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Abstract—Providing change suggestions for a particular code
snippet on the basis of how similar code snippets were changed
in the past has been investigated by a number of studies.
These studies rank change recommendations emphasizing their
frequency of occurrence during the prior evolution. In our study,
we investigate the ranking of change recommendations on the
basis of their recency of occurrence in the past and compare
this technique with the frequency based technique. According to
our experimental results on thousands of revisions of six subject
systems we observe that while ranking on the basis of frequency
performs better than recency based ranking, a combination
of these two techniques performs significantly better than the
discrete techniques. We find that the combined technique provides
better overall rankings for 16.58% more cases when compared
with the frequency ranking technique, and 57.48% more cases
when compared with the recency ranking technique.

I. INTRODUCTION
A number of existing studies [13], [19], [20], [24] have

investigated the possibility of providing change suggestions to
programmers when they attempt to make some changes to the
source code. The main idea behind these existing approaches
is to infer change suggestions from the evolution history of the
software systems. Let us assume that a programmer is currently
going to make some changes to a code snippet. If it is observed
that a similar code snippet was previously changed during the
past evolution, then the change that occurred to this similar
code snippet can be suggested to the programmer for changing
the current code snippet (i.e., the target snippet).

There can be multiple cases in the past where a similar code
snippet (i.e., similar to the target code snippet) was changed.
Thus, we can get multiple change suggestions for changing a
particular target snippet. However, the programmer will choose
only one of these suggestions. Thus, it is important to order
the change suggestions using an efficient ranking mechanism
so that the most promising suggestion gets a high rank.

The existing approaches [20], [24] rank the change sug-
gestions on the basis of their occurrence frequencies in the
past. Thus, in the existing approaches, if a particular suggested
change occurred more frequently in the past compared to the
other suggestions, then that particular change suggestion gets
a higher priority compared to the others. However, change
suggestions can also be ranked by considering their occur-
rence recency, where a change suggestion that occurred more
recently can be given a higher priority compared to others.
In a previous study [14] we used recency ranking for ranking
co-change candidates of code clones.

In our research we investigate both recency ranking and
frequency ranking for ranking change recommendations. We
see that recency ranking sometimes performs better than
frequency ranking. We propose a hybrid ranking mechanism
combining these two. According to our in-depth investigation
on thousands of commits of six diverse subject systems written
in two programming languages:

(1) While frequency ranking appears to be better than
recency ranking in general, our proposed hybrid ranking mech-
anism (i.e., a ranking mechanism that combines both frequency
and recency ranking) performs significantly better than each
individual one according to our statistical significance tests;

(2) Hybrid ranking provides better ranks for an overall
16.58% more cases when compared with frequency ranking,
and 57.48% more cases when compared with recency ranking.

The rest of the paper is organized as follows. Section II
defines the frequency and recency ranking mechanisms, Sec-
tion III mentions the experimental steps, Section IV compares
frequency and recency ranking mechanisms, in Section V
we propose a hybrid ranking mechanism and investigate its
ranking efficiency in comparison with frequency ranking and
recency ranking, Section VI discusses the related work, Section
VII mentions possible threats to validity, and Section VIII
concludes the paper mentioning future work.

II. TERMINOLOGY
Frequency Ranking of change recommendations. Let us

assume that a change recommendation system has inferred
a number of change suggestions for changing a target code
snippet by analyzing the previous commits. It is possible that
two or more change suggestions retrieved from the same or
different commits are the same. We first identify the distinct
change suggestions. For each of these distinct suggestions we
determine the number of times it occurred in the past. We
call this number the frequency of a change suggestion. Then,
we sort these distinct suggestions in decreasing order of their
occurrence frequencies. The change suggestions with higher
frequencies are given higher priorities [20], [24].

Recency Ranking of change recommendations. In this
technique, we first determine the distinct change suggestions.
For each distinct suggestion we determine its recency. A
suggested change (i.e., a change suggestion) might occurr in
multiple commits. The recency of a suggested change is the
latest commit operation where it occurred. Finally, we sort
the distinct suggestions in decreasing order of their recency.
In this technique, the change suggestions with higher recency
(i.e., the change suggestions that occurred more recently) are
given higher priorities.

