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ABSTRACT
While designing a software system, minimizing coupling among
program entities (such as files, classes, methods) is always desir-
able. If a software entity is coupled with many other entities, this
might be an indication of poor software design because chang-
ing that entity will likely have ripple change effects on the other
coupled entities. Evolutionary coupling, also known as change cou-
pling, is a well investigated way of identifying coupling among
program entities. Existing studies have investigated whether file
level or class level evolutionary couplings are related with software
bug-proneness. While these existing studies have mixed findings re-
garding the relationship between bug-proneness and evolutionary
coupling, none of these studies investigated whether method level
(i.e., function level for procedural languages) evolutionary coupling
is correlated with bug-proneness. Investigation considering a finer
granularity (i.e., such as method level granularity) can help us pin-
point which methods in the files or classes are actually responsible
for coupling as well as bug-proneness.

In this research, we investigate method level evolutionary cou-
pling through mining association rules and analyze whether this
coupling is correlated with software bug-proneness. According to
our investigation on thousands of commit operations from the evo-
lutionary history of six open-source subject systems, method level
evolutionary coupling generally has a good positive correlation
with software bug-proneness. Our regression analysis indicates
that evolutionary coupling and bug-proneness mostly have a linear
relationship between them. We also observe that methods that ex-
perience bug-fixes during evolution generally have a significantly
higher number of evolutionary coupling links than themethods that
do not experience bug-fixes. We realize that minimizing method
level evolutionary coupling links can help us minimize bugs in soft-
ware systems. Our prototype tool is capable of identifying highly
coupled methods along with their coupling links so that program-
mers can find possibilities of minimizing those links for reducing
bug-proneness of software systems.
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1 INTRODUCTION
Software systems will undergo changes during evolution and main-
tenance. However, coupling among program entities (such as files,
classes, or methods) in a software system often introduces chal-
lenges in making changes to the software system’s code-base [43].
If a target program entity (an entity which is going to be changed
by a programmer) is coupled with several other entities, a change in
that target entity might have ripple change effects on the coupled
entities [41]. Changing a target program entity without properly an-
alyzing its impacts on the coupled entities is likely to introduce bugs
in a software system [40]. As entity coupling often introduces chal-
lenges in making changes to the code-base, lower coupling among
entities is always desirable [42, 43]. Our research in this paper in-
vestigates a particular type of coupling called evolutionary coupling
[5, 14, 33] and its relationship with software bug-proneness.

Evolutionary coupling is a well investigated phenomenon in the
realm of software engineering research and practice. If two or more
program entities appear to co-change (change together) frequently
during software evolution, it is expected that the entities have
coupling. Such a coupling is termed as evolutionary coupling (or
change coupling) in the literature [4, 5, 7, 8]. If a group of program
entities exhibited evolutionary coupling in the past, a change in
one of the entities in future may require corresponding changes to
the other entities in the group. According to the existing studies
[15, 29], evolutionary coupling can discover those couplings among
entities which are missed by the other coupling measures. In our
research, we investigate method level evolutionary coupling and
its relationship with bug-proneness.

A number of existing studies [31, 34, 35, 37] have investigated
relationship between evolutionary coupling and software fault-
proneness. For example, Kirbas et al. [35] investigated if file level
evolutionary coupling is correlated with bug-proneness. Graves
et al. [34] found that module level (a higher granularity than file
level) evolutionary coupling is a poor predictor of software defects.
Knab et al. [37] showed that file level evolutionary coupling cannot
be a predictor of defects in Mozilla project. However, D’Ambros
et al. [31] found class level evolutionary coupling to be correlated
with software fault-proneness. We see that all these studies were
conducted considering coarse grained (file level, class level, or mod-
ule level) evolutionary coupling and they report mixed findings.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


CASCON ’19, Nov. 4–6, 2019, Toronto, ON, Canada Manishankar Mondal Banani Roy Chanchal K. Roy Kevin A. Schneider

Moreover, analysis using coarse grained couplings makes it difficult
to realize which finer grained entities, such as methods (functions
in procedural language), are actually responsible for coupling and
bug-proneness. In our study, we investigate whether method level
evolutionary coupling is correlated with bug-proneness in software
systems and whether such a fine-grained coupling information can
provide us insights towards minimizing bug-proneness.

We mine method level association rules from thousands of com-
mit operations of our subject systems. We propose a measure
to quantify the evolutionary coupling among methods. We also
measure the bug-proneness of our candidate systems and ana-
lyze whether this measure of bug-proneness is correlated with
the method level evolutionary coupling measure. We answer the
following important research questions through our research.

• RQ 1: Is method level evolutionary coupling of a software
system related with its bug-proneness?

• RQ 2: Do methods that experience bug-fixes have a higher
number of evolutionary coupling links than the others that
do not experience bug-fixes?

While the first research question analyzes the correlation and
regression between method level evolutionary coupling and soft-
ware bug-proneness, the second question investigates how method
level evolutionary coupling contributes to software bug-proneness.
According to our investigation on thousands of commits of six open
source subject systems written in three programming languages
(Java, C, and C#), we have the following findings:

• Method level evolutionary coupling generally has a very
good positive correlation with software bug-proneness. This
correlation is statistically significant.

• Our regression analysis reveals that bug-proneness andmethod
level coupling mostly have a good linear relationship be-
tween them. Thus, it is expected that an increase in method
level coupling will generally be associated with a correspond-
ing increase in the bug-proneness of a software system.

