Investigating Near-Miss Micro-Clones in Evolving Software

Manishankar Mondal =~ Banani Roy

Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Canada
{mshankar.mondal, banani.roy, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT

Code clones are the same or nearly similar code fragments in a
software system’s code-base. While the existing studies have exten-
sively studied regular code clones in software systems, micro-clones
have been mostly ignored. Although an existing study investigated
consistent changes in exact micro-clones, near-miss micro-clones
have never been investigated. In our study, we investigate the im-
portance of near-miss micro-clones in software evolution and main-
tenance by automatically detecting and analyzing the consistent
updates that they experienced during the whole period of evolu-
tion of our subject systems. We compare the consistent co-change
tendency of near-miss micro-clones with that of exact micro-clones
and regular code clones. According to our investigation on thou-
sands of revisions of six open-source subject systems written in two
different programming languages, near-miss micro-clones have a
significantly higher tendency of experiencing consistent updates
compared to exact micro-clones and regular (both exact and near-
miss) code clones. Consistent updates in near-miss micro-clones
have a high tendency of being related with bug-fixes. Moreover, the
percentage of commit operations where near-miss micro-clones
experience consistent updates is considerably higher than that of
regular clones and exact micro-clones. We finally observe that near-
miss micro-clones staying in close proximity to each other have
a high tendency of experiencing consistent updates. Our research
implies that near-miss micro-clones should be considered equally
important as of regular clones and exact micro-clones when making
clone management decisions.

KEYWORDS

Code Clones, Micro-Clones, Near-Miss Micro-Clones

ACM Reference Format:

Manishankar Mondal BananiRoy ChanchalK.Roy KevinA.Schneider.
2020. Investigating Near-Miss Micro-Clones in Evolving Software. In 28th
International Conference on Program Comprehension (ICPC ’20), October
5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3387904.3389262

1 INTRODUCTION

Code cloning, copy/pasting code fragments for reusing existing
functionalities, is a common but controversial activity of the pro-
grammers during software development and maintenance. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05...$15.00
https://doi.org/10.1145/3387904.3389262

an activity causes the existence of the same or nearly similar code
fragments, known as code clones [44, 45], in the code-base of a
software system. Two code fragments that are exactly or nearly
similar to each other form a clone-pair. A group of similar code
fragments forms a clone class. Beside copy/pasting, code clones
might be created in a number of other ways [43]. Whatever maybe
the reasons behind the existence of code clones, clones are of sig-
nificant importance from the perspectives of software maintenance
and evolution.

A great many studies [1, 2, 11, 12, 14, 17, 19, 21, 23-28, 37, 38, 53,
57] have already been conducted on the detection, analysis, and
management of code clones. While a number of clone analysis stud-
ies [11, 12, 14] identify some positive impacts of code clones, there
is strong empirical evidence [19, 27, 28, 37, 38] of some negative
impacts (such as hidden bug-propagation [40], late-propagation [2],
high instability [38]) as well. Emphasizing the negative impacts of
code clones, researchers suggest to manage them through refac-
toring [35] or tracking [36]. While clone refactoring is a technique
for merging two or more clone fragments from a clone class, clone
tracking helps us ensure consistent updates in code clones.

Existing studies [1, 43] report that it is often important to update
code clones together consistently during software evolution and
maintenance. A number of techniques and tools [9, 20, 31, 58] have
been proposed and developed in order to ensure consistent updates
in code clones. While the existing techniques and tools support con-
sistent updates in regular code clones only, a recent study conducted
by Mondal et al. [39] reports that micro-clones should also be con-
sidered equally important for updating consistently. According to
Mondal et al. [39], micro-clones are clone fragments that are smaller
than the minimum size of the regular clones. They showed that
micro-clones have a tendency of getting updated consistently. Their
study was restricted to consistent updates in exact micro-clones.
However, near-miss micro-clones can also experience consistent
updates during evolution. The example in Fig. 1 will explain this.

Fig. 1 shows that two nearly similar source code lines residing in
revision 468 of our subject system Ctags were updated consistently
in the commit operation which was applied on revision 468. We
have highlighted these two lines in revision 468. While these two
lines are very similar to each other, they are syntactically different.
We also see that the surrounding code of one line is different than
the surrounding code of the other line. We consider these two
highlighted lines in revision 468 as near-miss micro-clones of each
other. We also see the snap-shots of these two near-miss micro-
clones in revision 469. We can easily identify the changes between
the corresponding snap-shots. We see that the two near-miss micro-
clone fragments in revision 468 were updated consistently (i.e., were
updated in the same way) in the commit operation. We analyzed the
commit log regarding the changes in Fig. 1 and find that the changes
occurred for fixing a bug in Ctags. According to this example, near-
miss micro-clone fragments can also experience consistent updates

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

Manishankar Mondal ~ Banani Roy ~ Chanchal K. Roy Kevin A. Schneider

Code Fragment 1, Revision 468

Code Fragment 1, Revision 469

if (longStringLiteral) {
cp = (const unsigned char®) strstr ((const char®) cp, "\V'\"\"");
if (cp == NULL) continue;

if (longStringLiteral) {
Change | cp = strstr (cp, "\"\"\"");
if (cp == NULL) continue;

Code Fragment 2, Revision 468

Code Fragment 2, Revision 469

skip_indent = indent; } } } } }

cp +=3;

if ((cp = (const unsigned char®) strstr ((const char*)cp, "\"\"\"")) != NULL) { | Change | if ((cp = strstr (cp, "\"\"\"")) != NULL) {

skip_indent = indent; } } } } }

cp +=3;

Figure 1: The figure shows two code fragments, Code Fragment 1 and Code Fragment 2, from two revisions, 468 and 469, of our subject system Ctags. The lines
that got changed in these two fragments have also been highlighted. The highlighted line in Code Fragment 1 of revision 468 has been detected as a single line
near-miss micro-clone of the highlighted line in Code Fragment 2 of the same revision by our implementation. The Dice Sorensen Coefficient between these two
highlighted lines in revision 468 is 88.88%. From the figure we realize that these two single line micro-clones were updated consistently (in the same way) while
being propagated to revision 469. Now, if we look at the two code fragments in revision 468, we see that the corresponding lines of the fragments are syntactically
dissimilar. These two fragments will not be detected as clones by any of the existing clone detectors even after tuning their detection parameters because of the
syntactic dissimilarity. The same is true for the fragments in revision 469 as well. However, from the highlighted lines in the two fragments it is evident that the
lines were changed together consistently. Thus, near-miss micro-clones can change together consistently during evolution.

during software evolution and maintenance. However, none of
the existing studies investigated consistent updates in near-miss
micro-clones. Focusing on this drawback of the existing studies,
we investigate consistent co-change tendencies of near-miss micro-
clones in our study.

