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ABSTRACT
Identical or nearly similar code fragments in a software system’s
code-base are known as code clones. Code clones from the same
clone class have a tendency of co-changing (changing together)
consistently during evolution. Focusing on this co-change tendency,
existing studies have investigated prediction and ranking co-change
candidates of regular clones. However, a recent study shows that
micro-clones which are smaller than the minimum size threshold of
regular clones might also need to be co-changed consistently during
evolution. Thus, identifying and ranking co-change candidates of
micro-clones is also important. In this paper, we investigate factors
that influence the co-change tendency of the co-change candidates
of a target micro-clone fragment.

We mine file level evolutionary coupling from thousands of revi-
sions of our subject systems through mining association rules and
analyze this coupling for the purpose of ranking. According to our
findings on six open-source subject systems written in Java and C,
consistent co-change tendency of micro-clones is influenced by file
proximity of the micro-clone fragments as well as evolutionary cou-
pling of the files containing those micro-clone fragments. On the
basis of our findings we propose a composite ranking mechanism
by incorporating both file proximity and file coupling for ranking
co-change candidates for micro-clones and find that our proposed
mechanism performs significantly better than File Proximity Rank-
ing mechanism. We believe that our proposed ranking mechanism
has the potential to help programmers in updating micro-clones
consistently with less effort.
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1 INTRODUCTION
Code clone has emerged as a controversial term [2, 5, 15] in the
realm of software maintenance research and practice. Programmers
often perform code cloning during programming for repeating
common functionalities. Such an activity causes the existence of
exactly or nearly similar code fragments, known as code clones
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[3, 7], in a software system’s code-base. A group of similar code
fragments forms a clone group or a clone class. Two code fragments
that are similar (exactly or nearly) to each other form a clone-pair.

Code clones have a significant importance from the perspec-
tive of software maintenance and evolution. A great many studies
[2, 5, 8, 11, 12, 15–18, 23–25, 27–30, 32–37, 41, 43] have been con-
ducted on the detection [5, 9], analysis [23, 24, 36], andmanagement
[11, 33, 37] of code clones. Existing studies have revealed both pos-
itive [22, 23, 35] and negative [2, 12, 32] impacts of code clones on
software evolution. Focusing on the issues related to code clones,
researchers suggest to manage them through refactoring [37] and
tracking [30]. Existing studies have investigated refactoring and
tracking of regular clones only. However, a number of recent stud-
ies [26, 29, 42] have investigated the importance of micro-clones
in software evolution. Mondal et al. [29] showed that micro-clones
from the same clone class have a tendency of co-changing (chang-
ing together) consistently during evolution like the regular clones.
Thus, tracking of micro-clones should be considered important as of
the regular clones. By considering micro-clones for tracking, we can
avoid inconsistencies in the code-base and can help programmers
in updating micro-clones with less effort. The primary purpose of
a clone-tracker is to suggest co-change candidates of a target clone
fragment. In our research, we investigate ranking of co-change
candidates for micro-clones from the tracking perspective.

When a programmer attempts to make changes to a target micro-
clone fragment from a micro-clone class, the other fragments in
the class might also need to be changed together (co-changed) con-
sistently with the target fragment in order to ensure consistency
of the software system. Thus, these other fragments are called the
co-change candidates of the target fragment. The task of a clone
tracker is to identify these co-change candidates when a program-
mer attempts to change a target clone fragment. However, all these
co-change candidates might not need to be actually co-changed
with the target fragment because clone fragments can evolve inde-
pendently. In such a situation, it is important to identify which of
the co-change candidates are highly likely to be co-changed consis-
tently. Our goal in this research is to rank the co-change candidates
on the basis of their likeliness of being co-changed with the target
fragment so that the programmers can easily identify the highly
likely ones. Fig. 1 shows a target micro-clone fragment CF2 in a
micro-clone class having seven clone fragments. We can also see
the six co-change candidates of the target fragment and a possible
ranking of the co-change candidates. According to the ranking in
Fig. 1, CF7 has the highest likeliness of being co-changed with CF2
and the likeliness of CF5 is the lowest. To the best of our knowl-
edge, our study is the first one to investigate ranking co-change
candidates of micro-clones.

Mondal et al. [31] previously conducted a genealogy-based study
on ranking co-change candidates for regular code clones. They
first extracted clone genealogies, and then analyzed evolutionary
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Figure 1: Ranking co-change candidates of a target micro-
clone fragment

coupling among the genealogies. However, the number of micro-
clones is much higher in a software system than regular clones. As
a result, a genealogy-based ranking is not suitable for micro-clones.
Extracting micro-clone genealogies and analyzing evolutionary
coupling among those will be very time consuming and will not
be suitable for real-time coding environment. Focusing on this, we
investigate ranking co-change candidates of micro-clones in the
following way.

We investigate two ranking mechanisms, file proximity ranking
and file coupling ranking, in our research for ranking the co-change
candidates of a target micro-clone fragment. While file proximity
ranking ranks the co-change candidates on the basis of their dis-
tances from the target fragment in the file system tree, file coupling
ranking ranks the candidates considering the evolutionary cou-
pling among their container files. We realize evolutionary coupling
among files through mining association rules [47]. We answer the
research questions listed in Table 1 by investigating thousands of
revisions of six open-source subject systems written in Java and C.
We have the following findings:

(1) While a micro-clone class can contain a large number of
clone fragments (for example, 67 which is the average number of
fragments per affectedmicro-clone class of our subject system jEdit),
only a little proportion (for example, 3% for jEdit) of these fragments
might actually need to be co-changed consistently. Such a finding
implies that ranking of co-change candidates for micro-clones is
necessary. An efficient ranking mechanism can be beneficial to the
programmers in selecting the highly likely co-change candidates
from a long list of possible candidates.

