Overflow when 1000

3 https://www.javatpoint.com
4 https://www.tutorialspoint.com
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14 Mohammad M. Rahman et al.

Fig. 12: Proposed technique for API recommendation–(a) Construction of token-API
mapping database, (b) Translation of a code search query into relevant API classes

random pages are analysed. However, Stack Overflow o↵ers (1) a nice combina-
tion of query terms (in the questions) and API classes (in the code snippets), and
(2) a much larger collection of Q & A threads compared to Javatpoint and Tuto-
rialspoint across various domains. Thus, it has a higher potential for assisting the
developers in traditional code search.

Each question title from Stack Overflow contains three potential keywords for
code search on average. Term extracted from these titles match 69% of the
code search keywords produced in real life over the last eight years. Further-
more, vocabulary developed from Stack Overflow posts is much larger than
that of any other available tutorial sites on the web.

3 RACK: Automatic Reformulation of Code Search Query using
Crowdsourced Knowledge

According to the exploratory study (Section 2), at least two API classes are used in
each of the accepted answers of Stack Overflow, and about 65% of the API classes
from the core packages are used in these answers. Besides, the titles from Stack
Overflow questions are a major source of query keywords for code search. Such
findings suggest that Stack Overflow might be a potential source not only for code
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search keywords but also for API classes relevant to them. Since we are interested
in exploiting this keyword-API association from Stack Overflow questions and
answers for API suggestion (i.e., for query reformulation), we need a technique
that stores such associations, mines them automatically, and then recommends
the most relevant APIs. Thus, our proposed technique has two major steps –
(a) Construction of token-API mapping database, and (b) Recommendation of
relevant API classes for a code search query which is written in natural language
(a.k.a., NL query). Fig. 12 shows the schematic diagram of our proposed technique–
RACK– for API recommendation targeting query reformulation.

3.1 Construction of NL Token-API Mapping Database

Since our technique relies on keyword-API associations from Stack Overflow, we
need to extract and store such associations for quick access. In Stack Overflow,
each question describes a technical requirement such as “how to send an email in
Java?” The corresponding answer o↵ers a solution containing code example(s) that
refer(s) to one or more API classes (e.g., MimeMessage, Transport). We capture both
the requirement and API classes carefully, and exploit their semantic association
for the development of token-API mapping database. Since the title summarizes a
question using a few but important words, we only use the titles from the questions.
Acceptance of an answer by the person who posted the question indicates that the
answer actually meets the requirement in the question. Thus, we consider only the
accepted answers from the answer collection for our analysis. The construction of
the mapping database has several steps as follows:

Token Extraction from Titles: We collect title(s) from each of the questions,
and apply standard natural language pre-processing steps such as stop word re-
moval, splitting and stemming on them (Step 1, Fig. 12-(a)). Stop words are the
frequently used words (e.g., the, and, some) that carry very little meaning for a
sentence. We use a stop word list [11] hosted by Google for the stop word removal
step. The splitting step splits each word containing any punctuation mark (e.g.,
.,?,!,;), and transforms it into a list of words. Finally, the stemming step extracts
the root of each of the words (e.g., “send” from “sending”) from the list, where
Snowball stemmer [52, 74] is used. Thus, we extract a set of unique and stemmed
words that collectively convey the meaning of the question title, and we consider
them as the “tokens” from the title of a question from Stack Overflow. Finally,
our database ended up with a total of 19,783 unique NL terms.

API Class Extraction: We collect the accepted answer for each of our se-
lected questions, and parse their HTML source using Jsoup parser [6] for code
segments (Step 2, 3, Fig. 12-(a)). We extract all <code> and <pre> tags from the
source content as they generally contain code segments [57]. It should be noted
that code segments may sometimes be demarcated by other tags or no tag at all.
However, identification of such code segments is challenging and often prone to
false-positives. Thus, we restrict our analysis to contents inside <code> tags and
<pre> for code segment collection from Stack Overflow. We split each of the seg-
ments based on punctuation marks and white spaces, and discard the programming
keywords. Existing studies [12, 60] apply island parsing for API method or class
extraction where they use a set of regular expressions. Similarly, we use a regular
expression for Java class [27], and extract the API class tokens having a camel case
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notation. Thus, we collect a set of unique API classes from each of the accepted
answers. The API classes (e.g., String, Integer, Double) from java.lang package
are mostly generic and frequently used in the code, which is also supported by our
RQ2. Hence, we also avoid all the API classes from this package during our API
extraction from Stack Overflow answers.

Token-API Linking: Natural language tokens from a question title hint about
the technical requirement described in the question, and API names from the ac-
cepted answer represent the relevant APIs that can meet such requirement. Thus,
the programming Q & A site–Stack Overflow– inherently provides an important
semantic association between a list of tokens and a list of APIs. For instance, our
technique generates a list of natural language tokens–{generat, md5, hash}– and
an API token– MessageDigest– from the showcase example on MD5 hash (Fig. 1).
We capture such associations from 126,567 Stack Overflow question and accepted
answer pairs, and store them in a relational database (Step 4, 5, Fig. 12-(a)) for
relevant API recommendation for any code search query.

3.2 API Relevance Ranking & Reformulation of the NL-Query

In the token-API mapping database, each NL token (or term) associates with
di↵erent APIs, and each API class associates with a number of NL tokens. Thus, we
need a technique that carefully analyses such associations, identifies the candidate
APIs, and then recommends the most relevant ones from them for a given query.
It should be noted that we do not apply the traditional association rule mining
[81]. Our investigations using the constructed database (Section 3.1) report that
frequencies of co-occurrence between NL terms and API classes in Stack Overflow
posts are not su�cient enough to form association rules for all queries. The API
class ranking and recommendation targeting our query reformulation for code
search involve several steps as follows:

3.2.1 Identification of Keyword Context

In natural language processing, the context of a word refers to the list of other
words that co-occur with that word in the same phrase, same sentence or even the
same paragraph [31]. Co-occurring words complement the semantics of one another
[47]. Yuan et al. [83] analyse programming posts and tags from Stack Overflow Q
& A site, and use word context for determining semantic similarity between any
two software-specific words. In this research, we identify the words that co-occur
with each query keyword in the thousands of question titles from Stack Overflow.
For each keyword, we refer to these co-occurring words as its context. We then
opportunistically use these contextual words for estimating semantic relevance
between any two keywords.

3.2.2 Candidate API Selection

In order to collect candidate APIs for a NL query, we employ three di↵erent heuris-
tics. These heuristics consider not only the association between query keywords
and APIs but also the coherence among the APIs themselves. Thus, the key idea
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is to identify such programming APIs as candidates that are not only likely for
the query keywords but also functionally consistent to one another.

Keyword-API Co-occurrence (KAC): Stack Overflow discusses thousands of
programming problems, and these discussions contain both natural language texts
(i.e., keywords) and reference to a number of APIs. According to our observation,
several keywords might co-occur with a particular API and a particular keyword
might co-occur with several APIs across di↵erent programming solutions. This
co-occurrence generally takes place either by chance or due to semantic relevance.
Thus, if carefully analysed, such co-occurrences could be a potential source for
semantic association between keywords and APIs. We capture these co-occurrences
(i.e., associations) between keywords from question titles and APIs from accepted
answers, discard the random associations using a heuristic threshold (�), and then
collect the top API classes (LKAC [Ki]) for each keyword (Ki) that co-occurred
most frequently with the keyword at Stack Overflow.

LKAC [Ki] = {Aj | Aj✏A ^ rankfreq(Ki ! Aj)  �}

Here, Ki ! Aj denotes the association between a keyword Ki and an API class Aj ,
rankfreq returns rank of the association from the ranked list based on association
frequency, and � is a heuristic rank threshold. In our research, we consider top ten
(i.e., � = 10) APIs as candidates for each keyword, which is carefully chosen based
on iterative experiments on our dataset (see RQ7 for details).

Keyword Pair–API Co-occurrence (KPAC): While frequent co-occurrences
of APIs with a query keyword are a good indication of their relevance to the query,
they might also fall short due to the fact that the query might contain more than
one keyword. That is, API classes relevant to (i.e., frequently co-occurred with)
one keyword might not be relevant to other keywords from the query. Thus, API
classes that are simultaneously relevant to multiple keywords should be selected
as candidates. We consider nC2 keyword pairs from n keywords of a query using
combination theory, and identify such APIs that frequently co-occur with both
keywords from each pair in the same context (e.g., same Q & A thread). Suppose,
Ki and Kj are two keywords, and they form one of the nC2 keyword pairs from
the query. Now, the candidate API classes (LKPAC [Ki,Kj ]) are relevant if they
occur in an accepted answer of Stack Overflow whereas both keywords appear in
the corresponding question title. We select such relevant candidates as follows:

LKPAC [Ki,Kj ] = {Am | Am✏A ^ rankfreq((Ki,Kj) ! Am)  �}

Here (Ki,Kj) ! Am denotes the association between keyword pair (Ki,Kj) from a
question title and API class Am from the corresponding accepted answer of Stack
Overflow. We capture top ten (i.e., � = 10) such co-occurrences for KPAC heuristic,
and the detailed justification for this choice can be found in RQ7. We determine the
association based on their co-occurrences in the same set of documents. In this case,
each question-answer thread from Stack Overflow is considered as a document.
While co-occurrences of keyword triples with APIs could also be considered for
API candidacy, existing IR-based studies report that phrases of two words are
more e↵ective as a semantic unit (e.g., “chat room”) rather than the triples (e.g.,
“find chat room”) [47, 55].

Keyword–Keyword Coherence (KKC): The two heuristics above determine
relevant API candidacy based on the co-occurrence between query keywords and
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APIs in the same document. That is, multiple keywords from the query are also
warranted to co-occur in the same document. However, such co-occurrences might
not always happen, and yet the keywords could be semantically related to one
another (i.e., co-occurred in the query). More importantly, the candidate APIs
should be relevant to multiple keywords that do not co-occur. Yuan et al. [83] de-
termine semantic similarity between any two software specific words by using their
contexts from Stack Overflow questions and answers. We adapt their technique for
identifying coherent keyword pairs which might not co-occur. The goal is to collect
candidate APIs relevant to these pairs based on their coherence. We (1) develop a
context (Ci) for each of the n query keywords by collecting its co-occurring words
from thousands of question titles from Stack Overflow, (2) determine semantic
similarity for each of the nC2 keyword pairs based on their context derived from
Stack Overflow, and (3) use these measures to identify the coherent pairs and then
to collect the functionally coherent APIs for them. At the end of this step, we have
a set of candidate APIs for each of the coherent keyword pairs.

Suppose, two query keywords Ki and Kj have context word list Ci and Cj

respectively. Now, the candidate APIs (LKKC) that are relevant to both keywords
and functionally consistent with one another can be selected as follows:

LKKC [Ki,Kj ] = {L[Ki] \ L[Kj ] | cos(Ci, Cj) > �}

Here, cos(Ci, Cj) denotes the cosine similarity [57] between two context lists– Ci

and Cj , and � is the similarity threshold. We consider � = 0 in this work based
on iterative experiments on our dataset (see RQ7 for the detailed justification).
L[Ki] and L[Kj ] are top frequent APIs for the two keywords– Ki and Kj where
Ki and Kj might not co-occur in the same question title. Thus, LKKC [Ki,Kj ]
contains such APIs that are relevant to both keywords (i.e., co-occurred with
them in Stack Overflow answers) and functionally consistent with one another.
Since the candidate APIs co-occur with the keywords from each coherent pair
(i.e., semantically similar, � > 0) in di↵erent contexts, they are also likely to
be coherent for the programming task at hand. Such coherence often could be
explained in terms of the dependencies among the API classes.