We automatically extract and examine the source code change
history of each of our subject systems by using UNIX diff tool,
identify the consistent updates using Dice Sorensen similarity de-
tection technique [51], and determine how many of these consistent
updates occurred in regular as well as exact and near-miss micro-
clones. For detecting regular code clones, we used the well-known
clone detector NiCad [6]. We also determine how many of the
consistent updates occurring in different categories of code clones
are related with bugs. From our investigation on the consistent
updates from thousands of commit operations of six open-source
subject systems written in two different programming languages,
we answer the four research questions listed in Table 1. We have
the following findings from our investigation.

o The percentage of consistent updates occurring in near-miss
micro-clones is significantly higher (according to our sta-
tistical significance tests) compared to the percentages of
consistent updates occurring in exact micro-clones and reg-
ular (exact + near-miss) code clones.

o The percentage of commit operations where near-miss micro-
clones experienced consistent updates is significantly higher
compared to the corresponding percentages regarding exact
micro-clones and regular code clones.

o Consistent updates in near-miss micro-clones have a high
tendency of being related with bug-fixes.

o Near-miss micro-clones residing in the same file generally
have a higher tendency of experiencing consistent updates
compared to near-miss micro-clones in different files.

According to our findings, near-miss micro-clones should not be
ignored when making clone management decisions because they
exhibit a high tendency of experiencing consistent updates during
evolution. We need further investigations towards updating the
existing clone management techniques and tools so that these can
incorporate exact and near-miss micro-clones as well.

Table 1: Research Questions

SL Research Question

RQ 1 |What percentage of the consistent updates can be experienced by near-miss
micro-clones?

RQ 2 |What percentage of the consistent updates in different categories of code
clones are related to fixing bugs?

RQ 3 |How often do near-miss micro-clones experience consistent updates?
RQ 4 |Do near-miss micro-clones staying in the same file have a higher tendency
of consistent updates compared to those staying in different files?

The rest of the paper is organized as follows. Section 2 describes
the terminology, Section 3 discusses the experiment setup and steps,
Sections 4 to 7 answer the four research questions listed in Table
1, Section 8 mentions the possible threats to the validity of our
experiment results, Section 9 discusses the existing works that are
related to our research, and finally, Section 10 makes the concluding
remarks by mentioning some possible future work.

2 TERMINOLOGY

This section explains the terms that we have used in our paper.

2.1 Different types of code clones

Our research involves detection and analysis of regular code clones
of all three major clone-types: Type 1, Type 2, and Type 3. According
to the literature [44, 45], the identical code fragments residing
in a software system’s code-base are called Type 1 clones. More
elaborately, if two or more code fragments in a code-base are exactly
the same disregarding their comments and indentations, then we
call these code fragments identical clones or Type 1 clones of one
another. Syntactically similar code fragments residing in a software
system’s code-base are known as Type 2 clones. Type 2 clones
generally get created from Type 1 clones because of renaming
identifiers and/or changing data types. Finally, Type 3 clones (also
known as gapped clones) generally get created from both Type 1
or Type 2 clones because of additions, deletions, or modifications
of lines in these clones.

2.2 Micro-Clones

According to the literature [39], Code clones having a size that is
smaller than the minimum size of regular code clones are called micro-
clones. Micro-clones are not parts of regular code clones. The minimum

Investigating Near-Miss Micro-Clones in Evolving Software

Table 2: Subject Systems

Systems | Lang. | Domains | LLR | SRev | LRev

Ctags C Code Definition Generator 33,270 1 774
Camellia C Multimedia 85,015 1 140
Carol Java Game 25,091 1 1700
Freecol Java Game 91,626 1000 1950
JabRef Java Reference Management 45,515 1 1545
jEdit Java Text Editor 191,804 3791 4000

LLR = LOC in the Last Revision
SRev = Starting Revision LRev = Last Revision

size of a micro-clone fragment is 1 LOC. Our study involves inves-
tigating regular clones detected by NiCad [6] clone detector. NiCad
detects regular code clones of minimum 5LOC. Thus, the maximum
size of a micro clone fragment can be 4LOC in our study.

2.3 Near-miss micro-clones

Micro-clones with textual or syntactic dissimilarities have been
termed as near-miss micro-clones in our study. In a previous study,
Mondal et al. [39] investigated consistent updates in exact micro-
clones. However, near-miss micro-clones were never analyzed. Our
study is the first one to investigate consistent updates in near-miss
micro-clones. We use Dice Serensen similarity detection technique
for our investigation. Fig. 1 contains an example of single line near-
miss micro-clone pair.

2.4 Dice Serensen Coeflicient

Dice-Serensen coefficient [8, 51, 52] helps us determine the lexical
similarity of source code lines. For any two lines, we calculate their
similarity from their bigrams (the set of every sequence of two
adjacent characters) as follows:

2 X |bigrams(liner) N bigrams(linez)|

1)

Similarity = |bigrams(line;p)| + |bigrams(linez)|

Here, Similarity is the Dice Sérensen similarity between the two
lines: line1 and liney. The Dice—Serensen coefficient reports simi-
larity values in the range 0 and 1, which we express as percentages.
A similarity value of 100% indicates that the strings are the same,
whereas 0% indicates that the strings are dissimilar. Dice-Sgrensen
coefficient rewards both common substrings and a common order-
ing of those substrings. It is robust to changes in word order. It
outperforms the existing algorithms, such as Soudex Algorithm,
Edit Distance, and Longest Common Subsequence in determining
lexical similarity between strings [54].

3 EXPERIMENT SETUP AND STEPS

We conduct our experiment by downloading six subject systems
written in Java and C from an on-line SVN repository called Source-
Forge [42]. Our subject systems have been listed in Table 2. For
each system, the table shows the range of revisions that we investi-
gated. The beginning and ending revision numbers of the range are
recorded in the table. While for most of the systems we could inves-
tigate starting from revision 1, this was not possible for jEdit and
Freecol. The starting revisions of jEdit and Freecol are respectively
3791 and 1000 in SourceForge. The former revisions are missing
possibly because these two systems were taken under SourceForge

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

from 1000-th and 3791-th revisions respectively. We select the sys-
tems listed in Table 2 for our study, because these are of diverse
variety in terms of application domains, and size. The revision his-
tories of these systems are also of different lengths. Moreover, the
systems are written in two different programming languages. We
intentionally select our subject systems emphasizing their diversity
so that we can generalize our findings. We perform a number of
experiment steps as listed below for each of the systems.

e Downloading each of the revisions (as mentioned in Table
2) of the subject system from the SVN repository.

o Detecting changes between the corresponding source code
files of every two consecutive revisions by applying UNIX
diff operation.

o Detecting regular code clones from each of the revisions by
applying the NiCad clone detector [6].

o Identifying consistent updates by following the procedure
described in Section 4.

e Analyzing the consistent updates to analyze which updates
occurred in regular code clones, exact micro-clones and near-
miss micro-clones.

o Identifying the bug-fix commit operations by automatically
analyzing the commit messages using the procedure pro-
posed by Mockus and Votta [32].

e Identifying which of the consistent updates occurring in
micro-clones were made for fixing bugs.

We will describe the last step in Section 5. We detect regular
code clones using the well known clone detector NiCad [6] that can
detect all three types of clones (Type 1, Type 2, and Type 3) with
high precision and recall [47, 48]. A recent study [55] shows that
NiCad is a good choice among the modern clone detectors in term
of detection accuracy. As suggested in Wang et al’s [59] study, we
detect regular code clones of at least 5 LOC using NiCad.

In our experiment, we disregarded the changes that occurred to
the comments and indentations so that such changes cannot affect
our experiment results. One possibility would be to first prepro-
cess the source code by removing comments and blank lines and
then doing our experiment. However, such an experiment cannot
indicate the real-world scenario of consistent updates in reglar and
micro-clones. Thus, we decided not to preprocess the source code.
Beside disregarding changes in comments and indentations, we also
disregarded changes to source code lines of a single character such
as {" or }. In the following sections, we describe our experiments
towards answering the research questions.

