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Abstract—When a programmer makes changes to a target
program entity (files, classes, methods), it is important to identify
which other entities might also get impacted. These entities
constitute the impact set for the target entity. Association rules
have been widely used for discovering the impact sets. However,
such rules only depend on the previous co-change history of
the program entities ignoring the fact that similar entities might
often need to be updated together consistently even if they did not
co-change before. Considering this fact, we investigate whether
cloning relationships among program entities can be associated
with association rules to help us better identify the impact sets.

In our research, we particularly investigate whether the impact
set detection capability of a clone detector can be utilized to
enhance the capability of the state-of-the-art association rule
mining technique, Tarmaq, in discovering impact sets. We use
the well known clone detector called NiCad in our investigation
and consider both regular and micro-clones. Our evolutionary
analysis on thousands of commit operations of eight diverse
subject systems reveals that consideration of code clones can
enhance the impact set detection accuracy of Tarmaq with a
significantly higher precision and recall. Micro-clones of 3LOC
and 4LOC and regular code clones of 5LOC to 20LOC contribute
the most towards enhancing the detection accuracy.

Index Terms—Change Impact Analysis, Evolutionary Cou-
pling, Code Clones

I. INTRODUCTION

Changes are inevitable to a software system during its
maintenance and evolution. However, making changes to a
software system’s code-base is often critical because changes
to a particular program entity might have impacts on some
other related entities. Identification of these related entities that
might get impacted is an important software engineering task
which is known as change impact analysis in the literature
[28]. Making changes to a program entity without properly
analyzing the impact of the changes might introduce bugs and
inconsistencies in the code-base. Evolutionary coupling [45],
[47] has been widely used for change impact analysis.

If two or more program entities changed together frequently
in the past, then we realize a coupling among these entities.
This coupling is known as evolutionary coupling [47]. If
a group of program entities exhibited evolutionary coupling
during the past evolution, then it is expected that a change in
one entity in future will require corresponding changes to the
other entities in the group. These other entities constitute the
impact set according to evolutionary coupling. Evolutionary
coupling has been realized using association rules [47]. We
will discuss association rules in Section II.

The capability of evolutionary coupling (i.e., association
rules) in identifying the impact set is limited because it only
depends on the past co-change (changing together) history of
program entities. For example, if a programmer attempts to
make changes to an entity E1, then another entity E2 will
not be considered in the impact set of E1 if E1 and E2 did
not change together in the past. However, E2 might also get
impacted because of the changes to E1 even if these two
entities did not co-change before.

Focusing on the above drawback of evolutionary coupling in
change impact analysis, in this paper we investigate whether
code clones residing in the code-base of a software system
can help us in an improved detection of the impact sets. Code
clones are identical or nearly similar code fragments in a soft-
ware system’s code-base [7]. These are mainly created because
of the frequent copy/paste activities of the programmers during
development. Two code fragments that are similar to each
other make a clone-pair. A group of similar code fragments
forms a clone class (i.e., clone group). Existing studies [35],
[36] show that code clones from the same clone class have
a tendency of getting changed together consistently during
evolution. We investigate whether we can utilize this tendency
in association with evolutionary coupling for better detection
of impact sets for program entities.

Our study involves the state of the art technique called
Tarmaq [45] which can detect impact sets of program entities
using evolutionary coupling. We combine clone analysis with
Tarmaq and investigate whether the combined technique can
detect impact sets with better accuracy compared to the
original one. For detecting and analyzing code clones, we use
the NiCad clone detection tool [23] which is a promising one
among the modern clone detectors. We detect and consider
both regular and micro-clones [30], [33], [44] in our research.
While the minimum size of the regular code clones is 5 LOC
as was suggested by Wang et al. [46], micro-clones can be
of at most 4 LOC according to the literature [33]. Existing
studies show that micro-clones have a tendency of getting
changed together consistently during evolution. We conduct
our research by considering method level granularity. Thus,
the program entities in our research are methods. While most
of the existing studies on evolutionary coupling considered file
level granularity, we consider a finer granularity (i.e., method
level granularity) because it can help us pin point which
methods in a file should be included in the impact set. To the
best of our knowledge, ours is the first study to investigate the



TABLE I
INVESTIGATED RESEARCH QUESTIONS

Serial Research question

RQ 1 Does a combination of clone analysis and evolutionary cou-
pling detect impact sets with better accuracy compared to
evolutionary coupling alone?

RQ 2 Are regular or micro-clones more beneficial in retrieving
impact sets?

RQ 3 What sizes of micro-clones are more beneficial to change
impact analysis?

RQ 4 Which sizes of regular clones are more beneficial to change
impact analysis?

RQ 5 Does a combination of clone analysis and evolutionary cou-
pling detect impact sets more often compared to evolutionary
coupling alone during system evolution?

role of clone analysis in association with evolutionary coupling
towards an improved detection of impact sets considering
method granularity.

We perform our investigation on thousands of commits
of eight diverse subject systems written in three different
programming languages (Java, C, C#) and answer the research
questions listed in Table I by analyzing our experiment results.
We have the following findings:
• Clone analysis can significantly improve (according to

our statistical significance tests) the impact set detection
accuracy (precision, recall) of the state of the art associ-
ation rule mining based technique called Tarmaq.

• Micro-clones of 3LOC and 4LOC are more beneficial
than the other sizes of micro-clones towards improving
the impact set detection accuracy of Tarmaq.