• The average number of evolutionary coupling links per
buggy method (i.e., methods that experienced bug-fixes) is
significantly higher (according to our significance test) than
the average number of coupling links per non-buggy method
(i.e., methods that did not experience bug-fixes).

We believe that our in-depth investigation on fine-grained (method
level) evolutionary coupling as well as the findings can be of signif-
icant importance for better maintenance and evolution of software
systems. The techniques that we have used in our study can help
programmers in identifying methods with a large number of evolu-
tionary coupling links. When making decisions about restructuring
a software system for better maintenance, the programmers should
primarily focus on the highly coupled methods and their coupling
links in order to find possibilities of minimizing the coupling links.

The rest of the paper is organized as follows. Section 2 describes
the terminology, Section 3 discusses our experiment setup and steps,
Section 4 defines our metrics regarding software bug-proneness
and method level evolutionary coupling, Sections 5 and 6 answer
our research questions by analyzing our experiment results, Section
7 discusses the implications of our findings, Section 8 describes the
related work, Section 9 mentions some possible threats to validity,
and finally, Section 10 makes a concluding remark.

2 TERMINOLOGY
In the following subsections we describe evolutionary coupling
and method genealogy. Method genealogy detection is essential for
mining evolutionary coupling among methods.

2.1 Evolutionary coupling
Evolutionary coupling among program entities is a well investi-
gated phenomenon in software engineering research and practice.
This coupling can be realized using association rules [12, 15] with
two related measures: Support and Confidence.

Association Rule. An association rule [12] is formally defined
as an expression of the form X => Y . Here, X is known as the
antecedent and Y is the consequent. Each of X and Y is a set of one
or more program entities. In the context of software engineering,
such an association rule implies that ifX gets changed in a particular
commit operation, Y also has the tendency of getting changed in
that commit operation.

Support and confidence of an association rule. According
to Zimmermann et al. [15], support is the number of commits in
which an entity or a group of entities changed together. Let X is the
set of one or more program entities. CX is the set of commits such
that all the program entities in X changed together in each of these
commits. Then, support of X can be calculated using Eq. 1.

Support(X ) = |CX | (1)
Now, the support of the association rule X => Y where each of

X and Y is a set of one or more program entities can be calculated
using the following equation.

Support(X => Y ) = Support(X ∪ Y ) (2)
Here, X ∪ Y is the union of the sets X and Y . Confidence of an

association rule, X => Y , determines the conditional probability that
Y will change in a commit operation provided that X changed in that
commit operation. We determine the confidence of the association
rule, X => Y , using Eq. 3.

Confidence(X => Y ) = Support(X => Y )/Support(X ) (3)

Let us now consider an example of two program entities E1 and
E2. These entities can be files, classes, or methods. If E1 and E2 have
ever changed together (co-changed), we can assume two association
rules, E1 => E2 and E2 => E1 from these. Suppose, E1 was changed
in four commits: 2, 5, 6, and 10 and E2 was changed in six commits:
4, 6, 7, 8, 10, and 13. Thus, according to the definition, Support(E1)
= 4 and Support(E2) = 6. Support(E1, E2) = 2, because E1 and E2
changed together (co-changed) in two commits: 6 and 10. Again,
Support(E1 => E2) = Support(E2 => E1) = Support(E1,E2) = 2.
Now, confidence (E1 => E2) = support(E1, E2) / support(E1) = 2 / 4 =
0.5 and confidence(E2 => E1) = 2 / 6 = 0.33.

In our experiment, we consider method level association rules.
The antecedents and consequents of such rules are methods.

2.2 Method Genealogy
During the evolution of a software system, a particular method
might be created in a particular revision and the method might
remain alive in a number of consecutive revisions. Each of these
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Table 1: Investigated subject systems

Systems Lang. Domains LLR SRev LRev

Ctags C Code Definition Generator 33,270 1 774
jEdit Java Text Editor 191,804 3791 4000
SqlBuddy C# A tool for using with Microsoft SQL

Server and MSDE
18,387 1 945

Camellia C Image Processing Library 93,396 1 170
Carol Java Game 25,091 1 1700
DNSJava Java DNS protocol 23,373 1 1635
LLR = LOC in the Last Revision
SRev = Starting Revision LRev = Last Revision

revisions contains a snap-shot of the method. The genealogy of
the method consists of the snap-shots of it from all those revisions
where it was alive. Thus, the genealogy of a particular method can
help us analyze how it was changed over the evolution. If two or
more methods have ever co-changed (changed together) during
evolution, we can identify it by examining their genealogies.

3 EXPERIMENT SETUP AND STEPS
We conduct our experiment on six open-source subject systems
that we download from an on-line SVN repository called Source-
Forge.net [11]. Table 1 lists these systems along with their attributes
such as sizes, application domains, starting and ending revisions,
and implementation languages. While the systems, jEdit, SqlBuddy,
Carol, and DNSJava are object oriented systems (written in Java and
C#), the remaining systems, Ctags and Camellia, are non-object-
oriented systems (written in C). We also see that the subject sys-
tems differ in their sizes, application domains and revision history
lengths. We select our subject systems in this way in order to gen-
eralize our findings. We see that the starting revision of our subject
system jEdit is 3791, while the starting revision for the other sys-
tems is 1. In the case of jEdit, we did not get the former revisions (1
to 3790) in the on-line repository possibly because it was considered
for storing in the on-line repository from its 3791th revision. We
perform the following experimental steps on each subject system.