Identifying the bug-fix commits. Let us assume that we have
a subject system. We first retrieve its commit messages by applying
the ‘SVN log’ command. A commit message describes the purpose
of the corresponding commit operation. We automatically exam-
ine the commit messages using the heuristic proposed by Mockus
and Votta [32] to identify those commits that occurred for the pur-
pose of fixing bugs. The way we detect the bug-fix commits was
also followed by Barbour et al. [2]. They investigated whether late
propagation in code clones [44] are related to bugs. Our study is
different. We investigate whether consistent changes in near-miss
micro-clones can be related with bug-fixes.

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

4 INVESTIGATING CONSISTENT UPDATES IN
NEAR-MISS MICRO-CLONES

In this section, we answer our first research question (RQ 1) through
our investigations.

RQ1: What percentage of the consistent updates can be experienced
by near-miss micro-clones?

Answering this question is the primary goal of our research.
Existing studies show that it is important to update regular code
clones consistently during evolution in order to ensure consistency
of a software system. On the basis of this finding, a number of
techniques [10] and tools [9, 50] have been developed for assist-
ing developers in consistent modification of exact and near-miss
regular clones. In a recent study, Mondal et al. [39] showed that
micro-clones also require consistent updates during software evolu-
tion and maintenance. However, Mondal et al.’s [39] investigation
was restricted to the consistent updates in exact micro-clones only.
Consistent updates in near-miss micro clones were ignored in their
study. In RQ 1, we investigate whether near-miss micro-clones also
require consistent updates during evolution. Our finding from RQ
1 can have a considerable impact on the existing clone manage-
ment technologies. If near-miss micro-clones appear to exhibit a
tendency of experiencing consistent updates, then we need further
investigations focusing on improving the existing clone manage-
ment techniques so that they can incorporate exact and near-miss
micro-clones as well. We perform our investigation for answering
RQ 1 in the following way.

4.1 Detecting pairs of consistent updates

We examine each of the commit operations of a subject system from
the very beginning one and determine the changes that occurred in
each commit using UNIX diff: Let us consider the commit operation
¢ which was applied on revision R of a subject system. One or more
source code files in revision R were changed because of the commit
operation and the immediate next revision R + 1 was created. We
obtain the source code changes that occurred in commit ¢ using
UNIX diff operation. We apply diff between the corresponding
source code files of the two revisions (R and R+1) and determine the
changes. Diff outputs three types of changes: additions, deletions,
and modifications. Two changes (i.e., two updates) are considered
consistent if the following conditions hold.

e Condition 1. The two changes will be of the same type.
For example, if one change is a modification, the other one
should also be a modification.

e Condition 2: Let us consider that the two changes are two
additions: a; and ay. From each addition reported by diff
we determine two sets: s; and s3. The set s; contains the
source code line after which the addition was made. The
other set, sz, contains the consecutive source code lines that
were added. Now, the two additions a; and ay are considered
consistent if the two sets obtained from ap are similar to the
corresponding sets obtained from ay. The technique that we
apply for detecting similarity between two sets of source
code lines will be described later in this section.

e Condition 3: Let us consider that the two changes are two
deletions. From each deletion reported by diff, we determine
the set of consecutive lines that were deleted. If the two sets

Manishankar Mondal ~ Banani Roy ~ Chanchal K. Roy Kevin A. Schneider

corresponding to the two deletions are similar, the deletions
are considered similar.

o Condition 4: Let us consider the two changes are two mod-
ifications: m; and my. From each modification reported by
diff, we determine two sets: s1 and sp. While s; contains the
consecutive source code lines that were modified, sy contains
the lines that we obtained after the modification. The two
modifications, m; and my, are considered similar if the two
sets obtained from m; are similar to the corresponding sets
obtained from m;.

We determine all the changes that occurred in all the commit
operations during the whole period of evolution of a candidate
software system. By considering the changes in each of the commit
operations, we determine pairs of consistent updates.

4.2 Detecting similarity between two sets of
source code lines

Let us consider two sets, s; and sz, where each set contains one or
more consecutive source code lines. From each of these sets, we
determine a single string by sequentially adding source code lines
in the set one after another. We then determine the Dice S6rensen
similarity between the two strings obtained from the two sets: s; and
s2. The details of calculating Dice Sérensen similarity between two
strings have been described in Section 2. We obtain the similarity
value as a percentage. If the two strings from two sets of source
code lines exhibit at least 70% similarity, we consider that the two
sets are similar. We select this similarity threshold, because in an
existing work, Lozano and Wermelinger [28] considered the same
threshold value for detecting similar methods using Dice Sérensen
similarity detection technique.

4.3 Categorizing the pairs of consistent updates

Let us consider the pairs of consistent updates that occurred in re-
vision R of a subject system. We categorize these consistent update
pairs into the following three categories.

Category 1 (Consistent updates in regular code clones). If
both of the updates in a consistent update pair occurred in regular
code clones (exact or near-miss), then we consider this pair in Cat-
egory 1. For determining whether a consistent update pair belongs
to Category 1, we first detect regular code clones (both exact and
near-miss clones) from revision R using the NiCad [6] clone detec-
tor. After detecting regular clones, we determine whether the two
updates in a consistent update pair occurred in two regular clone
fragments belonging to the same clone class.

Category 2 (Consistent updates in exact micro-clones). Let
us assume that a consistent update pair does not belong to Cate-
gory 1. We consider this pair in Category 2, if the two updates
(i.e., two changes) in the consistent update pair occurred in two
identical micro-clone fragments. We satisfy this condition in the
following way.

o If the two consistent updates are additions, then the two
additions should be done after two identical source code
lines. If two source code lines are identical and they are
not included in regular code clones, then they should be
considered as exact micro-clones of each other.

Investigating Near-Miss Micro-Clones in Evolving Software

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

Table 3: Number of consistent changes in different categories of code clones

SL | Measures Ctags | Camellia | Carol | Freecol | Jabref | jEdit
1 Total number of changes during the entire period of evolution of the subject system 3284 2243 6659 13255 13092 5566
2 Total number of pairs of consistent changes that occurred in regular clones during system evolution 166 130 3235 818 1330 70
3 Total number of pairs of consistent changes that occurred in exact micro clones during evolution 296 2196 1262 35890 737 704
4 Total number of pairs of consistent changes that occurred in near-miss micro-clones during evolution 636 3619 2624 60049 2304 9543

o If the two consistent updates are deletions, then the two
sets of lines that were deleted in the two updates should be
identical. Moreover, the number of deleted lines in each set
should be at most four. As these two sets of lines are not
included in regular code clones, they are exact micro-clones
of each other.

o Finally, if the two consistent updates are modifications, then
the two sets of lines that got modified in the two updates
should be identical and the number of modified lines in each
set should be at most four. As these two sets of source code
lines do not belong to regular code clones, they are exact
micro-clones.

Category 3 (Consistent updates in near-miss micro-clones).