• Regular clones within the range of 5 to 20LOC contribute
the most towards improved detection of impact sets.

Our findings are important for devising mechanisms for
predicting impact sets considering method level granularity. If
we use the NiCad clone detector with Tarmaq for the purpose
of detecting impact sets, code clones within the range of 3 to
20LOC are the most beneficial ones. Code clones beyond this
range can be disregarded because such clones have a very low
probability of providing true positive co-change candidates for
a target program entity (method in our research).

The rest of the paper is organized as follows. Section II
discusses the background topics, Section III describes the
existing studies related to our research, Section IV presents
the way we combine clone analysis and evolutionary coupling,
Section V describes the experiment setup and steps, Section
VI answers the research questions by discussing and analyzing
our experiment results, Section VII mentions some possible
threats to validity, and finally, Section VIII concludes the paper
by mentioning possible future work.

II. BACKGROUND

A. Evolutionary coupling

Evolutionary coupling among program entities is a well
investigated phenomenon in software engineering research and

practice. This coupling can be realized using association rules
[42], [47] with two related measures: Support and Confidence.

Association Rule. An association rule [42] is formally
defined as an expression of the form X => Y . Here, X is
known as the antecedent and Y is the consequent. Each of X
and Y is a set of one or more program entities. In the context
of software engineering, such an association rule implies that
if X gets changed in a particular commit operation, Y also
has the tendency of getting changed in that commit operation.

Support and confidence of an association rule. According
to Zimmermann et al. [47], support is the number of commits
in which an entity or a group of entities changed together. Let
X is the set of one or more program entities. CX is the set
of commits such that all the program entities in X changed
together in each of these commits. Then, support of X can be
calculated using the following equation.

Support(X) = |CX | (1)
Now, the support of the association rule X => Y where

each of X and Y is a set of one or more program entities can
be calculated using the following equation.

Support(X => Y ) = Support(X ∪ Y ) (2)
Here, X ∪ Y is the union of the sets X and Y . Confidence

of an association rule, X => Y , determines the conditional
probability that Y will change in a commit operation provided
that X changed in that commit operation. We determine the
confidence of the association rule, X => Y , using Eq. 3.

Confidence(X => Y ) =
Support(X => Y )

Support(X)
(3)

Let us now consider an example of two program entities
E1 and E2. These entities can be files, classes, or methods.
If E1 and E2 have ever changed together (co-changed), we
can assume two association rules, E1 => E2 and E2 => E1

from these. Suppose, E1 was changed in four commits: 2, 5,
6, and 10 and E2 was changed in six commits: 4, 6, 7, 8,
10, and 13. Thus, according to the definition, Support(E1) =
4 and Support(E2) = 6. Support(E1, E2) = 2, because E1

and E2 changed together (co-changed) in two commits: 6
and 10. Again, Support(E1 => E2) = Support(E2 =>
E1) = Support(E1, E2) = 2. Now, confidence (E1 =>
E2) = support(E1, E2) / support(E1) = 2 / 4 = 0.5 and
confidence(E2 => E1) = 2 / 6 = 0.33.

In our experiment, an association rule, X => Y , is such
that each of the sets X and Y consists of a single method.

B. Regular Code clones

Our research involves detection and analysis of regular code
clones of all three major clone-types: Type 1, Type 2, and Type
3. We define these clone-types in the following way according
to the literature [4], [7].

If two or more code fragments in a code-base are exactly
the same disregarding their comments and indentations, these
code fragments are identical clones or Type 1 clones of one
another. Syntactically similar code fragments residing in a
software system’s code-base are known as Type 2 clones. Type



2 clones are generally created from Type 1 clones because of
renaming identifiers and/or changing data types. Finally, Type
3 clones, also known as gapped clones, generally get created
from Type 1 or Type 2 clones because of additions, deletions,
or modifications of lines in these clones. In our research,
we detect regular code clones of at least 5 LOC which is
the best minimum threshold for detecting regular code clones
according to Wang et al. [46].

C. Micro-clones

According to the literature [30], [33], [44], micro-clones are
smaller than the minimum size threshold of the regular code
clones. As we detect regular clones of at least 5 LOC, micro-
clones can be of at most 4 LOC in our research. The minimum
size of a micro-clone fragment can be 1LOC. Mondal et al.
[33] showed that micro-clones have a tendency of co-changing
(changing together) consistently during evolution.

D. Method Genealogy

During the evolution of a software system, a particular
method might be created in a particular revision and the
method might remain alive in a number of consecutive re-
visions. Each of these revisions contains a snap-shot of the
method. The genealogy of the method consists of the snap-
shots of it from all those revisions where it was alive. Thus,
the genealogy of a particular method can help us analyze how
it was changed over the evolution.

III. RELATED WORK

A. Change Impact Analysis using Evolutionary Coupling

Change impact analysis is a well investigated area of
research in the field of software engineering. A great many
studies [10], [15], [17], [22], [28] have been done on change
impact analysis resulting a number of impact analysis tech-
niques and tools. Evolutionary coupling has been investigated
by a number of studies [13], [18], [19], [31] for change impact
analysis. Existing studies [16], [20] show that evolutionary
coupling, also known as logical coupling, can discover those
coupling links that are missed by other impact analysis tech-
niques.