(1) Downloading all the revisions of the subject system from the
on-line SVN repository.

(2) Extracting source code changes between every two consecu-
tive revisions using the UNIX diff operation.

(3) Detecting methods from each of the revisions by applying
the tool called Ctags [19].

(4) Detecting method genealogies by considering all the meth-
ods detected from all the revisions using the genealogy detection
technique proposed by Lozano and Wermelinger [38].

(5) Mapping the previously extracted changes to the already
detected methods of different revisions so that we can identify
which methods were changed during software evolution. Let us
assume that we have extracted source-code changes between the
revisions ri and ri+1 using diff. From the diff output, we determine
which changes occurred at which lines of which source code files in
revision ri . We also detect all the methods along with their starting
and ending line numbers from all the source code files of revision ri .
Using the line number of the changes and methods, we determine
which methods in ri intersect with the changes that occurred in ri .
In other words, we determine which methods were affected by the
changes that occurred in ri .

(6) Detecting bug-fix changes (i.e., bug-fix commit operations)
by automatically analyzing the commit messages. We will elaborate
this step in Section 3.1.

(7) Detecting evolutionary coupling among methods by extract-
ing and analyzing association rules from the entire evolutionary
history of our subject systems. Section 3.2 will discuss the details.

(8) Calculating a method level evolutionary coupling metric and
a bug-proneness metric for each of our subject systems and an-
swering the research questions through correlation and regression
analysis. Section 4 will elaborate on the metrics that we calculate.
Sections 5 and 6 will answer our research questions.

In the following two subsections we describe how we detect
bug-fix commit operations and mine evolutionary coupling (i.e.,
change coupling) among methods.

3.1 Detecting bug-fix commits
For a particular subject system, we retrieve the commit messages by
applying the ‘SVN log’ command. A commit message describes the
purpose of the corresponding commit operation. We automatically
examine the commit messages using the heuristic proposed by
Mockus and Votta [39] to identify those commits that occurred for
the purpose of fixing bugs. The way we detect the bug-fix commits
was also followed by Barbour et al. [27]. They investigated whether
late propagation in code clones [45] are related to bugs. Our study is
different because we investigate whether method level evolutionary
coupling is related with software bug-proneness.

3.2 Detecting evolutionary coupling among
methods

Evolutionary coupling among methods is realized by detecting asso-
ciation rules among them. Let us assume that the commit operation
ci was applied on the revision ri of a software system. The imme-
diate next revision ri+1 was created because of the commit. We
detect the changes that occurred to the code-base of revision ri by
detecting the differences between the corresponding source code
files of revisions ri and ri+1 using UNIX diff. We then map these
changes to the methods of revision ri to determine which methods
in ri were affected by the commit operation ci . As we detect method
genealogies from the entire history of evolution of a software sys-
tem, we can determine which methods changed together in which
commit operations. We identify all possible pairs of methods such
that the two methods in each pair changed together in one or more
commit operations. Let us assume that the methods x and y make
such a method-pair. For this pair we determine three measures:
(i) the number of commits where x changed, (ii) the number of
commits where y changed, and (iii) the number of commits where
both of the methods changed together. From this pair we determine
two association rules: x => y and y => x . For each of these rules
we determine the support and confidence values using the above
three measures by following the equations in Section 2.1.

In our experiment we disregard those association rules where
the support is less than 2. Such a discarding of the lowest support
(a support of 1) rules was previously done by the existing studies
[4, 29] for the purpose of avoiding insignificant rules.
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4 EVOLUTIONARY COUPLING AND
BUG-PRONENESS METRICS

We determine the following two metrics in order to quantify soft-
ware bug-proneness and evolutionary coupling among methods.

4.1 The metric for quantifying method level
evolutionary coupling

In order to measure the method level evolutionary coupling of a
software system, we calculate a metric called Percentage of Cou-
pled Methods (PCM). This is the percentage of changed methods
that exhibited evolutionary coupling for a particular period of evo-
lution. Let us assume that M is the set of all those methods that
were changed during a period of evolution of a software system.
The set of changed methods that exhibited evolutionary coupling in
that period isMc . For detecting which methods exhibited evolution-
ary coupling in that period, we mine association rules among the
methods. We calculate PCM according to the following equation.

PCM = (|Mc | × 100)/|M | (4)
Here, |M| is the number of changed methods, and |Mc | is the

number of those changed methods that exhibited evolutionary
coupling during a period of evolution of a software system.

4.2 The metric for quantifying bug-proneness
Bug-proneness of a software system is the possibility that the sys-
tem will undergo a bug-fix during its evolution. For measuring the
bug-proneness of a software system, we calculate a metric called
Percentage of Bug-fix Commits (PBC). This is the percentage of
bug-fix commits with respect to all the commits during a particular
period of evolution. We determine PBC using Eq. 5.

PBC = (NBC × 100)/TNC (5)
Here, TNC is the total number of commits during a period of

evolution, and NBC is the number of bug-fix commits that occurred
in that period. We should note that in a previous study, Sliwerski
et al. [46] proposed an algorithm for identifying fix introducing
changes by linking the version history of a software system with its
bug-database. However, identifying which changes caused the oc-
currence of a bug is not the goal of our research. The bug-proneness
metric (Eq. 5) that we calculate requires how many bug-fixes oc-
curred during software evolution. As we mentioned previously,
for detecting which commits occurred for fixing bugs we use the
approach proposed by Mockus and Votta [39]. This approach in-
volves automatically analyzing the commit log that we obtain from
a version control system such as SVN or GitHub.