Examples of Frequency and Recency Ranking. Table I
shows the ranking of seven distinct change suggestions, S1
to S7. We can see the frequency as well as the recency of
each suggestion. In the frequency based ordering we see that
the suggestions: S5, S6, and S7 with the highest frequency
(i.e., 4) come first (i.e., at the left). In case of recency based
ordering, the most recent suggestions (i.e., S2, and S4) have
been given the highest priorities.

In Section V we propose a hybrid ranking mechanism com-
bining frequency ranking and recency ranking mechanisms. We
show that our proposed hybrid ranking mechanism performs
significantly better than each individual one.



TABLE I: Different ways of ranking change suggestions
S1 S2 S3 S4 S5 S6 S7

Frequency 2 2 1 3 4 4 4
Recency 101 190 103 190 98 101 74

Frequency based ordering S5 S6 S7 S4 S1 S2 S3
Recency based ordering S2 S4 S3 S1 S6 S5 S7
S1 to S7 are the distinct change suggestions.
Recency is the most recent commit operation where a change suggestion occurred.

TABLE II: Subject Systems
Systems Lang. Domains LLR Revisions

jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
Camellia C Image Processing Library 88,033 170
JHotDraw Java Graphics 143,339 799
LLR = LOC in Last Revision

III. EXPERIMENTAL STEPS
We perform our investigation on six subject systems listed

in Table II. We download these systems from an open-source
SVN repository1. For each of the subject systems we perform
the following steps: (1) Download all the revisions of the
subject system as mentioned in Table II, (2) Preprocess the
source code files in each revision by removing comments,
blank lines, and indentations, (3) Extract changes between
every two consecutive revisions using diff, (4) Build a change
suggestion database from the extracted changes by applying
our change suggestion technique developed in our earlier study
[13], and (5) investigate and compare the ranking mechanisms.

Change Suggestion Technique. Our change suggestion
technique [13] works in the following way. Let us assume
that a programmer is going to make some changes to a
target code snippet CStarget in the code-base. Our technique
automatically examines the previous commits to determine
whether any similar code snippet CSprevious was changed in a
previous commit operation. Our technique suggests the change
that occurred to the similar code snippet CSprevious for the
target code snippet CStarget. Our technique [13] can provide
change suggestions with a precision of up to 23% which is
reasonable with respect to the other existing studies [20], [24].
Using our technique we can provide change suggestions for up
to 30.47% of the cases.

Our change suggestion technique works on the exact similar-
ity of the code snippets. If the target code snippet CStarget is
exactly similar to the code snippet CSprevious that was previ-
ously changed, then our technique extracts change suggestion
from CSprevious. We consider exact similarity in our research
because the retrieved suggestions can be readily applied to the
target snippet. Suggestions can also be retrieved by considering
syntactic similarity. However, in this case the suggestions
might be just templates and cannot be readily applied to the
target code snippet [24]. In future we will investigate ranking
of change suggestions considering syntactic similarity. For
the details of our change suggestion technique we refer the
interested readers to our earlier work [13].

Similarity Detection. We detect exact similarity using an
adapted version of NiCad [3], [27] technology where we
can detect the similarity of two given code snippets of any

1Open-Source SVN Repository: http://www.sourceforge.net

TABLE III: Statistics regarding change suggestions
Systems jEdit Freecol Carol Jabref Camellia jHotDraw
TNC 6235 16308 8241 14901 3115 60853
NCS 1187 4969 1573 2630 445 12354
NCCS 200 753 370 375 65 6517
TNC = Total number of changes during system evolution.
NCS = No. of cases where our technique can provide change suggestion(s)
NCCS = No. of cases where the list of suggestions provided by our

technique contains the correct change suggestion to be applied.

granularity (i.e., block or method). We use NiCad because it
is capable of detecting clones with high precision and recall
[25]–[27].