(2) According to our statistical significance tests, micro-clones
belonging to the same source code file have a significantly higher
tendency of co-changing consistently compared to micro-clones
belonging to different source code files.

(3) Evolutionary coupling among the container files of the micro-
clone fragments have a positive impact on ranking co-change can-
didates of micro-clones.

(4) On the basis of our second and third findings we propose a
composite mechanism for ranking co-change candidates of micro-
clones. Our composite ranking mechanism performs significantly
better than file proximity ranking mechanism.

We finally suggest that ranking co-change candidates of micro-
clones should be taken into proper consideration when making
clone management decisions. Our proposed composite ranking
mechanism has the potential to assist programmers in identifying

Table 1: Research Questions
SL Research Question
RQ 1 What percentage of the micro-clone fragments in a micro-clone class get changed

together consistently during evolution?
RQ 2 Do micro clones from the same source code file have a higher tendency of co-

changing consistently compared to micro clones from different source code files?
RQ 3 Does consistent co-change tendency of micro clones belonging to different source

code files depend on the presence of evolutionary coupling among the files?
RQ 4 Can we rank co-change candidates for micro clones using proximity as well as

evolutionary coupling among their container files?

likely co-change candidates of target micro-clone fragments during
programming with considerably less effort and time. It can com-
plement the existing clone tracking techniques so that they can
consider micro-clones for tracking.

Paper Organization. The rest of our paper is organized as fol-
lows. Section 2 describes the terminology, Section 3 discusses the
experimental steps, Section 4 presents our experiment results and
analyzes those to answer our research questions, Section 5 dis-
cusses the related work, Section 6 mentions the threats to validity,
and Section 7 concludes the paper by mentioning future work.

2 TERMINOLOGY
Regular clones.We detect and analyze three major types (Type 1,
Type 2, and Type 3) of regular code clones in our research.We define
these clone-types in the following way according to the literature
[3, 7]. The identical code fragments residing in a software system’s
code-base disregarding the comments and indentations are called
Type 1 clones. Syntactically similar code fragments are known
as Type 2 clones. These clones are generally created from Type 1
clones because of renaming identifiers and/or changing data types.
Finally, Type 3 clones, also known as gapped clones, are generally
created from Type 1 or Type 2 clones because of additions, deletions,
or modifications of lines in these clones.

Micro-Clones. According to the literature [26, 29, 42], Code
clones having a size that is smaller than the minimum size of regular
clones are calledmicro-clone. Micro-clones are not parts of regular code
clones. The minimum size of a micro-clone fragment is 1 LOC. In
our experiment we use the NiCad clone detector [19] for detecting
regular clones of at least 5 lines which is the best threshold value
for NiCad for detecting regular clones from Java and C source code
as was reported by Wang et al. [46]. Thus, in our experiment, a
micro-clone fragment can have at most 4 LOC.

Consistent changes in code clones. Code clones from the
same clone class have a tendency of getting changed consistently
during evolution. We define consistent changes in code clones in
the following way.

If both clone fragments in a clone-pair residing in a particular
revision of a software system experienced the same changes in the
commit operation that was applied on that revision, we say that
the clone fragments in the pair were changed together (co-changed)
consistently in the commit operation.

Identifying consistent changes in code clones. Let us as-
sume that the two clone fragments belonging to a clone-pair were
changed in a particular commit operation.We identify these changes
using UNIX diff. Diff outputs three types of changes: addition, mod-
ification, and deletion. We consider that the clone fragments were
changed consistently if the following conditions hold:
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Table 2: Subject Systems
Systems Lang. Domains LLR Revs

jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 170
LLR = LOC in the Last Revision Revs = No. of Revisions

Table 3: Number of distinct regular and micro clone frag-
ments in each of our subject systems

jEdit Freecol Carol Jabref Ctags Camellia

Regular Clones 3823 305 226 171 139 93
Micro-Clones 6146 4449 2244 2306 284 203
Regular Clones = Number of Regular Clones in the last revision.
Micro-Clones = Number of Micro Clones in the last revision.

• In the case of addition, the same line(s) were added after the
same line in each clone fragment.

• In the case of modification, the same line(s) in each clone
fragment were modified in the same way. Thus, the lines that
were modified and the lines that we obtain after modification
should be the same in each clone fragment.

• In the case of deletion, the same line(s) were deleted from
each clone fragment in the pair.

We can check these conditions by comparing the diff outputs
corresponding to the changes in the two clone fragments.

Evolutionary coupling. Evolutionary coupling [13, 47] is a
well investigated phenomenon during software maintenance and
evolution. If a group of program entities (such as files, classes, or
methods) change together (i.e., co-change) frequently during soft-
ware evolution, it is expected that the entities in the group are
coupled. In future, a change in one entity might require correspond-
ing changes to the other entities in the group. In such a situation we
say that the entities in the group have evolutionary coupling. In our
research we investigate file level evolutionary coupling through
mining association rules [47] for ranking co-change candidates of
micro-clones. The details how we detect evolutionary coupling will
be discussed in Section 4.3.

3 EXPERIMENT STEPS
We conduct our experiment on six open-source subject systems
(Table 2) written in Java and C. We download these systems from
an on-line SVN repository [38]. We select these systems for our
investigation, because these are of diverse variety in terms of their
application domains, sizes, and revision history lengths. Moreover,
the systems are written in two different programming languages.
We intentionally select our subject systems emphasizing their diver-
sity in order to generalize our findings. We perform the following
experiment steps before answering our research questions.

• Downloading each of the revisions (as mentioned in Table
2) of the subject system from the SVN repository.

• Preprocessing the source code files in each revision by re-
moving comments and blank lines.