Let us assume that a consistent update pair does not belong to any
of the two categories described above. If each of the two sets of
lines that experienced the two updates contains at most four lines
of code, then these two sets of lines are near-miss micro-clones of
each other. Near-miss micro-clones can even be of single lines. Fig. 1
shows consistent updates in two near-miss single line micro-clones.
From the figure we see that the single line micro-clones in revision
468 (i.e., the two highlighted lines in the two code fragments in
revision 468) are syntactically different. Moreover, the surrounding
code of these two highlighted lines are also different. None of the
existing clone detectors can detect these two lines as clones of each
other even by varying the detection parameters. However, the Dice
Sérensen similarity value for these two highlighted lines is 88.88%
and this value is greater than the similarity threshold of 70%. Thus,
these two lines are near-miss micro-clones of each other. From the
figure, we also see that the modified versions of these two lines
in revision 469 are near-miss micro-clones of each other as well.
Our implemented prototype tool automatically mined this exam-
ple of consistent updates in near-miss micro-clone fragments by
analyzing the evolution history of our subject system Ctags.

We applied our tool on each of our subject systems. It auto-
matically detects the pairs of consistent updates from the entire
evolutionary history of the system and categorizes the consistent
update pairs into the above three categories.

4.4 Investigation result

Table 3 shows the values of four different measures from our inves-
tigation for each of our subject systems. The first measure (the top
most one) is the total number of changes that occurred during the
whole period of evolution. The second, third, and fourth measures
respectively indicate the number of consistent update pairs in regu-
lar clones, exact micro-clones, and near-miss micro-clones. Here we
should note that Mondal et al. [39] also reported the total number of
changes during the entire period of evolution of the subject systems
that we have used. The change counts that we have reported in the

I:l [% of consistent update pairs in regular clones with respect to all consistent update
pairs in all categories of clones

I:l [% of consistent update pairs in exact micro-clones with respect to all consistent
update pairs in all categories of clones

I 0 % of consistent update pairs in near-miss micro-clones with respect to all consis-
tent update pairs in all categories of clones

80 [~

60 [~

il HI‘Hln

Ctags Camellia Carol Freecol Jabref jEdit

4

S

2

S

S

Figure 2: Comparing the percentages of consistent updates
in different categories of code clones

first row of Table 3 are different than those reported by Mondal et al.
[39]. The reason behind this is that they performed preprocessing
of the source code before detecting the changes. We previously
explained (Section 3) that we do not perform any preprocessing of
the source code.

From the second, third, and fourth measures in Table 3, we have
the following two observations.

o The number of pairs of consistent updates that occurred in
near-miss micro-clones is mostly (i.e., for all subject systems
except Carol) higher than the number of consistent update
pairs in regular code clones and in exact micro-clones.

o The number of consistent update pairs in exact micro-clones
is mostly higher than that of regular code clones except for
the subject systems: Carol and Jabref. Such an observation
agrees with the findings from Mondal et al. [39].

The above observations are also evident from Fig. 2 that shows
the percentages of consistent update pairs occurring in regular
clones, exact micro-clones, and near-miss micro-clones with respect
to all consistent updates in all categories of clones.

Statistical Significance Tests. We wanted to see whether the
percentage of similar update pairs occurring in near-miss micro-
clones is significantly higher than that of regular code clones. For
this purpose we conducted Wilcoxon Signed Rank (WSR) test [29,
30] considering the percentages regarding near-miss micro-clones
and regular clones plotted in Fig. 2. We should note that WSR test
is non-parametric, and thus, the samples in the test do not need
to be normally distributed [29]. This test can be applied to both
large and small data sets [29]. We conducted this test considering a
significance level of 5%. From our test we see that the percentage

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

regarding near-miss micro-clones is significantly different than the
percentage regarding regular code clones with a p-value of 0.046
which is smaller than 0.05. As the percentage regarding near-miss
micro-clones is mostly higher, we can say that this percentage is
significantly higher than the percentage regarding regular clones.

We also conducted WSR tests [29, 30] in a similar way in order to
determine whether the percentage of similar update pairs in near-
miss micro-clones is significantly higher than the corresponding
percentage for exact micro-clones. We again conducted the test
with a significance level of 5% and found that the percentages
regarding near-miss micro-clones are significantly different than
the percentages regarding the exact micro-clones with a p-value of
0.028 (< 0.05). As the percentages for near-miss micro-clones are
always higher than those of exact micro-clones, we can say that
the percentages of consistent updates in near-miss micro-clones
are significantly higher than those of exact micro-clones.

Answer to RQ 1: According to our experimental results and
investigations we decide that the percentage of consistent updates
experienced by near-miss micro-clones is significantly higher than
the percentages of consistent updates experienced by regular clones
and exact micro-clones. In other words, the possibility of occurring
consistent updates in near-miss micro-clones is considerably higher
than that of regular clones and exact micro-clones.

As we see that near-miss micro-clones have a high tendency
of experiencing of consistent updates, we should consider such
clones for management. Our next research questions focus on the
bug-proneness and management of near-miss micro-clones.

5 INVESTIGATING CONSISTENT UPDATES
THAT ARE RELATED WITH BUG-FIXES

From our answer to RQ 1 we realize that near-miss micro-clones
have a significantly higher tendency of experiencing consistent up-
dates during evolution compared to regular clones and exact micro-
clones. Such an observation inspires us to investigate how many
of the consistent updates in different categories are related with
fixing bugs. If we observe that a high percentage of the consistent
updates occurring in near-miss micro-clones are made for fixing
bugs, it can establish the importance of near-miss micro-clones in
software systems. Through our investigation in this section, we
answer the second research question (RQ 2).

RQ 2: What percentage of the consistent updates in different cate-
gories of code clones are related to fixing bugs?

5.1 Investigation Procedure

As we did in RQ 1, we identify the pairs of consistent updates in
three categories of code clones: regular clones, exact micro-clones,
and near-miss micro-clones. We also determine the bug-fix commits
following the procedure described in Section 3. We now determine
which of the consistent updates were related with fixing bugs. If
a pair of consistent updates occur in a bug-fix commit operation,
we realize that the consistent updates were necessary for fixing
a bug. We consider such a pair as a pair of consistent updates
related with bug-fix. For different categories of code clones, we
determine the number of consistent update pairs that are related
with bug-fixes. Table 4 shows this number for each of the three clone
categories of each of our subject systems. We finally determine the

Manishankar Mondal ~ Banani Roy ~ Chanchal K. Roy Kevin A. Schneider

I:l [% of consistent update pairs that are related with bug-fixes in regular clones
I:l [% of consistent update pairs that are related with bug-fies in exact-micro clones

I B % of consistent update pairs that are related with bug-fixes in near-miss micro-
clones

60 [—

40 |-

HHI In nlll s |

Ctags Camellia Carol Freecol Jabref jEdit

20

o

Figure 3: Comparing the percentages of consistent updates
that are related with bug-fixes in different categories of code
clones

percentage of consistent update pairs that are related with bug-
fix with respect to all pairs of consistent updates for each clone
category of each subject system. Fig. 3 shows these percentages for
our subject systems.

5.2 Investigation Result

From Table 4 we realize that the number of consistent update pairs
that are related with fixing bugs in near-miss micro-clones is mostly
the highest (except for two subject systems: Camellia and Carol)
compared to regular clones and exact micro-clones. Fig. 3 makes us
understand that the percentage of consistent update pairs that are
related with bug-fix in near-miss micro-clones is the highest for
three subject systems: Ctags, Freecol, and Jabref. For two systems,
Camellia and jEdit, the percentage regarding regular clones is the
highest. For the remaining system, Carol, the percentage regarding
exact micro-clones is the highest.