3.2.3 API Relevance Ranking Algorithm

Fig. 12-(b) shows the schematic diagram, and Algorithm 1 shows the pseudo code
of our API relevance ranking algorithm–RACK. Once a search query is submitted,
we (1) perform Part-of-Speech (POS) tagging on the query for extracting the
meaningful words such as nouns and verbs [19, 79], and (2) apply standard natural
language preprocessing (i.e., stop word removal, splitting, and stemming) on them
to extract the stemmed words (Lines 3–4, Algorithm 1). For example, the query–
“html parser in Java” turns into three keywords–‘html’, ‘parser’ and ‘java’ at the
end of the above step. We then apply our three heuristics–KAC, KPAC and KKC–
on the stemmed keywords, and collect candidate APIs from the token-API linking
database (Step 2, Fig. 12-(b), Lines 5–8, Algorithm 1). The candidate APIs are
selected based on not only their co-occurrence with the query keywords but also
the coherence (i.e., functional consistency) among themselves. We then use the
following metrics (i.e., derived from the above heuristics) to estimate the relevance
of the candidate API classes for the query.
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Algorithm 1 API Relevance Ranking using the Proposed Heuristics
1: procedure RACK(Q) . Q: natural language query for code search
2: R {} . list of API classes relevant to Q
3: . collecting keywords using POS tagging and NL preprocessing
4: K  preprocess(collectNounVerbs(Q))
5: . collecting candidate API classes
6: LKAC  getKACList(K)
7: LKPAC  getKPACList(K)
8: LKKC  getKKCList(K)
9: . estimating relevance of the candidate APIs

10: for Keyword Ki 2 K do
11: for APIClass Aj 2 LKAC [Ki] do
12: . relevance of an API with single keyword
13: SKAC  getKACScore(Aj , LKAC [Ki])
14: RKAC [Aj ].score RKAC [Aj ].score+ SKAC
15: end for
16: end for
17: for Keyword Ki,Kj 2 K do
18: . relevance of an API with multiple keywords
19: for APIClass Aj 2 LKPAC [Ki,Kj ] do
20: SKPAC  getKPACScore(Aj , LKPAC [Ki,Kj ])
21: RKPAC [Aj ].score RKPAC [Aj ].score+ SKPAC
22: end for
23: . coherence of an API with other candidate APIs
24: Ci  getContextList(Ki)
25: Cj  getContextList(Kj)
26: SKKC  getKKCScore(Ci, Cj)
27: for APIClass Aj 2 LKKC [Ki,Kj ] do
28: RKKC [Aj ].score RKKC [Aj ].score+ SKKC
29: end for
30: end for
31: . ranking of the API classes using their normalized scores and relative weights
32: for APIClass Aj 2 {RKAC , RKPAC , RKKC} do
33: R[Aj ] max(↵⇥RKAC [Aj ], � ⇥RKPAC [Aj ], (1� ↵� �)⇥RKKC [Aj ])
34: end for
35: rankedAPIs sortByScore(R)
36: return rankedAPIs
37: end procedure

API Co-occurrence Likelihood estimates the probability of co-occurrence of
a candidate API (Aj) with one (Ki) or more (Ki,Kj) keywords from the search
query. It considers the rank of the API in the ranked list based on keyword-API
co-occurrence frequency (i.e., KAC and KPAC) and the size of the list, and then
provides a normalized score (on the scale from 0 to 1) as follows:

SKAC(Aj ,Ki) = 1�
rank(Aj , sortByFreq(L[Ki]))

|LKAC [Ki]|

SKPAC(Aj ,Ki,Kj) = 1�
rank(Aj , sortByFreq(LKPAC [Ki,Kj ]))

|LKPAC [Ki,Kj ]|
Here, SKAC and SKPAC denote the API co-occurrence likelihood estimates, and
they range from 0 (i.e., not likely at all for the keywords) to 1 (i.e., very much likely
for the keywords). The more likely an API is for the keywords, the more relevant
it is for the query. This approach might also encourage the common API classes
(e.g., List, String) that are often used with most programming tasks. Such APIs
might not be helpful for relevant code snippet search. We thus apply appropriate
filters and thresholds to avoid such noise.
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API Coherence estimates the coherence of an API (Aj) with other candidate
APIs for a query. Since the query targets a particular programming task (e.g.,
“parsing the HTML source”), the suggested APIs should be logically consistent with
one another. One way to heuristically determine such coherence is to exploit the
semantic relevance among the corresponding keywords that co-occurred with that
API (Aj). The underlying idea is that if two keywords are semantically similar,
their co-occurred API sets could also be logically consistent with each other. We
thus determine semantic similarity between any two keywords (Ki,Kj) from the
query using their context lists (Ci, Cj) [83], and then propagate that measure to
each of their candidate API classes (Aj) that co-occurred with both of the keywords
(i.e., KKC) as follows:

SKKC(Aj ,Ki,Kj) = cos(Ci, Cj) | (Ki ! Aj) ^ (Kj ! Aj)

Here, SKKC denotes the API Coherence estimate, and it ranges from 0 (i.e., not
relevant at all with multiple keywords) to 1 (i.e., highly relevant). It should be
noted that each candidate, Aj , comes from L[Ki] or L[Kj ], i.e., the API is already
relevant to each of Ki and Kj in their corresponding contexts. SKKC investigates
how similar those contexts are, and thus heuristically estimates the coherence
between the APIs from these contexts.

We first estimate API Co-occurrence Likelihood of each of the candidate APIs
that suggests the likeliness of the API for one or more keywords from the given
query (Lines 9–22, Algorithm 1). Then we determine API Coherence for each can-
didate API that suggests coherence of the API with other candidate APIs for the
query (Lines 23–30). Once all metrics of each candidate are calculated (Step 3,
Fig. 12-(b)), only the maximum score is taken into consideration where appropri-
ate weights–↵, � and (1 � ↵ � �)–are applied (Lines 31–34, Algorithm 1). These
weights control how two of our above dimensions– co-occurrence and coherence–
a↵ect the final relevance ranking of the candidates. We consider a heuristic value
of 0.325 for ↵ and a value of 0.575 for �, and the detailed weight selection method
is discussed in Section 4.9. The candidates are then ranked based on their final
scores, and Top-K API classes from the ranked list are returned as API recom-
mendation (Lines 35–36, Algorithm 1, Step 4, 5, Fig. 12-(b)). Such API classes
are then used for NL-query reformulation.

Working Example: Table 5 shows a working example of how our proposed
query reformulation technique –RACK– works. Here we reformulate our natural
language query–“HTML parser in Java”–into relevant API classes. We first apply
KAC heuristic, and collect the Top-5 (i.e., � = 5) candidate APIs for each of the
three keywords–‘html’,‘parser’ and ‘java’– based on co-occurrence frequencies of
the candidates with the keywords. We also repeat the same step for each of the
three (i.e., 3C2) keyword pairs–(html, parser), (html, java) and (parser, java) by
applying our KPAC heuristic. Then we estimate co-occurrence likelihood (with the
keywords and keyword pairs) of each of the candidate APIs. For example, Document
has a maximum likelihood of 1.00 among the candidates not only for the single
search keyword but also for the keyword pairs. We then determine coherence of
each candidate API (with other candidates) based on semantic relevance among
the above three keyword pairs. For example, ‘html’ and ‘parser’ have a semantic
relevance of 0.42 between them (on the scale from 0 to 1) based on their contexts
from Stack Overflow questions and answers, and they have several common candi-
dates such as Document, Element and File. Since the two keywords are semantically
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Table 5: An Example of Query Reformulation using RACK
html SKAC parser SKAC java SKAC

KAC

Document 1.00 Document 1.00 Object 1.00
Jsoup 0.80 Element 0.80 ArrayList 0.80
Element 0.60 File 0.60 File 0.60
Elements 0.40 IOException 0.40 Class 0.40
IOException 0.20 Node 0.20 IOException 0.20

(html, parser) SKPAC (html, java) SKPAC (parser, java) SKPAC

KPAC

Document 1.00 Document 1.00 Document 1.00
Jsoup 0.80 Jsoup 0.80 Element 0.80
Element 0.60 Element 0.60 File 0.60
Elements 0.40 IOException 0.40 DocumentBuilder 0.40
Parser 0.20 Elements 0.20 DocumentBuilderFactory 0.20

(html, parser) SKKC (html, java) SKKC (parser, java) SKKC

KKC

Document 0.42 IOException 0.28 File 0.20
Element 0.42 File 0.28 IOException 0.20
IOException 0.42
File 0.42
ArrayList 0.42

Initial Query Reformulated Query Suggested API Score

RACK

Document 0.79
Q0={Document, Element, Element 0.69

Q=“HTML parser in Java” File, IOException, File 0.69
Jsoup} + Q IOException 0.52

Jsoup 0.50

Table 6: Research Questions Answered using Experiment

Research Questions on API Suggestion

RQ4: How does the proposed technique –RACK– perform in recommending
relevant APIs for a code search query?
RQ5: How e↵ective are the proposed heuristics–KAC, KPAC and KKC–in cap-
turing the relevant APIs for a query?
RQ6: Does an appropriate subset of the query keywords perform better than
the whole query in retrieving the relevant APIs?
RQ7: How do the heuristic weights (i.e., ↵, �) and threshold settings (i.e., �, �)
influence the performance of our technique?
RQ8: Can RACK outperform the state-of-the-art techniques in recommending
relevant APIs for a given set of natural language queries?

Research Questions on Query Reformulation

RQ9: Can RACK significantly improve the natural language queries in terms
of relevant code retrieval performance?
RQ10: Can RACK outperform the state-of-the-art technique in improving the
natural language queries for code search?
RQ11: How does RACK perform compared to the popular web search engines
(e.g., Google) and code search engines (e.g., GitHub code search)?

relevant, their relevance score (i.e., 0.42, SKKC) is propagated to their shared can-
didate APIs as a proxy to the coherence among the candidates. We then gather
all scores for each candidate, choose the best score, and finally get a ranked list.
From the recommended list, we see that Document, Element and Jsoup are highly
relevant APIs from Jsoup library for the given NL-query. Our technique returns
such a list of relevant API classes as the reformulation to an original NL query.
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4 Experiment

One of the most e↵ective ways to evaluate a technique that suggests relevant API
classes or methods for a query is to check their conformance with the gold set
APIs of the query. Since the suggested APIs could be used to reformulate the
initial query (i.e., using natural language), the quality of the automatically re-
formulated query could be another performance indicator for the technique. We
evaluate our technique using 175 code search queries, their goldset APIs and their
relevant code segments (i.e., implementing the tasks in the query) collected from
three programming tutorial sites. We determine the performance of our technique
using six appropriate metrics from the literature. Then we compare with two vari-
ants of the state-of-the-art technique on API recommendation [72] and a popular
code search engine–Lucene [30]–for validating our performance. We answer eight
research questions with our experiments as shown in the Table 6.

4.1 Experimental Dataset

Data Collection: We collect 175 code search queries for our experiment from three
Java tutorial sites– KodeJava [7], JavaDB [5] and Java2s [4]. These sites discuss
hundreds of programming tasks that involve the usage of di↵erent API classes from
the standard Java API libraries. Each of these task descriptions generally has three
parts–(1) a title (i.e., question) for the task, (2) one or more code snippets (i.e.,
answer), and (3) an associated prose explaining the code. The title summarizes a
programming task (e.g., “How do I decompress a GZip file in Java?”) using natural
language texts. It generally uses a few pertinent keywords (e.g., “decompress”,
“GZip”), and also often resembles a query for code search (Section 2.5). We thus
consider such titles from the tutorial sites as the code search queries, and use them
for our experiment in this research.

Gold Set Development: The prose explaining the code often refers to one
or more APIs (e.g., GZipOutputStream, FileOutputStream) from the code snip-
pet(s) that are found to be essential for the task. In other words, such APIs can
be considered as the most relevant ones (i.e., vital) for the target programming
task. We collect such APIs from the prose against each of the task titles (i.e., code
search queries) from our dataset, and develop a gold set–API-goldset–for the exper-
iment. Since relevance of the APIs is determined based on working code examples
and their associated prose from the publicly available and popular tutorial sites,
the subjectivity associated with the relevance of the collected APIs is minimized
[22]. We also collect the code segments verbatim that implement each of the se-
lected tasks (i.e., our queries) from these tutorial sites, and develop another gold
set–Code-goldset–for our experiments. Our goals are to (1) compare our queries
containing the suggested API classes with the baseline queries containing only
NL keywords and (2) compare our queries with the reformulated queries by the
state-of-the-art techniques on API recommendation [51, 72, 84].