• Detecting changes between the corresponding source code
files of every two consecutive revisions by applying UNIX
diff operation.

Table 4: NiCad settings for regular and micro-clones
Clone Min Max Identifier Dissimilarity

Granularity Line Line Renaming Threshold

Regular Clones block 5 20000 blind renaming 20%
Micro Clones block 1 4 blind renaming 20%

• Detecting regular and micro-clones from each of the revi-
sions by applying a clone detector called NiCad [19].

• Mapping the changes that occurred to each revision to the
already detected micro-clones in that revision by using line
numbers of the changes and micro-clones.

• Identifying consistent changes in micro-clones following the
procedure described in Section 2.

We detect code clones using the well known clone detector NiCad
[19] that can detect all three types of clones (Type 1, Type 2, and
Type 3) with high precision and recall [4, 6]. A recent study [20]
shows that NiCad is a good choice among the modern clone detec-
tors in terms of detection accuracy. As suggested in Wang et al.’s
[46] study, we detect regular code clones of at least 5 LOC using the
clone detection tool, NiCad [19]. We also use NiCad for detecting
micro-clones of at most 4 LOC. The settings that we have used for
detecting regular and micro-clones are shown in Table 4.

4 EXPERIMENT RESULTS AND ANALYSIS
In this section, we present our experiments, report our experiment
results, and analyze our results to answer the research questions in
Table 1. Table 3 shows the total number of regular and micro-clones
from the last revisions of each of our subject systems. We see that
the number of micro-clones is always higher than the number of
regular clones. Table 5 shows the following three measures for
each of our investigated subject systems listed in Table 2: (1) Total
number of changes during the entire period of evolution of the
subject system, (2) Total number of consistent changes during evo-
lution, and (3) Total number of consistent changes that occurred in
micro-clones during evolution.

By considering all the consistent changes that occurred in all
subject systems, we calculate the overall percentage of consistent
changes that occurred in micro-clones using Eq. 1.

OPCCMC = 100 ×
∑
s ∈systems NCCMCs∑
s ∈systems NCCs

(1)

In the above equation, OPCCMC is the overall percentage of
consistent changes in micro-clones with respect to all consistent
changes, NCCMCs is the number of consistent changes that oc-
curred in micro-clones of a subject system s , and NCCs is the
number of all consistent changes in s . According to our calculation,
around 79.98% of all consistent changes occurred in micro-clones.
In our calculation, we disregarded those consistent changes that
consisted of addition, deletion, or modification of lines containing
only a single character such as "{" or "}". We analyze the consistent
changes in micro-clones and answer our research questions.

4.1 Answering the first research question
RQ 1:What percentage of the micro-clone fragments in a micro-clone
class get changed consistently during evolution?

Rationale. Answering RQ 1 is important for ranking co-change
candidates of micro-clones. If we observe that almost all clone
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Table 5: Consistent changes in micro-clones
Systems jEdit Freecol Carol Jabref Ctags Camellia

NC 6261 16320 8253 14917 2114 3118
NCC 669 3565 1714 1777 109 749
NCCMC 554 3063 1551 904 74 719
NC = Number of changes during the whole period of evolution
NCC = Number of consistent changes during evolution
NCCMC = Number of consistent changes in Micro-Clones

fragments in a micro-clone class generally get updated consistently,
then ranking co-change candidates of micro clones might not be
particularly important. We just need to detect the other micro-
clone fragments in the micro-clone class that includes the particular
micro-clone fragment which is going to be changed. However, if it is
found that only a subset of all the members in a micro-clone class is
likely to be updated consistently, then further investigation should
be done towards ranking co-change candidates of micro clones.
Whenever a programmer attempts to make changes to a target
micro clone fragment from such a subset of a micro clone class, the
other members in the subset should be given higher priorities for
co-changing with the target fragment than the class members that
are not included in this subset. We perform our investigation for
answering RQ 1 in the following way.

Investigation Procedure. Our investigation involves examin-
ing the entire evolution history of our candidate systems. For a
particular software system we automatically examine each of its
commit operations from the beginning as mentioned in Table 2.
While examining a particular commit operation we determine all
the changes that occurred in that commit operation using UNIX
diff. We analyze these changes in the following way to identify the
affected micro-clone classes.

UNIX diff reports three types of changes: additions, deletions,
and modifications. Let us consider a particular change (an addition,
a deletion, or a modification) in a particular commit operation. We
first determine whether this change occurred in a regular clone
fragment or not. For this purpose we detect the regular code clones
in the revision where the commit operation was applied and check
whether the change occurred in any of these regular code clones.
We use the NiCad clone detector [19] for detecting regular clones.
If the change occurred in a regular clone fragment, we discard it
from our consideration. However, if it did not occur in a regular
clone fragment, then it might occur in a micro clone fragment.
We detect all the micro clone fragments in the revision using the
NiCad clone detector [19]. By applying NiCad we detect code clones
with a minimum size of 1 LOC and a maximum size of 4 LOC. We
then exclude those clones from considerations that reside in our
already detected regular clones. The remaining ones are micro
clones according to the definition in Section 2. We then determine
whether the change occurred in any of these micro clone fragments.
Let us assume that the change occurred in a particular micro clone
fragment. In this situation we determine the other micro clone
fragments in the same micro clone class. We determine which of
these other fragments also experienced the same change. Finally,
we determine how many micro clone fragments in the micro clone
class experienced the same change. In other words, we determine
how many micro clone fragments in the micro clone class were
changed together consistently.

jEdit Freecol Carol Jabref Ctags Camellia
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Overall percentage of micro clone fragments that got changed consistently from all
members in an affected micro clone class

Figure 2: Percentage of micro clone fragments that got
changed consistently from all micro clone fragments of an
affected micro clone class