4.3 Rationale behind these metrics
We define these metrics in such a way that they allow us to perform
evolutionary analysis on the correlation between bug-proneness
and evolutionary coupling. We see that these metrics measure
method level evolutionary coupling and bug-proneness consid-
ering a particular period of evolution of a software system. Thus,
we can determine these metric values for different periods of evo-
lution of our subject systems and can analyze whether the values
of bug-proneness in these periods are correlated with the values
of evolutionary coupling in the corresponding periods. The next

Table 2: Interpretation of correlation coefficient

Range of Correlation Coefficient Interpretation

Correlation Coefficient is less than 0.1 Trivial Correlation
Correlation Coefficient is between 0.1 and 0.3 Low Correlation
Correlation Coefficient is between 0.3 and 0.5 Moderate Correlation
Correlation Coefficient is between 0.5 and 0.7 High Correlation
Correlation Coefficient is between 0.7 and 0.9 Very High Correlation
Correlation Coefficient is greater than 0.9 Almost perfect correlation

section will describe how we analyze the correlation between bug-
proneness and method level evolutionary coupling.

We should also note that as we consider method level (i.e., func-
tion level for subject systems written in procedural programming
languages) evolutionary coupling, our measure PCM is applicable
to subject systems written in both object oriented and non-object-
oriented programming languages. Table 1 mentions the subject
systems that we have studied in our research. We see that four
subject systems: jEdit, SqlBuddy, Carol, and DNSJava were written
in the object oriented languages (Java and C#). The remaining two
systems Ctags and Camellia were written in C which is a procedural
programming language.

Finally, as we consider fine grained evolutionary coupling (i.e.,
method level coupling) in our study, we can easily pin point which
methods in the files or in the classes are actually responsible for the
coupling as well as for the bug-proneness. The existing studies [31,
34, 35, 37] that have considered file level, class level, or module level
evolutionary coupling cannot identify methods that are responsible
for the coupling.

5 RELATION BETWEEN BUG-PRONENESS
AND EVOLUTIONARY COUPLING

This section answers our first research question through analyzing
the correlation and regression between software bug-proneness
and evolutionary coupling.

RQ 1: Is method level evolutionary coupling of a software system
related with its bug-proneness?

We answer this research question (RQ 1) by dividing it into the
following two smaller and more specific questions:

RQ 1.1 Is method level evolutionary coupling correlated with soft-
ware bug-proneness?

RQ 1.2 Is there a linear relationship between method level evolu-
tionary coupling and software bug-proneness?

We answer RQ 1.1 through analyzing correlation between the
two metrics: PCM (percentage of coupled methods) and PBC (per-
centage of bug-fix commits). For answering RQ 1.2, we analyze the
regression between the two metrics.

5.1 Correlation Analysis
For each of our subject systems, we determine the correlation be-
tween bug-proneness and evolutionary coupling in the following
way. We first identify the bug-fix commit operations that were
experienced by the subject system by following the procedure de-
scribed in Section 3.1. For different intervals of commit operations,
we determine the two measures PCM (Percentage of Coupled Meth-
ods) and PBC (Percentage of Bug-fix Commits). Then we analyze
whether the PCM values are correlated with PBC values. We explain
this with a simple example as follows.
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Figure 1: Calculation of PBC and PCM considering a commit
interval of n.

Figure 2: Explanation of calculating PBC considering a com-
mit interval of 100.

Let us consider an interval ofn commit operations. We determine
the PCM and PBC values from the entire period of evolution on
the basis of this interval. We first consider the evolutionary period
consisting of the first n commits of a subject system. We determine
PCM and PBC for this period using the equations Eq. 4, and 5. Next,
we consider the 2n commits starting from the first commit. For this
period of evolution, we again determine PCM and PBC. Then, we
consider the first 3n commits and calculate the corresponding PCM
and PBC values and so on. In this way, for an interval n, the total
number of PCM values that we get from the entire evolutionary
history of a subject system consisting ofC commits isC/n. We also
obtain the same number of corresponding PBC values.

Fig. 1 explains our calculation strategy considering an interval
of n commits. We can see the evolutionary periods consisting of
n, 2n, 3n commits and so on. From each of these periods, we get a
PBC value and a corresponding PCM value. Here, it is important to
explain the following two things:

(1) Although the number of commits in the commit ranges is
constantly increasing by n in each step as demonstrated in Fig.
1, the values of PCM and PBC are not always increasing because
these two values are percentages. PCM is the percentage of changed
methods that have exhibited evolutionary coupling and PBC is the
percentage of commits that occurred for fixing bugs. Let us assume
that the interval n = 100. This might be the case that a software
system experienced more bug-fixes during its second 100 commits
than its third 100 commits as shown Fig. 2. According to Fig. 2,
a software system experienced respectively 2, 10, and 2 bug-fix
commits during its first, second, and third 100 commits. We can
see that the PBC values for the three commit ranges: 1 to 100, 1
to 200, and 1 to 300 are respectively 2, 6, and 4.67. The PBC value

decreased in the third commit range. A similar scenario can also
occur for PCM.