Corpus Preparation: We evaluate not only the API recommendation perfor-
mance of RACK but also the retrieval performance of its reformulated queries.
We collect relevant code snippets (i.e., ground truth) for each of our 175 search
queries from the above tutorial sites, and develop a corpus. It should be noted that
each query-code snippet pair comes from the same Q & A thread from the tutorial
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sites. However, this approach leaves us with a corpus of 175 documents which do
not represent a real world corpus. We thus extend our code corpus by adding more
code snippets from one of our earlier works [53], and this provided a corpus con-
taining 4,170 (175+3,995) code snippets. It should be noted that the additional
3,995 code snippets were carefully collected from hundreds of open source projects
hosted at GitHub (see [53] for details). This corpus is referred to as 4K-Corpus
throughout the later sections in the paper.

We also develop two other corpora containing 256,754 (175+256,399) and
769,244 (175+769,069) documents respectively. They are referred to as 256K-
Corpus and 769K-Corpus in the rest of the sections. These corpus documents are
Java classes extracted from an internet-scale and well-established dataset– IJa-
Dataset [37, 44, 68]. The dataset was constructed using 24,666 real world Java
projects across various domains, and they were collected from SourceForge5 and
Google Code6 repositories. We analyse 1,500,000 Java source files from the dataset,
and discard the ones with a size greater than 3KB. 95% of our ground truth code
segments have a size less than 3KB. The goal was to avoid the large and poten-
tially noisy code snippets in the corpus. Given the large size (i.e., 769K documents)
and cross-domain nature of the collected projects, our corpora are thus likely to
represent a real world code search scenario.

We consider each of these code snippets from all three corpora as an individ-
ual document, apply standard natural language preprocessing (i.e., token splitting,
stop word removal, programming keyword removal) to them, and then index the
corpus documents using Apache Lucene7, a search engine widely used by the rel-
evant literature [30, 38, 48]. The indexed corpus is then used to determine the
retrieval performance of the initial and reformulated queries for code search.

Replication: All the experimental data, associated tools and implementations
are hosted online [9] for replication or third party reuse.

4.2 Performance Metrics

We choose five performance metrics for the evaluation and validation of our tech-
nique that are widely adopted by relevant literature [22, 46, 72]. Two of them
are related to recommendation systems whereas the other four metrics are widely
popular in the information retrieval domain.

Top-K Accuracy/Hit@K: It refers to the percentage of the search queries for
each of which at least one item (e.g., API class, code segment) is correctly returned
within the Top-K results by a recommendation technique. It is also called Hit@K
[75]. Top-K Accuracy of a technique can be defined as follows:

Top–KAccuracy(Q) =

P
q2Q

isCorrect(q,K)

|Q| %

Here, isCorrect(q,K) returns a value 1 if there exists at least one correct API class
(i.e., from the API-goldset) or one correct code segment (i.e., implements the task
in query) in the Top-K returned results, and returns 0 otherwise. Q denotes the

5 https://sourceforge.net/
6 https://code.google.com/
7 http://lucene.apache.org/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 Mohammad M. Rahman et al.

set of all search queries used in the experiment. Although Top-K Accuracy and
Hit@K are used interchangeably in the literature [69, 75], we use Hit@K to denote
recommendation accuracy in the remaining sections for the sake of consistency.

Mean Reciprocal Rank@K (MRR@K): Reciprocal rank@K refers to the
multiplicative inverse of the rank (i.e., 1/rank(q,K), q 2 Q) of the first relevant
API class or code segment in the Top-K results returned by a technique. Mean
Reciprocal Rank@K (MRR@K) averages such measures for all search queries (8q 2
Q) in the dataset. It can be defined as follows:

MRR@K(Q) =
1
|Q|

X

q2Q

1
rank(q,K)

Here, rank(q,K) returns the rank of the first correct API or the correct code
segment from a ranked list of size K. If no correct API class or code segment is
found within the Top-K positions, then rank(q,K) returns 1. On the contrary,
it returns 1 for the correct result at the topmost position of a ranked list. Thus,
MRR can take a maximum value of 1 and a minimum value of 0. The bigger the
MRR value is, the better the technique is.

Mean Average Precision@K (MAP@K): Precision@K calculates the preci-
sion at the occurrence of every single relevant item (e.g., API class, code segment)
in the ranked list. Average Precision@K (AP@K) averages the precision@K for all
relevant items within Top-K results for a code search query. Mean Average Preci-
sion@K is the mean of Average Precision@K for all queries (Q) from the dataset.
MAP@K of a technique can be defined as follows:

AP@K =

P
K

k=1 Pk ⇥ relk
|RR|

MAP@K =

P
q✏Q

AP@K(q)

|Q|

Here, relk denotes the relevance function of kth result in the ranked list that
returns either 1 (i.e., relevant) or 0 (i.e., non-relevant), Pk denotes the precision
at kth result, and K refers to number of top results considered. RR is the set of
relevant results for a query, and Q is the set of all queries.

Mean Recall@K (MR@K): Recall@K refers to the percentage of gold set
items (e.g., API, code segment) that are correctly recommended for a code search
query in the Top-K results by a technique. Mean Recall@K (MR@K) averages
such measures for all queries (Q) in the dataset. It can be defined as follows:

MR@K(Q) =
1
|Q|

X

q2Q

|result(q,K) \ gold(q)|
|gold(q)|

Here, result(q,K) refers to Top-K recommended APIs by a technique, and gold(q)
refers to goldset APIs for each query q 2 Q. The bigger the MR@K value is, the
better the recommendation technique is.

Query E↵ectiveness (QE): It refers to the rank of first relevant document in
the results list retrieved by a query. The metric approximates a developer’s e↵ort
in locating the first item of interest. Thus, the lower the e↵ectiveness measure is,
the more e↵ective the query is [49, 55]. We use this measure to determine whether
a given query is improved or not after its reformulation.
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Normalized Discounted Cumulative Gain (NDCG): It determines the qual-
ity of ranking provided by a technique. With a graded relevance scale for results, the
metric accumulates overall gain or usefulness from the top to the bottom of the
list [35, 77]. It assumes that (1) highly relevant results are more useful when they
appear earlier in the ranked list, and (2) highly relevant results are more useful
than marginally relevant results. Thus, Discounted Cumulative Gain (DCG) of a
ranked list returned by a query q can be calculated as follows:

DCG(q) =
KX

k=1

grelk
log2(k + 1)

where grelk = 1� goldRank(k, gold(q))
|gold(q)|

Here, grelk refers to the graded relevance of the result at position k. goldRank(.)
returns the rank of the kth result within the goldset items gold(q). If kth result
is not found in the goldset, grelk simply returns 0 as a special case. Thus, grelk
provides a graded relevance scale between 0 and 1 for each relevant result. Once
DCG(q) is calculated, the normalized DCG can be calculated as follows:

NDCG(q) =
DCG(q)
IDCG(q)

, NDGC(Q) =
1
|Q|

X

q2Q

NCDG(q)

Here IDCG(q) is the Ideal Discounted Cumulative Gain which is derived from the
ranking of goldset items. Thus, NDCG(q) is the metric for one single query q,
whereas NDCG(Q) averages the metric over all queries (8q 2 Q). We use NDCG
in order to determine the quality of code search ranking from the traditional
web/code search engines (Section 4.13).

4.3 Evaluation Scenarios

Our work in this article has two di↵erent aspects– (a) relevant API suggestion and
(b) automatic query reformulation. We thus employ two di↵erent setups for evalu-
ating our approach. In the first case, we investigate API suggestion performance of
RACK, calibrate our adopted parameters, and compare with the state-of-the-art
approaches on API suggestion [72, 84] (RQ4–RQ8). In the second case, we refor-
mulate the initial NL queries from the dataset using our suggested API classes.
Then we compare our reformulated queries not only with the baseline queries but
also with the queries generated by the state-of-the-art approaches on query refor-
mulation [51, 84] (RQ9–RQ10). We also investigate the potential of our queries in
the context of contemporary web and code search practices (RQ11).

4.4 Statistical Significance Tests

In our comparison studies, we perform two statistical tests before claiming signif-
icance of one set of items over the other. In particular, we employ Mann-Whitney
Wilcoxon (MWW) and Wilcoxon Signed Rank (WSR) for significance tests. We refer
to them as MWW and WSR respectively in the remaining sections. MWW is a
non-parametric test that (1) does not assume normality of the data and (2) is ap-
propriate for small dataset [30]. We use this test for comparing any two arbitrary
lists of items. WSR test is another non-parametric test that performs pair-wise
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Table 7: Performance of RACK

Metric
Non-weighted Version Weighted Version

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Hit@K 30.29% 55.43% 68.57% 83.43% 38.29% 61.14% 72.00% 83.43%
MRR@K 0.30 0.41 0.44 0.46 0.38 0.48 0.48 0.52
MAP@K 30.29% 40.19% 42.00% 39.66% 38.29% 48.14% 48.39% 45.74%
MR@K 9.24% 22.67% 33.53% 52.78% 12.12% 26.41% 37.94% 54.07%

comparison between two lists. In our experiment, WSR was used for significance
test between performance measures (e.g., Hit@K) of RACK in API/code sugges-
tion and that of an existing approach for the same K positions (i.e., 1K10)
(RQ8, RQ9, RQ10). We report p-value of each statistical test, and use 0.05 as the
significance threshold. In addition to these significance tests, we also perform e↵ect
size test using Cli↵ ’s delta to demonstrate the level of significance. For this work,
we use three significance levels – short (0.147�0.33), medium (0.33�0.474)
and large (��0.474) [62]. We use two R packages – stats, effsize – for conduct-
ing these statistical tests.

4.5 Matching of Suggested APIs with Goldset APIs

In order to determine performance of a technique, we apply strict matching be-
tween gold set APIs and the recommended APIs. That is, we consider two API
classes matched if (1) they are categorically the same, and (2) they are superclass
or subclass of each other. For example, if OutputStream is a gold set API and
FileOutputStream is a recommended API, we consider them and their inverse as
matched. If a base class is relevant for a programming task, the derived class is also
likely to be relevant and thus, the recommendation is considered to be accurate. In
the case of relevant code segment retrieval, we also apply exact matching between
gold set segment and returned segment by a query. Since the tutorial sites clearly
indicate which of the code segments implements which of our selected tasks (i.e.,
queries), such matching is warranted for this case. It should be noted that items
(e.g., API class, code segment) outside the goldset could be also relevant to our
queries. However, we stick to our gold sets for the sake of simplicity and clarity
of our experiments. Our gold sets are also publicly available [9] for third-party
replication or reuse.

4.6 Answering RQ4: How does the proposed technique perform in suggesting
relevant APIs for a code search query?

Each of our selected queries summarizes a programming task that requires the use
of one or more API classes from various Java libraries. Our technique recommends
Top-K (e.g., K = 10) relevant API classes for each query. We compare the recom-
mended items with the API-goldset and evaluate them using above four metrics.
In this section, we answer RQ4 using Table 7 and Fig. 13.

Table 7 shows the performance details of our technique for Top-1, Top-3, Top-
5 and Top-10 API recommendations. We see that our technique recommends at
least one API correctly for 83%+ of the queries with both its (a) non-weighted
and (b) weighted versions. The weighted version applies a fine tuned weight to
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Fig. 13: Hit@K, Mean Average Precision@K, and Mean Recall@K of RACK using (a)
non-weighted version (i.e., dashed line) and (b) weighted version (i.e., solid line)

each of our three heuristics–KAC, KPAC and KKC–whereas the non-weighted
version treats each of the heuristics equally. Such accuracy is highly promising
according to the relevant literature [22, 46]. Mean average precision and mean
recall of RACK are 40%–46% and 53%–54% respectively for Top-10 results which
are also promising. It also should be noted that RACK provides 55%–61% accuracy
and 40%–48% precision for only Top-3 results which are good. That means, one
out of the two suggested API classes is found to be relevant for the task, which
could be really helpful for e↵ective code search. Our mean reciprocal ranks are
0.46 and 0.52 for non-weighted and weighted version respectively. That is, the
first correct suggestion is generally found between first to second position of our
ranked list, which demonstrates the potential of our technique. Fig. 13 shows
how di↵erent performance metrics – accuracy, precision and recall– change over
di↵erent values of Top-K. We see that our technique reaches a high precision (i.e.,
48.14%) quite early (i.e., K = 3) and the highest (i.e., 48.39%) at K = 5, and then
stays comparable for the rest of the K values. However, the improvement of recall
measure is comparatively slow. It is ⇡ 10% for K = 1, and then increases somewhat
linearly up to 54% for the last value of K = 10. On the contrary, the accuracy of
RACK improves in a log-linear fashion, and becomes somewhat stationary for K =
10 with 83%. While our accuracy and recall could further improve for increased
K-values, the precision is likely to drop. Thus, we conduct our experiments using
only Top-10 suggestions from a technique. Developers generally do not check items
beyond the Top-10 items from the ranked list, and relevant literature [55, 69] also
widely apply such cut-o↵ value. Thus, our choice of K = 1 to 10 is also justified.

