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Abstract—Evolutionary coupling is a well investigated phe-
nomenon during software evolution and maintenance. If two
or more program entities co-change (i.e., change together) fre-
quently during evolution, it is expected that the entities are
coupled. This type of coupling is called evolutionary coupling
or change coupling in the literature. Evolutionary coupling is
realized using association rules and two measures: support and
confidence. Association rules have been extensively used for
predicting co-change candidates for a target program entity (i.e.,
an entity that a programmer attempts to change). However,
association rules often predict a large number of co-change
candidates with many false positives. Thus, it is important to
rank the predicted co-change candidates so that the true positives
get higher priorities.

The predicted co-change candidates have always been ranked
using the support and confidence measures of the association
rules. In our research, we investigate five different ranking
mechanisms on thousands of commits of ten diverse subject
systems. On the basis of our findings, we propose a history-
based ranking approach, HistoRank (History-based Ranking),
that analyzes the previous ranking history to dynamically select
the most appropriate one from those five ranking mechanisms
for ranking co-change candidates of a target program entity.
According to our experiment result, HistoRank outperforms each
individual ranking mechanism with a significantly better MAP
(mean average precision). We investigate different variants of
HistoRank and realize that the variant that emphasizes the
ranking in the most recent occurrence of co-change in the history
performs the best.

Index Terms—Evolutionary Coupling, Association Rules, Co-
change Candidates, Ranking

I. INTRODUCTION

Evolutionary coupling, also known as logical coupling or
change coupling, has been extensively investigated in software
engineering research and practice. If a group of program
entities changed together (i.e., co-changed) frequently during
the past evolution of a software system, it is expected that the
entities in the group are coupled. This type of coupling which
we can realize from the evolutionary history of a software
system is called evolutionary coupling. If a group of program
entities exhibited evolutionary coupling in the past, a change
in one entity in the future is likely to require corresponding
changes to the other entities in the group.

A great many studies [1], [3], [5], [7], [8], [10], [11], [13],
[14], [19], [21], [22], [25], [27], [31] have been conducted
on the detection and usage of evolutionary coupling. While
evolutionary coupling has been used for identifying buggy
program entities [3], detecting software design deficiencies
[10], requirements traceability, refactoring and tracking of
code clones [15], [16], and model driven software development

[22], it has been primarily been used for predicting co-change
candidates of program entities [5], [9], [13], [25].

When a programmer attempts to make changes to a partic-
ular program entity which we call the target entity, the other
entities that are related to it (i.e., coupled with it) might get
impacted. These other entities constitute the impact set of the
target entity. Evolutionary coupling has been commonly used
for predicting this impact set. The entities in the impact set
of a target entity are called the co-change candidates of the
target entity, because these co-change candidates might need
to be changed together with the target entity in order to ensure
consistency of the software system.

Existing studies [25], [27] have realized evolutionary cou-
pling using association rules [20] with two related mea-
sures: support and confidence. While support is the co-change
frequency (i.e., how many times two or more entities co-
changed) of program entities, confidence is a conditional co-
change probability measured using support. We will discuss
association rules, support, and confidence in Section 2.

The existing studies and techniques have mined co-change
candidates (i.e., the impact set) of a target program entity by
analyzing association rules. However, the impact set obtained
from the association rules is often very large with many false
positives (i.e., the members that do not actually get impacted
for changing the target entity). Thus, ranking the members
in the impact set is essential so that the true positives (i.e.,
the members that actually need to be co-changed with the
target program entity) get higher priorities. Without proper
ranking of the co-change candidates, programmers might
often get overwhelmed while identifying the likely co-change
candidates from a long list of suggestions obtained from the
association rules.

The co-change candidates of the target program entities
have always been ranked using the support and confidence
measures of the association rules [15], [25], [27]. However, our
investigation shows that ranking using support and confidence
might not always provide good results. Sometimes, better
ranking of the co-change candidates can be achieved by using
different other ranking mechanisms such as recency ranking or
similarity ranking. In our research, we particularly investigate
five ranking mechanisms: (1) support ranking, (2) confidence
ranking, (3) recency ranking, (4) similarity ranking, and (5)
file proximity ranking for ranking the co-change candidates
of the target program entities. From our investigation on
thousands of commits of 10 subject systems written in Java, C,
and C#, we observe that different ranking mechanisms might



TABLE I
RESEARCH QUESTIONS

RQ Research Question
RQ 1 Is it important to rank the co-change candidates retrieved

using evolutionary coupling?
RQ 2 What is the comparative scenario among different ranking

mechanisms for ranking co-change candidates retrieved using
evolutionary coupling?

RQ 3 Can we select a suitable ranking mechanism on the basis of
the past history for ranking co-change candidates?

RQ 4 Which variant of history based ranking performs the best in
ranking co-change candidates?

appear to be promising for ranking co-change candidates of
different target entities. We finally realize that a single ranking
mechanism should not be considered always for ranking co-
change candidates during evolution. Focusing on this, we
propose a ranking approach, HistoRank, that analyzes the past
co-change history for selecting the best ranking mechanism
from the aforementioned ranking mechanisms for ranking the
co-change candidates of a target program entity. We answer
four research questions listed in Table I through our research.
According to our investigation and analysis:

(1) Our proposed ranking approach, HistoRank, outperforms
all the five ranking mechanisms (mentioned above) with a
significantly higher MAP (mean average precision) in ranking
co-change candidates.

(2) From our investigation on different variants of His-
toRank we observe that the variant that emphasizes the rank-
ing in the most recent occurrence of co-change in the past
performs the best in ranking co-change candidates.

We believe that our proposed ranking approach can be very
useful to the programmers in identifying the likely co-change
candidates from a long list of co-change suggestions in a
time efficient manner. The implementation and data from our
research are available online [32].