In the way described above, we examine all the affected micro
clone classes in each commit operation. For each affected micro
clone class we determine the total number of micro clone fragments
in the class, and the total number of micro clone fragments that
were updated consistently from that class. Table 6 shows statistics
regarding the affected micro clone classes from the entire evolution
history of our subject systems. From this table it is clear that micro
clone classes often get updated partially. According to our subject
systems, the proportion of partially updated micro clone classes can
be up to 60% (for Freecol) of all affected micro clone classes. Table
6 also shows that the average number of micro clone fragments
per affected micro clone class can be up to 67 (for jEdit). Moreover,
the overall proportion of the class members that got modified per
affected micro clone class is very low for some subject systems such
as jEdit, Freecol, Carol, and Jabref. We show this proportion for
each of our subject systems in Fig. 2. According to Fig. 2, Ctags
shows the highest proportion.

Answer to RQ 1: The percentage of class members (i.e.,
micro clone fragments) that get changed together consistently
from a micro clone class can be up to 67% as indicated by our
subject system Ctags in Table 6. However, this percentage can
be very low, for example 3% for our subject system jEdit.

According to our findings from RQ 1 we realize that further
investigation is necessary towards identifying which members in a
micro clone class generally have a high tendency of getting changed
together consistently. We perform such investigations in the fol-
lowing subsections.

4.2 Answering the second research question
RQ 2: Do micro clones from the same source code file have a higher
tendency of co-changing consistently compared to micro clones from
different source code files?

Rationale. From our answer to RQ 1 we realize that only a
small subset of all the micro clone fragments in a micro clone class
might get updated consistently. Thus, it is important to investigate
which of the clone fragments in a micro clone class have a tendency
of getting updated consistently. Such an investigation can help us
rank the co-change candidates for a micro clone fragment. If we can
identify that a particular subset of the clone fragments in a micro
clones class have a tendency of getting modified consistently, then,
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Table 6: The measures regarding answering RQ 1
Measure jEdit Freecol Carol Jabref Ctags Camellia
Number of affected micro clone classes during the entire period of evolution 147 653 231 351 23 168
Number of micro clone classes where all the members were changed 65 256 176 229 13 126
Number of micro clone classes where only a subset of all the members was changed 82 397 55 122 10 42
Percentage of partially affected micro clone class w.r.t all affected classes 55.78% 60.79% 23.8% 34.75% 43.47% 25%
Average number of members (micro clone fragments) per affected micro clone class 67.3 22.49 10.4 8.1 3.52 7.5
Overall percentage of members that were modified consistently from an affected micro clone class 3% 18% 22% 28% 67% 49%

Table 7: Summations for measures (M1, M2, M3, and M4) re-
garding answering RQ 2

jEdit Freecol Carol Jabref Ctags Camellia

Summation for M1 6716 897 941 1181 82 3882
Summation for M2 508 578 798 503 44 2456
Summation for M3 19768 96666 4166 4318 1 2318
Summation for M4 65 40366 289 221 0 876

when a programmer will attempt to make changes to a particular
fragment from the subset, the other fragments in the subset can be
suggested as the co-change candidates of the particular fragment
with high priority. In other words, the other fragments in the subset
can be given a higher priority compared to those fragments in
the micro clone class that are not included in the subset. In RQ
2, we particularly investigate whether file proximity of the micro
clone fragments have any impact on their possibility of getting
co-changed consistently. We investigate in the following way.

Investigation procedure. For answering RQ 2, we investigate
whether micro clones belonging to the same source code file have
a higher tendency of co-changing consistently compared to the
micro clones belonging to different files. We first identify all the
affected micro clone classes by automatically analyzing the entire
evolution history of a subject system as we did in RQ 1. For each of
the affected micro clone classes we identify which of the members
in the class were changed together consistently. Let us assume that
a particular affected micro clone class has n micro clone fragments
in total. The number of fragments that were changed consistently
is nc . We select one fragment from the set of consistently changed
micro clone fragments. Let us denote this fragment by F . We make
all possible clone pairs considering all the members (n members) in
the clone class. From these clone pairs we select each of those pairs
that include F . Thus, for F , we obtain n − 1 pairs in total and nc − 1
of these pairs were made with the remaining nc − 1 consistently
changed fragments. By considering all the pairs containing F , we
determine the following measures:

• M1: Number of pairs where F and the other fragment in the
pair belong to the same source code file.

• M2: Number of pairs where F and the other fragment in the
pair belong to the same source code file and both fragments
(F and the other fragment) in the pair were changed together
consistently.

• M3: Number of pairs where F and the other fragment in the
pair belong to different source code files.

• M4: Number of pairs where F and the other fragment in the
pair belong to different source code files, however, both frag-
ments (F and the other fragment) in the pair were changed
together consistently.

We determine these four measures for each of the consistently
updated micro clone fragments of each of the affected micro clone

classes from the entire period of evolution of a candidate system.
We determine the respective sum for each of these four measures
(the summations are presented in Table 7) and then determine two
probabilities. Before elaborating these two probabilities, we define
a target micro clone fragment and its co-change candidates in the
following way. These definitions will help us easily understand the
probabilities.

Target micro clone fragment: Let us assume that a program-
mer is going to make some changes to a particular micro clone
fragment in a micro clone class. We call this fragment the target
micro clone fragment.

Co-change candidates of the target micro clone fragment:
When a programmer attempts to make changes to a target micro
clone fragment from a micro clone class, the other fragments in the
same class might also need to be updated together consistently with
the target fragment. These other fragments are called the co-change
candidates of the target fragment as shown in Fig. 1.