Building a change suggestion database. We build a
change suggestion database for our study by using our change
suggestion technique [13]. Let us assume that a particular
code snippet CSR residing in revision R was changed in the
commit operation C applied on R. The corresponding snippet
in the next revision R + 1 is CSR+1. Our change suggestion
technique examines the previous commits (i.e., the commits
from 1 to C−1) to identify cases where a similar code snippet
(i.e., similar to CSR) was previously changed. From these
cases our technique extracts change suggestions for changing
the particular code snippet CSR. However, by comparing the
code snippets, CSR and CSR+1, we can determine which
change was actually applied to CSR. In the change suggestion
database we include the followings: (1) the particular code
snippet CSR, (2) the change suggestions retrieved by our
technique for changing CSR, and (3) the actual change which
was applied to CSR. We can easily understand that if the actual
change which was applied on CSR is present in the list of
change suggestions retrieved by our technique, then we can say
that the change suggestion list contains the correct suggestion.
Table III shows statistics regarding change suggestions in our
subject systems. In our study we investigate which ranking
mechanism provides a better rank to the correct suggestion.

IV. COMPARING FREQUENCY AND RECENCY RANKING
In this section we make a comparison between the two rank-

ing mechanisms: Frequency Ranking and Recency Ranking.
We compare their efficiencies in ranking the correct change
suggestion (i.e., the actual change to be implemented) among
all the change suggestions retrieved by our change suggestion
mechanism. First, we examine all the commit operations of
a particular subject system to identify those cases that we
analyze for comparing the ranking mechanisms. We call these
cases the eligible cases. We define a case and an eligible case
in the following way.

A Case. A case consists of two things: (1) a target code
snippet which a programmer wants to change, and (2) a list
of change suggestions inferred by our mechanism for changing
that target snippet. If our change suggestion technique cannot
infer any change suggestions for the target code snippet, then
the list of suggestions will be empty.

An Eligible Case. An eligible case is that case where the
list of change suggestions is not empty and contains the actual
change to be applied to the target code snippet. We call this
actual change to be applied to the target code snippet the
correct change suggestion. Thus, an eligible case is the case
where the list of change suggestions provided by our technique
contains the correct change suggestion. We identify the eligible
cases in the following way.



A. Identification of the Eligible Cases
We examine each of the commit operations starting from the

very beginning one as mentioned in Table II. Let us assume
that we are currently examining the commit operation C.
A code snippet scurrent experienced the change ccurrent in
this commit operation. Now, we apply our change suggestion
technique to determine a list of change suggestions from
the previous commits 1 to C-1 for changing scurrent. If a
suggested change csuggested in this list is exactly similar to
ccurrent, then csuggested is the correct change suggestion,
and this case consisting of scurrent and the list of suggested
changes is an eligible case. As we examine each of the
commit operations from the beginning one, we identify all
the eligible cases. We investigate these eligible cases for
comparing the ranking mechanisms. A case which is not an
eligible one cannot be used for investigating ranking because
the corresponding list of change suggestions will either be
empty or will not contain the correct change suggestion. Table
III shows the number of eligible cases (the row NCCS) for
each of our subject systems.

B. Comparing ranking mechanisms using eligible cases
Let us consider two ranking mechanisms, RM1 and RM2,

and an eligible case EC. We use each of these two ranking
mechanisms to rank or order the change suggestions in the
suggestion list of EC. We can easily understand that the
ranking mechanism that assigns a better rank to the correct
suggestion in the list should be considered the superior one.