The rest of the paper is organized as follows. Section II
describes the terminology, Section III discusses the ranking
mechanisms with necessary examples, Section IV explains
our experimental setup and steps, Section V and VI answer
our research questions by presenting and discussing our ex-
perimental results, Section VII discusses the findings from
our experimental results, Section VIII describes the possible
threats to validity, Section IX discusses the related work, and
finally, Section X presents the concluding remarks.

II. TERMINOLOGY

Evolutionary coupling among program entities is realized
using association rules. We define an association rule in the
following way according to the literature [20], [27].

Association Rule. An association rule [20] is an expression
of the form X => Y , where X is the antecedent and Y is
the consequent. Each of X and Y is a set of one or more
program entities. Such an association rule means that if X
gets changed in a commit operation, Y also has a possibility
of getting changed in that commit operation. An association
rule has two measures: support and confidence.

Support is the number of commits in which an entity or
a group of entities changed together [27]. Let us assume two

program entities E1 and E2. E1 changed in the commits: 5,
6, 10, and 24. E2 changed in the commit operations: 2, 6, 24,
34, and 50. Thus, the support of E1 is 4 and the support of E2

is 5. Moreover, the support of E1 ∪ E2 is 2 because E1 and
E2 together changed in two commits: 6 and 24. The support
of a rule, X => Y , is calculated in the following way.

support(X => Y ) = support(X ∪ Y ) (1)

The confidence of an association rule X => Y is the
conditional probability that Y will change in a commit op-
eration given that X has changed in that commit operation.
We calculate confidence using the following equation.

confidence(X => Y ) = support(X∪Y )/support(X) (2)

If we consider the previous example of the entities E1 and
E2, we can make two association rules, E1 => E2 and
E2 => E1, from these. Now, confidence (E1 => E2) =
support (E1∪E2) / support (E1) = 2/4 = 0.5 In the same way,
confidence (E2 => E1) = 2/5 = 0.4.

In our experiment, we consider method level association
rules. In such rules, the antecedents and consequents are
methods.

III. RANKING MECHANISMS

This section describes the ranking mechanisms that we
investigate in our research.

A. Support Ranking

Rolfsness et al. [25] used this ranking mechanism for rank-
ing file level co-change candidates retrieved using evolutionary
coupling. In this mechanism, the co-change candidates of a
target program entity are ordered according to the support
values of the association rules that they make with the target
entity. Co-change candidates with higher support values are
given higher priorities. Two or more co-change candidates
with the same support value are ordered according to their
confidence values. In this case, the candidates with higher
confidence values get higher priorities. We explain this with a
simple example.

Example. Let us assume that a programmer is going to
make changes to a target program entity E1. In order to
ensure consistency of the software system, some other entities
might also need to be co-changed (i.e., changed together) with
E1. By applying Tarmaq algorithm on the past evolutionary
history of the program entities (as was done by Rolfsness et
al. [25]), we obtain a set of co-change candidates for E1. Let
us assume that this set for E1 consists of the entities: E2,
E3, E4, and E5. We denote this set by SCC (set of suggested
co-change candidates). Each of the entities in the set SCC
makes an association rule with E1 where E1 is the antecedent
and the entity in the set is the consequent. As a result, we
get four association rules: E1=>E2, E1=>E3, E1=>E4, and
E1=>E5 in total. We find the supports and confidences of
these association rules using the equations Eq. 1 and 2. Let us



assume that the supports and confidences of these association
rules are: 2, 4, 6, 4 and 0.2, 0.1, 0.3, 0.4 respectively. On the
basis of the support values, the co-change candidates can be
ordered as follows: E4, E3, E5, E2. We see that the association
rules where E3 and E5 are the consequents have the same
support value (4). Thus, E3 and E5 appear together after
ordering by the support values. We now try to reorder these
E3 and E5 considering the confidence values. We see that the
rule E1=>E5 has a higher confidence than the rule E1=>E3.
Thus, E5 is given a higher priority than E3. The final ordering
of the co-change candidates is: E4, E5, E3, E2.

B. Confidence Ranking

This ranking mechanism is just the opposite of the support
ranking mechanism (Section III-A). We first order the co-
change candidates on the basis of the confidence values of
the rules that they make with the target entity. The candidates
with higher confidence values are given higher priorities. The
candidates with the same confidence values are reordered
according to the support values. The candidates with higher
supports get higher priorities.

C. Recency Ranking

In this ranking mechanism, the co-change candidates are
ranked/ordered on the basis of how recently they co-changed
with the target program entity. A co-change candidate that co-
changed with the target program entity more recently is given
a higher priority in this mechanism.

Example. Let us again assume that a programmer is going
to make changes to a target program entity E1. The co-change
candidates (for E1) that we retrieved by analyzing the past
evolutionary history of the software system using Tarmaq
algorithm are E2, E3, E4, and E5. For each of these co-change
candidates, we determine the last commit operation where
it co-changed with the target entity. Let us assume that the
co-change candidate, E2, co-changed with E1 in two commit
operations: 50 and 56. Thus, 56 is the last commit operation
where E2 co-changed with E1. This last commit operation is
denoted as the recency of E2. We determine the recency of
each of the co-change candidates of E1. Let us assume that
the recency values of the four co-change candidates (E2, E3,
E4, and E5) are 56, 34, 56, and 67 respectively. We order the
candidates on the basis of these recency values. A co-change
candidate with a higher recency gets a higher priority. Thus,
the ordering of the co-change candidates according to recency
ranking is as follows: E5, E2, E4, and E3. Here, E5 has the
highest priority because its recency is the highest (67). We see
that the two entities E2 and E4 have the same recency (56). We
try to reorder these entities on the basis of the support values of
the rules that they make with the target entity. Let us assume
that the association rules, E1=>E2 and E1=>E4, have the
support values of 2 and 6 respectively. In other words, E4 co-
changed with E1 in a higher number of commit operations than
with E2. In this situation, E4 gets a higher priority than E2.
Thus, the final ordering of the co-change candidates according
to recency ranking is: E5, E4, E2, and E3.