Kagdi et al. [20] performed change impact analysis (CIA)
by using evolutionary coupling in combination with concep-
tual coupling. They found that a combination of these two
couplings can perform better change impact analysis than
each individual. Our study is different because we investigate
whether clone analysis can be combined with evolutionary
coupling for improved detection of impact sets. Moreover,
conceptual coupling which was used by Kagdi et al. [20] is
only applicable to object oriented systems [11]. Our research
involves non-object-oriented systems (such as Ctags, Camellia,
and BRL-CAD as mentioned in Table II) too.

Rolfsness et al. [45] proposed a technique called Tarmaq
for better detection of evolutionary coupling. They showed
that Tarmaq performs better than ROSE [47] in detecting
evolutionary coupling. In our research, we combine clone
analysis with Tarmaq and find that the combined technique can

perform significantly better than Tarmaq in detecting impact
sets considering method granularity.

Pugh et al. [52] investigated whether it is possible to achieve
the same level of accuracy like Tarmaq through analyzing a
dynamically selected smaller number of commit transactions
than Tarmaq. Islam et al. [29] introduced the concept of
Transitive Association Rules. They first detected the regular
association rules and then applied transitivity on these rules to
make new rules for better detection of evolutionary coupling.
Our study is different from these studies. We investigate
whether clone analysis can be beneficial towards detecting
impact sets during evolution. Our investigation involving the
state of the art technique called Tarmaq implies that clone
analysis combined with Tarmaq can better detect impact sets
considering method level granularity.

A number of existing studies [1], [13], [14], [18], [38],
[43] have investigated improving the detection accuracy of
evolutionary coupling by combining association rule mining
with the Granger causality test [18], macro co-change and
dephase macro co-change [14], and interactions [13]. Some
preliminary studies have also investigated several new mea-
sures such as significance [38], pattern age and pattern distance
[1], and change correspondence [37] for detecting evolutionary
coupling with higher accuracy.

Our study is different from all these existing studies because
we investigate whether cloning relationship among code frag-
ments can be utilized for change impact analysis. In particular,
we investigate whether clone analysis in association with
evolutionary coupling can better detect impact sets compared
to evolutionary coupling alone. To the best of our knowledge,
our study is the first one to investigate this matter. From our
analysis on the state-of-the-art evolutionary coupling detection
technique, Tarmaq, we find that a combination of clone analy-
sis and evolutionary coupling performs significantly better than
just evolutionary coupling in terms of precision and recall.

B. Studies on code clones

Code clones have been heavily investigated by a great many
studies [4]–[8], [12], [21], [26], [27], [32], [33]. Existing
studies have controversial findings [12], [21], [26] regarding
the impacts of code clones on software maintenance and
evolution. While some of the studies [25], [26], [40] show that
code clones have positive impacts on software maintenance,
a number of studies [2], [3], [12], [34], [39] have shown
evidences of negative impacts of code clones. In our study we
investigate whether we can analyze code clones in association
with evolutionary coupling for better detection of impact sets.
A number of studies [35], [36] show that code clones from the
same clone class have a tendency of changing together consis-
tently. We utilize this tendency with evolutionary coupling for
better detection of impact sets. Our research shows that clone
analysis can significantly improve the detection accuracy of
impact sets of the state-of-the-art evolutionary coupling based
technique called Tarmaq.

As clone analysis helps us achieve promising results in
change impact analysis when combined with evolutionary



Fig. 1. Detecting the impact set for a target method through applying NiCad

coupling, we expect that it will also provide good results
in association with other techniques and measures such as
Macocha [14], significance [38], and change correspondence
[37]. We plan to investigate this in future. Also, most of the
existing studies on evolutionary coupling investigated file level
coupling. Our study is more fine grained (method granularity),
and thus, we can help programmers pin point which fine
grained entities (i.e., methods) instead of files should be
considered in the impact set.

IV. IMPACT SET DETECTION

Let us assume that a software system is being developed
under version control system (e.g., SVN, or GitHub). The
latest revision (i.e., the working revision) of the subject system
is r. Let us also assume that a programmer is now going
to make changes to a target method m residing in revision
r. In this situation, we determine the impact set (the other
methods in revision r that might also need to be changed with
m for ensuring consistency of the code-base) for m using the
following mechanisms.

A. Detecting impact sets using Tarmaq

Rolfsness et al. [45] introduced Tarmaq for detecting impact
sets considering file level granularity. Thus, Tarmaq can pre-
dict/suggest which other files might get impacted when a pro-
grammer attempts to make changes to a particular target file.
For making this file level suggestions, Tarmaq analyzes the
past evolution history of the software system, identifies which
files co-changed in which commit operations, and finally,
determines file level association rules for a particular query
using the algorithm proposed by Rolfsness et al. [45]. In our
research, we use Tarmaq for predicting impact sets considering
method level granularity. For this purpose, we first detect
which methods co-changed in which commit operations, and
then determine method level association rules using the same
algorithm [45] for a particular query. For extracting method co-
change information, we detect method genealogies by applying
the technique proposed by Lozano and Wermelinger [2]. In
the case of method level granularity, the query consists of
methods. In the first paragraph of Section IV we mentioned
that we are going to find the impact set for a target method
m which a programmer attempted to change. In this situation,
the query for Tarmaq consists of m.