Let us assume that there are six change suggestions: S1,
S2, S3, S4, S5, and S6 in the suggestion list of the eligible
case EC. These suggestions were inferred by our change
suggestion mechanism. Let us also assume that the correct
change suggestion is S4. We show these six change suggestions
in Fig. 1, and also, identify the correct suggestion S4. We use
each of the two ranking mechanisms RM1 and RM2 to rank
or order the six suggestions. These orderings are also shown
in the figure. From the figure we see that the serial number of
the correct change suggestion in the ordering regarding RM1
is 5. The corresponding serial number in case of RM2 is 2.
We understand that RM2 assigns a better rank (i.e., a lower
serial number) to the correct change suggestion compared to
RM1. Thus, for this example eligible case (i.e., EC), RM2 is
better than RM1. Considering each of the eligible cases of a
particular subject system we compare the frequency ranking
and recency ranking mechanisms.

C. Comparing Frequency Ranking and Recency Ranking
We examine all the eligible cases of a particular subject

system considering both frequency ranking and recency rank-
ing and determine the following measures. We report these
measures in Table IV.

Measure 1 (the column ’F > R’ in Table IV): The number
of cases where frequency ranking assigns a better rank to the
correct change suggestion compared to recency ranking.

Measure 2 (R > F): The number of cases where recency
ranking assigns a better rank to the correct change suggestion
compared to frequency ranking.

Measure 3 (F = R): The number of cases where both
mechanisms provide the same rank to the correct suggestion.

Measure 4 (Favg): The average of the ranks assigned to
the correct suggestions in case of frequency ranking.

Measure 5 (Ravg): The average of the ranks assigned to
the correct suggestions in case of recency ranking.

Fig. 1: Comparing the ranking mechanisms, RM1 and RM2

TABLE IV: Comparing Frequency and Recency Ranking
Systems NECS F > R R > F F = R Favg Ravg
jEdit 200 61 18 121 13.63 11.98
Freecol 753 233 127 393 5.88 8.16
Carol 370 145 70 155 11.09 7.86
Jabref 375 191 81 103 6.49 23.85
JHotDraw 6517 3302 1443 1772 4.43 8.98
Camellia 65 9 14 42 4.21 3.88
NECS = No. of eligible cases (i.e., the cases with correct suggestion)
F > R = The no. of cases where frequency ranking provides better rank.
R > F = The no. of cases where recency ranking provides better rank.
’F = R’ is the no. of cases where both mechanisms provide the same rank.
Favg = Avg. rank of the correct suggestions considering frequency ranking
Ravg = Avg. rank of the correct suggestions considering recency ranking

We also determine the following two percentages from the
two measures, Measure 1 and Measure 2, defined above.

Percentage 1 ( %F>R): The percentage of the cases where
frequency ranking assigns a better rank to the correct change
suggestion compared to recency ranking with respect to all
eligible cases. We determine this percentage from Measure 1
(in the list of five measures above) in the following way.

Percentage 1 = (Measure 1 / NECS)× 100 (1)

Here, NECS (reported in Table IV) is the total number of
eligible cases of a particular subject system.

Percentage 2 (%R>F): The percentage of the cases where
recency ranking assigns a higher rank to the correct change
suggestion compared to frequency ranking with respect to all
eligible cases. We determine this percentage from Measure 2
using an equation similar to Eq. 2.

We show these percentages in the bar graph of Fig. 2 to
make a visual comparison of the efficiencies of the two ranking
mechanisms: frequency ranking and recency ranking.

Comparison 1. From Fig. 2 we see that for five out of six
subject systems (i.e., except Camellia), the percentage of cases
where frequency ranking provides better ranks to the correct
change suggestions is greater than the percentage of cases
where recency ranking provides better ranks to the correct
suggestions. In other words frequency ranking exhibits overall
better performance compared to recency ranking.