TABLE II
SUBJECT SYSTEMS

Systems Lang. Domains LLR Revs
Ctags C Code Definition Generator 33,270 774
Camellia C Multimedia 85,015 207
Carol Java Game 25,091 1,700
Freecol Java Game 91,626 1,950
jEdit Java Text Editor 1,91,804 4,000
Jabref Java Reference Manager 45,515 1,545
MonoOSC C# Formats and Protocols 18,991 315
DNSJava Java DNS Protocol 23,373 1,635
GreenShot C# Multimedia 37,628 999
SQLBuddy C# MSDE / Sql Server IDE 18,387 945
LLR = LOC in the Last Revision Revs = No. of Revisions

D. File-proximity Ranking

In this ranking mechanism, the co-change candidates of a
target program entity are ranked on the basis of their file-
level distances from the target entity in the file system tree.
Candidates with lower distances are given higher priorities.
Candidates with the same distance are reordered on the basis
of the support values of the association rules that they make
with the target program entity.

E. Lexical Similarity Ranking

In this ranking mechanism, the co-change candidates are
ranked on the basis of their similarity with the target entity.
Candidates with higher similarity are given higher priorities.
In our research, the program entities are methods. In order
to quantify the similarity between a target method and its
co-change candidate, we determine the Dice–Sørensen co-
efficient [12], [26] between the methods.

Calculating Dice–Sørensen co-efficient between two
methods. From each method we obtain a string by appending
the source code lines in the method serially one after another.
We determine Dice–Sørensen co-efficient between two meth-
ods in the following way from the two strings obtained from
the methods.

Dice–Sørensen co-efficient: Dice–Sørensen coefficient
(DiSC) [12], [23], [26] measures the lexical similarity of any
two given strings from their bigrams (the set of every sequence
of two adjacent characters) according to Eq. 3:

DiSC =
2× |bigrams(str1 ) ∩ bigrams(str2 )|
|bigrams(str1 )|+ |bigrams(str2 )|

(3)

Here, DiSC is the Dice–Sørensen co-efficient between the
two strings: str1 and str2. The Dice–Sørensen coefficient
reports similarity values in the range 0 and 1, which we express
as percentages. A similarity value of 100% indicates that the
strings are the same, whereas 0% indicates that the strings are
dissimilar. Dice–Sørensen coefficient rewards both common
substrings and a common ordering of those substrings. It is
robust to changes in word order. It is language indepedent
and it outperforms the existing algorithms, such as Soudex
Algorithm, Edit Distance, and Longest Common Subsequence
in determining lexical similarity between strings [24], [35].



IV. EXPERIMENT SETUP AND STEPS

This section first discusses the setup of our experiment and
then elaborates on the experimental steps.

Subject Systems. We conduct our investigation on ten
subject systems downloaded from an on-line repository called
SourceForge.net [33]. Table II shows the details of our subject
systems. We download each of the revisions of the systems as
mentioned in Table II for our analysis. We see that the subject
systems are of diverse variety in terms of their application
domains, sizes, revision history lengths, and implementation
languages. We select the systems in our experiment by fo-
cusing on their diversity, because we wanted to generalize
our findings regarding ranking co-change candidates retrieved
using evolutionary coupling.

Co-change Suggestion Technique. We select the co-change
suggestion technique called Tarmaq [25] in our research be-
cause it is a promising technique based on mining associa-
tion rules. It significantly outperforms the existing techniques
called Rose and SVD [25] because it can suggest co-change
candidates even for previously unseen queries. Pugh et al. [36]
proposed Atari which can provide co-change suggestions by
mining association rules through an adaptive approach. They
showed that Atari can achieve an accuracy level like Tarmaq
using a dynamically selected smaller number of commit trans-
actions. Islam et al. [13] proposed transitive association rules
which can provide co-change suggestions among entities that
did not exhibit evolutionary coupling in the past. However,
Islam et al.’s technique is very time-consuming, and thus,
it is not suitable for making co-change suggestions in real-
time coding environment. Also, the technique often provides
a lower precision than Tarmaq [13]. We finally decide that
Tarmaq is a reasonable choice for our research.

Experimental steps. We conduct a number of experimental
steps sequentially for each of our subject systems before
analyzing the ranking mechanisms. We describe these steps
in the following way.

• Downloading revisions. We download all the revisions
as indicated in Table II from the on-line repository.

• Change detection. We detect source code changes be-
tween every two consecutive revisions by applying UNIX
diff operation. This operation provides three types of
changes: additions, deletions, and modifications with line
numbers. The database of changes that we detect for our
subject systems is available online [32].

• Method detection. We detect methods from each of
the revisions by applying a tool called CTAGS [4]. The
methods are detected along with their container file paths
and starting and ending line numbers.

• Change mapping. We map the source code changes
that occurred in each revision to the methods of the
corresponding revision. Change mapping is particularly
done by matching the file paths, and starting and ending
line numbers of the changes and methods.

• Method genealogy detection. We detect method ge-
nealogies considering the methods detected from all the

revisions by applying the technique proposed by Lozano
and Wermelinger [2].

• Applying Tarmaq. We apply the Tarmaq algorithm
proposed by Rolfsness et al. [25] for detecting impact
sets (co-change candidates) for target methods. Tarmaq
suggests impact sets by analyzing the past evolutionary
history of the methods.