(2) We see that the ranges of commits that we consider are of
different lengths such as n, 2n, 3n and so on, however, each of these
ranges starts from the very first commit operation in the history.
One can argue that we could determine the coupling and bug-
proneness values from the subsequent commit ranges each having
n commits. More elaborately, the starting commit in a particular
range could be the next commit just after the ending of the previous
range. However, we did not follow this way, because the couplings
(i.e., method coupling links) introduced in a particular commit
range might be the reason behind the bug-proneness exhibited
in a later range. In other words, the bug-proneness exhibited in a
particular commit range might be the result of couplings introduced
in a previous range. With this fact, we should not exclude a former
commit range whenmeasuring bug-proneness from newer commits.
Finally, we believe that our strategy of measuring PBC and PCM
measures by considering different commit ranges starting from the
beginning one is reasonable.

For a particular commit interval, n, we determine the commit
ranges as shown in Fig. 1 from the entire evolutionary history of
a subject system. For each range, we calculate the bug-proneness
(PBC) and coupling (PCM) measures. We analyze whether the PBC
values obtained from the commit ranges are correlated with the cor-
responding PCM values obtained from those ranges. We investigate
correlation considering different commit intervals (i.e., considering
different values of n).

Spearman’sRankCorrelation.Wedetermine Spearman’s Rank
correlation coefficient [24] between bug-proneness (PBC) and evo-
lutionary coupling (PCM) data. We choose Spearman correlation
because this is non-parametric, and thus, it does not require the
samples to be normally distributed. Table 3 shows the results of
correlation analysis between PBC and PCM for different commit
intervals from 10 to 100. We can see the correlation coefficient,
sample size, and significance of correlation (p-value) considering a
significance level of 0.05. As was considered by Kirbas et al. [35],
we interpret the values of correlation coefficient according to Table
2. If the p-value regarding a correlation is less than the significance
level (0.05), the correlation is considered significant. For our subject
systems, jEdit and Camellia, we did not get enough samples for
analyzing correlation for higher commit intervals. We have marked
these cases as N /A in Table 3.

From Table 3 we see that our subject system Ctags shows almost
perfect correlation between PBC and PCM for most of the commit
intervals except the intervals of 30 and 90. For these two intervals,
the correlation is very high according to Table 2. Moreover, the
p-value of correlation considering each commit interval is less that
0.05. Thus, the correlation between PBC and PCM is significant
for each commit interval of Ctags. For jEdit, we could perform
correlation analysis for the first five commit intervals (10 to 50). For
each of these intervals, the correlation between bug-proneness and
method coupling is almost perfect and significant. In the case of our
subject system, SqlBuddy, the correlation between the twomeasures
(PBC and PCM) is very high for each of the commit intervals. From
the p-values we realize that the correlations are significant as well.
For the subject system called Camellia, we could find correlation
for the first four commit intervals (10 to 40). While the correlation
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Table 3: Correlation between PBC (percentage of bug-fix commits) and PCM (percentage of coupled methods)

Commit Interval 10 20 30 40 50 60 70 80 90 100
Rho 0.91015 0.91655 0.87231 0.93158 0.91786 0.93007 0.94546 0.98333 0.80952 0.92857

Ctags p value 0 0 0 0 0 1.00E-05 1.00E-05 0 0.0149 0.00252
sample size 77 38 25 19 15 12 11 9 8 7

Rho 0.94698 0.96364 0.92857 1 0.9
jEdit p value 0 0 0.00252 0 0.03739 N/A N/A N/A N/A N/A

sample size 21 11 7 6 5
Rho 0.84986 0.86716 0.839 0.82481 0.86171 0.86786 0.87912 0.87273 0.87879 0.8

SqlBuddy p value 0 0 0 0 0 3.00E-05 8.00E-05 0.00045 0.00081 0.00963
sample size 94 47 31 23 18 15 13 11 10 9

Rho 0.85177 0.79394 0.81168 0.7
Camellia p value 0 0.0061 0.04986 0.18812 N/A N/A N/A N/A N/A N/A

sample size 20 10 6 5
Rho 0.67285 0.71245 0.68098 0.65414 0.609 0.75192 0.87144 0.75909 0.71304 0.88041

Carol p value 0 0 0 0 0.00013 0 0 7.00E-05 0.00089 0
sample size 170 85 56 42 34 28 24 21 18 17

Rho 0.49466 0.50695 0.46773 0.52889 0.44062 0.42918 0.34091 0.46616 0.40557 0.5
DNSJava p value 0 0 0.00036 0.00045 0.0116 0.02549 0.11141 0.03829 0.09495 0.04858

sample size 163 81 54 40 32 27 23 20 18 16
Rho = Spearman’s Rank Correlation Coefficient
N/A = Correlation analysis could not be applied because of low sample size (i.e., sample size < 5)
p-value = Significance of Correlation, Sample size = The number of paired samples in the correlation analysis

Table 4: Regression between bug-proneness and method
level evolutionary coupling

Subject system R square Sy,x p-value
Ctags 0.7765 2.648 < 0.0001
jEdit 0.8756 2.196 < 0.0001
SqlBuddy 0.7886 0.6961 < 0.0001
Camellia 0.8275 3.054 < 0.0001
Carol 0.2366 3.18 < 0.0001
DNSJava 0.1088 1.545 < 0.0001
R square = Coefficient of determination
Sy,x = Standard deviation of residuals
The highest possible value of R square is 1.

for each of these intervals is very high, the p-value regarding the
fourth interval (40) is not significant because it is greater than 0.05.
For the remaining three intervals, Camellia shows a very high as
well as significant correlation between bug-proneness (PBC) and
method coupling (PCM). Our subject system, Carol, shows a high
correlation between PBC and PCM for each of the commit intervals.
In the case of DNSJava, we can see a moderate correlation for each
of the commit intervals where the correlations for the intervals, 70
and 90, are not statistically significant (p-value is greater than 0.05).