TABLE II
THE SUBJECT SYSTEMS THAT WE INVESTIGATE

Systems Lang. Domains LLR SRev LRev
Ctags C Code Definition Generator 33,270 1 774
Camellia C Multimedia 85,015 1 207
BRL-CAD C Solid modeling system 39,309 1 735
Carol Java Game 25,091 1 1700
Freecol Java Game 91,626 1000 1950
DNSJava Java DNS Protocol 23,373 1 1635
Greenshot C# Multimedia 37,628 1 999
MonoOSC C# Formats and protocols 14,883 1 355
LLR = LOC in the Last Revision
SRev = Starting Revision LRev = Last Revision

B. Detecting impact sets using Tarmaq and NiCad

Section IV-A discusses the way how we detect impact set
for the target method m by using it as the query to the Tarmaq
algorithm [45]. After determining the impact set using Tarmaq,
we apply NiCad for finding which other methods have cloning
relationships with m using the procedure depicted in Fig. 1.

As demonstrated in Fig. 1, we apply NiCad to find all the
clone classes from the code-base. We check each of the clone
fragments from each of the clone classes and determine which
fragment intersects with m. If we get such a fragment, it
implies that the programmer is going to make changes inside
a clone fragment. Let us denote this clone fragment which the
programmer has attempted to change by CF . As code clones
have a tendency of changing together consistently, the other
clone fragments in the clone class that contains CF might also
need to changed consistently with CF . Considering this fact
we determine the other clone fragments in the clone class that
contains CF . The methods that intersect these other clone
fragments are considered as the impact set for method m.
Thus, we get the following two impact sets for m:

(1) One set was obtained by analyzing the past evolutionary
history by applying Tarmaq.

(2) The other set was obtained by NiCad through detecting
code clones from the code-base.

We make a union of these two sets to find the final impact
set for the target method m.

V. EXPERIMENT SETUP AND STEPS

We conduct our experiment on eight software systems listed
in Table II. We download these systems from an on-line SVN
repository called SourceForge.net [41]. Table II shows the
subject systems along with their application domains, starting
revisions, ending revisions, implementation languages, and
sizes (LOC). For most of the subject systems (i.e., except
Freecol) the starting revision is 1. However, for Freecol, the
starting revision is 1000. The former revisions of Freecol are
not available in the on-line repository. For each subject system
we perform the following preliminary steps.
• Downloading all the revisions (as indicated in Table II)

of the subject system from their repositories.
• Detecting methods from each of the revisions using the

tool called CTAGS [9].



• Detecting three types of code clones from each revision
using the clone detection tool called NiCad [23].

• Detecting changes between every two consecutive revi-
sions using UNIX diff operation.

• Mapping changes to the already detected methods in each
revision by using the starting and ending line numbers of
the methods and changes.

• Detecting method genealogies by considering the meth-
ods from all the revisions following the technique that
was proposed by Lozano and Wermelinger [2].

Detection of regular and micro clones using NiCad. As
we mentioned before, we detect regular code clones from the
open source subject systems using the clone detection tool,
NiCad [23]. An existing research [24] shows that NiCad is a
promising choice among the modern clone detectors because
it shows high precision and recall in detecting the major three
types (Type 1, Type 2, and Type 3) of regular clones. As was
done by Svajlenko and Roy [24], we apply NiCad to detect
block level code clones of at least 5 lines and at most 500
lines considering a dissimilarity threshold of 30% with blind-
renaming of identifiers. We also detect micro-clones of 1 to
4LOC from our subject systems using NiCad.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we answer the research questions listed in
Table I by analyzing our experiment results and determine
whether and how consideration of code clones with evolution-
ary coupling can result in better detection of impact sets.

A. Answering the first research question (RQ 1)

RQ 1: Does a combination of clone analysis and evolution-
ary coupling detect impact sets with better accuracy compared
to evolutionary coupling alone?

Answering RQ 1 is the primary goal of our research. Tarmaq
is the state of the art technique that can suggest impact sets
on the basis of evolutionary coupling. If it is observed that
consideration of clone analysis with this technique can help
it better detect impact sets, this will establish clone analysis
to be beneficial for change impact analysis. We perform our
investigation in the following way.

Investigation procedure. Section IV describes two impact
set detection techniques. We use the following abbreviations
for these techniques for the ease of our discussion.

(1) Tarmaq: This was introduced by Rolfsness et al. [45].
(2) Tarmaq-NiCad: It represents the technique that com-

bines clone analysis with Tarmaq. We perform clone analysis
by detecting code clones using NiCad [23].

We determine the accuracy of each of these techniques in
predicting impact sets in the following way.

Determining the accuracy (precision and recall) of the
impact set detection techniques. Let us assume that the
evolutionary history of a subject system consists of C commit
operations. We sequentially examine each of these commit
operations from the very beginning one. Let us consider
a particular commit ci which was applied on revision ri.
When examining the commit operation ci, we determine which

methods changed together in this commit. Let us assume that
the methods m1, m2, m3, and m4 changed together in this
commit operation. Now, if we consider m1, then we can say
that the other three methods (i.e., m2, m3, and m4) constitute
the actual impact set for m1. Our goal is to determine how
accurately we can determine this actual impact set (m2, m3,
and m4) for m1 by applying the four impact set detection
techniques described in Section IV.

Let us assume that A is the actual impact set for method
m1 that we obtained by analyzing commit ci. The impact set
that we obtained by applying a particular impact set detection
technique is S. Then, the precision and recall of that particular
technique in retrieving the impact set can be calculated using
the following two equations.