• Investigating ranking. We finally rank the co-change
candidates (i.e., the members in the impact sets) by ap-
plying different ranking mechanisms and compare these
ranking mechanisms by calculating MAP (mean average
precision).

We will describe the last step in Section V.

A. Detecting method genealogies

In order to provide co-change suggestions considering
method level granularity, we detect the method genealogies
from the entire evolutionary history of our subject systems.
We define a method genealogy in the following way.

Method Genealogy. Let us assume that a particular method
was created in a particular revision of a subject system. The
method was alive in n consecutive revisions. Thus, each of
these n revisions has a snapshot of the method. The genealogy
of the method consists of its n snapshots from the n revisions
where it was alive. By detecting the genealogy of a method,
we can easily determine how it evolved over the evolution.

Method genealogy detection. We detect method genealo-
gies in our research for realizing how they co-evolved over
the evolution. Method genealogy detection was performed
by applying the technique which was proposed by Lozano
and Wermelinger [2]. The databases containing the method
genealogies from our subject systems are available on-line
[32]. The database for each subject system contains data
regarding which methods were changed together in which
commit operations.

B. Applying Tarmaq for retrieving impact sets considering
method level granularity

The Tarmaq algorithm was introduced by Rolfsness et al.
[25]. It takes a set of entities as the query and analyzes the
past entity co-change history to retrieve co-change candidates
for the entity set. In our research, we provide a target method
as the query to the Tarmaq algorithm. It then analyzes the past
method co-change history to find the impact set (i.e., the co-
change candidates) of the target method. As we detect method
genealogies, we can determine which methods co-changed in
which commit operations. Tarmaq uses this method co-change
information for getting the co-change candidates.

V. EXPERIMENT RESULTS AND ANALYSIS

We apply our implementation on each of our subject sys-
tems and obtain experiment results. We analyze these results
for answering our research questions listed in Table I.



TABLE III
NUMBER OF PREDICTED, ACTUAL, AND TRUE POSITIVE CO-CHANGE

CANDIDATES

Subject systems Predicted Actual True Positives
Ctags 4,677 1,568 894
Camellia 6,321 1,612 684
Carol 7,512 7,404 2,084
Freecol 44,308 12,566 3,070
jEdit 10,445 7,100 768
Jabref 1,51,150 25,446 8,914
MonoOSC 25,829 5,754 2,612
DNSJava 52,626 17,160 6,928
GreenShot 26,472 7,478 2,636
SqlBuddy 31,804 8,362 2,964
Predicted = No. of all predicted co-change candidates from all the
target methods from entire evolution.
Actual = No. of all actual co-change candidates for all target methods.
True Positives = No. of all true positives for all target methods.
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Fig. 1. Percentage of suggested co-change candidates that are true positives

A. Answering RQ 1

RQ 1: Is it important to rank the co-change candidates
retrieved using evolutionary coupling?

Motivation. Before analyzing and comparing the ranking
mechanisms, we wanted to realize whether it is really im-
portant to rank the co-change candidates retrieved by using
evolutionary coupling. If we observe that most of the retrieved
co-change candidates for a target program entity are true
positives (i.e., the candidates really need to be co-changed
with the target), ranking of the candidates might not be
important. However, ranking can be important if only a few
of the suggested (i.e., retrieved) co-change candidates are
true positives. A good ranking mechanism can assume high
priorities for those few true positives so that programmers can
easily identify those from a long list of suggested co-change
candidates. We answer RQ 1 in the following way.

Experiment procedure. We examine each of the commit
operations sequentially from the beginning one. Let us assume
that a particular commit operation c was applied on a particular
revision r and n methods in that revision were changed. If we
consider one of these n methods as the target method, the
other n − 1 methods are the actually co-changed candidates
of the target method. However, we want to determine how
many of these actually co-changed candidates can be retrieved
by analyzing the past evolutionary history of the software
system. The past evolutionary history consists of the commit
operations: 1 to c − 1. We apply the Tarmaq algorithm on
this past history in order to suggest (i.e., retrieve) co-change
candidates for the target method. Tarmaq suggests co-change

candidates by analyzing the evolutionary coupling among
methods. We should note that in the original study conducted
by Rolfsness et al. [25], Tarmaq was applied for analyzing
file level evolutionary coupling. In our study, we apply this
algorithm for analyzing method level evolutionary coupling for
suggesting method level co-change candidates. We use Tarmaq
algorithm in our study, because it shows a higher precision
and recall than ROSE and SVD [25]. Moreover, Tarmaq can
retrieve co-change candidates for previously unseen queries.

Let us consider a target method m in the commit opera-
tion c. The set of suggested co-change candidates retrieved
by Tarmaq for m from the past commits (1 to c − 1) is
SCC (Suggested Co-change Candidates). As we examine the
commit operation c, we determine the set of methods that
actually co-changed with m in c. We denote this set of
actually co-changed candidates by ACC (Actually Co-changed
Candidates). We realize that from the intersection of the
two sets, SCC and ACC, we get those suggested co-change
candidates that actually co-changed with m in commit c. These
candidates (obtained from the intersection of ACC and SCC)
are the true positive suggestions.

By considering each of the methods changed in each of the
commit operations, we determine the three sets: SCC, ACC,
and SCC ∩ ACC. We determine the corresponding summations
of the number of elements in these sets. Thus, for three sets,
we obtain three summations. The values of these summations
for each of our candidate subject system are listed in Table
III. We determine the percentage of true positives in suggested
co-change candidates using the following equation.

PTP =
|SCC ∩ACC| × 100

|SCC|
(4)

Here, PTP is the percentage of true positives in the sug-
gested co-change candidates.