On the basis of the above definitions, we now define two prob-
abilities CPSFC and CPDFC in the following way using the four
measures:M1,M2,M3, andM4.

• CPSFC (Co-changeProbability of SameFileCandidates):
Let us assume that a programmer is going tomake changes to
a target micro clone fragment in a micro clone class. CPSFC
is the probability that a co-change candidate (of the target mi-
cro clone fragment) residing in the same source code file as of
the target fragment also needs to be co-changed consistently
with the target fragment. We determine this probability in
percentage using the following equation.

CPSFC = 100 ×
∑
all affected classes M2∑
all affected classes M1

(2)

• CPDFC (Co-change Probability of Different File Can-
didates): Let us assume that a programmer is going to make
changes to a target micro clone fragment in a micro clone
class. CPDFC is the probability that a co-change candidate
(of the target micro clone fragment) which does not reside
in the source code file where the target fragment resides
also need to be co-changed consistently with the target frag-
ment. We determine this probability in percentage using the
following equation.

CPDFC = 100 ×
∑
all affected classes M4∑
all affected classes M3

(3)

Fig. 3 shows the two probabilities (CPSFC and CPDFC) for each of
our candidate systems. From the graph it is clear that the probability
CPSFC is always higher than CPDFC. In other words, the prob-
ability that a co-change candidate from the same source code file
will co-change consistently with the target micro clone fragment
is always higher than the probability that a co-change candidate
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CPSFC (The probability that a co-change candidate from the same source code file
as of the target micro clone fragment will need to be co-changed consistently with
the target fragment)

CPDFC (The probability that a co-change candidate belonging to a different file
than the file where the target micro clone fragment resides will need to be co-
changed consistently with the target fragment)

Figure 3: Probabilities that a co-change candidate belonging
to the same or a different source code file will need to be
co-changed with a target fragment

from a different source code file will co-change consistently with
the target micro clone fragment. Such a finding helps us decide
that when ranking the co-change candidates for a target micro clone
fragment from a micro clone class, co-change candidates belonging
to the same source code file as of the target clone fragment should be
given higher ranks compared to the co-change candidates belonging
to different source code files.

Significance test regarding the two probabilities: CPSFC
and CPDFC. As we see that the value of CPSFC is always greater
than CPDFC, we wanted to determine whether CPSFC is signifi-
cantly greater than CPDFC. For this purpose we perform Wilcoxon
Signed Rank Test[48, 49] to determine whether the values of CPSFC
are significantly different than the values of CPDFC. We should
note that this test is non-parametric [48], and thus, the samples do
not need to be normally distributed for applying this test. Moreover,
this test can be applied to both small and large data sets [48]. We
perform our test considering a significance level of 5%. We used the
statistical software package of SPSS [45] for conducting our test.
From our two-tailed test result we realize that the values of CPSFC
are significantly different than the values of CPDFCwith a p-value
of 0.028 which is less than 0.05. As CPSFC is always greater than
CPDFC, we realize that CPSFC is significantly greater than CPDFC.

Answer to RQ 2: Micro clone fragments belonging to the
same source code file have a significantly higher tendency of
co-changing consistently compared to micro clone fragments
belonging to different source code files.

Our answer to RQ 2 implies that when a programmer attempts
to make changes to a target micro clone fragment in a micro clone
class, the other micro clone fragments in the class (i.e., the co-
change candidates) that belong to the same source code file as of
the target fragment should be given higher ranks compared to the
fragments that do not belong to the source code file where the tar-
get clone fragment resides. Although ranking co-change candidates
on the basis of file proximity might be a good idea, Table 7 makes
us realize that consistent co-change of micro clone fragments from

Table 8: Summations for the four measures from RQ 3
jEdit Freecol Carol Jabref Ctags Camellia

Summation for Measure 1 11 78124 496 918 0 1956
Summation for Measure 2 11 24706 138 81 0 835
Summation for Measure 3 19757 18542 3670 3400 1 362
Summation for Measure 4 54 15660 151 140 0 41

different source code files is also a common phenomenon. Thus,
ranking co-change candidates belonging to different source code
files than the target micro clone fragment should also be investi-
gated. We perform such an investigation for answering our next
research question (RQ 3).

4.3 Answering the third research question
RQ 3: Does consistent co-change tendency of micro clones belonging
to different source code files depend on the presence of evolutionary
coupling among the files?

Rationale. In RQ 3, we investigate which of the co-change can-
didates that do not belong to the source code file of the target micro
clone fragment exhibit high tendency of getting co-changed with
the target fragment. We particularly analyze whether evolutionary
coupling among source code files containing micro clone fragments
influence their tendency of getting co-changed consistently. We
investigate in the following way.

Detecting evolutionary coupling through mining associ-
ation rules. Let us consider a micro clone class in a particular
revision r of a subject system. Two micro clone fragments in the
clone class belong to two different source code files: file1 and file2.
We mine file level association rules [47] from the past evolutionary
history of the software system consisting of the commits that were
applied on the revisions 1 to r − 1. In our research, an association
rule takes the form, ‘x => y’, where x and y are source code files.
Here, ‘x’ is the antecedent and ‘y’ is the consequent. Such a rule
implies that if ‘x’ changes in a commit operation, there is a possi-
bility that ‘y’ will also change in that commit operation. We mine
file level association rules along with their support and confidence
values following the procedure of Zimmerman et al. [47] from the
past evolutionary history (i.e., from the commits applied on the
revisions 1 to r -1). We consider rules with support >= 1. If any of
these rules contains both of the files, file1 and file2, we consider
that the files exhibited evolutionary coupling.