Precision =
|A ∩ S| × 100

|S|
(4)

Recall =
|A ∩ S| × 100

|A|
(5)

By considering each of the methods that was changed in
each of the commit operations of a subject system, we deter-
mine the precision and recall of each of the two techniques
in detecting impact set. We finally determine the average
precision and recall of each technique by considering all the
methods that were changed in all the commit operations. Table
III records the total number of method change cases (i.e., the
row with SL no. = 1) that we investigated from each of our
subject systems. We consider the method change cases from
each commit operation where at least two or more methods
got changed. The other commits cannot help us in analyzing
the accuracy of the impact set detection techniques.

Comparing the accuracy of Tarmaq and Tarmaq-NiCad.
For determining whether clone analysis can improve the
impact set prediction accuracy of Tarmaq, we compare the two
techniques Tarmaq and Tarmaq-NiCad with respect to their
precision and recall values.

Comparison regarding recall. Fig. 2 makes a comparison
of the average recalls of the two techniques (Tarmaq, and
Tarmaq-NiCad) in detecting impact sets. We can see that
the recall of Tarmaq-NiCad is always (i.e., for each subject
system) higher than that of Tarmaq. The reason behind the
higher recalls of Tarmaq-NiCad is that it retrieves more true
positive methods (i.e., correct suggestions) to include in the
impact set compared to Tarmaq. As Tarmaq-NiCad performs
clone analysis in association with evolutionary coupling, it
can retrieve a higher number of true positives. Tarmaq only
considers evolutionary coupling for finding impact sets. We
wanted to know whether the recalls provided by Tarmaq-
NiCad are significantly better than those provided by Tarmaq.
We conduct statistical significance test for this purpose. Our
next paragraph elaborates on our test.

Statistical significance tests regarding comparing recalls.
We wanted to analyze whether the recalls of Tarmaq-NiCad are
significantly higher than those of Tarmaq. For this purpose, we
conduct Wilcoxon Signed Rank test [48], [49] considering the



TABLE III
STATISTICS REGARDING THE NUMBER OF CASES WHERE TARMAQ OR TARMAQ-NICAD PROVIDE TRUE POSITIVES

Measure Ctags Camellia Brlcad Carol Freecol DNSJava Greenshot Mono.

Total number of method change cases 728 467 1257 1717 3026 3501 2057 1065
No. of cases where Tarmaq provides true positives 262 258 611 376 1148 1750 867 606
No. of cases where Tarmaq-NiCad provides true positives 408 308 845 1045 1824 2689 1250 727

Ctags Camellia Brlcad Carol Freecol DNSJava Green. Mono.
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Fig. 2. Comparing the recalls of the techniques Tarmaq and Tarmaq-NiCad
for detecting impact sets
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Fig. 3. Comparing the precisions of the techniques Tarmaq and Tarmaq-NiCad
for detecting impact sets

recall values plotted in Fig. 2. Wilcoxon Signed Rank test is a
non-parametric test which is applicable to paired samples [48].
As this test is non-parametric, it does not require the samples
to be normally distributed. We apply this test in our experiment
because the recall values that we want to compare are paired.
For each subject system, we get two recall values: one from
Tarmaq-NiCad and the other from Tarmaq. We should also
note that Wilcoxon Signed Rank test can be applied to both
small and large data sets [48]. We conduct this test considering
a significance level of 5%. According to the test result for the
two-tailed test case, the recalls provided by Tarmaq-NiCad are
significantly different than those of Tarmaq with a p-value of
0.01 which is less than 0.05. As the recall of Tarmaq-NiCad is
always higher than that of Tarmaq, we realize that the recalls of
Tarmaq-NiCad are significantly better (higher) than the recalls
of Tarmaq. The Cohen’s d effect size [51] for the test is 0.630
which is larger than the medium effect size [50].

Comparison regarding precision. Fig. 3 compares the
precisions of the two techniques: Tarmaq and Tarmaq-NiCad.
We see that the comparison scenario regarding precision is

Ctags Camellia Brlcad Carol Freecol DNSJava Green. Mono.
0

20

40

60

% of change cases where Tarmaq gives correct suggestions

% of change cases where Tarmaq-NiCad gives correct suggestions

Fig. 4. Comparing the percentages of change cases where Tarmaq and
Tarmaq-NiCad can provide impact sets with correct suggestions

similar to the comparison scenario regarding recalls (Fig. 2).
For each of the subject systems, the average precision of
Tarmaq-NiCad is higher than the average precision of Tarmaq.
The reason behind the higher precision of Tarmaq-NiCad is
that through clone analysis it adds true positives to the impact
set retrieved using evolutionary coupling.

Statistical significance tests regarding comparing pre-
cisions. We again perform Wilcoxon Signed Rank test [48],
[49] to determine whether the precisions of Tarmaq-NiCad
for different subject systems are significantly higher than the
precisions of Tarmaq. As we did previously, we conducted
Wilcoxon Signed Rank test considering a significance level
of 5%. Our test result for two tailed test case implies that
the precisions of Tarmaq-NiCad are significantly different than
the precisions of Tarmaq with a p-value of 0.01 which is less
than 0.05. As Tarmaq-NiCad’s precision is always higher, we
can realize that the combined technique (Tarmaq-NiCad) has
a significantly higher precision in detecting impact sets for
methods compared to Tarmaq. The Cohen’s d effect size [50],
[51] for the test is 0.630.