Fig. 1 shows the value of PTP for each of our subject
systems. From the figure, we see that the percentage of true
positives in the suggested co-change candidates is very low
for each subject system. The system called Carol shows the
highest percentage which is around 28%. For five out of ten
subject systems, the percentage of true positives is less than
10%. Such a scenario implies that most of the suggested co-
change candidates are false positives. Thus, ranking of co-
change candidates suggested by evolutionary coupling is im-
portant so that the true positives get high priorities. Otherwise,
programmers might get overwhelmed with too many false
positives when identifying true positives from a long list of
suggestions. We finally answer RQ 1 in the following way.

Answer to RQ 1. Our analysis establishes the fact
that ranking co-change candidates suggested using evo-
lutionary coupling is important, because the percentage
of true positives in the suggested (predicted) co-change
candidates is generally very low.



TABLE IV
MAPS PROVIDED BY DIFFERENT RANKING MECHANISMS

Systems S-Ranking R-Ranking Sim-Ranking FP-Ranking C-Ranking
Ctags 0.3511 0.3730 0.3497 0.3651 0.3275
Camellia 0.2487 0.2815 0.2683 0.2605 0.2123
Carol 0.2279 0.2294 0.2484 0.2511 0.2151
Freecol 0.1496 0.1554 0.1420 0.1767 0.1211
jEdit 0.0497 0.0511 0.0597 0.0543 0.0453
Jabref 0.1708 0.1664 0.1530 0.1922 0.1275
MonoOSC 0.2226 0.2334 0.2226 0.2583 0.1707
DNSJava 0.2744 0.2874 0.2738 0.2625 0.2313
Greenshot 0.2099 0.2191 0.2246 0.2322 0.1740
Sqlbuddy 0.2183 0.2153 0.2158 0.2496 0.1854
S-Ranking = Support Ranking Mechanism
R-Ranking = Recency Ranking Mechanism
Sim-Ranking = Similarity Ranking Mechanism
FP-Ranking = File-proximity Ranking Mechanism
C-Ranking = Confidence Ranking Mechanism

Such a finding inspires us to investigate and compare differ-
ent ranking mechanisms for ranking the co-change candidates
of a target program entity. We perform such an investigation
when answering our second research question (RQ 2).

B. Answering RQ 2

RQ 2: What is the comparative scenario among differ-
ent ranking mechanisms for ranking co-change candidates
retrieved using evolutionary coupling?

Motivation. Rolfsness et al. [25] previously ranked the
co-change candidates using support ranking mechanism (dis-
cussed in Section III). In this section, we investigate a number
of ranking mechanisms including support ranking and try to
make a comparison among these mechanisms to understand
which mechanism performs the best. We perform our investi-
gation in the following way.

Investigation Procedure. As we did in RQ 1, we examine
the commit operations from the beginning one. We consider
each method that changed in each commit operation as a
target method and apply Tarmaq algorithm for retrieving the
co-change candidates of the target method from the previous
commit operations. Let us again assume that the set of co-
change candidates suggested by the Tarmaq algorithm for a
target method is SCC. The set of methods that actually co-
changed with the target method is ACC. We order the sug-
gested co-change candidates (elements in SCC) using different
ranking mechanisms and determine the average precisions.

Calculating the average precision (AP) for a particular
ranking mechanism. After ordering the elements in SCC
using a particular ranking mechanism, RM, we calculate the
average precision in the way which was followed by Rolfsnes
et al. [25]. Let us assume that the number of elements in
SCC is n. We calculate the average precision for the ranking
mechanism, RM, using the following equation.

APRM =

n∑
k=1

P@k × δR@k (5)

Here, APRM is the average precision that we obtain after
ordering the elements in the set SCC using the ranking
mechanism RM . P@k and R@k are the precision and recall
at the k-th element in the ranked (ordered) list. We calculate
these using the following equations.

P@k = NCSk/k (6)

R@k = NCSk/|ACC| (7)

In the above two equations, NCSk is the number of correct
suggestions in the first k elements of the ranked list. We
previously mentioned that ACC is the set of actually co-
changed candidates. Thus, NCSk is the number of those
elements (suggestions) that are present not only in the first
k elements of the ranked list but also in the set ACC. |ACC|
is the number of elements in ACC. We calculate δR@k using
the following equation.

δR@k = R@k −R@(k − 1) (8)

Calculating the mean average precision (MAP) for a
particular ranking mechanism. By considering each method
that changed in each of the commit operations as a target
method, we determine the two sets SCC and ACC, rank the
members in SCC using a particular ranking mechanism RM,
and determine the average precision APRM in suggesting the
co-change candidates. Finally, we calculate the mathematical
mean of all the APRM values from all the target methods in
order to obtain the mean average precision MAPRM for the
ranking mechanism RM.

Comparing the ranking mechanisms on the basis of
MAP. We determine the MAP (mean average precision) pro-
vided by each of the ranking mechanisms in ranking co-change
candidates of the target methods during the entire period of
evolution of each of the subject systems. Table IV shows the
MAPs for different subject systems.

In Table IV, we see that different ranking mechanisms
appear to be the best for different subject systems. For exam-
ple, for the subject systems: Ctags, Camellia, and DNSJava,
recency ranking exhibits the highest MAP. For the remain-
ing systems except jEdit, file-proximity ranking provides the
highest MAP. For jEdit, the highest MAP is obtained from
similarity ranking. It is noticeable that although support rank-
ing was being used by the existing studies and techniques, this
ranking mechanism does not appear to be the best one for any
subject system. Confidence ranking mechanism appears to be
the worst one for all subject systems.