Analyzing the impact of file evolutionary coupling on co-
change tendency of micro clones. We first identify the affected
micro clone classes by examining the entire evolution history of
our subject systems as we did when answering RQ 1 and RQ 2. Let
us consider a particular micro clone class containing n micro clone
fragments in total. We automatically identify the micro clone frag-
ments that were consistently updated from this class. Let us assume
that F is a consistently updated micro clone fragment. We make
all possible clone pairs considering the n micro clone fragments
from the affected class, and then identify those pairs where the two
clone fragments in a pair belong to two different source code files.
From these identified pairs, we select those pairs that contain F .
Thus, each of the clone pairs that we finally select contains F , and
the two fragments (F and the other fragment) in the pair belong to
two different files. From these selected clone pairs we determine
the following four measures as we did when answering RQ 2.
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• Measure 1: The number of clone pairs where the two source
code files containing the two micro clone fragments in each
pair exhibited evolutionary coupling during the past evolu-
tion. If the clone class containing F resides in revision r of a
subject system, then past evolution consists of the commit
operations that were applied on the revisions 1 to r − 1.

• Measure 2: The number of clone pairs where the two frag-
ments in each pair co-changed consistently and the two
source code files containing the fragments in the pair exhib-
ited evolutionary coupling during the past evolution.

• Measure 3: The number of clone pairs where the two source
code files containing the two micro clone fragments in each
pair did not exhibit evolutionary coupling during the past
evolution.

• Measure 4: The number of clone pairs where the two frag-
ments in each pair co-changed consistently, however, the
two source code files containing the fragments in the pair did
not exhibit evolutionary coupling during the past evolution.

We determine these four measures for each of the consistently up-
dated micro clone fragments from each of the affected micro clone
classes obtained from the whole period of evolution of a subject
system. We calculate the respective sum of each of these measures
(the summations are presented in Table 8) and then determine the
following two probabilities:

CPCC (Co-change Probability of Coupled Candidates): Let
us assume that a programmer is going to make some changes to
a target micro clone fragment in a micro clone class. Let us also
assume that we have the set of its co-change candidates that do
not belong to the same source code file as of the target fragment
and the files containing these co-change candidates exhibited evo-
lutionary coupling with the file having the target fragment during
the past evolution. CPCC is the probability that such a co-change
candidate will co-change (change together) consistently with the
target micro clone fragment. We determine CPCC in percentage
using the following equation.

CPCC = 100 ×
∑
all affected classes Measure 2∑
all affected classes Measure 1

(4)

CPNC (Co-changeProbability ofNon-coupledCandidates):
Let us consider that a programmer is going to make some changes
to a target micro clone fragment in a micro clone class. We de-
termine the set of its co-change candidates that do not belong to
the same source code file as of the target fragment and the files
containing these co-change candidates did not exhibit evolutionary
coupling with the file having the target fragment during the past
evolution. CPNC is the probability that such a co-change candi-
date will co-change (change together) consistently with the target
micro clone fragment. We determine CPNC in percentage using
the following equation.

CPNC = 100 ×
∑
all affected classes Measure 4∑
all affected classes Measure 3

(5)

We determine these two probabilities for each of our subject sys-
tems and plot those in the graph of Fig. 4. From Fig. 4 it is clear that
CPCC is greater than CPNC for most of the subject systems (4 out
of 6) except Ctags and Freecol. For Ctags, we did not get any pair
such that the two fragments in the pair co-changed consistently and
the fragments reside in different source code files. Finally, Freecol

jEdit Freecol Carol Jabref Ctags Camellia
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two files exhibited evolutionary coupling)
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Figure 4: Probabilities that a co-change candidate belonging
to a different source codefilewill need to be co-changedwith
a target micro clone fragment

is the only exception where CPNC is greater than CPCC. Consid-
ering the agreement among the majority of our subject systems we
realize that evolutionary coupling among source code files have a
positive impact on the co-change possibility of micro clone frag-
ments belonging to different files. We performed Wilcoxon Signed
Rank Test [48, 49] considering a significance level of 5% to deter-
mine whether the CPCC values in Fig. 4 are significantly different
than the CPNC values in that figure. However, we found that the
values are not significantly different.

Answer to RQ 3: Consistent co-change tendency of micro
clone fragments belonging to different source code files can be
impacted by the presence of evolutionary coupling among the
source code files. Generally, consistent co-change tendency
of micro clone fragments belonging to different source code
files having evolutionary coupling among them is higher than
the consistent co-change tendency of micro clone fragments
belonging to different files having no evolutionary coupling.

Our answer to RQ 3 implies that evolutionary coupling among
files containing micro clone fragments should be considered when
ranking co-change candidates for a target micro clone fragment.
In RQ 4, we investigate ranking of co-change candidates for micro
clones using proximity of files containing micro clones as well as
evolutionary coupling of the container files.

4.4 Answering the fourth research question
RQ 4: Can we rank co-change candidates for micro clones using
proximity as well as evolutionary coupling among their container
files?

Rationale. From our answers to RQ 2 and RQ 3, we realize that
when ranking co-change candidates for a target micro clone frag-
ment we should consider both proximity and evolutionary coupling
among the files that contain the target micro clone fragment and
it’s co-change candidates. For answering RQ 4, we investigate two
ranking mechanisms: (1) file proximity ranking, and (2) a compos-
ite ranking mechanism that combines file proximity ranking and
ranking on the basis of evolutionary coupling among the source
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code files of the co-change candidates and the target fragment. We
perform our investigation in the following way.

Investigation procedure. Let us assume that a micro clone
class has n micro clone fragments. A programmer is going to make
changes to a particular micro clone fragment which we call the tar-
get micro clone fragment. The remaining n−1members (i.e., exclud-
ing the target fragment) in the class are the co-change candidates of
the target fragment. We separate these co-change candidates into
following two disjoint subsets:

• SFC (Same File Candidates): These are the co-change can-
didates that belong to the same file as of the target micro
clone fragment.