Statistical Significance Test Regarding Comparison 1.
We perform Mann-Whitney-Wilcoxon (MWW) test [12] to
determine whether the six percentages (i.e., corresponding to
six subject systems) regarding frequency ranking are signifi-
cantly different than the percentages regarding recency rank-
ing. MWW test is a non-parametric test and does not require
the samples to be normally distributed [21]. This test can be
applied to both large and small samples [11]. We perform



jEdit Freecol Carol Jabref JHotDraw Camellia
0

20

40

% of cases where frequency ranking provides better rank to the correct
change suggestion compared to recency ranking (% F > R)

% of cases where recency ranking provides better rank to the correct
change suggestion compared to frequency ranking (% R > F)

Fig. 2: Comparing frequency ranking and recency ranking.
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Fig. 3: Comparing the average ranks of the correct suggestions
provided by frequency ranking and recency ranking.

the test considering a significance level of 5%. According
to our tests, the percentages regarding frequency ranking are
significantly different than the percentages regarding recency
ranking with a p-value of 0.04 for two-tailed test and 0.02 for
one-tailed test, and with an effect size [6] of 0.6. The effect
size calculation procedure for MWW test is available on-line
[7]. We see that the p-values are less than 0.05. We finally
understand that the percentage of cases where frequency rank-
ing provides better ranks to the correct change suggestions is
significantly higher compared to the corresponding percentage
of cases where recency ranking provides better ranks.

Comparison 2. We draw a graph (Fig. 3) showing the com-
parison of the average ranks of the correct change suggestions
provided by frequency ranking and recency ranking. From
the graph we see that for three subject systems (i.e., jEdit,
Carol, and Camellia) out of six, the average rank of the correct
change suggestions considering recency ranking is better than
that of frequency ranking (i.e., the smaller a rank the better
it is, because rank is the serial number of the correct change
suggestion provided by a particular ranking mechanism).

Statistical Significance Test Regarding Comparison 2.
We perform MWW test [11], [21] to determine whether
the average ranks calculated considering frequency ranking
are significantly different than the average ranks calculated
considering recency ranking. According to our tests performed
considering a significance level of 5%, the average ranks mea-
sured using frequency ranking are not significantly different
than those measured using recency ranking. The p-values for
the two-tailed and one-tailed test cases are 0.48 and 0.24
respectively, and the effect size is 0.23.

Discussion. The existing studies [20], [24] considered fre-
quency ranking for ordering/ranking the change suggestions.
From our first comparison (i.e., Comparison 1) we see that
their consideration is reasonable compared to recency ranking.
However, although frequency ranking appears to be better
than recency ranking we see (from Table IV as well as from
Fig. 2) that for many cases of each of the subject systems
recency ranking provides better ranks to the correct change

suggestions compared to frequency ranking. For example, if
we consider our subject system Freecol we see (from Table
IV) that for 127 of the eligible cases recency ranking provides
better ranks to the correct change suggestions compared to
frequency ranking. Moreover, from our second comparison
(i.e., Comparison 2) we realize that the average ranks of the
correct change suggestions calculated using frequency ranking
are not significantly different than the average ranks calculated
using recency ranking. Such a scenario implies that a more
recent change suggestion often gets prioritized. Thus, a com-
bination of these two ranking mechanisms might possibly help
us achieve an even better ranking of the change suggestions
compared to both frequency ranking and recency ranking.
Considering this issue, in the following section we propose
a hybrid ranking mechanism that combines both frequency
ranking and recency ranking.

V. PROPOSING A HYBRID RANKING MECHANISM
From our investigation in the Section IV we found that

frequency ranking is a better choice than recency ranking in
general for ranking change suggestions. However, there can be
multiple change suggestions with the same frequency. We did
not apply any particular ranking mechanism for such same fre-
quency suggestions. In the following subsection we investigate
which change suggestion generally get prioritized in presence
of multiple change suggestions having the same frequency.
Such an investigation can help us choose a particular ranking
mechanism for the same frequency suggestions.

A. Investigation on Ranking Change Suggestions having the
Same Frequency

In this subsection we analyze whether the most recent one
gets prioritized when there are multiple change suggestions
with the same frequency. By examining the commit operations
of a subject system we select particular eligible cases for
our investigation. We defined eligible case in Section IV. Let
us consider an eligible case EC where the correct change
suggestion has a frequency of f . We consider this case for
our investigation if it satisfies the following two conditions.

Condition 1. There is at least one more change suggestion
with the frequency of f in the suggestion list of EC.