Statistical Significance Tests. We wanted to know if any
ranking mechanism appears to be significantly better than all
the other mechanisms. We perform Wilcoxon Signed Rank
(WSR) test [28], [29] for this purpose. WSR test is suitable for
applying on paired data samples. This test is non-parametric,
and thus, the samples do not need to be normally distributed
[28]. This test can be applied to both small and large data sets
[28]. We apply this test considering a significance level of 5%.



As file proximity ranking gives the best MAP for the highest
number of subject systems (6 out of 10 systems), we wanted
to realize if this ranking mechanism is significantly better
than each of the other three mechanisms. According to our
test results, the MAPs provided by file-proximity ranking are
significantly greater than the MAPs from the support ranking
and confidence ranking mechanisms with a p-value of 0.01
for the two-tailed test case. However, file-proximity ranking
does not give significantly different MAPs than the other two
ranking techniques: recency ranking and similarity ranking.
We also find that recency ranking is significantly better than
support and confidence ranking mechanisms with a p-value of
0.04. However, the difference between recency and similarity
ranking mechanisms is not significant. Finally, we did not find
any particular ranking mechanism which is significantly better
than all other ranking mechanisms.

Answer to RQ 2: According to our analysis on all
five ranking mechanisms, we did not find any particular
ranking mechanism that performs significantly better than
all the other mechanisms. Moreover, different ranking
mechanisms can appear to be the most promising one
at different times during evolution.

Such a finding implies that sticking to a particular ranking
mechanism during the entire period of evolution of a software
system is not a good idea. It inspires us to investigate whether
it is possible to dynamically select an appropriate ranking
mechanism for the current target entity on the basis of the past
occurrences of co-change. We perform such an investigation
when answering RQ 3.

C. Answering RQ 3

RQ 3: Can we select a suitable ranking mechanism on the
basis of the past history for ranking co-change candidates?

Rationale. From our previous research question we realize
that different ranking mechanisms might be the most suitable
one for ranking the co-change candidates of different target
methods at different points of evolution of a subject system.
In this subsection we investigate whether a suitable ranking
mechanism can be selected on the basis of the past history of
ranking co-change candidates. We perform our investigation
in the following way for answering RQ 3.

Selecting the best ranking mechanism from the history
for ranking the co-change candidates for a target method.
Our idea of selecting the best ranking mechanism from the
past ranking history is as follows. Let us assume that we are
examining a commit operation. A number of methods were
changed together in the commit. We consider one method,
for example m, as the target method. The other methods are
the actually co-changed candidates of the target method, m.
We consider these other methods as the set, ACCm. In this
situation, we apply Tarmaq on the past evolutionary history
of the software system and predict co-change candidates for
the target method. We consider these co-change candidates

as a set, SCCm (suggested co-change candidates). From the
intersection of the two sets, SCCm and ACCm, we get
the true positives. The true positives for the target method
constitute a set named TPm. Let us also assume that the target
method that we analyzed just before analyzing m is mprevious

and the target method that we will analyze just after analyzing
m is mnext. We now perform the following two steps for the
target method, m:

Step 1 (Ranking the co-change candidates of m using
the previously determined best ranking mechanism): Let
us assume that the best ranking mechanism in ranking the
co-change candidates of mprevious is BRM (best ranking
mechanism). The way of obtaining BRM will be explained
in Step 2. We rank the suggested co-change candidates in
the set, SCCm, using BRM. We then determine the average
precision considering this BRM using Eq. 5 with the help
from the sets: ACCm and TPm. This average precision is
considered for calculating the mean average precision.

Step 2 (Analyzing the best ranking mechanism for
ranking the co-change candidates of the target method
m): The best ranking mechanism (BRM) that we selected
in Step 1 for ranking the members in SCCm (i.e., the co-
change candidates of m) might not actually be the best one to
rank these members. BRM was the most appropriate one for
ranking the co-change candidates of the previous target method
mprevious. For determining which mechanism will be the best
one for ranking the co-change candidates of m, we apply
each of the five ranking mechanisms (discussed in Section
III) on the set SCCm and determine the average precision
by analyzing the two sets ACCm and TPm. The ranking
mechanism that will provide the highest average precision will
be selected as the best ranking mechanism (BRM) for ranking
the co-change candidates of the next target method mnext (i.e.,
for ranking the members in SCCmnext

). We should note that
different ranking mechanisms may provide the same average
precision. Thus, the best average precision might be obtained
from more than one mechanism. In this case, we prioritize
the mechanisms in the following order: (1) File-proximity
Ranking, (2) Recency Ranking, (3) Similarity Ranking, (4)
Support Ranking, and (5) Confidence Ranking. We consider
this ordering on the basis of the number of subject systems
where the ranking mechanisms appear to be the best ones.
From Table IV we see that File-proximity ranking appears to
be the best one for six subject systems. Recency ranking is
the best one for three subject systems: Ctags, Camellia, and
DNSJava. For the remaining system, jEdit, Similarity ranking
provides the best MAP. Confidence ranking always appears to
be the worst one. Thus, we consider this mechanism as the
last one in the ordering.

Fig. 2 shows the two steps described above while ranking
co-change candidates for a target method. Figure caption
describes the details about the interactions between the steps.