• DFC (Different File Candidates): These are the co-change
candidates that do not belong to the source code file where
the target fragment resides.

We can easily realize that |SFC | + |DFC | = n − 1. We now de-
fine the following ranking mechanisms for ranking the co-change
candidates of a target micro clone fragment in a micro clone class:

• FPR (File Proximity Ranking): Ranking co-change candi-
dates essentially means listing the candidates in such a way
that candidates with high possibility of getting co-changed
with the target micro clone fragment take place to the top
of the list. In File Proximity Ranking, we ensure that the
co-change candidates in the subset called SFC (Same File
Candidates) take the top |SFC | positions in the list so that
the co-change candidates residing in the same file as of the
target micro clone fragment get a higher co-change priority
compared to the candidates in the subset called DFC.

• FCR (File Coupling Ranking): FCR focuses on the co-
change candidates in the subset called DFC (Different File
Candidates). For each of the co-change candidates in DFC we
determine whether the source code file containing the can-
didate exhibited evolutionary coupling with the file where
the target micro clone fragment resides. Such co-change
candidates from DFC are given higher priorities than the
remaining candidates in DFC in File Coupling Ranking (FCR).

• CR (Composite Ranking): In Composite Ranking we rank
the whole set of co-change candidates (n − 1 candidates in
total) by applying both File Proximity Ranking (FPR) and
File Coupling Ranking (FCR). We first place the co-change
candidates in SFC in the top |SFC | positions in the list. Then,
the remaining co-change candidates (i.e., the candidates in
DFC) are listed according to FCR.

We analyze whether ordering co-change candidates according to
Composite Ranking provides better ranks for the actually co-changed
candidates compared to File Proximity Ranking. Before showing
comparison results, we discuss how we compare two ranking mech-
anisms by analyzing evolutionary history of our subject systems.

Comparing two ranking mechanisms. Let us assume that
we have two ranking mechanisms: RM1 and RM2. Our goal is to
compare these two ranking mechanisms in ranking the co-change
candidates for a target micro clone fragment. We compare by auto-
matically analyzing evolution history of each of our subject systems.
We first identify all the affected micro clone classes from the evo-
lution history of a particular subject system. Let us consider a
particular micro clone class, c , residing in revision r of the subject

system. The commit operation which was applied on revision r
consistently changed some of the micro clone fragments in the
class c . We identify which of the micro clone fragments from class
c were updated consistently in the commit operation. Let f be such
a micro clone fragment. We consider f as the target micro clone
fragment. Thus, all the other members in c (i.e., excluding f ) are
the co-change candidates of f . However, as we examine the commit
operation, we know which of these co-change candidates really
co-changed consistently with f . We now apply the two ranking
mechanisms: RM1 and RM2 on the co-change candidates of f and
make two lists of these candidates from the two ranking mecha-
nisms respectively. Each list contains all the co-change candidates
of f . We consider one co-change candidate that really co-changed
with f in the commit operation. From the co-change candidate list
obtained by applying RM1, we determine the rank (i.e., the position
number) of that particular co-changed candidate. In the same way,
we again obtain the rank of that co-changed candidate from the
candidate list obtained by applying RM2. Nowwe easily understand
that the ranking mechanism which will provide a better rank (i.e.,
a smaller position number) to the co-changed candidate should be
considered the better ranking mechanism. By considering each of
the micro clone fragments changed from each of the affected micro
clone classes, we determine two ranks from two ranking mecha-
nisms (RM1 and RM2) for each of the co-change candidates that
really co-changed with that particular micro clone fragment. We
determine the average rank of co-changed candidates considering
each ranking mechanism and then compare these average ranks to
determine which ranking mechanism performs better.

Comparison betweenComposite Ranking and File Proxim-
ity Ranking. Fig. 5 compares the average ranks provided by Com-
posite Ranking and File Proximity Ranking mechanisms for each of
our subject systems. We should note that a lower average is consid-
ered better because, ranks are the serial numbers of the co-changed
candidates in the lists obtained by the two ranking mechanisms.
A lower serial number is considered a better position. From Fig.
5 we realize that for five subject systems (except Ctags), Compos-
ite Ranking mechanism performs better (i.e., Composite Ranking
mechanism provides better ranks) than File Proximity Ranking. For
Camellia, the average ranks, 4.96 and 4.87, provided by respectively
file proximity ranking and composite ranking are very near to each
other with composite ranking being a bit better. For Ctags, we did
not find any commit operation where micro-clone fragments be-
longing to different files co-changed. Thus, we could not apply
Composite Ranking for Ctags. As a result, Fig. 5 does include a
comparison for Ctags. For making comparison, we consider those
cases where the two ranking mechanisms provide different ranks.

Statistical significance tests. We also performed Wilcoxon
Signed Rank test [48, 49] (as we did for answering RQ 2) using SPSS
[45] to determine whether the average ranks provided by Com-
posite Ranking are significantly different than those provided by
File Proximity Ranking. According to our 2-tailed test considering a
significance level of 5%, the average ranks from the composite rank-
ing mechanism are significantly different those from file proximity
ranking mechanism with a p-value of 0.043 which is smaller than
0.05. As the average rank from the composite mechanism is always
better (i.e., smaller) than that of file proximity ranking mechanism,
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Figure 5: Comparing File Proximity Ranking and Composite
Ranking

we can state that composite mechanism performs significantly bet-
ter than file proximity ranking mechanism.

Answer to RQ 4: Composite Ranking mechanism performs
significantly better than File Proximity Ranking mechanism in
ranking co-change candidates of micro-clones.
Our proposed Composite Ranking mechanism that combines

file proximity ranking and ranking on the basis of evolutionary
coupling can be useful for ranking co-change candidates for micro
clones when only a subset of the co-change candidates need to be
updated consistently.