Condition 2. All the change suggestions with the frequency
of f should not have the same recency. Recency is the last
commit operation where a suggested change occurred.

The first condition ensures that there are multiple change
suggestions with the same frequency and one of these sug-
gestions is the correct suggestion. Also, in the absence of
the second condition it might happen that all the change
suggestions with the frequency of f have the same recency.
We can easily understand that the above two conditions are
necessary for a case to be considered for our investigation.
For a particular subject system we first identify all the cases
each satisfying the above two conditions, and then separate
these cases into two disjoint sets as described below:

CMR: This set contains those cases where the correct
change suggestion is the most recent one.

CNMR: This set contains those cases where the correct
change suggestion is not the most recent one.

Table V shows the total number of cases each satisfying the
above two conditions, percentage of such cases with respect
to all eligible cases, and also, the number of cases in each
of the two sets, CMR and CNMR, for each subject system.
We also determine the percentage of cases in each of the two
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Fig. 4: Statistics of the same frequency suggestions.

TABLE V: Statistics regarding same frequency suggestions
Systems jEdit Freecol Carol Jabref Camellia jHotDraw
NCSC 31 182 99 101 20 1453
CMR 8 95 60 62 13 1337
CNMR 23 87 39 39 7 116
NECS 200 753 370 375 65 6517
PC 15.5% 24.2% 26.8% 26.9% 30.8% 22.3%
NCSC = Total no. of cases each satisfying the two conditions in Section V-A.

= CMR + CNMR
CMR = No. of cases where the correct suggestion is the most recent one.
CNMR = No. of cases where the correct suggestion is not the most recent one.
NECS = No. of eligible cases (i.e., the cases with correct suggestion)
PC = NCSC * 100 / NECS = % of cases each satisfying the two conditions in

Section V-A with respect to all eligible cases (i.e., NECS).

sets, CMR and CNMR, with respect to all the cases satisfying
the above two conditions. We show these percentages in Fig.
4. The figure shows that for most of the subject systems
except jEdit, the percentage of cases where the correct change
suggestion is the most recent one is higher than the percentage
of cases where the correct change suggestion is not the most
recent one. From this we realize that generally the most recent
suggestion gets prioritized when multiple change suggestions
have the same frequency. Thus, we can possibly consider
recency ranking technique for ranking change suggestions
having the same frequency.

B. Hybrid Ranking Mechanism
On the basis of our findings in Section IV-C and V-A

we propose a hybrid ranking mechanism for ranking change
suggestions. In hybrid ranking technique we order the change
suggestions in two steps. In the first step, we sort the distinct
change suggestions in decreasing order of their occurrence fre-
quencies. In the second step, we identify groups of the distinct
change suggestions where all the suggestions in a particular
group have the same frequency. We sort the suggestions in each
such group in decreasing order of their occurrence recency as
described in Section II.

Table VI shows the same set of distinct change suggestions
that we used (in Table I) for demonstrating frequency and
recency ranking in Section II. In Table VI we show the two
steps of hybrid ranking. In the first step, the suggestions S1
to S7 are ordered in decreasing order of their frequencies. We
can easily understand that after this step, the suggestions with
the same frequency become grouped together. For example,
in Step 1 in Table VI we see that S5, S6, and S7 have the
same frequency of 4 and they are adjacent to one another. We
consider them (i.e., S5, S6, and S7) a group. Also, S1 and S2
form another group. In Step 2, the suggestions in each of these
two groups have been reordered in decreasing order of their

TABLE VI: Example of Hybrid Ranking
S1 S2 S3 S4 S5 S6 S7

Frequency 2 2 1 3 4 4 4
Recency 101 190 103 190 98 101 74

Step 1 S5 S6 S7 S4 S1 S2 S3
Step 2 S6 S5 S7 S4 S2 S1 S3
S1 to S7 are the distinct change suggestions.
Recency is the most recent commit of occurrence of a suggestion.