Comparing HistoRank with the other ranking mech-
anisms. Fig. 3 shows the MAPs provided by the different
ranking mechanisms for each of our subject systems. We
see that for each of the subject systems, HistoRank provides



Fig. 2. Ranking co-change candidates on the basis of the previously determined best ranking mechanism. This figure shows the two steps (Step 1, Step
2) while ranking the co-change candidates for a target method. Let us look at the big box in the middle that demonstrates ranking co-change candidates for
the target method m. In Step 1 residing in this box, we get the ranking mechanism that appeared to be the best from the Step 2 while ranking the co-change
candidates of the previous target method mprevious. This best ranking mechanism is applied on the co-change candidates of m for ranking those. After
ranking, we determine the average precision. This average precision is considered for calculating the mean average precision (MAP). In Step 2 for the target
method m, we analyze which of our four ranking mechanisms is really the best one for ranking the co-change candidates of m. This best ranking mechanism
is considered in the Step 1 of the next target method mnext and so on.
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Fig. 3. Mean average precision (MAP) provided by different ranking mechanisms

the best MAP among all the ranking techniques. We also
wanted to analyze whether HistoRank provides a significantly
better MAP compared to the other mechanisms. We conducted
Wilcoxon Signed Rank tests [28], [29] for this purpose as we
did while answering RQ 2. From our test result we realize
that HistoRank provides significantly higher MAPs than each
of the other ranking mechanisms. The p-value for each of the
test cases is 0.00512 which is smaller than 0.05. We find that
the effect size [34] for each of the test cases is 0.627 which
is larger than the medium effect size of 0.5 [30].

Answer to RQ 3: From our investigation and analysis
we realize that it is possible to select a suitable ranking
mechanism from the past ranking history for ranking the
co-change candidates of a target method. Our proposed
ranking approach, HistoRank, that works by analyzing
the past ranking history performs the best among all the
ranking mechanisms.

In the following section, we investigate different variants of
HistoRank and make a comparison among those.

VI. INVESTIGATING THE VARIANTS OF HISTORANK

In our previous research (RQ 3), we introduced HistoRank
which analyzes only the ranking in the immediate previous

occurrence of co-change. In this section, we investigate two
variants of the original HistoRank approach and answer the
fourth research question (RQ 4) through our analysis.

RQ 4: Which variant of history based ranking performs the
best in ranking co-change candidates?

A. The first variant of HistoRank

This variant also works in two steps as of the original
HistoRank approach.

Step 1. In this step, for ranking the co-change candidates
of the current target entity, we analyze the ranking history
in all previous occurrences of co-change. We record which
ranking mechanism could be the best one in which occurrence.
We finally select the ranking mechanism that appeared to be
the best in most of the previous occurrences of co-changes.
We apply this selected ranking mechanism for ranking the
co-change candidates of the current target program entity.
The average precision obtained by applying this selected
mechanism is used for calculating the MAP.

Step 2. Again, the ranking mechanism that we selected in
Step 1 by analyzing the ranking occurrences in the previous
history might actually not appear to be the best one for the
current target entity. We apply all our ranking mechanisms for
ranking the co-change candidates of the current target entity,
determine the best mechanism by analyzing its actually co-
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changed candidates, and record this best mechanism for using
in the calculation for the next target entity.

B. The second variant of HistoRank

In this variant we maintain a separate history for each of
the target entities. Ranking co-change candidates for a target
program entity consists of the following two steps.

Step 1. In this step, we first determine if we previously
ranked co-change candidates of the same target entity. If we
did this, the best ranking mechanism from the latest occur-
rence of ranking is already recorded. We use this recorded
mechanism for ranking the recent set of co-change candidates
of the target entity. The average precision that we obtain by
using this recorded mechanism is considered for calculating
MAP. However, if the same target entity was not previously
seen, we select the ranking mechanism that was decided to
be the best in the immediate previous occurrence of ranking.
The average precision obtained after applying this previously
decided best mechanism is considered for calculating MAP.

Step 2. In this step, we apply all five ranking mechanisms
(Section III) on the co-change candidates of the target entity,
determine the best mechanism by analyzing the actually co-
changed candidates of the target, and finally record this best
mechanism against the target entity so that if we need to deal
with this target again in the future, we can use this recorded
ranking mechanism.

C. Comparing the original HistoRank with its variants

Fig. 4 shows the comparison of the original HistoRank
approach with its variants. According to the graph, the original
HistoRank has the best MAP for each of our subject systems.
Between the two variants, the second variant that maintains a
separate history for each target entity is mostly better than the
first variant. Moreover, the performance of the second variant
is often very near to the original HistoRank approach. The
comparison scenario among the three approaches makes us
realize that emphasizing the best ranking mechanism in the
latest occurrence of co-change in the history provides us the
best MAP for each of the subject systems.

We also wanted to determine whether the original His-
toRank is significantly better than its two variants. We again
perform Wilcoxon Signed Rank tests [28], [29] for this pur-
pose considering a significance level of 5%. We compare the

MAPs provided by the original HistoRank with the MAPs
provided by each of the two variants. From our tests we realize
that the original HistoRank provides significantly better MAPs
than each variant with a p-value of 0.005 and a Cohen’s d
effect size [34] of 0.627.

Answer to RQ 4. According to our analysis, the orig-
inal HistoRank approach that emphasizes the ranking in
the latest occurrence of co-change in the history performs
the best in ranking co-change candidates.

VII. DISCUSSION

While the existing studies dealing with association rules
for detecting co-change candidates have always ranked the
candidates using the support and confidence measures, our
analysis for answering RQ 2 shows that ranking on the basis
of these measures is often not desirable. The other ranking
mechanisms such as recency ranking, similarity ranking, and
file-proximity ranking appear to be the most promising ones
at different points of evolution of our subject systems. Our
answer to RQ 2 makes us realize that sticking to a particular
ranking mechanism during the entire evolution might not
be a good idea. Our investigation regarding RQ 3 analyzes
the possibility of dynamically selecting the most appropriate
ranking mechanism from the past ranking history of co-
change candidates. As a result of this analysis, we propose a
ranking approach, HistoRank, that is capable of dynamically
selecting the most promising ranking mechanism by analyzing
the history. In particular, HistoRank selects which of the five
mechanisms discussed in Section III can be the most suitable
one for ranking the co-change candidates of a target program
entity. Our analysis in RQ 4 on different variants of HistoRank
implies that the approach that emphasizes the most recent
occurrence of co-change in the past performs the best. Our
implementation of HistoRank is available online [32].