We performed Wilcoxon Signed Rank tests [29] to determine
whether the percentages regarding near-miss micro-clones are sig-
nificantly different than the percentages regarding the other two
categories of clones. However, we found that the percentages re-
garding near-miss micro-clones are not significantly different than
the percentages regarding the other two clone categories.

Answer to RQ 2: According to our investigation and analysis,
the percentage of consistent update pairs that are related with
fixing bugs in near-miss micro-clones can sometimes be very high
(for example 66% for our subject system Freecol). Thus, near-miss
micro-clones should not be ignored. By considering such clones for
management, we can likely minimize bugs in the source code.

6 INVESTIGATING THE OFTENNESS OF
CONSISTENT UPDATES IN NEAR-MISS
MICRO-CLONES

In this section we answer our third research question (RQ 3) regard-
ing how frequently consistent updates occur in near-miss micro-
clones during evolution.

Investigating Near-Miss Micro-Clones in Evolving Software

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

Table 4: Number of consistent update pairs that are related with bug-fixes in different categories of code clones

SL | Measures Ctags | Camellia | Carol | Freecol | Jabref | jEdit
1 Total number of bug-fixes during the entire period of evolution of a subject system 300 36 137 336 233 58
2 Total number of consistent update pairs that are related with bug-fix in regular clones (exact + near-miss) 29 19 1384 378 102 36
3 Total number of consistent update pairs that are related with bug-fix in exact micro-clones 54 218 790 15118 84 271
4 Total number of consistent update pairs that are related with bug-fix in near-miss micro-clones 162 26 819 39813 327 581

Table 5: The number of commits where different categories of code clones experienced consistent updates

SL | Measures Ctags | Camellia | Carol | Freecol | Jabref | jEdit
1 Total number of commits where there were some changes to the source code 447 126 454 836 860 145
2 No. of commits where regular code clones (both exact and near-miss) experienced consistent updates 41 38 129 121 173 12
3 No. of commits where exact micro-clones experienced consistent updates 47 36 82 258 138 80
4 No of commits where near-miss micro-clones experienced consistent updates 108 56 141 441 285 90

RQ 3: How often do the consistent updates occur in near-miss
micro-clones?

From our answer to RQ 1 we realize that near-miss micro-clones
generally experience a higher percentage of consistent updates
compared to exact micro-clones, and regular code clones. In RQ
3, we investigate whether near-miss micro-clones experience con-
sistent updates in many of the commit operations or not. If we
find that near-miss micro-clones undergo consistent updates in
many commits during system evolution, then it is important for
the modern clone tracking tools to consider near-miss micro-clones
for tracking so that consistent updates in such code clones can be
done with reduced effort.

6.1 Investigation Procedure

Aswe did in RQ 1, we identify consistent updates in three categories
of code clones: (1) regular code clones, (2) exact micro-clones, and
(3) near-miss micro-clones during the whole period of evolution of
a subject system. For answering RQ 3, we also identify which of the
commit operations made changes to the source code. Then, for each
of the three categories of code clones, we determine the percentage
of commits where the code clones of that category experienced
consistent updates.

Let us assume that the number of commit operations where
there were some changes to the source code is C during the whole
period of evolution of a subject system. The number of commits
where a particular category of code clones experienced consistent
updates is Cconsisrens- Then, the percentage of commits where that
particular category of code clones experienced consistent updates
is calculated using the following equation (Eq. 2).

_ Cconsistént % 100 @)

Here, P is the percentage of commits with consistent updates.

P

6.2 Investigation result

For each of our subject systems, Table 5 shows four measures that
we obtained from our investigation. These measures are: (1) total
number of commit operations where there were some changes to
the source code, (2) number of commit operations where regular
code clones experienced consistent updates, (3) number of commits

I:l [0 % of commits where regular code clones experienced consistent updates
I:l [% of commits where exact micro-clones experienced consistent updates

I 0 % of commits where near-miss micro-clones experienced consistent updates

60 [~ —

10 - f

HHI [| I I

Freecol Jabref jEdit

2

=3

o

Ctags Camellia Carol

Figure 4: Percentages of commits where code cones of differ-
ent categories experienced consistent updates

where exact micro-clones experienced consistent updates, and (4)
number of commits where near-miss micro-clones experienced
consistent updates. In a particular commit operation, more than one
category of code clones can experience consistent updates. Thus,
the commit operations in the second, third, and fourth measures
are not disjoint. We determine the percentages of these last three
measures with respect to the first measure (total number of commits
with changes to the source code) as indicated in Eq. 2 and plot these
percentages in the bar-graph of Fig. 4.

Fig. 4 shows that the percentage of commits where near-miss
micro-clones experienced consistent updates is always higher com-
pared to the percentages of commits where regular code clones
(both exact and near-miss) and exact micro-clones experienced
consistent updates. In other words, near-miss micro-clones experi-
ence consistent updates for the longest duration among the three
categories of code clones. We also wanted to investigate whether
the percentages regarding near-miss micro-clones in Fig. 4 are sig-
nificantly higher compared to the percentages regarding regular
clones and exact micro-clones. For this purpose, we again conduct
the Wilcoxon Signed Rank tests [29, 30] in a similar way as we did
Section 4. We consider a significance level of 5% for conducting
the tests. According to our test results, the percentages regarding

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

near-miss micro-clones are significantly higher than the percent-
ages regarding regular code clones with a p-value of 0.03 (< 0.05)
for two-tailed test case. We also obtain the same result regarding
the tests between near-miss micro-clones and exact micro-clones.
The percentages regarding near-miss micro-clones are significantly
higher compared to the percentages regarding exact micro-clones
with a p-value of 0.028 which is less than 0.05.

Answer to RQ 2. According to our investigation results and
analysis, near-miss micro-clones experience consistent updates
for a significantly higher percentage of commit operations during
evolution compared to regular clones and exact micro-clones.

As near-miss micro-clones experience consistent updates for the
longest duration, it is important to consider such clones for manage-
ment such as tracking. However, refactoring near-miss micro-clones
might not be a good idea because they are small in size. Existing
research [62] indicates that larger code clones are more promising
for refactoring to the programmers. Further research should be con-
ducted on the clone tracking techniques so that these techniques
can consider near-miss micro-clones for tracking as well.

Mondal et al. [39] showed that micro-clones can be three times
as much as the regular clones in a software system. We also experi-
enced a similar scenario in our research by detecting code clones
using the same clone detector and detection parameters that they
used. We wanted to determine the total number of near-miss micro-
clones in our subject systems. However, the existing clone detectors
cannot detect near-miss micro-clones with syntactic differences
well. Fig. 1 shows an example of consistent updates in single line
near-miss micro-clones with syntactic dissimilarity. None of the
existing clone detectors can detect it. Possibly, we need further
investigations on customizing the existing clone detectors to incor-
porate Dice Sorensen similarity detection technique for detecting
near-miss micro-clones with syntactic differences. We should note
that for answering research questions (RQ 1, RQ 2, and RQ 3), we
detected consistent updates in exact and near-miss micro-clones
using Dice Sérensen similarity detection technique.