Comparison regarding the number of cases where the
two candidate techniques (Tarmaq and Tarmaq-NiCad)
can provide correct suggestions. We also wanted to find
the number of method changes cases where Tarmaq-NiCad or
Tarmaq provides impact sets with true positives (i.e., correct
suggestions). Table III shows these numbers. We see that the
number regarding Tarmaq-NiCad is always higher than the
number regarding Tarmaq. Fig. 4 shows the percentages of
these two numbers with respect to all change cases for each
subject system. Using Wilcoxon Signed Rank Tests [48], [49]
as we did previously we find that the percentages regarding
Tarmaq-NiCad are significantly higher than those of Tarmaq
with a p-value of 0.01 (< 0.05) and a Cohen’s d effect size
[50], [51] of 0.630.
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Fig. 5. Comparing the precisions of the techniques Tarmaq-NiCad-Regular
and Tarmaq-NiCad-Micro for detecting impact sets
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Fig. 6. Comparing the recalls of the techniques Tarmaq-NiCad-Regular and
Tarmaq-NiCad-Micro for detecting impact sets

Findings from our analysis. According to our analysis
of experiment results, clone analysis can significantly
improve the impact set prediction accuracy of the state-
of-the-art evolutionary coupling based technique. In other
words, a combination of clone analysis and evolutionary
coupling can perform significantly better in detecting
impact sets compared to evolutionary coupling alone.

We should note that according to the existing studies [20],
[47], the precision and recall in detecting impact sets using
evolutionary coupling considering method level granularity are
generally very low. Kagdi et al. [20] achieved at best 28%
recall and 9% precision. Our experiment results depicted in
Fig. 2 and 3 also indicate this. In our research, the combined
technique (Tarmaq-NiCad) shows the highest recall of 39.43%
for our subject system, DNSJava, as shown in Fig. 2. From Fig.
3 we realize that the combined technique provides the highest
precision for MonoOSC. This precision is around 26.28%.
Although the precision and recall values are small, our findings
imply that clone analysis should be considered important when
analyzing change impacts, because it can significantly improve
the accuracy of detecting impact sets.

B. Answering the second research question (RQ 2)

RQ 2: Are regular or micro-clones more beneficial in
retrieving impact sets?

From our answer to the first research question (RQ 1)
we realize that we can significantly improve the impact set
detection accuracy of Tarmaq through analyzing regular and
micro-clones. However, we still do not know whether regular
code clones or micro clones have more contributions towards
improved detection of impact sets. We investigate this matter
in this section and answer the second research question (RQ
2) by analyzing our experimental results.

Investigation procedure. For answering RQ 2, we define
and compare the impact set detection accuracies of the fol-
lowing two variants of Tarmaq-NiCad.

(1) Tarmaq-NiCad-Regular (TNR): This variant only con-
siders the regular code clones detected by NiCad for detecting
the impact sets. The minimum size of a regular clone fragment
is 5LOC as was suggested by Wang et al. [46].

(2) Tarmaq-NiCad-Micro (TNM): This variant only con-
siders the micro-clones detected by the NiCad clone detector
for retrieving the impact sets. Micro-clones can be of at most
4LOC as was considered in the literature [33].

We determine the precisions and recalls of these two tech-
niques by following the procedure described in Section VI-A.
In the following paragraphs, we make a comparison between
these two techniques.

Comparing the variants. Fig. 5 and Fig. 6 compare the
precisions and recalls of the two techniques: Tarmaq-NiCad-
Regular (TNR), and Tarmaq-NiCad-Micro (TNM). From Fig.
5 we see that the precision regarding TNR is always higher
than that of TNM. However, Fig. 6 shows that the recall of
TNM is mostly higher (for 6 subject systems out of 8) than the
recall of TNR except for Camellia and DNSJava. For each of
these two subject systems, the recall of TNR is slightly higher
than that of TNM.

The reason behind higher precision of TNR and mostly
higher recall of TNM is that micro-clones are generally bigger
in number than regular code clones. When we consider micro-
clones, many false positives get introduced and the precision
of TNM drops below the precision of TNR. However, micro-
clones increase the number of true positives as well, and it
makes the recall of TNM to be mostly higher than TNR.

Findings from our analysis. According to our inves-
tigation and analysis, regular clones appear to be more
beneficial than micro-clones when we consider improve-
ment in precision. However, micro-clones often appear to
be more beneficial than regular clones when we consider
improvement in recall in detecting impact sets.

C. Answering the third research question (RQ 3)

RQ 3: Which sizes of micro-clones are more beneficial
towards improving the detection accuracy of impact sets?



TABLE IV
NUMBER OF TRUE POSITIVES OBTAINED BY ANALYZING DIFFERENT SIZES

OF MICRO-CLONES

Systems Size = 1LOC Size = 2LOC Size = 3LOC Size = 4LOC
Ctags 6 292 318 74
Camellia 2 0 138 108
Brlcad 4 2 138 966
Carol 0 30 1014 454
Freecol 94 4 2328 558
DNSJava 38 100 1338 1610
Greenshot 12 94 936 248
MonoOSC 0 8 224 272
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Fig. 7. Percentage of true positives obtained from different sizes of micro-
clones

From our answer to RQ 2 we realize that micro-clones are
generally more beneficial than regular clones towards improv-
ing the recall in detecting impact sets. In this subsection, we
make a comparison among different sizes of micro-clones on
the basis of their contributions towards improving the recall.
If the contribution from the micro-clones of a particular size
appears to be very low, we can discard those micro-clones
from our consideration. We answer RQ 3 in this section
through our investigation and analysis.