We also analyse the distribution of API classes from 19 (11 core + 8 non-
core) Java packages (i.e., Table 1) in our ground truth, and investigate how they
correlate with corresponding distributions from Stack Overflow. We found that on
average, 10% of the standard Java API classes from each package overlap with our
ground truth classes. On the contrary, 65% of the API classes from each package
are discussed in Stack Overflow Q & A threads according to RQ2. Thus, Stack
Overflow discusses more API classes than the ground truth warrants for. In short,
Stack Overflow is highly likely to deliver the relevant classes from standard API
packages, and our approach harnesses that power. We also found that 51% of the
ground truth classes come from the core packages whereas 10% of them come from
the non-core packages. Since Stack Overflow has a good coverage (e.g., ⇡ 65%) for
both core and non-core packages (Fig. 7), RACK is also likely to perform well for
such queries that require the API classes from non-core packages only.
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Table 8: Role of Proposed Heuristics– KAC, KPAC and KKC

Heuristics Metric Top-1 Top-3 Top-5 Top-10

Hit@K 19.43% 42.29% 58.86% 76.00%
{Keyword-API MRR@K 0.19 0.29 0.33 0.36
Co-occurrence (KAC)} MAP@K 19.43% 29.05% 31.94% 32.57%

MR@K 5.97% 15.35% 25.71% 46.42%

Hit@K 36.57% 58.86% 69.14% 79.43%
{Keyword Pair-API MRR@K 0.37 0.46 0.49 0.50
Co-occurrence (KPAC)} MAP@K 36.57% 46.19% 46.13% 43.65%

MR@K 11.08%% 24.88% 36.20% 52.21%

Hit@K 13.71% 32.57% 41.14% 55.43%
{Keyword-Keyword MRR@K 0.14 .22 0.24 0.26
Coherence (KKC)} MAP@K 13.71% 21.52% 23.05% 24.26%

MR@K 4.46% 12.32% 18.07% 28.29%

Hit@K 17.71% 40.00% 58.29% 77.71%

{KAC + KKC} [58]
MRR@K 0.18 0.28 0.32 0.34
MAP@K 17.71% 27.57% 30.24% 30.84%
MR@K 5.65% 14.66% 25.56% 46.15%

Hit@K 38.29% 61.14% 72.00% 83.43%

RACK
MRR@K 0.38 0.48 0.48 0.52
MAP@K 38.29% 48.14% 48.39% 45.74%
MR@K 12.12% 26.41% 37.94% 54.07%

We also determine correlation between four performance measures (e.g., Hit@10,
reciprocal rank, average precision, recall) of our API suggestions (against NL
queries) and the coverage of their corresponding ground truth in the constructed
API database (Section 3.1). We employed two correlation methods – Pearson
and Spearman, and found either very weak or negligible correlations (i.e., 0.04
⇢ 0.12) between those two entities. That is, the API suggestion performance of
RACK is not biased by the coverage of the ground truth API classes in our API
database. Such finding strengthens the external validity of our results.

RACK suggests relevant API classes for about 83% of the generic NL queries
with a mean average precision@10 of 40%–46%, a mean reciprocal rank@10
of 0.46–0.52, and a mean recall@10 of 53%–54%, which are highly promising.

4.7 Answering RQ5: How e↵ective are the proposed heuristics–KAC, KPAC and
KKC– in capturing the relevant API classes for a query?

We investigate the e↵ectiveness of our adopted heuristics– KAC, KPAC and KKC,
and justify their combination in the API ranking algorithm (i.e., Algorithm 1).
Table 8 and Fig. 14 demonstrate how each heuristic performs in capturing the
relevant APIs for a given set of code search query as follows:

From Table 8, we see that our technique suggests correct API classes for 78.00%
and 79% of the queries when KAC and KPAC heuristics are employed respectively.
Both heuristics leverage co-occurrences between query keywords (in the question
titles) and API classes (in the accepted answers) from Stack Overflow for such
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Fig. 14: (a) Hit@K of RACK, (b) Mean Average Precision@K (MAP@K) of RACK, and (c)
Mean Recall@K (MR@K) of RACK for three heuristics–KAC, KPAC and KKC

recommendation. On the contrary, KKC considers coherence among the candi-
date API classes, and is found less e↵ective than the former two heuristics. In
fact, KPAC performs the best among all three heuristics with up to 46% preci-
sion and 52% recall. However, the weighted combination of our heuristics provides
the maximum performance in terms of four metrics. It provides 83% Hit@10 with
a mean reciprocal rank@10 of 0.52, a mean average precision@10 of 46% and a
mean recall@10 of 54%. That is, our combination harnesses the strength from all
the heuristics, and also overcomes their weaknesses simultaneously using appropri-
ate weights. All these statistics are also highly promising according to the relevant
literature [46, 72]. Thus, our combination of these three heuristics is also justified.
Our earlier work combines KAC and KKC, and provides 79% Hit@10 with 35%
precision and 45% recall from the experiments with 150 queries. Replication with
our current extended dataset (i.e., 175 queries) reports similar performance (e.g.,
78% Hit@10), which supports our earlier findings [58] as well. In this work, we
introduce the new heuristic–KPAC–which improved our performance in terms of
all four metrics– Hit@10 (i.e., 7% improvement), reciprocal rank (i.e., 53% im-
provement), precision (i.e., 48% improvement) and recall (i.e., 17% improvement).
Thus, the addition of KPAC heuristic to our ranking algorithm is justified. Fur-
thermore, we apply appropriate weights to these heuristics for controlling their
influence in the API relevance ranking. Fig. 14 further demonstrates how the per-
formance of our heuristics changes over various Top-K results. We see that KPAC
is the most dominant one among the heuristics (as observed above) and achieves
the maximum performance. However, the addition of the other two heuristics also
improves our performance marginally (i.e., 2% – 4%) in terms of all four metrics.
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Table 9: Impact of Di↵erent Query Term Selection

Query Terms Metric Top-1 Top-3 Top-5 Top-10

Hit@K 37.14% 60.57% 71.43% 82.86%
All terms MRR@K 0.37 0.48 0.50 0.52
from query MAP@K 37.14% 47.29% 47.81% 45.29%

MR@K 11.69% 26.93% 38.85% 54.80%

Noun terms only

Hit@K 33.71% 58.86% 70.29% 82.29%
MRR@K 0.34 0.45 0.48 0.49
MAP@K 33.71% 44.95% 45.71% 42.62%
MR@K 10.56% 25.47% 36.67% 55.21%

Verb terms only

Hit@K 7.43% 17.71% 24.00% 35.43%
MRR@K 0.07 0.11 0.13 0.14
MAP@K 7.43% 11.52% 12.68% 14.02%
MR@K 2.14% 6.69% 10.46% 17.38%

Hit@K 38.29% 61.14% 72.00% 83.43%
{Noun terms + MRR@K 0.38 0.48 0.48 0.52
Verb terms} MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94% 54.07%

Hit@K 37.14% 60.57% 72.00% 83.43%
{Noun terms + MRR@K 0.37 0.47 0.47 0.52
Verb terms}-“java” MAP@K 37.14% 46.90% 47.35% 45.19%

MR@K 11.84% 26.18% 38.09% 54.08%

KPAC and KAC are found more e↵ective than KKC in capturing the relevant
API classes from Stack Overflow Q & A threads. However, combination of
all three heuristics using appropriate relative weights delivers the maximum
performance. Thus, their combination for API ranking is justified.

4.8 Answering RQ6: Does an appropriate subset of the query keywords perform
better than the whole query in retrieving the relevant API classes?

Since the proposed technique identifies relevant API classes based on their co-
occurrences with the keywords from a query, the keywords should be chosen care-
fully. Selection of random keywords might not return appropriate API classes.
Several earlier studies choose nouns and verbs from a sentence, and report their
salience in automated comment generation [79] and corpus indexing [19]. We thus
also extract noun and verb terms from each query as the search keywords using
Stanford POS tagger [73], and then use them for our experiments. In particular,
we investigate whether our selection of keywords for code search is e↵ective or not.

From Table 9, we see that our technique performs better with noun-based key-
words than with verb-based keywords. The verb-based keywords provide a max-
imum of 35% Hit@10. On the contrary, RACK returns correct API classes for
82% of queries with 43% precision, 55% recall and a reciprocal rank of 0.49 when
only noun-based keywords are chosen for search. However, none of the perfor-
mance metrics reaches the baseline performance except recall. That is, they are
lower than the performance of RACK with all query terms minus the stop words.
Interestingly, when both nouns and verbs are employed as search keywords, the
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performance reaches the maximum especially in terms of accuracy, precision and
reciprocal rank. For example, RACK achieves 83% Hit@10 with 46% precision, 54%
recall and a reciprocal rank of 0.52. Although the improvement over the baseline
performance (i.e., with all keywords of a query) is marginal, such performances
were delivered using a fewer number of search keywords. That is, our subset of
keywords not only avoids the noise but also ensures a comparatively higher perfor-
mance than the baseline with relatively lower costs (i.e., fewer keywords). Thus,
selection of a subset of keywords from the NL query intended for code search is
justified, and our subset is also found e↵ective.

We also investigate the impact of generic search keywords such as “java” in our
query. According to our analysis, 11.43% of our queries in the dataset contain this
keyword. From Table 9, we see that removal of this keyword marginally degrades
most of the performance measures of our technique. Only marginal improvements
can be observed in the recall measure for Top-5 and Top-10 results. Thus, our
choice of retaining the generic keywords is also justified.

Important keywords from a natural language query mainly consist of its noun
and verb terms. Our keyword selection approach of leveraging noun and verbs
from a query is found quite e↵ective in the relevant API suggestion.

4.9 Answering RQ7: How do the heuristic weights (i.e., ↵, �) and threshold
settings (i.e., �, �) influence the performance of our technique?

Our relevance ranking algorithm applies two relative weights–↵ and �–to our pro-
posed heuristics, and the heuristics are also constrained with two thresholds–�
and �. While the thresholds help the heuristics collect appropriate candidate API
classes, the weights control the influence of the heuristics in the API relevance
ranking. In this section, we justify our chosen weights and thresholds, and inves-
tigate how they a↵ect the performance of our technique.

We adopt a greedy search-based technique [83] (i.e., controlled iterative ap-
proach) for determining the relative weights for our heuristics. That is, we start
our searches with our best initial guesses for ↵ (i.e., 0.25) and � (i.e., 0.30), refine
our weight estimates in every iteration with a step size of 0.025, and then stop
when the fitness function [83] (i.e., performance) reaches the global maximum. We
use mean average precision@10 and mean recall@10 as the fitness functions in the
search for ↵ and �. Fig. 15 shows how di↵erent values of ↵ and � can influence the
performance of RACK. Please note that when one weight is calibrated, the other
one is kept constant during performance computation. We see that precision and
recall of RACK reach the maximum when ↵ 2 [0.300, 0.325] and �=0.575. The
target weights are identified using dashed vertical lines above. While ↵ and � are
considered as the relative importance of the co-occurrence based heuristics, KAC
and KPAC respectively, (1 � ↵ � �) goes to the remaining heuristic–KKC. Since
KKC is found relatively weak according to our earlier investigation, we emphasize
more on ↵ and �, and chose the following heuristic weights: 0.325, 0.575 and 0.10–
for KAC, KPAC and KKC respectively. Thus, all the weights sum to 1, and such
weighting mechanism was also used by an earlier study [48]. The performance of
RACK is significantly higher than its non-weighted version especially in terms of

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 Mohammad M. Rahman et al.