7 IDENTIFYING NEAR-MISS MICRO-CLONES
THAT ARE IMPORTANT FOR
MANAGEMENT

In this section we answer our fourth research question (RQ 4)
on identifying near-miss micro-clones that can be important for
management such as tracking.

RQ 4. Do near-miss micro-clones that experience consistent updates
generally reside in the same file?

From our answer to the previous research questions we realize
that it is important to consider near-miss micro-clones for manage-
ment such as tracking. When deciding about clone management,
we should identify which of the near-miss micro-clones should
be considered important for management. Intuitively, near-miss
micro-clones that exhibit a high tendency of experiencing consis-
tent updates should be considered important for management. In
RQ 4, we particularly investigate whether near-miss micro-clones
residing in the same file have a higher tendency of experiencing
consistent updates compared to those residing in different files. We
perform our investigation for answering RQ 4 in the following way.

Manishankar Mondal ~ Banani Roy ~ Chanchal K. Roy Kevin A. Schneider
I B Percentage of consistent update pairs where the two updates in each pair occurred
in the same file (P1)
I:l [Percentage of consistent update pairs where the updates in each pair occurred in
two different files (P2)
100 —
80 [— —
60 [— —
40 [— —
20 |— H H —
0 - =

Ctags Camellia Carol Freecol Jabref jEdit

Figure 5: Percentage of consistent updates that occurred in
the same or different files

7.1 Investigation procedure

We analyze each of the commit operations from the beginning one
and identify pairs of consistent updates in near-miss micro-clones
as we did before. For each such pair, we determine whether the
two updates in the pair took place in the same source code file or
in different files. By analyzing the all the commit operations from
the whole period of evolution of a subject system we determine the
following two measures:

e Measure 1. The total number of the pairs of consistent up-
dates where the two updates in each pair took place in the
same file.

e Measure 2. The total number of the pairs of consistent up-
dates where the two updates in each pair occurred in two
different source code files.

We show these two measures in Table 6. This table also shows the
number of consistent update pairs that occurred in the near-miss
micro-clones of different subject systems during their evolution.
From the data recorded in Table 6 we determine the following two
percentages:

e P1. This is the percentage of consistent update pairs each
having updates occurring in the same file with respect to
all consistent update pairs in near-miss micro-clones. We
calculate this percentage in the following way.

P1 = (Measure 1 X 100)/ NPCU 3)

Here, NPCU is the number of pairs of consistent updates that
occurred in near-miss micro-clones during the whole period
of evolution of a subject system. The first row in Table 6
represents this data (NPCU).

e P2. This is the percentage of consistent update pairs where
the updates in each pair occurred in two different files. We
calculate this percentage in the following way.

P2 = (Measure 2 X 100)/ NPCU (4)

We show these percentages in Fig. 5 in order to visually realize
the comparative scenario of these two percentages. We see that
the percentage P1 (the percentage of consistent update pairs each
having updates occurring in the same file) is always higher than

Investigating Near-Miss Micro-Clones in Evolving Software

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

Table 6: Statistics regarding the consistent updates occurring in the same or different files

SL | Measures Ctags | Camellia | Carol | Freecol |Jabref|jEdit
1 No. of pairs of consistent changes that occurred in near-miss micro-clones 636 3619 2624 60049 | 23049543
2 Total number of the pairs of consistent updates where the two updates in each pair took place in the same file 435 2502 1514 2085 1463 | 9242
3 Total number of the pairs of consistent updates where the two updates in each pair took place in different files 201 1117 1110 57964 841| 301

P2 (the percentage of consistent update pairs where the updates
in each pair occurred in two different files) except for our subject
system Freecol. In other words, near-miss micro-clones from the
same source code file mostly have a higher tendency of experiencing
consistent updates compared to near-miss micro-clones residing
in different files. We also wanted to see whether the percentage,
P1, is significantly higher than the other percentage. We performed
Wilcoxon signed Rank tests [29, 30] for this purpose as we did for
answering our previous research questions. We conducted the tests
considering a significance level of 5%. However, according to our
tests, the two percentages P1 and P2 are not significantly different
than each other.

Answer to RQ 4. According to our investigation result and
analysis, near-miss micro-clones residing in the same file generally
have a higher tendency (according to our statistical significance
test) of experiencing consistent updates compared to those that
reside in different files.

Such a finding is important for making decisions regarding track-
ing code clones. Clone tracking is the technique for ensuring con-
sistent updates to code clones. If a programmer attempts to make
changes to a code fragment, the clone tracker automatically finds
the clones of the fragment so that the programmer can consistently
change these clones as well. Our finding from RQ 4 can be useful
to rank the near-miss micro-clones of the target code fragment.
The near-miss micro-clones residing in the same file as of the tar-
get code fragment can be given a higher priority compared to the
near-miss micro-clones that reside in different files.

8 THREATS TO VALIDITY

In our research, we detect regular code clones from our subject
systems using the NiCad clone detector [6]. For different settings
of NiCad, the clone detection results for regular code clones can be
different, and thus, the statistics reported in our research can also
be different. However, the settings that we have used for NiCad
are considered standard [46]. NiCad has been shown to exhibit
high precision and recall with these settings [47, 48, 55]. Thus, our
findings are important and can have a considerable impact on the
evolution and maintenance of software systems.

In our experiment we did not study enough subject systems to be
able to generalize our findings. However, we selected our candidate
systems emphasizing their diversity in sizes and revision history
lengths. Thus, we believe that our findings cannot be attributed to
a chance. Our experiment results regarding near-miss micro-clones
should be considered important.

We detect bug-fix commits in our research using the technique
proposed by Mockus and Votta [32]. Such a technique which was
also used by Barbour et al. [2] can sometimes detect a non bug-fix
commit as a bug-fix commit. However, Barbour et al. [2] showed
that the technique has an accuracy of 87% in detecting bug-fix com-
mits. Thus, we believe that our findings regarding the occurrence of

consistent changes in different categories of code clones in bug-fix
commits is reasonable.

9 RELATED WORK

Code clones have been a matter of great importance from the per-
spectives of software maintenance and evolution. A great many
studies have investigated detection [6, 7, 13, 18, 43, 45, 46, 48, 55],
analysis [1-3, 5, 11, 12, 14-17, 19, 21, 22], and management [9, 10,
20, 33, 35] of code clones in different ways. Our research in this
paper focuses on near-miss micro-clones.

The existing study which is most relevant to our study was con-
ducted by Mondal et al. [39]. They investigated the importance
of micro-clones during the evolution of a software system. They
showed that micro-clones can also experience consistent updates
during software maintenance and evolution like the regular code
clones. However, they only investigated consistent updates to exact
micro-clones in their study. In our study, we investigate consistent
updates in near-miss micro-clones by using Dice Sérensen simi-
larity detection technique [52] and make a comparison among the
consistent updates experienced by near-miss micro-clones, exact
micro-clones, and regular code clones. We found that near-miss
micro-clones have a significantly higher tendency of experiencing
consistent updates during evolution compared to the other two
categories of code clones. Thus, such code clones should also be
considered for management.

Betterburg et al. [4] conducted a study on the consistent and
inconsistent changes to regular code clones by considering different
releases of a number of subject systems. They detected regular code
clones in their study using the SimScan clone detector. They found
that a very little proportion of the regular code clones create faults
in the software systems because of being changed inconsistently.
In other words, most of the regular code clones undergo consistent
changes during evolution. While they investigate consistent and
inconsistent changes to regular code clones, we study consistent
changes to near-miss micro-clones in our study. We found that
near-miss micro-clones have a higher tendency of experiencing
consistent updates than the regular code clones.