Investigation procedure. For answering RQ 3, we measure
the contributions of different sizes of micro-clones towards
improving the detection accuracy of impact sets. Micro-clones
are of four different sizes: 1, 2, 3, or 4LOC. Considering
the micro-clones of each size, we determine the number of
true positives co-change candidates that we can retrieve by
analyzing those micro-clones only. The number of true positive
co-change candidates from each size of micro-clones is shown
in Table IV. We see that the number of true positives obtained
from micro-clones of size 3LOC and 4LOC are mostly higher
than the number of true positives retrieved from micro-clones
of 1LOC and 2LOC.

Considering the micro-clones of a particular size, we also
determine the percentage of true positives that we can obtain
from those micro-clones with respect to all true positives ob-
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Fig. 8. Possibilities of getting true positive clone fragments at different ranges
of clone sizes

tained from all four sizes of micro-clones. These percentages
are shown in Fig. 7. The figure again shows that the per-
centages regarding 3LOC and 4LOC micro-clones are mostly
higher than the percentages regarding 1LOC and 2LOC micro-
clones except for Ctags. In the case of Ctags, the percentage of
true positives obtained from 2LOC micro-clones is higher than
the corresponding percentage regarding 4LOC micro-clones.
Finally, it seems that micro clones of 3LOC and 4LOC are
more beneficial towards improving the detection accuracy of
impact sets compared to the micro-clones of other sizes.

Findings from our analysis: According to our exper-
imental results, when detecting impact sets, micro-clones
of 3LOC and 4LOC should be prioritized more compared
to the micro-clones of less than 3LOC.

D. Answering the fourth research question (RQ 4)

RQ 4: Which sizes of regular clones are more beneficial for
improving the detection accuracy of impact sets?

The minimum and maximum size thresholds of regular
clones are respectively 5LOC and 500LOC in our research.
We wanted to determine if the regular code clones of a par-
ticular size range mostly provide the true positive co-change
candidates during impact analysis. If such a size range really
exists, we can ignore the regular code clones beyond that size
range. The clone detector can be set to detect regular clones
of that particular size range excluding the clones beyond the
range. Such an exclusion can also make the clone detection
process faster for the purpose of change impact analysis. We
perform our investigation in the following way.

Investigation procedure. Let us assume that we are now
determining the impact set for a particular target method m
through clone analysis. We detect code clones from the entire
code-base using the NiCad clone detector. Let us again assume
that the target method m intersects a particular clone fragment
in a clone class. We consider the other clone fragments in the
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Fig. 9. Possibilities of getting true positive clone fragments at different
intervals of clone sizes in the range 5 to 55

class as a set, OCF (other clone fragments). We determine
the methods that are intersected by the members in OCF.
Let us consider that some of these intersected methods are
true positives (i.e., actually co-changed with the target method
m). We identify which members in OCF intersected the true
positive methods. These identified members (i.e., identified
clone fragments) in OCF are the true positive members, that
is, true positive clone fragments. Thus, a true positive clone
fragment is a clone fragment which is detected by NiCad and
which intersects with a true positive co-change candidate (i.e.,
a true positive method).

For the entire period of evolution of a subject system, we
determine all the true positive clone fragments for all the target
methods. For each such clone fragment, we determine the
size of it in LOC. Finally, considering all the true positive
clone fragments from all the target methods from the whole
period evolution of each of our subject systems, we determine
the possibilities of getting true positive clone fragments at
different size intervals. Let us explain this using an example.

Let us assume that there are five true positive clone frag-
ments during the entire period of evolution of a software
system. The sizes of these true positive fragments are: 5, 5,
10, 8, and 7. Let us now determine the possibilities of getting
true positives in two intervals: 5 to 7 and 8 to 10. This is
easy to determine that the possibility (in percentage) for the
first interval (5 to 7) is 60% (=3×100/5). We see that three
true positive clone fragments out of five have sizes within this
interval. In the same, way the possibility regarding the third
interval (8 to 10) is 40% (=2×100/5).

As we have done in the above example, we determine
the possibilities of getting true positive clone fragments in
different size intervals as is depicted in Fig. 8. We see that
most of the intervals are of 50LOC except the last interval
which is of 45LOC. As we set the maximum size threshold
of the clone detector to be 500, we fix the last interval to be
in the range 455 to 500. However, we see that the possibility
regarding this interval is 0% for all the subject systems.

According to Fig. 8, the possibilities regarding the first
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Fig. 10. Comparing the percentages of commits where Tarmaq and Tarmaq-
NiCad can provide impact sets with true positives

interval is very high (around 100%) for each of the subject
systems. The possibilities for the other intervals are mostly
zero except for the second and seventh intervals of Camellia
and the second interval of DNSJava and MonoOSC. For the
second intervals of Camellia, DNSJava and MonoOSC, the
possibilities are respectively 13.61%, 6.42%, and 14.15%. For
the seventh interval ([305 - 354]) of Camellia, the possibility
is around 5.92%. Such a scenario implies that for the purpose
of detecting co-change candidates, regular code clones within
the size range of 5LOC to 55LOC are enough. Regular clones
of all other ranges have a negligible possibility of appearing
as true positive clone fragments.