Fig. 15: (a) Mean Average Precision@10 (MAP@10), and (b) Mean Recall@10 (MR@10) of
RACK for di↵erent values of the heuristic weights–↵ and �

Fig. 16: Performance of RACK for di↵erent � thresholds with (a) Top-5 results and (b)
Top-10 results considered

Fig. 17: Performance of RACK for di↵erent � thresholds with (a) Top-5 results and (b)
Top-10 results considered

MRR@K (i.e., WSR, p-value= 0.002, � = 1.00 (large)) and MAP@K (i.e., WSR,
p-value< 0.001, � = 0.84 (large)) for Top-1 to Top-10 results. Thus, the application
of relative weights to our adopted heuristics is also justified.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automatic Reformulation of Query for Code Search using Crowdsourced Knowledge 33

Both KAC and KPAC apply � threshold for collecting candidate API classes
from the token-API linking database. Fig. 16 shows how di↵erent values of �
can a↵ect our performance. We use Hit@K, MAP@K and MR@K as the fitness
functions, and determine our fitness for Top-5 and Top-10 returned results. We
see that each of these performance measures reach their maximum when � = 10
for both settings. That is, collecting 10 candidate API classes for each keyword or
keyword pair from the query is the most appropriate choice. Less or more than
that provides comparable performance but not the best one. Thus, we chose � = 10
in our algorithm, and our choice is justified.

KKC applies another threshold, �, for candidate API selection that refers to
the degree of contextual similarity between any two keywords from the query. Fig.
17 reports our investigation on this threshold. We see that di↵erent values of �
starting from 0 to 0.5 do not change our fitness (i.e., performance) at all. Since
the heuristic itself, KKC, is not strong, the variance of � also does not have much
influence on the performance of our technique. Thus, our choice of � = 0 is also
justified. That is, we consider two API classes coherent to each other when their
contexts share at least one search keyword.

The performance of RACK reaches the maximum for certain weights and
thresholds, ↵=0.325, �=0.575, �=0, and �=10. They were chosen carefully
based on controlled iterative experiments, as were also done by the earlier
studies [48, 83] from relevant literature.

4.10 Answering RQ8: Can RACK outperform the state-of-the-art techniques in
suggesting relevant API classes for a given set of queries?

Thung et al. [72] accept a feature request as an input and return a list of relevant
API methods. Their API suggestions are based not only on the mining of feature
request history but also on the textual similarity between the request texts and the
corresponding API documentations. Zhang et al. [84] determine semantic distance
between an NL query and a candidate API using a neural network model (CBOW)
and a large code repository, and then suggest a list of relevant API classes for the
query. To the best of our knowledge, these are the latest and the closest studies to
ours in the context of API suggestion, and thus, we select them for comparison.

Since feature request history is not available in our experimental settings, we
implement Description-Based Recommender module from Thung et al. We collect
API documentations of 3,300 classes from the Java standard libraries (i.e., JDK
6), and develop Vector Space Model (VSM) for each of the API classes. In fact,
we develop two models for each API class using (1) class header comments only,
and (2) class header comments + method header comments, and implement two
variants– Thung et al.-I and Thung et al.-II for our experiments. We use Apache
Lucene [8] for VSM development, corpus indexing and for textual similarity match-
ing between the API documentations and each of the queries from our dataset. In
the case of Zhang et al., we (1) make use of IJaDataset [36] as a training corpus
(as was done by the original authors), and (2) learn the word embeddings for both
keywords and API classes using fastText [15], an improved version of word2vec im-
plementation. We then use these vectors to determine semantic distance between
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Table 10: Comparison of API Recommendation Performance with Existing
Techniques (for various Top-K Results)

Technique Metric Top-1 Top-3 Top-5 Top-10

Thung et al. [72]-I

Hit@K 20.57% 30.85% 38.29% 44.00%
MRR@K 0.21 0.25 0.26 0.27
MAP@K 20.57% 24.57% 25.47% 24.84%
MR@K 6.37% 11.74% 15.79% 22.19%

Thung et al. [72]-II

Hit@K 20.00% 32.57% 39.43% 50.29%
MRR@K 0.20 0.26 0.27 0.29
MAP@K 20.00% 25.14% 25.85% 25.59%
MR@K 6.19% 13.02% 18.47% 28.95%

Zhang et al. [84]

Hit@K 19.43% 32.00% 36.00% 39.43%
MRR@K 0.19 0.25 0.26 0.26
MAP@K 19.43% 24.86% 25.44% 24.81%
MR@K 6.00% 15.86% 21.54% 29.87%

Hit@K 38.29% 61.14% 72.00% 83.43%
RACK MRR@K 0.38 0.48 0.48 0.52
(Proposed technique) MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94%% 54.07%

*Emboldened items are the highest statistics for the existing and proposed
techniques

Fig. 18: Comparison of API recommendation performances with the existing techniques-(a)
Hit@K, (b) Mean Reciprocal Rank@K, (c) Mean Average Precision@K, and (d) Mean

Recall@K

a query and the candidate API classes using cosine similarity [57]. We also deter-
mine API popularity within the training corpus, and then combine with semantic
distance metric to identify a set of relevant API classes for the NL query.
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Table 10 summarizes the comparative analysis between our technique–RACK–
and three existing techniques. Here, emboldened items refer to maximum measures
provided by the existing techniques and our technique. We see that the variants of
Thung et al. can provide a maximum of about 50% accuracy with about 26% preci-
sion and 29% recall for Top-10 results. On the other hand, RACK achieves a max-
imum accuracy of 83% with 46% precision and 54% recall which are 66%, 79% and
87% higher respectively. We investigate how the four performance measures change
for di↵erent Top-K results for each of these three techniques. From Fig. 18, we see
that Hit@K of RACK increases gradually up to 83% whereas such performance
measures for the textual similarity based techniques stop at 50%. The MRR@K of
RACK improves from 0.38 to 0.52 whereas such measures for the counterparts are
as low as 0.20–0.29. It should be noted that RACK reaches its maximum precision,
i.e., 48%, quite early at K = 3, and then its recall gradually improves up to 54%
(at K = 10). On the contrary, such measures for the counterparts are at best 25%
and 30% respectively. These demonstrate the superiority of our technique. From
the box plots in Fig. 19, we see that RACK performs significantly higher than both
variants in terms of all three metrics– accuracy, precision and recall. Our median
accuracy is above 70% whereas such measures for those variants are close to 40%.
The same goes for precision and recall measures. We perform significance and e↵ect
size tests, and compare our performance measures with the measures of the state-
of-the-art for various Top-K results (1K10). We found that the performance of
our approach is significantly higher than that of the existing techniques in terms
of Hit@K (i.e., WSR, p-value=0.002<0.05, �=0.79 (large)), MRR@K (i.e., WSR,
p-value=0.002<0.05, �=0.90 (large)), MAP@K (i.e., WSR, p-value=0.002<0.05,
�=0.90 (large)) and MR@K (i.e., WSR, p-value=0.002<0.05, �=0.70 (large)). All
these findings above suggest that (1) textual similarity between query and API
signature or documentations might not be always e↵ective for API recommen-
dation, and (2) semantic distance between keyword and API classes should be
calculated using appropriate training corpus. Our technique overcomes that issue
by applying three heuristics –KAC, KPAC and KKC– which leverage the API us-
age knowledge of a large developer crowd stored in Stack Overflow. Performance
reported for Thung et al. is project-specific, and the technique is restricted to
feature requests [72]. On the contrary, our technique is generic and adaptable for
any type of code search. It is also independent of any subject systems. Although
Zhang et al. employ a large training corpus, they learn word embeddings for NL
keywords from the source code which might not be always helpful. Source code
inherently has a smaller vocabulary than regular texts [32]. On the contrary, we
leverage the contexts of NL keywords and API classes more carefully from Stack
Overflow Q & A site to determine their relevance. Furthermore, we harnesses the
expertise of a large crowd of technical users e↵ectively for relevant API suggestion
which was not considered by the past studies from literature. Thus, our technique
possibly has a greater potential.

RACK outperforms multiple existing studies on relevant API suggestion for
NL queries, and achieves 66% higher accuracy, 79% higher precision and 87%
higher recall than those of the state-of-the-art.
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Fig. 19: Comparison of API recommendation with existing techniques using box plots

Table 11: Comparison of Source Code Retrieval Performance with Baseline
Queries

Query Metric Top-1 Top-3 Top-5 Top-10

Retrieval Performance with Small Dataset (4K-Corpus)

Baseline Hit@K 39.43% 54.86% 62.29% 68.57%
(NL Keywords) MRR@K 0.39 0.46 0.48 0.49

Goldset API
Hit@K 65.71% 85.71% 89.14% 91.43%
MRR@K 0.66 0.75 0.76 0.76

Baseline + Hit@K 70.29% 88.00% 96.00% 97.14%
Goldset API MRR@K 0.70 0.78 0.80 0.80

RACKA
Hit@K 29.71% 50.29% 56.00% 68.57%
MRR@K 0.30 0.39 0.40 0.42

RACKA+Q
Hit@K 50.86% 73.14% 77.71% 84.00%
MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Baseline Hit@K 22.29% 30.86% 37.71% 44.00%
(NL Keywords) MRR@K 0.22 0.26 0.27 0.28

Goldset API
Hit@K 60.00% 78.29% 84.57% 90.29%
MRR@K 0.60 0.69 0.70 0.71

Baseline + Hit@K 76.00% 89.14% 90.86% 94.86%
Goldset API MRR@K 0.76 0.82 0.82 0.83

RACKA
Hit@K 14.29% 26.29% 30.86% 36.57%
MRR@K 0.14 0.19 0.20 0.21

RACKA+Q
Hit@K 40.00% 52.57% 59.43% 66.29%
MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Baseline Hit@K 17.14% 24.57% 0.28.57% 34.29%
(NL Keywords) MRR@K 0.17 0.20 0.21 0.22

Goldset API
Hit@K 50.86% 69.14% 75.43% 81.14%
MRR@K 0.51 0.59 0.61 0.62

Baseline + Hit@K 64.00% 80.00% 86.86% 90.29%
Goldset API MRR@K 0.64 0.71 0.73 0.73

RACKA
Hit@K 10.86% 18.29% 22.29% 26.86%
MRR@K 0.11 0.14 0.15 0.16

RACKA+Q
Hit@K 26.86% 42.29% 49.14% 56.57%
MRR@K 0.27 0.33 0.35 0.36

A=Suggested API classes only, A+Q=Reformulated query combining both
suggested API classes and baseline query keywords.

4.11 Answering RQ9: Can RACK significantly improve the natural language
queries in terms of relevant code retrieval performance?

Our earlier research questions (RQ4–RQ8) evaluate the performance of RACK in
suggesting relevant API classes for a natural language query intended for code
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search. Although they clearly demonstrate the potential of our technique, another
way of evaluation could be the retrieval performance of our suggested queries.
In this section, we investigate whether our reformulations to the baseline queries
improve them or not in terms of their relevant code retrieval performances. We
employ three corpora – 4K-Corpus, 256K-Corpus, and 769K-Corpus– each of which
includes 175 ground truth code segments (see Section 4.1 for details). We apply
limited natural language preprocessing (i.e., removal of stop words and keywords,
splitting of complex tokens) to each corpus document, and then index them for
retrieval. We employ Apache Lucene8, a popular code search engine that has been
used by several earlier studies from the literature [30, 48, 52], for document index-
ing and for source code retrieval.