Jurgens et al. [19] investigated whether inconsistent changes
to regular code clones introduce faults in a software system. They
found that every second to third unintentional inconsistent change
to a clone fragment leads to a fault. They conducted their study
using the clone detection tool called ConQAT and investigated
regular clones of at least 10 lines of code. In our study, we investigate
the consistent co-change tendencies of near-miss micro-clones.
We find that near-miss micro-clones have a higher tendency of
experiencing consistent updates than regular code clones, thus,
near-miss micro-clones should also be considered for management.

Saha et al. [49] studied the genealogies of regular code clones
at release level and found that most of the clone genealogies were
updated consistently during evolution. They detected regular code

ICPC *20, October 5-6, 2020, Seoul, Republic of Korea

clones using CCFinderX clone detector and reported that we should
focus on managing code clones through tracking so that we can
update them consistently with reduced effort. In our study we
investigate the intensities of consistent updates in near-miss micro-
clones and found that such code clones have a higher tendency of
experiencing consistent updates compared to regular code clones.

Krinke [23] measured how consistently the code clones are
changed during maintenance using Simian [56] (clone detector) on
Java, C and C++ code bases considering exact regular clones only.
He found that clone groups are mostly updated consistently during
evolution. In two other studies [24, 25] he showed that cloned code
is more stable than non-cloned code [21]. While Krinke’s studies
have only considered regular code clones, we investigate near-miss
micro-clones in our study and find that near-miss micro-clones
have a strong tendency of experiencing consistent updates during
evolution.

A number of studies have also investigated regular code clones
from management perspectives such as clone refactoring and track-
ing. Kim et al. [22] investigated genealogies of regular code clones
and reported that aggressive refactoring of regular code clones is
not necessary during evolution. Mondal et al. [35, 36] investigated
which of the regular code clones can be important for manage-
ment such as refactoring or tracking. They applied the technique of
mining association rules for investigating co-evolution of regular
code clones and found that only a very small proportion of the
regular code clones can be important for management. We see that
none of these studies investigated near-miss micro-clones from the
perspectives of clone management.

A number of tools for tracking regular code clones also exist.
Miller and Myer [31] implemented ‘Simultaneous Editing’ tool to
automatically propagate changes from one clone fragment to it’s
peer clone fragments. Their tool can consider exact regular code
clones only. Toomim et al. [58] introduced the tool called ‘Linked
Editing’ for consistently updating exact regular code clones. Duala-
Ekoko and Robillard [10] introduced CRD (Clone Region Descriptor)
based clone tracking technique and implemented ‘CloneTracker’
[9] for tracking the evolution of regular code clones only. Jablonski
and Hou [20] introduced CReN that can help us in consistent re-
naming of regular code clones. We see that none of these existing
clone tracking tools consider near-miss micro-clones for tracking.
However, our research indicates that near-miss micro-clones have
a significantly higher tendency of experiencing consistent updates
during evolution. Thus, the existing clone tracking tools should be
investigated so that they can consider near-miss micro-clones for
tracking.

A number of clone refactoring techniques and tools [41, 61] also
exist. However, these techniques and tools can only incorporate reg-
ular code clones. A number of studies [16, 17, 26, 34] investigated
the bug-proneness of regular code clones during software evolu-
tion and maintenance. These studies have ignored exact as well as
near-miss micro-clones. However, research shows that near-miss
micro-clones should also be considered important for management
and they should be investigated from different management per-
spectives.

While the existing studies, techniques, and tools have only con-
sidered different types of regular code clones by ignoring the micro-
clones because of their small size, our findings from our research

Manishankar Mondal ~ Banani Roy ~ Chanchal K. Roy Kevin A. Schneider

imply that micro-clones should not be ignored. In our research, we
make a comparison among the consistent co-change tendencies
of regular clones, exact micro-clones, and near-miss micro-clones.
We find that near-miss micro-clones have the highest tendency of
experiencing consistent updates. We also observe that near-miss
micro-clones experience consistent updates for the longest duration
(i.e., for the highest number of commit operations) during software
evolution. Thus, such code clones should not be ignored, rather,
they should be considered for management. Our findings can have a
significant impact on the current clone detection and management
technologies. Further research will be required for improving the
existing technologies so that they can incorporate exact as well as
near-miss micro-clones.

10 CONCLUSION

In this paper, we investigate the importance of near-miss micro-
clones in software evolution and maintenance. We automatically
detect consistent changes from the entire period of evolution of our
subject systems using UNIX diff operation and Dice Sérensen simi-
larity detection technique. We identify which consistent changes
occurred in regular code clones, and which ones occurred in exact
micro-clones and near-miss micro-clones. According to our investi-
gation on thousands of revisions of six open-source subject systems
written in two different programming languages:

o Near-miss micro-clones have a significantly higher tendency
of experiencing consistent updates compared to exact micro-
clones and regular code clones.

o Near-miss micro-clones experience consistent updates for
the longest duration (i.e., for the highest number of com-
mit operations) among the three categories of code clones
(regular clones, exact micro-clones, near-miss micro-clones).

o Consistent updates in near-miss micro-clones have a high
tendency of being related with fixing bugs.

From such findings we realize that near-miss micro-clones should
also be considered important for management like regular clones
and exact micro-clones. When making decisions regarding manag-
ing near-miss micro-clones, we should identify which ones should
be considered important for management. According to our in-
vestigation for answering the fourth research question, near-miss
micro-clones residing in the same file generally have a higher ten-
dency of experiencing consistent updates compared to those that
reside in different files. Thus, near-miss micro-clones residing in the
same file should be given a high priority for managing. The existing
clone trackers do not consider near-miss micro-clones for tracking.
Future investigations on updating the existing clone trackers to
track near-miss micro-clones can add value to the existing clone
management research.

ACKNOWLEDGEMENT

This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and by two Canada
First Research Excellence Fund (CFREF) grants coordinated by the
Global Institute for Food Security (GIFS) and the Global Institute
for Water Security (GIWS).

Investigating Near-Miss Micro-Clones in Evolving Software

REFERENCES

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained: An empirical
study”, Proc. CSMR, 2007, pp. 81 — 90.

[2] L.Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”, Proc. ICSM,
2011, pp. 273 — 282.

[3] L.Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late propagation
clone genealogies”, Journal of Software: Evolution and Process, 2013, 25(11):1139 -
1165.

[4] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, A. E.Hassan, “An
empirical study on inconsistent changes to code clones at the release level”, Science
of Computer Programming Journal, 2012, 77(6): 760 — 776.

[5] D.Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring the Efficacy
of Code Clone Information in a Bug Localization Task: An Empirical Study”, Proc.
ESEM, 2011, pp. 20 - 29.

[6] J.R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool Demo, 2011,
pp- 219 - 220.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale Source Code”, IEEE Trans. Software
Engineering, 2002, 28(7):654 — 670.

[8] L.R.Dice, “Measures of the Amount of Ecologic Association Between Species”,

Ecology, 1945, 26(3): 297 - 302.

E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code Clone

Management”, Proc. ICSE, 2008, pp. 843 — 846.