VIII. THREATS TO VALIDITY

We did not investigate enough subject systems to generalize
our findings regarding ranking co-change candidates obtained
using evolutionary coupling. However, to ensure our findings
were worthwhile, we countered this threat by selecting a
diverse set of candidate systems, in terms of application
domains, sizes, number of revisions, and by covering three
different programming languages.

The revision history lengths of our investigated subject
systems might not be enough to generalize our findings.
However, according to Table II, the revision histories of our
subject systems are of different lengths from small to large.
Thus, our experiment was not biased by the revision history
lengths of our subject systems.

IX. RELATED WORK

Evolutionary coupling is a well investigated phenomenon
in the realm of software engineering research and practice.
A great many studies have been done on the detection [1],



[7], [8], [13], [17], [18], [25], analysis [6], [11], [36], and
usage [3], [9], [10], [14]–[16], [19], [21], [22] of evolutionary
coupling. One of the major purposes of using evolutionary
coupling is suggesting co-change candidates [5], [9], [13],
[25] whenever a programmer makes changes to the code-base.
Our research in this paper focuses on ranking the co-change
candidates suggested by evolutionary coupling.

Mondal et al. [16] previously used recency ranking for
ranking co-change candidates of code clones. The co-change
candidates of a target clone fragment are simply the other
fragments in the same clone group detected by a clone detec-
tor. Our investigation also involves recency ranking. However,
our study is different because we apply recency ranking for
ranking co-change candidates for methods. We use associ-
ation rules for predicting co-change candidates for a target
method. Our experiment shows that recency ranking performs
significantly better than support and confidence ranking when
ranking co-change candidates for methods. We have also
experimented different other ranking mechanisms and finally
propose a history based ranking approach, HistoRank, that
significantly outperforms each of the ranking mechanisms.

Zimmerman et al. [27] implemented a tool called Rose
that can detect evolutionary coupling among different types
of program entities through mining version histories under
CVS. According to their investigation, evolutionary coupling
can detect coupling links which cannot be detected by program
analysis. Our study is different from their study because we
investigate ranking of co-change candidates obtained through
analyzing evolutionary coupling. Zimmerman et al. [27] did
not perform such an investigation.

Rolfsness et al. [25] introduced an algorithm called Tarmaq
that analyzes evolutionary coupling for predicting co-change
candidates for files. They showed that Tarmaq outperforms
Rose and SVD in detecting impact sets. They ranked the co-
change candidates (i.e., the items in the impact set) using
support and confidence measures. In our study, we use the
Tarmaq algorithm for predicting co-change candidates for
methods. We rank the co-change candidates for methods using
five different ranking mechanisms (Section III). We finally
propose a ranking approach, HistoRank, that dynamically
selects the best ranking mechanism on the basis of the ranking
occurrences in the past evolutionary history.

Pugh et al. [36] investigated if it is possible to achieve an
accuracy level like Tarmaq using a smaller number of commit
transactions than Tarmaq. They showed that a dynamically
selected smaller set of commit transactions can be enough
instead of considering the whole set of transactions from the
entire past history. However, our research goal is different.
We investigate which ranking mechanism can be the most
suitable one for ranking the co-change candidates retrieved
using evolutionary coupling.

Islam et al. [13] investigated whether it is possible to
improve the detection accuracy of evolutionary coupling by
applying transitivity on regular association rules. Kagdi et
al. [9] investigated if it is possible to provide better co-
change suggestions by combining evolutionary coupling and

conceptual coupling. However, these studies did not investigate
ranking co-change suggestions.

A number of other studies have also investigated how to
improve the detection accuracy of evolutionary coupling using
various measures. For example, Alali et al. [1] investigated two
measures: pattern age and pattern distance for this purpose.
Mondal et al. proposed two measures: significance and change
correspondence in two preliminary studies [17], [18]. Jafaar
et al. [6] investigated macro co-change and dephase macro
co-change for improving the detection accuracy. Canfora et
al. [7] introduced Granger causality test for the same pur-
pose. Bantelay et al. [5] combined interactions with commit
operations for improved detection of evolutionary coupling.
While all these studies proposed different measures and used
different techniques for improved detection of evolutionary
coupling, none of these studies investigated ranking of the co-
change suggestions. We investigate ranking of the co-change
suggestions in our study.

All the existing studies that deal with association rules
for detecting co-change candidates for program entities have
ranked the candidates using the support and confidence mea-
sures. Our study is different from all these existing studies
because we investigate which of the different ranking mecha-
nisms can be the most appropriate one for ranking co-change
candidates. We analyze five different ranking mechanisms
and finally propose a ranking approach called HistoRank
that significantly outperforms all those five mechanisms. We
believe that HistoRank will be an important addition to the
existing knowledge of evolutionary coupling.

X. CONCLUSION

In our study, we investigate five different ranking mecha-
nisms for ranking the co-change candidates obtained through
applying evolutionary coupling. We apply these ranking mech-
anisms on thousands of revisions of ten subject systems and
realize that different mechanisms can appear to be the most
suitable one at different points of evolution of a software sys-
tem. We finally propose a history-based ranking approach, His-
toRank, that ranks the co-change candidates by analyzing the
past occurrences of ranking. We find that HistoRank performs
the best for each of our subject systems. We investigate two
variants of the original HistoRank approach and find that the
original one that emphasizes the most recent occurrence of co-
change in the past evolution performs the best. We believe that
our proposed HistoRank ranking approach can be important
for the programmers in identifying the most likely co-change
candidates during programming. The implementation and data
from our research are available online [32].
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