Finally, according to our investigated subject systems, bug-proneness
of a software system generally has a good positive correlation with
method level evolutionary coupling of that system. We answer RQ
1.1 in the following way.

Answer to RQ 1.1: Our correlation analysis on the subject
systems implies that bug-proneness of a software system gen-
erally has a good positive correlation with its method level
evolutionary coupling.

5.2 Regression Analysis
Although we know (from our answer to RQ 1.1) that bug-proneness
and method level evolutionary coupling have a good positive corre-
lation between them, we still do not know about the nature of their
relationship. In order to better understand their relationship we ana-
lyze the linear regression [22] between PBC and PCMmeasures. For
each subject system, we perform regression analysis considering
the PBC and PCM values for the commit interval of 10.

Table 4 shows three measures: (i) linear regression coefficient (R
square), (ii) Standard deviation of residuals (Sy,x ), and (iii) p-value
for the regression regarding each of our subject systems. We see
that the coefficient of determination (R square) is good for most
of the subject systems except Carol and DNSJava. Such a scenario
is also present in the graphs of Fig. 3a, 3b, 3c, 3d, 3e, and 3f. In
each of these graphs, we have plotted PCM along the X-axis and
PBC along the Y-axis. For the graphs regarding our subject systems:
Ctags, jEdit, SqlBuddy, and Camellia, the points are mostly arranged
around the trend line. The remaining two subject systems, Carol
and DNSJava, do not show a good fit of the points around the trend
line. Finally, according to the majority (four out of six systems) of
our investigated subject systems, PBC and PCM have a good linear
relationship between them. We finally answer our RQ 1.2 in the
following way from our regression analysis.

Answer to RQ 1.2: According to the regression analysis
on our subject systems, bug-proneness and method level evo-
lutionary coupling of a software system generally have a good
linear relationship between them.

As method level evolutionary coupling and bug-proneness gen-
erally have a good positive correlation and they have a good linear
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(a) Regression for Ctags (b) Regression for jEdit (c) Regression for SqlBuddy

(d) Regression for Camellia (e) Regression for Carol (f) Regression for DNSJava

Figure 3: Linear regression between bug-proneness (PBC) and method level evolutionary coupling (PCM)

relationship, it is expected that an increase or decrease in method
level coupling will be associated with a corresponding increase or
decrease in the bug-proneness of a software system.

6 ANALYZING THE COUPLING OF BUGGY
AND NON-BUGGY METHODS

Our answer to the previous research question implies that method
level evolutionary coupling has a good correlation with software
bug-proneness. However, we still do not knowwhether the methods
that experience bug-fixes have a higher extent of evolutionary
coupling compared to the methods that do not experience bug-fixes.
We investigate it in this section and answer our second research
question (RQ 2) through our analysis.

RQ 2: Do methods that experience bug-fixes have a higher number
of evolutionary coupling links than the methods that do not experience
bug-fixes?

Investigation procedure. For answering this research ques-
tion, we first identify which methods in a software system were
changed during its entire period of evolution. We then separate
these methods into two groups. While one group contains those
methods that experienced bug-fix changes, the other group contains
those methods that never experienced bug-fixes. For identifying the
bug-fix method group, we first identify the bug-fix commit opera-
tions by analyzing the commit logs as we did in Section 3.1 and then
identify which methods were changed in these bug-fix commits.
Whether a particular method was changed in a bug-fix commit
can be determined by examining its genealogy. We have described
method genealogy in Section 2.2. After obtaining the bug-fix and

non-bug-fix method groups, we determine the following measures
for each of our subject systems.

(1) Total no. of methods that were created during the entire
period of evolution

(2) Total no. of methods that were changed during evolution
(3) The no. of methods that experienced bug-fixes
(4) The no. of methods that never experienced bug-fixes
(5) Total no. of coupling links of all themethods that experienced

bug-fixes
(6) Total no. of coupling links of all the methods that never

experienced bug-fixes
Table 5 shows the above measures for our subject systems. We

also determine the following two measures from the last four mea-
sures in the above list.

• ACLB (Average no. of evolutionary coupling links permethod
from the group of methods that experienced bug-fixes): We
determine this measure by dividing the fifth measure in the
above list by the third measure.

• ACLN (Average no. of evolutionary coupling links permethod
from the group of methods that never had bug-fixes): We
calculate this measure by dividing the sixth measure by the
fourth measure in the above list.

These two measures for each of the subject systems have been
shown in Fig. 4. From the figure we realize that the average number
of evolutionary coupling links per buggy method is always higher
than the average number of links per non-buggy method. While
in the case of our subject system Ctags, the difference between the
two average numbers is very small, for each of the five remaining
systems, we can see a large difference. For jEdit, Camellia, and
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Table 5: No. of evolutionary coupling links of the methods that experienced or did not experience bug-fix commits

Measure CTAGS jEdit SQLB. Camellia Carol DNSJ.
Total number of methods that were created during the entire period of evolution 918 24913 2258 686 7937 4445
Total number of methods that were changed during entire evolution 437 689 880 178 1269 1443
Total number of methods that experienced bug-fix changes 169 311 102 34 333 251
Total number of methods that never experienced bug-fixes 268 378 778 144 936 1192
Total number of coupling links of all the methods that experienced bug-fixes 295 466 327 151 856 807
Total number of coupling links of all the methods that never experienced bug-fixes 465 140 1667 285 822 3379

Carol, the average number of coupling links per buggy method is
more than twice as much as the average number of coupling links
per non-buggy method.