[10] E. Duala-Ekoko, M. P. Robillard, “Tracking Code Clones in Evolving Software”,
Proc. ICSE, 2007, pp. 158 — 167.

[11] N. Gode, Rainer Koschke, “Frequency and risks of changes to clones”, Proc. ICSE,
2011, pp. 311 - 320.

[12] N. Géde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 — 74.

[13] N. GAdde and R. Koschke, "Incremental Clone Detection." 2009 13th European
Conference on Software Maintenance and Reengineering, Kaiserslautern, 2009,
pp. 219-228.

[14] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More Frequently
Modified than Non-duplicate Code in Software Evolution?: An Empirical Study
on Open Source Software”, Proc. EVOL/IWPSE, 2010, pp. 73 - 82.

[15] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, E. Lee,
“Experience of Finding Inconsistently-Changed Bugs in Code Clones of Mobile
Software”, Proc. IWSC, 2012, pp. 94 — 95.

[16] J. F.Islam, M. Mondal, C. K. Roy, “Bug Replication in Code Clones: An Empirical
Study”, Proc. SANER, 2016, pp. 68 - 78.

[17] L.Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related Bugs”, Proc.
ESEC-FSE, 2007, pp. 55 — 64.

[18] L.Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and accurate tree-
based detection of code clones”, Proc. ICSE, 2007, pp. 96 - 105.

[19] E.Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones Matter?”,
Proc. ICSE, 2009, pp. 485 — 495.

[20] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code clones and
renaming identifiers consistently in the IDE”, Proc. Eclipse Technology Exchange
at OOPSLA, 2007.

[21] C.Kapser, M. W. Godfrey, ““Cloning considered harmful” considered harmful:
patterns of cloning in software”, Empirical Software Engineering, 2008, 13(6): 645 —
692.

[22] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of code clone
genealogies”, Proc. ESEC-FSE, 2005, pp. 187 — 196.

[23] J. Krinke, “A study of consistent and inconsistent changes to code clones”, Proc.
WCRE, 2007, pp. 170 - 178.

[24]]. Krinke, “Is cloned code more stable than non-cloned code?”, Proc. SCAM, 2008,
pp- 57 - 66.

[25] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC, 2011, pp.
28-33.

[26] J.Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE, 2012, pp.
310 - 320.

[27] A.Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC, 2010, pp. 65
- 72.

[28] A. Lozano, M. Wermelinger, “Assessing the effect of clones on changeability”,
Proc. ICSM, 2008, pp. 227 - 236.

[29] Wilcoxon Signed Rank Test. https://en.wikipedia.org/wiki/Wilcoxon_signed-
rank_test

[30] Wilcoxon Signed Rank Test online calculator. http://www.socscistatistics.com/
tests/signedranks/Default2.aspx

[31] R. C. Miller, B. A. Myers. “Interactive simultaneous editing of multiple text
regions”, Proc. USENIX 2001 Annual Technical Conference, 2001, pp. 161 — 174.

[32] A.Mockus, L. G. Votta, “Identifying Reasons for Software Changes using Historic
Databases”, Proc. ICSM, 2000, pp. 120 - 130.

[33] M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for Mining Code
Clones that are Important for Refactoring or Tracking”, Proc. SANER, 2015, 5pp.
(to appear).

[

ICPC ’20, October 5-6, 2020, Seoul, Republic of Korea

[34] M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study on the Bug-
proneness of Different Types of Code Clones”, Proc. ICSME, 2015, pp. 91 - 100.

[35] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones for Refac-
toring through Mining Association Rules”, Proc. CSMR-WCRE, 2014, pp. 114 -
123.

[36] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of Important
Clones for Refactoring and Tracking”, Proc. SCAM, 2014, pp. 11 - 20.

[37] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A. Schneider,
“Comparative Stability of Cloned and Non-cloned Code: An Empirical Study”, Proc.
SAC, 2012, pp. 1227 - 1234,

[38] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone Stability”,
ACM SIGAPP Applied Computing Review, 2012, 12(3): 20 - 36.

[39] M. Mondal, C. K. Roy and K. A. Schneider, "Micro-clones in evolving software,’
2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Campobasso, 2018, pp. 50-60.

[40] M. Mondal, C. K. Roy, K. A. Schneider, “Bug Propagation through Code Cloning:
An Empirical Study”, Proc. ICSME, 2017, pp. 227 - 237.

[41] D. Mazinanian, N. Tsantalis, R. Stein, Z. Valenta, “JDeodorant: Clone Refactoring”,
Proc. ICSE, 2016, pp.14 - 22.

[42] Online SVN repository: http://sourceforge.net/

[43] C.K.Roy,].R. Cordy, “A Survey on Software Clone Detection Research”, Technical
Report No. 2007-541, 2007, School of Computing QueenaAZs University, pp. 1 - 115.

[44] C.K.Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone Management:
Past, Present, and Future (Keynote paper)”, Proc. CSMR-WCRE, 2014, pp. 18 - 33.

[45] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc. ICSM,
2009, pp. 447 - 450.

[46] C.K.Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and Code Normalization”, Proc. ICPC, 2008,
pp. 172 - 181.

[47] C.K.Roy,]J. R. Cordy, R. Koschke, “Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach”, Science of Computer
Programming, 2009, 74 (2009): 470 — 495.

[48] C.K.Roy, J. R. Cordy, “A Mutation / Injection-based Automatic Framework for
Evaluating Code Clone Detection Tools”, Proc. Mutation, 2009, pp. 157 — 166.
[49] R.K.Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, K. A. Schneider, “Evaluating
Code Clone Genealogies at Release Level: An Empirical Study”, Proc. SCAM, 2010,

pp- 87 — 96.

[50] R.K.Saha, C. K. Roy and K. A. Schneider, "An automatic framework for extract-
ing and classifying near-miss clone genealogies," 2011 27th IEEE International
Conference on Software Maintenance (ICSM), Williamsburg, VI, 2011, pp. 293-302.

[51] T. Serensen, “A method of establishing groups of equal amplitude in plant sociol-
ogy based on similarity of species and its application to analyses of the vegetation
on Danish commons”, Kongelige Danske Videnskabernes Selskab, 1948, 5(4): 1 - 34.

[52] Serenson-Dice coefficient: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%
80%93Dice_coefficient

[53] D. Steidl, N. Gode, “Feature-Based Detection of Bugs in Clones”, Proc. IWSC, 2013,
pp. 76 — 82.

[54] Strike A Match: http://www.catalysoft.com/articles/strikeamatch.html

[55] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”, Proc. ICSME,
2014, pp. 321 - 330.

[56] Simian-similarity analyser. http://www.redhillconsulting.com.au/products/simian/

[57] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical study
on the maintenance of source code clones”, Empirical Software Engineering, 2009,
15(1): 1 - 34.

[58] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with linked
editing”, Proc. IEEE Symposium on Visual Languages and Human Centric Computing,
2004, pp. 173 — 180.

[59] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configurations: A
Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT FSE, 2013, pp. 455 —
465.

[60] S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness of Clone
Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 - 158.

[61] M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code Clone
Refactoring”, IET Software, 2013, 7(3): 167 — 186.

[62] M.F. Zibran, R. K. Saha, C. K. Roy, K. A. Schneider;Evaluating the Conventional
Wisdom in Clone Removal: A Genealogy-based Empirical Study”, SAC, 2013, pp.
1123 - 1130.