Table 11 and Fig. 20 summarize our findings on comparing our reformulated
queries with the baseline queries. We consider two versions of our reformulated
queries– RACKA and RACKA+Q–for our experiments. While RACKA comprises
of suggested API classes only, RACKA+Q combines both the suggested API classes
and the NL keywords from baseline queries. From Table 11, we see that the baseline
queries (i.e., comprise of NL keywords) perform poorly especially with the large
corpora. In the case of 256K-Corpus, they return relevant code segments at the Top-
1 position and within the Top-5 positions for only 22% and 38% of the queries
respectively (i.e., Hit@K). On the contrary, our reformulated queries, RACKA+Q,
can return relevant code segments for 40% and 59% of the queries within Top-
1 and Top-5 positions respectively, which are more promising. We see a notable
increase in the query performance with the smaller corpus (i.e., 4K-Corpus) and a
notable decrease with the bigger corpus (i.e., 769K-Corpus). Such observations can
be explained by the reduced and added noise in the corpus respectively. However,
our reformulated queries perform consistently higher than the baseline across all
three corpora. For example, while the baseline Hit@10 reduces to 34% for 769K-
Corpus, our reformulated queries deliver a Hit@10 of 57% which is 65% higher.
Thus, our query reformulations o↵er 23%-80% improvement in Hit@K over the
baseline performance across the three corpora. It should be noted that Hit@1 and
Hit@5 could reach up to 60% and 85% respectively when the goldset API classes
are used as the search queries. Combination of NL queries and goldset API classes
performs even better. Such findings also strengthen our idea of suggesting and
using relevant API classes for code search. However, we also see that reformulated
queries containing both NL keywords and API classes (e.g., RACKA+Q) are always
better than those containing only the suggested API classes (e.g., RACKA).

Our MRR@K measures in Table 11 are also found more promising. They sug-
gest that on average, the relevant code segments are returned by our queries within
the top three positions of the result list across all three corpora, which is promis-
ing from the perspective of practical use. Furthermore, our MRR@K measures
are 29%–81% higher than the baseline counterparts across all three corpora which
demonstrate the potential of our reformulated queries for code search.

Fig. 20 further demonstrates the performance of baseline queries and our refor-
mulated queries for various Top-K results. We see that Hit@K and MRR@K of our
queries are higher than those of the baseline queries by a large margin across all
three corpora –4K-Corpus, 256K-Corpus, and 769K-Corpus. Non-parametric tests
such as Wilcoxon Singed Rank, Mann-Whitney Wilcoxon and Cli↵ ’s delta tests also

8 https://lucene.apache.org/
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Fig. 20: Comparison of code retrieval performance with the baseline queries in terms of (a)
Hit@K and (b) MRR@K

Table 12: Improvement of Baseline Queries by RACK
Query Pairs Improved Worsened Net Gain Preserved

Query Improvement with Small Dataset (4K-Corpus)

Goldset API vs. Baseline 54.29% 13.71% +40.58% 32.00%
RACKA vs. Baseline 42.29% 39.43% +2.86% 18.29%
RACKA+Q vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset (256K-Corpus)

Goldset API vs. Baseline 70.86% 14.29% +56.00% 14.86%
RACKA 43.43% 48.00% -4.57% 8.57%
RACKA+Q 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Goldset API vs. Baseline 74.86% 14.86% +60.00% 10.29%
RACKA 44.00% 48.00% -4.00% 8.00%
RACKA+Q 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

report statistical significance of our performance improvements for both Hit@K
(i.e., all p-values<0.05, 0.82�0.94 (large)) and MRR@K (i.e., all p-values<0.05,
�=1.00 (large)). For the sake of simplicity, only one code segment (i.e., collected
from the tutorial sites, Section 4.1) was chosen as the ground truth of each query.
Thus, Hit@K and MRR@K are the most appropriate performance metrics for this
case, and consequently, precision and recall were not chosen for this evaluation.

We also investigate query performance by relaxing the Top-K constraint and
by analysing all the results returned by each query. Table 12 and Fig. 21 report our
findings on query e↵ectiveness [48, 49]. That is, if the first relevant code segment by
a reformulated query is returned closer to the top of the result list than that of the
baseline query, we consider it as query quality improvement, and vice versa as query
quality worsening. If there is no change in the result ranks between baseline and
reformulated queries, we call it query quality preserving. From Table 12, we see that
46%–64% of the baseline queries can be improved by our technique, RACKA+Q,
across all three corpora. It worsens only 11%–16% of the queries, and thus, o↵ers a
net gain of 35%–49% query improvement. While 60% net gain is possible in the best
case scenario using gold set APIs directly, our technique delivers ⇡ 50%, which is
promising according to relevant literature [30, 55]. Fig. 21 further contrast between
baseline and our reformulated queries. We see that the result ranks provided by
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Fig. 21: Comparison of QE distribution with baseline queries across (a) 4K-Corpus, (b)
256K-Corpus and (c) 769K-Corpus

RACK are closer to zero (i.e., top of the list) across all three corpora. Such finding
provides more evidence on the high potential of our suggested queries.

Reformulated queries by RACK retrieve relevant code segments with 23%–
80% higher accuracy and 29%-81% higher reciprocal rank than those of
the baseline queries. Furthermore, RACK improves 46%–64% of the base-
line queries, and they return the results closer to the top of the list.

4.12 Answering RQ10: Can RACK outperform the state-of-the-art techniques in
improving the natural language queries intended for code search?

Although our reformulations improve the baseline queries significantly, we further
validate them against the queries generated by existing techniques including the
state-of-the-art. The study of Zhang et al. [84] is a closely related work to ours.
They suggest relevant API classes for natural language queries intended for code
search by analysing semantic distance between query keywords and API classes.
Thung et al. [72] is another related study in the context of relevant API sugges-
tion which was originally targeted for feature location (i.e., project-specific code
search). Recently, Nie et al. [51] reformulate a query for code search by collecting
pseudo-relevance feedback from Stack Overflow, and then by applying Rocchio’s
expansion [61] to the query. Their tool QECK suggests software-specific terms
from programming questions and answers as query expansions. To the best of our
knowledge, these are the most recent and the most closely related work to ours
in the context of query reformulation for code search which make them the state-
of-the-art. We thus compare our technique with these three existing techniques
[51, 72, 84] in terms of Hit@K, MRR@K and Query E↵ectiveness (QE).

From Table 13, we see that the retrieval performance of RACK is consistently
higher than that of the state-of-the-art techniques or their variants across all three
corpora. Nie et al. [51], performs the best among the existing techniques. Their
approach achieves 41%–75% Hit@5 with a MRR@5 between 0.31 to 0.59 on our
dataset. However, our technique, RACK, achieves 49%–78% Hit@5 with 0.35–0.62
MRR@5 which are 4%–19% and 5%–13% higher respectively. RACK also achieves
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Table 13: Comparison of Code Retrieval Performance with Existing Techniques

Technique Metric Top-1 Top-3 Top-5 Top-10

Retrieval Performance with Small Dataset (4K-Corpus)

Thung et al. [72]-I
Hit@K 41.14% 58.29% 69.14% 74.29%
MRR@K 0.41 0.49 0.51 0.52

Thung et al. [72]-II
Hit@K 44.00% 62.29% 71.43% 77.71%
MRR@K 0.44 0.52 0.55 0.55

Nie et al. [51]
Hit@K 48.57% 69.14% 74.86% 81.14%
MRR@K 0.49 0.58 0.59 0.60

Zhang et al. [84]
Hit@K 43.43% 64.00% 69.14% 77.71%
MRR@K 0.43 0.53 0.54 0.55

RACK
Hit@K 50.86% 73.14% 77.71% 84.00%
MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Thung et al. [72]-I
Hit@K 27.43% 40.57% 48.00% 54.86%
MRR@K 0.27 0.33 0.35 0.36

Thung et al. [72]-II
Hit@K 33.71% 44.57% 50.29% 59.43%
MRR@K 0.34 0.39 0.40 0.41

Nie et al. [51]
Hit@K 29.71% 44.00% 52.57% 60.00%
MRR@K 0.30 0.36 0.38 0.39

Zhang et al. [84]
Hit@K 24.00% 34.29% 41.71% 52.57%
MRR@K 0.24 0.29 0.30 0.32

RACK
Hit@K 40.00% 52.57% 59.43% 66.29%
MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Thung et al. [72]-I
Hit@K 20.57% 29.71% 36.57% 42.86%
MRR@K 0.21 0.24 0.26 0.27

Thung et al. [72]-II
Hit@K 25.71% 35.43% 41.14% 46.86%
MRR@K 0.26 0.30 0.31 0.32

Nie et al. [51]
Hit@K 25.14% 36.57% 41.14% 48.00%
MRR@K 0.25 0.30 0.31 0.32

Zhang et al. [84]
Hit@K 20.00% 28.57% 33.14% 38.29%
MRR@K 0.20 0.24 0.25 0.26

RACK
Hit@K 26.86% 42.29% 49.14% 56.57%
MRR@K 0.27 0.33 0.35 0.36

a Hit@10 of 57% with the extra-large corpus (i.e., 769K-Corpus) which is 18%
higher than the state-of-the-art measure, i.e., 48% Hit@10 by Nie et al. While the
performance measures of each technique degrade as the corpus size grows from 4K
to 769K documents, our performance measures remain consistently higher than
the state-of-the-art. Thus, RACK is more robust to varying sizes of corpora than
any of the existing techniques under our study.

Fig. 22 further demonstrates how RACK outperforms the state-of-the-art tech-
niques for various Top-K results in terms of Hit@K and MRR@K. We compare
RACK with QECK by Nie et al. [51] for Top-1 to Top-10 performance mea-
sures using non-parametric tests. Nie et al. is clearly the state-of-the-art accord-
ing to the above analysis. Our Mann-Whitney Wilcoxon and Cli↵ ’s delta tests
reported statistical significance of RACK over Nie et al. with large e↵ect sizes
for both Hit@K (i.e., p-values<0.05, 0.33�0.52 (large)) and MRR@K (i.e., p-
values<0.05, 0.68�0.90 (large)) across all three corpora. Thus, the findings
above clearly demonstrate the superiority of our technique over the existing stud-
ies on query reformulation from the literature.
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Fig. 22: Comparison of code retrieval performance with existing techniques using (a,b)
4K-Corpus, (c,d) 256K-Corpus and (e,f) 756K-Corpus

We also compare our technique with the existing techniques in terms of Query
E↵ectiveness (QE). From Table 14, we see that Nie et al. performs the best with
4K-Corpus whereas Thung et al.-II performs the best with the remaining two
corpora– 256K-Corpus and 769K-Corpus. Nie et al. improves 32% of the baseline
queries whereas Thung et al.-II improves 43%–49% of the queries. On the contrary,
RACK improves 46% and 62%–64% of the baseline queries in the same contexts.
In particular, our technique o↵ers 48% net gain as opposed to 26% provided by
Thung et al.-II which is 87% higher. Thus, RACK clearly has a high potential for
query reformulation than the state-of-the-art. It also should be noted that RACK
degrades only 11%–16% of the queries across all three corpora which suggests the
reliability and robustness of the technique. Fig. 23 further contrasts the result
ranks of RACK with that of the state-of-the-art approaches using box plots. We
see that on average, RACK provides higher ranks, and returns results closer to the
top of list than the competing approaches. For example, Thung et al.-II returns
50% of its first correct results within the Top-8 positions and 75% of them within
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Table 14: Comparison of Query Improvements with Existing Techniques
Query Pairs Improved Worsened Net Gain Preserved

Query Improvement with Small Dataset (4K-Corpus)

Thung et al. [72]-I vs. Baseline 24.00% 11.43% +12.57% 64.57%
Thung et al. [72]-II vs. Baseline 31.43% 10.86% +20.57% 57.71%
Nie et al. [51] vs. Baseline 32.00% 8.00% +24.00% 60.00%
Zhang et al. [84] vs. Baseline 28.00% 10.29% +17.71% 61.71%
RACK vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset (256K-Corpus)

Thung et al. [72]-I vs. Baseline 37.71% 22.29% +15.42% 40.00%
Thung et al. [72]-II vs. Baseline 42.86% 21.14% +21.72% 36.00%
Nie et al. [51] vs. Baseline 41.71% 24.57% +17.14% 33.71%
Zhang et al. [84] vs. Baseline 36.00% 26.86% +9.14% 37.14%
RACK vs. Baseline 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Thung et al. [72]-I vs. Baseline 41.14% 25.71% +15.43% 33.14%
Thung et al. [72]-II vs. Baseline 48.57% 22.86% +25.71% 28.57%
Nie et al. [51] vs. Baseline 45.71% 24.57% +21.14% 29.71%
Zhang et al. [84] vs. Baseline 41.14% 28.57% 12.57% 30.29%
RACK vs. Baseline 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

Fig. 23: Comparison of QE distribution with the state-of-the-art using (a) 4K-Corpus, (b)
256K-Corpus, and (c) 769K-Corpus

the Top-96 positions when dealing with extra-large corpus (i.e., 769K-Corpus). On
the contrary, RACK returns such results within Top-5 and Top-42 positions which
are 38% and 57% higher respectively. Similar findings can be observed with the
remaining two corpora. All these findings above clearly demonstrate of superiority
of our technique in query reformulation over the state-of-the-art.