Statistical Significance Test.Wewanted to determine whether
the average number of coupling links per buggy method (ACLB) is
significantly higher than the average number of coupling links per
non-buggy method (ACLN). We conduct Wilcoxon Signed Rank
Test [16, 17] for this purpose. We use this test because our samples
are paired. For every subject system, we get an ACLB value and a
corresponding ACLN value. Moreover, Wilcoxon Signed Rank test
is non-parametric, and thus, the samples do not need be normally
distributed for applying this test [16]. This test can be applied to
both small and large data samples [16]. We apply this test consider-
ing a significance level of 5%. According to our test result, ACLB
(average number of coupling links per buggy method) is signifi-
cantly different than ACLN (average number of coupling links per
non-buggy method) for the 2-tailed test case with a p-value of 0.001
which is smaller than 0.05. The Cohen′s d effect size [18] of the
difference between ACLB and ACLN is 1.129 which is considered
to be a large effect size [20, 23]. As ACLB is always greater than
ACLN, the average number of coupling links per buggy method
(ACLB) is significantly higher than the average number of coupling
links per non-buggy method (ACLN) with a large effect size.

Answer to RQ 2: According to our investigation and anal-
ysis, the average number of evolutionary coupling links per
buggy method is significantly higher (according to our statis-
tical significance test) than the average number of coupling
links per non-buggy method.

Such an observation is expected because a large number of cou-
pling links from a method makes it difficult to be changed during
evolution. Each change in such a method is likely to be associ-
ated with ripple changes in the other methods that are linked to
it through evolutionary coupling. If changes are made without
properly analyzing their impacts, bugs might get introduced to
the code-base. Although our finding from RQ 2 is not a surprise,
it is important in the context of the existing studies. The existing
studies [34, 37] on file level or module level evolutionary coupling
found that evolutionary coupling cannot be a good indicator of
bug-proneness. However, our finding from RQ 2 associated with
the findings from RQ 1 indicates that fine grained evolutionary cou-
pling (method level coupling in our case) can be a good indicator
of software bug-proneness.

Ctags jEdit SqlBuddy Camellia Carol DNSJava
0

2

4

ACLB (Average number of coupling links per buggy method)

ACLN (Average number of coupling links per non buggy method)

Figure 4: Comparing thenumber of coupling links per buggy
and non-buggy methods

7 DISCUSSION
This section discusses the implications of our answers to the re-
search questions. From our answer to RQ 1 we realize that our
evolutionary coupling measure called PCM (percentage of cou-
pled methods) shows a good positive correlation with software
bug-proneness (PBC) for most of our subject systems. Also, the re-
gression between our bug-proneness and method coupling metrics
shows that these two metrics are linearly related in general. Such
findings make us realize that higher bug-proneness of a software
system is associated with higher change coupling among the meth-
ods (or functions) in that system. According to our answer to RQ
2, buggy methods have a higher number of evolutionary coupling
links on an average than the non-buggy methods. Thus, identifying
methods with higher number of evolutionary coupling links and
taking measures towards minimizing these links can be beneficial
for minimizing software bug-proneness.

The techniques that we have used in our study are useful for
identifying methods with large number of evolutionary coupling
links. When making decisions about restructuring a software sys-
tem for better maintenance and evolution, our techniques can help
programmers identify highly coupled methods as well as their cou-
pling links so that they can find possibilities of minimizing these
coupling links for better maintenance and evolution of software
systems. Our implementation and data are available on-line [21].
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8 RELATEDWORK
Evolutionary coupling has been investigated a lot by the exist-
ing studies [1–5, 7–10, 13, 14, 29]. However, only a few studies
[31, 34, 35, 37] investigated whether evolutionary among program
entities is related with software bug-proneness. These studies were
conducted considering coarse grained evolutionary coupling such
as, coupling among modules, files, or classes. We discuss these
studies in the following paragraphs.

Graves et al. [34] detected evolutionary coupling among differ-
ent modules of one software system, and found that evolutionary
coupling among modules cannot be a predictor of software defects.
Graves et al. defined a module as a collection of source code files.
Thus, they considered a coarse grained evolutionary coupling in
their study. In our study, we investigate a fine grained evolutionary
coupling (method level evolutionary coupling). Our investigation
on six subject systems reveals that method level evolutionary cou-
pling has a good positive correlation with software bug-proneness.

D’Ambros et al. [31] investigated the relationship between change
coupling (i.e., evolutionary coupling) and software bug-proneness.
They analyzed a number of change coupling metrics and found that
software bug-proneness has a stronger correlation with change cou-
plingmetrics than with other coupling metrics. However, D’Ambros
et al. investigated class level evolutionary coupling, and thus, their
study is limited to subject systems that are developed in object
oriented languages. Also, class level coupling cannot pin point
which methods in the coupled classes are actually responsible for
the coupling. In our study, we investigated method level evolution-
ary coupling, and thus, we can pin point which methods in the
classes are really responsible for the coupling as well as for the
bug-proneness. Moreover, as we study considering method level
granularity (i.e., function granularity for procedural languages),
our study is even applicable to subject systems that are developped
in non-object-oriented languages. Table 1 demonstrates that two
of our six subject systems are written in C which is a procedural
language. We find that method level evolutionary coupling has a
good correlation with software bug-proneness.