5 RELATEDWORK
A large number of studies [2, 8, 12, 15, 16, 18, 22–25, 28, 32, 35, 36, 41,
43, 44, 46] have been done on detecting, analyzing, and managing
regular code clones. However, our research involves investigating
micro-clones which are smaller than the minimum size of regular
clones. Recent studies [26, 29, 42] have shown the importance of
micro-clones during software evolution and maintenance.

Beller et al. [26] discover that micro-clones can often be faulty
during software evolution. Tonder and Goues [42] detected micro-
clones from a large number of Java projects and found that such
clones can often indicate flaws in software systems. They suggested
that removal of micro-clones can be important from development
perspectives. Mondal et al. [29] showed that micro-clones have a
tendency of co-changing consistently during evolution. Islam et al.
[21] found that micro-clones can exhibit a higher bug-proneness
compared to regular clones. Our research in this paper is different
from all these existing studies on micro-clones, because we investi-
gate ranking co-change candidates of micro-clones. Our research
findings as well as the proposed ranking mechanism can be ben-
eficial to the programmers in consistently updating micro-clones
during evolution to ensure software consistency.

A number of studies [10, 11, 33, 39, 40] have investigated track-
ing of regular clones. The main purpose of clone tracking is to
ensure consistent updates to the code clones. Our study is different
than these existing studies because we focus on consistent updates
in micro-clones. In particular, we investigate ranking co-change
candidates of micro-clones so that programmers can easily update
them consistently during programming to ensure consistency of
software systems.

Mondal et al. [31] previously investigated ranking co-change
candidates for regular code clones. Their investigation was based on

clone genealogies and they analyzed evolutionary coupling among
code clones by analyzing the genealogies. However, genealogy-
based investigation is infeasible for micro-clones because micro-
clones are around three times as much as the regular clones in a
software system [29]. Detecting genealogies of this huge number
of micro-clones will be very time consuming and it will not be
suitable for real-time programming environment. Our investigation
on ranking co-change candidates of micro-clones does not include
clone genealogy detection. We investigate evolutionary coupling
among the container files of micro-clones for the purpose of ranking.
We combine file proximity with evolutionary coupling to device a
composite ranking mechanism for micro-clones.

A number of studies [1, 14, 47] have been conducted on detect-
ing and analyzing the evolutionary coupling of software entities
such as files, classes, and methods. The goal of these studies is to
identify which entities have a tendency of getting changed together.
However, none of these studies investigated co-change tendencies
of micro-clone fragments. By analyzing co-change tendencies of
micro-clones, we can help programmers update micro-clones con-
sistently with less effort and time during evolution, and thus, min-
imize inconsistencies and bugs in software systems. We leverage
evolutionary coupling among the container files of micro-clones
for ranking co-change candidates of micro-clones.

From our previous discussion it is clear that ranking co-change
candidates of micro-clones was never investigated by the existing
studies. As micro-clones exhibit consistent co-change tendencies
like the regular clones, we believe that ranking co-change candi-
dates of micro-clones should also be considered important. We an-
swer four research questions in our study and propose a composite
ranking mechanism on the basis of our findings from the ques-
tions. According to our experiment, our proposed mechanism can
be beneficial to the programmers in selecting the likely co-change
candidates of a target micro-clone fragment during programming.

6 THREATS TO VALIDITY
Our investigation involves detecting regular code clones using the
NiCad clone detector [19]. For different settings of the clone detec-
tor, the experimental results and findings can be different. Wang et
al. [46] mentioned this problem as the confounding configuration
choice problem and performed an in-depth investigation in order to
find the most suitable configurations for different clone detectors.
The setting that we have used for NiCad for detecting regular code
clones was suggested to be the most suitable one by Wang et al.
[46]. Thus, we believe that our findings are important.

Micro-clones are of at most 4LOC in our study. With this upper
threshold, we found that the number of micro-clones is higher
than that of regular clones. While a higher value for the upper
threshold could give us more micro-clones, we restrict our study to
4LOC because the best minimum size threshold of regular clones is
5LOC for Java and C systems as was reported by Wang et al. [46].
Thus, our consideration of the maximum size threshold of 4LOC
for micro-clones is reasonable.

We did not study enough subject systems to be able to general-
ize our findings regarding ranking co-change candidates of micro
clones. However, our candidate systems were of diverse variety in
terms of application domains, sizes, revisions, and implementation
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languages. Thus, our findings cannot be attributed to a chance, and
these are important from the perspective of managing micro-clones.

7 CONCLUSION
Existing studies show that both regular and micro-clones have
tendencies of co-changing consistently during evolution. Thus,
tracking of such clones can help us minimize inconsistencies in
the code-base and reduce programmer effort for consistently up-
dating those. In our research, we investigate automatic ranking
of co-change candidates of micro-clones from the tracking per-
spective. While ranking co-change candidates for regular clones
was previously investigated, such an investigation was not done
before considering micro-clones. According to our investigation on
thousands of revisions of six open-source subject systems written
in Java and C we find that micro-clones residing in the same file
have a significantly higher tendency of co-changing consistently
compared to micro-clones residing in different files. Moreover, evo-
lutionary coupling among the container files of the micro-clones
that reside in different files have a positive impact on the co-change
tendencies of such micro-clones. We finally device a composite
ranking mechanism by combining proximity and evolutionary cou-
pling among the container files of the micro-clone fragments and
find that the composite mechanism performs significantly better
than file proximity ranking mechanism. Our findings as well as
the proposed ranking mechanism are important for consistently
updating micro-clones with less effort during software evolution.
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