Reformulated queries of RACK retrieve relevant code segments with 19%
higher accuracy and 13% higher reciprocal rank than the state-of-the-art.
Furthermore, RACK o↵ers 48% net improvement in the quality of baseline
queries, which is 87% higher than the state-of-the-art counterpart.
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Table 15: Comparison with Popular Web/Code Search Engines
Technique Hit@10 MAP@10 MRR@10 NDCG@10

Google 100.00% 68.56% 0.82 0.46
RACKGoogle 100.00% 83.71% 0.92 0.67

Stack Overflow 91.43% 59.54% 0.67 0.43
RACKSO 91.43% 75.27% 0.82 0.62

GitHub 89.71% 55.27% 0.58 0.47
RACKGitHub 90.29% 68.59% 0.74 0.59

Emboldened= Comparatively higher than counterpart

4.13 Answering RQ11: How does RACK perform compared to the popular web
search engines and code search engines?

Existing studies [50, 59, 64, 80] report that software developers frequently use
general-purpose web search engines (e.g., Google) for code search. Hence, these
search engines are natural candidates for comparison with our technique. We thus
compare our approach with three popular web and code search engines– Google,
Stack Overflow native search and GitHub code search. Unfortunately, we faced sev-
eral challenges during our comparison with these commercial search engines. First,
results from these search engines frequently change due to their dynamic index-
ing. This makes it hard to develop a reliable or stable oracle from their results.
In fact, we found that Top-30 Google results collected for the same query in two
di↵erent dates (i.e., two weeks apart) matched only 55%. Second, Google search
API [2] was used for our experiments given that GUI based Google search is not
a practical idea for 175 x 2 = 250 queries. However, this paid search API imposes
certain restrictions on the number of API calls to be made. That is, results for
175 baseline queries and their reformulated queries could not be collected all at
the same time. Given the changing nature of the underlying corpus, comparison
between the results of baseline and reformulated queries could thus not be fair.
Third, these commercial search engines are mostly designed for natural language
queries. They also impose certain restrictions on the query length and query type.
Hence, they might either produce poor results or totally fail to produce any re-
sults for our reformulated queries which mostly contain structured keywords (e.g.,
multiple API classes). Thus, we found a head-to-head comparison with these com-
mercial search engines infeasible. Despite the above challenges, we still compare
with them, and investigate whether our reformulated queries can improve their
search results significantly or not through a post-processing step of their results.

Collection of Search Results and Construction of Oracle: We collect Top-
30 results for each query from each search engine for oracle construction. We
make use of Custom Search API 9 by Google and native API endpoints by Stack
Overflow10 and GitHub11, and collect the search results. Given the large volume
of search results (i.e., 175 x 30 = 5,250), it is impractical to manually analyze
them all. Hence, we used a semi-automated approach in constructing the oracle
for these web/code search engines. In particular, we extract the code segments
from each of the result pages using appropriate tools (e.g., Jsoup12). In the case

9 https://developers.google.com/custom-search
10 https://api.stackexchange.com
11 https://developer.github.com/v3
12 https://jsoup.org/

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



44 Mohammad M. Rahman et al.

Fig. 24: Comparison of RACK with popular web/code search engines

of GitHub search results, we use JavaParser13 to extract the method bodies as
code segments. Then we determine their similarity against the original ground
truth code that was extracted from tutorial sites in Section 4.1. For this, we use
four code similarity algorithms – Cosine similarity [57], Dice similarity [30], Jaccard
similarity [67] and Longest Common Subsequence (LCS) [63]. These algorithms are
frequently used as the baseline for various code clone detection techniques [63, 67].
We collect four normalized code similarity scores from each result, average them,
and then extract the Top-10 results containing the most relevant code segments.
We then manually analyse a few of these results (and their code segments), and
attempt to tweak them with various similarity score thresholds. Unfortunately,
score thresholds were not su�cient enough to construct oracle for all the queries.
We thus use these Top-10 results as the oracle for our web/code search engines.

Comparison between Initial Search Results and Re-ranked Results using
the Reformulated Queries: Once a search engine returns results for natural lan-
guage (NL) queries, we re-rank them with the corresponding reformulated queries
provided by RACK. We first detect the presence of code segments in their contents,
and then collect Top-10 documents based on their relevance to our reformulated
queries (i.e., NL keywords + relevant API classes). We compare both the initial
and re-ranked results with the oracle constructed above.

From Table 15, we see that our re-ranking approach improves upon the initial
results returned by each of the web and code search engines. The improvements are
observed especially in terms of precision, reciprocal rank and NDCG. For example,
Google achieves 69% precision with a reciprocal rank of 0.82 and an NDCG of 0.46.
However, our approach, RACKGoogle achieves 84% precision with a reciprocal rank
of 0.92 and an NCCG of 0.67, which are 22%, 12% and 46% higher respectively.

13 https://github.com/javaparser
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That is, although Google performs high as a general-purpose web search engine,
it might not be always precise for code search. Similar observation is shared by
a recent survey [59] that reports that developers need more query reformulations
during code search using the web search engines. GitHub native search achieves
55% precision, a reciprocal rank of 0.58 and an NDCG of 0.47. On the contrary, our
approach, RACKGitHub, delivers 69% precision with a reciprocal rank of 0.74 and
an NDCG of 0.62, which are 24%, 28% and 26% higher respectively. Such findings
demonstrate the potential of our reformulated queries. Fig. 24 further contrasts
between our approach and the contemporary web/code search engines for Top-
1 to Top-10 results. While Google is the best performer among the three search
engines, our re-ranking using RACK outperforms Google with a significant margin
in terms of precision (i.e., WSR, p-value<0.05, �=0.90 (large)), reciprocal rank
(i.e., WSR, p-value<0.05, �=0.90 (large)) and NDCG (i.e., WSR, p-value<0.05,
�=1.00 (large)). Thus, all the findings above suggest the high potential of our
reformulated queries for improving the code search performed either with web or
code search engines. The status quo of Internet-scale code search is far from ideal
[59], and our reformulated queries could benefit the traditional practices.

Developers face di�culties in the code search while using contemporary web
or code search engines (e.g., Google). Our technique can significantly improve
their result ranks with the help of our reformulated queries that contain rel-
evant API classes. In particular, RACK can improve upon the precision of
Google in the code search by 22%, which is promising.

5 Threats to Validity

We identify a few threats to the validity of our findings. While we attempt to
mitigate most of them using appropriate measures, the remaining ones should be
addressed in future work. Our identified threats and their mitigation details are
discussed as follows:

5.1 Threats to Internal Validity

They relate to experimental errors and biases [83]. We develop a gold set for each
query by analysing the code examples and the discussions from tutorial sites which
might involve some subjectivity. However, each of the examples is a working so-
lution to the corresponding task (i.e., NL-query), and they are frequently con-
sulted. Thus, the gold set development using sample code from the tutorial sites
is probably a more objective evaluation approach than human judgements of API
relevance or code relevance that introduce more subjective bias [22]. According to
the exploratory findings (Section 2.4), our technique might be e↵ective only for
the recommendation of popular and frequently used API classes. Since fully qual-
ified names are mostly missing in Stack Overflow texts, third-party APIs similar
to Java API classes could also have been mistakenly considered despite the fact
that questions and answers selected for the study were tagged with <java>.
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We use a dataset of 175 queries and a popular code search engine–Apache
Lucene [30]–for determining their retrieval performance across three corpora of
varying sizes. For the sake of simplicity, only one code segment was considered
as relevant for each query. However, in practice, there could be multiple code
segments in the corpus that are relevant to a given query. In this work, we trade
such perfection with transparency and objectivity in our evaluation and validation.

During code or web search, developers generally choose the most appropri-
ate keywords when a list of auto-generated suggestions are provided. We re-enact
such behaviour of the developers by choosing only goldset API classes from within
the suggested list, and use them for query reformulation. Such choice might have
favoured the code retrieval performance of our queries. However, the same ap-
proach was carefully followed for all the existing techniques under study [51, 72, 84].
Thus, they received the same treatment in the performance evaluation as ours. Fur-
thermore, the validation results (i.e., RQ10) clearly report the superiority of our
suggested queries over their counterparts from the existing techniques. Our inves-
tigation using the three contemporary web/code search engines also has drawn a
similar conclusion for RACK (i.e., RQ11).

5.2 Threats to External Validity

They relate to the generalizablity of a technique. So far, we experimented using
API classes from only standard Java libraries. However, since our technique mainly
exploits co-occurrence between keywords and APIs, the technique can be easily
adapted for API recommendation in other programming domains. Since popularity
of a programming language or change proneness of an API [43] has a significant
role in triggering discussions at Stack Overflow which are mined by us, RACK
could be e↵ective for popular languages (e.g., Java, C#) but comparatively less
e↵ective for non-popular or less used languages (e.g., Erlang).

5.3 Threats to Construct Validity

Construct validity relates to suitability of evaluation metrics. Our work is aligned
to both recommendation system and information retrieval domains. We use Hit@K
and Reciprocal Rank which are widely used for evaluating recommendation sys-
tems [69, 72]. The remaining two metrics are well known in information retrieval,
and are also frequently used by studies [22, 46, 72] relevant to our work. This
confirms no or little threat to construct validity.

5.4 Threats to Statistical Conclusion Validity

Conclusion validity concerns the relationship between treatment and outcome [43].
We answer 11 research questions in this work, and collect our data from pub-
licly available, popular programming Q & A and tutorial sites. In order to answer
these questions, we use non-parametric tests for statistical significance (e.g., Mann-
Whitney Wilcoxon, Wilcoxon Signed Rank), e↵ect size analysis (e.g., Cli↵’s delta)
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and confidence interval analysis. We apply these tests to our experiments oppor-
tunistically and report the detailed test results (e.g., p-values, Cli↵’s �). Thus,
threats to the statistical conclusion validity might be mitigated.

6 Related Work

Our work is aligned with three research topics–(1) API/API usage recommenda-
tion, (2) query reformulation for code search, and (3) crowdsourced knowledge
mining. In this section, we discuss existing studies from the literature of each of
these research topics, and compare or contrast our work with them.

6.1 API Recommendation

Existing studies on API recommendation accept one or more natural language
queries, and recommend relevant API classes and methods by analysing code surf-
ing behaviour of the developers and API invocation chains [46], API dependency
graphs [22], feature request history or API documentations [72], and library us-
age patterns [71]. McMillan et al. [46] first propose Portfolio that recommends
relevant API methods for a code search query by employing natural language pro-
cessing, indexing and graph-based algorithms (e.g., PageRank [17]). Chan et al.
[22] improve upon Portfolio, and return a connected sub-graph containing the most
relevant APIs by employing further sophisticated graph-mining and textual simi-
larity techniques. Gvero and Kuncak [28] accept a free-form NL-query, and return
a list of relevant method signatures by employing natural language processing and
statistical language modelling on the source code. A few studies o↵er NL interfaces
for searching relevant program elements from the project source [40] or relevant
artefacts from the project management repository [42]. Thung et al. [72] recom-
mend relevant API methods to assist the implementation of an incoming feature
request by analysing request history and textual similarity between API details
and the request texts. In short, each of these relevant studies above analyse lex-
ical similarity between a query and the signature or documentation of the API
for finding out candidate APIs. Such approaches might not be always e↵ective
and might face vocabulary mismatch issues given that choice of query keywords
could be highly subjective [25]. On the other hand, we exploit three co-occurrence
heuristics that are derived from crowdsourced knowledge, and they are found to be
more e↵ective in the selection of candidate API classes. Co-occurrence heuristics
overcome the vocabulary mismatch issues [25, 29], and provide a generic, both
language and project independent solution. Besides, we exploit the expertise of
a large crowd of technical users stored in Stack Overflow for API recommenda-
tion which none of the earlier relevant studies did. Zhang et al. [84] determine
semantic distance between NL keywords and API classes using a neural network
model (CBOW), and suggest relevant API classes for a generic NL query intended
for code search. They collect their API classes from the OSS projects whereas
ours are collected from Stack Overflow, the largest programming Q & A site on
the web. Their work is closely related to ours. We compare with two variants of
Thung et al. and Zhang et al., and readers are referred to Sections 4.10, 4.12 for
the detailed comparison. Since Thung et al. outperform Chan et al. as reported
[72], we compared with Thung et al. for our validation.
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6.2 API Usage Pattern Recommendation

Thummalapenta and Xie [70] propose ParseWeb that takes in a source object type
and a destination object type, and returns a sequence of method invocations that
serve as a solution that yields the destination object from the source object. Xie
and Pei [81] take a query that describes the method or class of an API, and rec-
ommends a frequent sequence of method invocations for the API by analysing
hundreds of open source projects. Warr and Robillard [78] recommend a set of
API methods that are relevant to a target method by analysing the structural de-
pendencies between the two sets. Each of these techniques is relevant to our work
since they recommend API methods. However, they operate on structured queries
rather than natural language queries, and thus comparing ours with theirs is not
feasible. Of course, we introduced three heuristics and exploited crowd knowl-
edge for API recommendation, which were not considered by any of these existing
techniques. This makes our contribution significantly di↵erent from all of them.