Knab et al. [37] investigated file level evolutionary coupling of
Mozilla project and found that this coupling cannot predict fault-
proneness of the project. We investigate method level evolutionary
coupling (which is a finer granularity than the file level coupling)
in six subject systems and find that this coupling has a good rela-
tionship with software bug-proneness.

Kirbas et al. [35] investigated file level evolutionary coupling in
two industrial software systems. They analyzed the correlation be-
tween evolutionary coupling and bug-proneness for different mod-
ules. According to their findings, file level evolutionary coupling
generally has a positive correlation with software bug-proneness.
However, for modules with smaller number of source code files, evo-
lutionary coupling is less likely to be related with bug-proneness.
In another study [36], they investigated a banking software sys-
tem considering file level evolutionary coupling and had similar
findings. In our study, we investigate a fine grained evolutionary
coupling (method level coupling) in six open-source subject sys-
tems and find that such a fine-grained coupling has a good positive
correlation with software bug-proneness. Our regression analysis

reveals that method level evolutionary coupling has a good linear
relationship with bug-proneness of the software systems.

Mondal et al. [40] investigated whether method level evolution-
ary coupling is related with software change-proneness and found
that change-proneness is positively correlated with evolutionary
coupling. Our study is different, because we investigate whether
evolutionary coupling among methods is related with software
bug-proneness. We find a good positive correlation between these.

A number of existing studies have investigated evolutionary cou-
pling for finding architectural weaknesses and modularity issues
[26], structural shortcomings [5, 33], and important modules for
refactoring [44]. Some studies [6, 14, 15] have investigated suggest-
ing co-change candidates for program entities through analyzing
evolutionary coupling. Some other studies [25, 30, 32] have also
investigated detecting cross-cutting concerns using evolutionary
coupling. Our study is different from all these existing studies, be-
cause we analyze whether method level evolutionary coupling is
related with bug-proneness of software systems.

Sliwerski et al. [46] investigated finding fix-introducing changes
by linking the version archive of a software system to its bug-
database. They proposed an algorithm for this. While fix intro-
ducing changes can help us analyze how a bug was previously
introduced, spotting the changes that caused the occurrence of a
bug is not our goal. We calculate a bug-proneness metric which
requires the information regarding how many bug-fixes occurred
during evolution. We used the approach proposed by Mockus and
Votta [39] for identifying the bug-fix commits from the commit log
obtained from a software system’s version control system. After
calculating the bug-proneness metric, we investigate whether it is
correlated with the method level evolutionary coupling metric.

We see that while the previous studies investigated module level,
file level, or class level evolutionary coupling, we investigate evolu-
tionary coupling considering a finer granularity (method granular-
ity). Without such a fine-grained analysis, it is difficult to identify
which methods in the modules, files, or classes are really responsi-
ble for the coupling. For the purpose of investigating method level
evolutionary coupling, we extracted method genealogies from the
entire evolutionary history of our subject systems. We find that
method level evolutionary coupling has a good positive correlation
with software bug-proneness. Our research reveals unknown facts
that can be beneficial for better maintenance of software systems.

9 THREATS TO VALIDITY
Our research involves the detection of bug-fix commits. The way
we detect such commits is similar to the technique followed by Bar-
bour et al. [28]. Such a technique proposed by Mocus and Votta [39]
can sometimes select a non-bug-fix commit as a bug-fix commit
mistakenly. However, Barbour et al. [28] showed that this probabil-
ity is very low. According to their investigation, the technique has
an accuracy of 87% in detecting bug-fix commits.

In our experiment we did not study enough subject systems to
be able to generalize our findings regarding the relation between
method level evolutionary coupling and software bug-proneness.
However, we selected our candidate systems emphasizing their
diversity in sizes, application domains, and revision history lengths.
Thus, we believe that our findings cannot be attributed to a chance.
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10 CONCLUSION
In this study, we investigate whether method level evolutionary cou-
pling of a software system is related with the bug-proneness of that
system. While the existing studies have analyzed module level, file
level, or class level evolutionary couplings and found mixed results
regarding the relationship between bug-proneness and evolution-
ary coupling, our fine grained analysis (i.e., considering method
granularity) reveals that method level coupling generally has a
good positive correlation with software bug-proneness. Our re-
gression analysis shows that software bug-proneness and method
level evolutionary coupling are linearly related. According to our
investigation on thousands of commit operations of six open-source
subject systems, the buggy methods in a software system generally
have a higher number of evolutionary coupling links than the non-
buggy methods in that system. We realize that minimizing method
level evolutionary coupling links can help us minimize software
bug-proneness. Our research reveals unknown facts regarding the
relationship between bug-proneness and evolutionary coupling and
our findings are important for better maintenance and evolution of
software systems. Our implemented prototype tool can help pro-
grammers automatically identify the highly coupled methods in a
software system along with their coupling links. Programmers can
then analyze these links in order to find possible ways of minimiz-
ing those. In the future, we would like to investigate if we can devise
automatic mechanisms for minimizing method level evolutionary
coupling links. The implementation and data from our research are
available on-line [21].
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