As the possibility within the first interval [5 - 55] is very
high for each of our subject systems, we wanted to further
investigate how this possibility is distributed over this interval.
Fig. 9 shows this distribution. In this figure, we can see the
probabilities of getting true positives in different ranges of
clone size. Each range is of 5LOC. We see that the possibility
regarding the first range ([5 - 9]) is the highest for each of
the subject systems. The possibilities after the 3rd range ([15
- 19]) are very low (mostly less than 10). Such a scenario
of probability distribution implies that we primarily need to
focus on detecting regular clones of 5LOC to 20LOC for the
purpose of change impact analysis.

Findings from our analysis. According to our experi-
mental results and analysis, regular code clones within the
range of 5LOC to 20LOC are the most beneficial ones for
change impact analysis.

E. Answering the fifth research question (RQ 5)

RQ 5: Does a combination of clone analysis and evolu-
tionary coupling detect impact sets more often compared to
evolutionary coupling alone?

We finally investigate whether consideration of code clones
can often help us improve the impact sets predicted by
evolutionary coupling based techniques. Our investigation in



TABLE V
STATISTICS REGARDING THE NUMBER OF COMMITS WHERE TARMAQ OR TARMAQ-NICAD PROVIDED IMPACT SETS WITH TRUE POSITIVES

Measure Ctags Camellia Brlcad Carol Freecol DNSJava Greenshot Mono.

No. of commits where more than one method got changed 152 88 261 243 485 613 336 150
No. of commits where Tarmaq provided true positives 71 68 167 96 267 382 212 109
No. of commits where Tarmaq-NiCad provided true positives 89 74 192 178 336 485 247 120

this section answers the fifth research question (RQ 5). We
investigate in the following way.

Investigation procedure. For answering RQ 5, we apply
each of the two impact set detection techniques, Tarmaq
and Tarmaq-NiCad, on each of the revisions of our subject
systems as we did for answering RQ 1, and determine three
measures: (i) the total number of commits where more than
one method got changed, (ii) the number of commits where
Tarmaq provided impact sets with true positives, and (iii) the
number of commits where Tarmaq-NiCad provided impact
sets with true positives. Table V shows these measures for
each of our subject systems. Fig. 10 shows the percentages
of commits where Tarmaq and Tarmaq-NiCad provided true
positives with respect to all commits that affected two or more
methods. We see that the percentage regarding Tarmaq-NiCad
is always higher than that of Tarmaq. According to Wilcoxon
Signed Rank test [48], [49] results, the percentages regarding
Tarmaq-NiCad are significantly higher than those of Tarmaq
with a p-value of 0.01 for two-tailed test case.

Findings from our analysis. According to our in-
vestigation, combination of clone analysis with Tarmaq
can help it provide impact sets with true positives for a
significantly higher number of commit operations during
the whole period of system evolution.

Our finding from RQ 5 again establishes the importance of
considering code clones for change impact analysis.

VII. THREATS TO VALIDITY

We have used the clone detection tool called NiCad [23] for
our investigation. For different settings of NiCad, the clone
detection results can be different. Wang et al. [46] mention
it as a confounding configuration choice problem. However,
the settings that we have used for detecting regular clones are
considered standard. Recently Svajlenko and Roy [24] used
these settings for comparing NiCad with other modern clone
detectors and found NiCad to be a promising choice in terms
of precision and recall for detecting clones. Moreover, the
settings that we have used for detecting micro-clones were
previously used by Mondal et al. [33]. We finally believe that
the experiment results and findings that we have got from our
research are of significant importance.

We did not investigate enough subject systems in our exper-
iment. Thus, our findings might not be generalized. However,
the systems that we have analyzed are of diverse variety in

terms of their application domains, implementation languages,
sizes, and revision history lengths. Thus, our findings cannot
be attributed to a chance. We believe that these findings can be
important for an improved detection of impact sets considering
method granularity during change impact analysis.

The number of revisions that we have investigated for
different subject systems might not be enough to establish our
findings. However, from Table II we see that different subject
systems have different lengths of revision history and these
lengths span from small to large. We thus believe that our
findings are not biased by the revision history lengths of the
subject systems.

VIII. CONCLUSION

In this paper we investigate whether consideration of code
clones with evolutionary coupling can help us in better change
impact analysis compared to evolutionary coupling alone. For
the purpose of our investigation, we select the state-of-the-
art technique called Tarmaq that can find impact sets for a
target program entity by analyzing evolutionary coupling. We
combine clone analysis with Tarmaq and investigate whether
the combined technique can provide us impact sets with
better accuracy (better precision and recall) than the original
technique. According to our investigation on thousands of
commits of eight diverse subject systems, clone analysis can
significantly improve the precision and recall of Tarmaq in
predicting impact sets considering method level granularity.
According to our analysis regarding clone size, micro-clones
of 3LOC and 4LOC and regular clones within the range of
5LOC to 20LOC contribute the most towards improving the
detection accuracy of impact sets. We also observe that consid-
eration of code clones with evolutionary coupling can help us
predict impact sets with true positives for a significantly higher
percentage of commit operations compared to evolutionary
coupling alone. We expect that clone analysis can also be used
with other impact analysis techniques and measures for a better
analysis of software change impacts. We will investigate this
in future.
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