6.3 Query Reformulation for Code Search

There have been a number of studies on query reformulation that target either
project-specific code search (e.g., concept/feature location [26, 29, 30, 33, 34, 39,
54, 55, 82], bug localization [23, 66]) or general-purpose code search [28, 41, 51].
Gay et al. [26] first propose “relevance feedback” based model for query reformu-
lation in the context of concept location. Once the initial query retrieves search
results, a developer is expected to mark them as either relevant or irrelevant.
Then their model analyses these marked source documents, and expands the ini-
tial query using Rocchio expansion [61]. Although developer feedbacks on document
relevance are e↵ective, collecting them is time consuming and sometimes infeasi-
ble as well. Therefore, latter studies came up with a less e�cient but feasible
alternative–pseudo relevance feedback– for query reformulation where they consider
only Top-K search results (retrieved by the initial query) as the relevant ones.
Then they apply term weighting [38, 55, 61], term context analysis [33, 34, 66, 82],
query quality analysis [29, 30], and machine learning [30] to reformulate a given
query for concept/feature location. Our work falls into the category of general
purpose code search. Relevance feedback models were also adopted in this case
for query reformulation. Wang et al. [76] incorporate developer feedback in the
code search, and improve result ranking. Nie et al. [51] employ Stack Overflow as
the provider of relevance feedback on the initial query, and then reformulate it
using Rocchio expansion. Although we do not apply relevance feedback for query
reformulation, the work of Nie et al. is not only closely related to ours but also
relatively more recent. Another closely related recent work by Zhang et al. [84]
leverages semantic distance between NL keywords and API classes, and then ex-
pands the NL queries using semantically relevant API classes for code search. We
thus compare our technique with three techniques above [51, 72, 84], and the de-
tailed comparison can be found in RQ10. Li et al. [41] develop a lexical database
by using software-specific tags from Stack Overflow questions, and reformulate
a given query using synonymy substitution. However, their approach searches for
relevant software projects rather than source code segments. Campbell and Treude
[18] mine titles from Stack Overflow questions, and suggest automatic expansion
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to the initial query in the form of auto-completion. However, this approach also
relies on textual similarity between initial query and the expanded query, and
thus, is subject to the vocabulary mismatch issues. On the contrary, we overcome
such issues using three co-occurrence based heuristics. Besides, their approach is
constrained by a fixed set of predefined queries from Stack Overflow questions,
and thus, might not help much in the formulation of custom queries. RACK does
not impose such restrictions on query formulation.

6.4 Crowdsourced Knowledge Mining

Existing studies [41, 51, 52, 54, 65, 83] leverage crowd generated knowledge to
support several search related activities performed by the developers. Yuan et al.
[83] first used programming questions and answers from Stack Overflow to identify
semantically similar software specific word pairs. They first construct context of
each word by collecting co-occurred words from Stack Overflow questions, answers
and tags. Then they determine the semantic similarity between a pair of NL words
based on the overlap between their corresponding contexts. Such word pairs might
help in addressing the vocabulary mismatch issues with web search. However,
they might not help much with code search given that source code and regular
texts often hold di↵erent semantics for the same word [14, 82]. Wong et al. [79]
mine developer’s descriptions of the code snippets from Stack Overflow answers,
and suggest them as comments for similar code segments. Rigby and Robillard
[60] mine posts from Stack Overflow, and extract salient program elements us-
ing regular expressions and machine learning. Along the same line with the earlier
studies, we mine Stack Overflow questions and answers to reformulate a given nat-
ural language query for code search. While our work is related to earlier studies
[41, 51], it is also significantly di↵erent in many ways. First, we suggest relevant
API classes for a NL-query by considering keyword-API co-occurrences whereas
Nie et al. suggest mostly natural language terms as query expansions by employing
pseudo-relevance feedback. Li et al. [41] reformulate queries using crowd wisdom
from Stack Overflow for searching open source projects whereas our queries are
targeted for more granular software artefacts, e.g., source code snippets. Further-
more, we suggest relevant API classes in contrast with synonymous NL tags by
Li et al., which are more appropriate and e↵ective for code search [14]. Another
contemporary work [65] uses all program artifacts indiscriminately from Stack
Overflow posts for expanding code search queries which could be noisy. On the
contrary, we leverage co-occurrences between NL keywords (in the question title)
and API classes (in the accepted answer) as a proxy to their relevance, and choose
appropriate API classes only for our query reformulation.

Our work in this article also significantly extends our earlier work [9] in various
aspects. We improve earlier heuristics by extensively calibrating their weights and
thresholds, and introduce a novel heuristic– Keyword Pair API Co-occurrence–
that performs better than the earlier ones. We conduct experiments with a rela-
tively larger dataset containing 175 distinct queries, and further evaluate them in
terms of relevant code retrieval performance which was missing in the earlier work.
We not only compare with several state-of-the-art studies but also demonstrate
RACK’s potential for application in the context of traditional web/code search
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practices. Furthermore, we extend our earlier analysis and answer 11 research
questions as opposed to seven questions answered by the earlier work.

7 Conclusion & Future Work

To summarize, we propose a novel query reformulation technique–RACK–that
suggests a list of relevant API classes for a natural language query for code search.
It employs three novel heuristics, and collects the the relevant API classes by ex-
ploiting crowdsourced knowledge stored in Stack Overflow questions and answers.
Experiments using 175 code search queries from three Java tutorial sites show that
RACK recommends relevant APIs with 83% Hit@10, 46% precision and 54% re-
call which are highly promising. Reformulated queries based on our recommended
APIs significantly improve the baseline queries in terms of code retrieval perfor-
mance. Comparison with the state-of-the-art techniques shows that our technique
outperforms them not only in relevant API suggestion but also in query reformula-
tion for code search by a significant margin. Furthermore, our technique is generic,
project independent, and it exploits invaluable crowd generated knowledge for rel-
evant API suggestion. Our work in this article has opened up the following future
research directions:

– Determining Relative API Salience: Each programming task requires one or more
API classes where some classes (e.g., MimeMessage) are more important than
others (e.g., Properties) for the task (e.g., “How do I send an HTML email?”).
However, based on our experience from this study, such relative importance is
task-sensitive and sometimes even subjective. Given that code search queries
are short and provide very little contexts about the task, determining the
relative API salience is even more challenging. While we attempt to address
this issue using three novel heuristics derived from crowd generated knowledge,
further work is warranted (1) to better understand the issue, and (2) to return
more e↵ective ranking for the suggested API elements.

– Query Quality Analysis: Given multiple natural language queries for the same
programming task, determining the best one without executing them is a chal-
lenging task. Identification of the best query could help the developers avoid
numerous trials and errors or even performance regression. Information re-
trieval and Concept/feature location communities have long strived to address
this challenge using several query quality/di�culty metrics and machine learn-
ing [20, 21, 29, 30]. Since we leverage keyword-API associations in this work
for relevant API suggestion, such associations could possibly be leveraged for
query quality estimation as well.

Acknowledgement

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Automatic Reformulation of Query for Code Search using Crowdsourced Knowledge 51

References

1. Theoretical CDF. URL http://stats.stackexchange.com/questions/132652.
2. Google custom search engine. URL https://developers.google.com/

custom-search.
3. Stack Exchange Data Explorer. URL http://data.stackexchange.com/

stackoverflow.
4. Java2s: Java Tutorials, . URL http://java2s.com.
5. JavaDB: Java Code Examples, . URL http://www.javadb.com.
6. Jsoup: Java HTML Parser. URL http://jsoup.org.
7. KodeJava: Java Examples. URL http://kodejava.org.
8. Apache Lucene Core. URL https://lucene.apache.org/core.
9. Rack website. URL http://homepage.usask.ca/~masud.rahman/rack.

10. Reflections Library. URL https://code.google.com/p/reflections.
11. Stopword List. URL https://code.google.com/p/stop-words.
12. A. Bacchelli, M. Lanza, and R. Robbes. Linking e-Mails and Source Code

Artifacts. In Proc. ICSE, pages 375–384, 2010.
13. S. K. Bajracharya and C. V. Lopes. Analyzing and Mining a Code Search

Engine Usage Log. Empirical Softw. Engg., 17(4-5):424–466, 2012.
14. S. K. Bajracharya and C. V. Lopes. Analyzing and mining a code search

engine usage log. EMSE, 17(4-5):424–466, 2012.
15. P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors

with subword information. arXiv preprint arXiv:1607.04606, 2016.
16. J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R. Klemmer. Two

Studies of Opportunistic Programming: Interleaving Web Foraging, Learning,
and Writing Code. In Proc. SIGCHI, pages 1589–1598, 2009.

17. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

18. B. A. Campbell and C. Treude. Nlp2code: Code snippet content assist via
natural language tasks. In Proc. ICSME, pages 628–632, 2017.

19. G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella. Im-
proving IR-based Traceability Recovery via Noun-Based Indexing of Software
Artifacts. Journal of Software: Evolution and Process, 25(7):743–762, 2013.

20. D Carmel and E Yom-Tov. Estimating the Query Di�culty for Information
Retrieval. Morgan & Claypool, 2010.

21. D Carmel, E Yom-Tov, A Darlow, and D Pelleg. What Makes a Query Di�-
cult? In Proc. SIGIR, pages 390–397, 2006.

22. W. Chan, H. Cheng, and D. Lo. Searching Connected API Subgraph via Text
Phrases. In Proc. FSE, pages 10:1–10:11, 2012.

23. O. Chaparro, J. M. Florez, and A Marcus. Using observed behavior to refor-
mulate queries during text retrieval-based bug localization. In Proc. ICSME,
page to appear, 2017.

24. B. Dagenais and M.P. Robillard. Recovering Traceability Links between an
API and its Learning Resources. In Proc. ICSE, pages 47–57, 2012.

25. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The Vo-
cabulary Problem in Human-system Communication. Commun. ACM, 30(11):
964–971, 1987.

26. G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the Use of Relevance
Feedback in IR-based Concept Location. In Proc. ICSM, pages 351–360, 2009.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



52 Mohammad M. Rahman et al.

27. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification:
Java SE 7 Edition. 2012.

28. T. Gvero and V. Kuncak. Interactive synthesis using free-form queries. In
Proc. ICSE, pages 689–692, 2015.

29. S. Haiduc and A. Marcus. On the E↵ect of the Query in IR-based Concept
Location. In Proc. ICPC, pages 234–237, June 2011.

30. S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies.
Automatic Query Reformulations for Text Retrieval in Software Engineering.
In Proc. ICSE, pages 842–851, 2013.

31. Z. Harris. Mathematical Structures in Language Contents. 1968.
32. V. J. Hellendoorn and P. Devanbu. Are deep neural networks the best choice

for modeling source code? In Proc. ESEC/FSE, pages 763–773, 2017.
33. E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically Capturing Source

Code Context of NL-queries for Software Maintenance and Reuse. In Proc.
ICSE, pages 232–242, 2009.

34. M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker. Automati-
cally Mining Software-based, Semantically-Similar Words from Comment-
Code Mappings. In Proc. MSR, pages 377–386, 2013.
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