TABLE VII: Comparing Hybrid and Frequency Ranking
Systems NECS H > F F > H H = F Havg Favg
jEdit 200 18 14 168 8 13.63
Freecol 753 100 61 592 4.22 5.88
Carol 370 64 31 275 3.76 11.09
Jabref 375 77 25 273 3.17 6.49
JHotDraw 6517 1339 103 5075 3.45 4.43
Camellia 65 11 2 52 2.92 4.21
NECS = No. of eligible cases (i.e., the cases with correct suggestion)
H > F = The no. of cases where hybrid ranking provides better rank.
F > H = The no. of cases where frequency ranking provides better rank.
’H = F’ is the no. of cases where both mechanisms provide the same rank.
Havg = Avg. rank of the correct suggestions considering hybrid ranking
Favg = Avg. rank of the correct suggestions considering frequency ranking

recency. In the following subsections we investigate whether
our proposed hybrid ranking is better than frequency ranking
and recency ranking.

C. Comparing Hybrid Ranking and Frequency Ranking
We compare hybrid ranking and frequency ranking follow-

ing the same procedure that we followed (in Section IV-C) to
make a comparison between frequency and recency ranking.
Table VII shows the five measures regarding the comparison.

Comparison 1. We draw Fig. 5 for showing a visual
comparison of the efficiencies of the two ranking mechanisms.
From Fig. 5 we see that for each of the subject systems
hybrid ranking performs better than frequency ranking. The
percentage of cases where hybrid ranking provides better ranks
to the correct change suggestions is always higher than the
percentage of cases where frequency ranking provides better
ranks to the correct change suggestions. Considering all subject
systems we see that hybrid ranking provides better ranks
than frequency ranking for an overall 19.43% of the eligible
cases. We also see that for overall 2.85% of the eligible cases
frequency ranking provides better ranks than hybrid ranking.
Thus, we see that hybrid ranking provides better ranks to
the correct change suggestions than frequency ranking for an
overall 16.58% (19.43% - 2.85%) more cases.

Statistical significance test regarding Comparison 1. We
perform the Mann-Whitney-Wilcoxon test [11], [21] consid-
ering a significance level of 5% to determine whether the six
percentages regarding hybrid ranking are significantly higher
compared to those regarding frequency ranking. According
to our tests, the six percentages (i.e., the samples) regard-
ing hybrid ranking are significantly different than those of
frequency ranking. The p-value for both two-tailed and one-
tailed test cases is less than 0.01, and the effect size (0.83)
is large. Thus, the percentages regarding hybrid ranking are
significantly higher than those regarding frequency ranking.

Comparison 2. In Fig. 6 we show the comparison of the
average ranks of the correct change suggestions provided by
hybrid ranking and frequency ranking. From this figure we
realize that the average rank of the correct change suggestions
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Fig. 6: Comparing the average ranks of the correct suggestions
provided by hybrid ranking and frequency ranking.

considering hybrid ranking is always better than the average
rank of the correct change suggestions considering frequency
ranking. We should again note that the lower a rank the better
it is, because a rank is the serial number/position value of a
change suggestion in the list of all change suggestions.

Statistical significance test regarding Comparison 2.
Again, we performed MWW test to determine whether the
six average ranks for six subject systems calculated using
hybrid ranking are significantly different than the six average
ranks calculated using frequency ranking. We perform the test
considering a significance level of 5%. According to our tests,
the average ranks provided by hybrid ranking are significantly
different than those regarding frequency ranking. The p-values
for the two-tailed and one-tailed test cases are 0.04 and 0.02
respectively, and the effect size is 0.6. We see that the p-values
are less than 0.05. As the average ranks provided by hybrid
ranking are smaller (i.e., better) than the corresponding ranks
provided by frequency ranking, we can state that the average
ranks of the correct change suggestions calculated considering
hybrid ranking are significantly better compared to the average
ranks obtained considering frequency ranking.

Discussion. From our comparison between frequency rank-
ing and recency ranking it appeared that frequency ranking
performs better than recency ranking in case of Comparison 1
(i.e., comparison regarding the percentage of cases where the
ranking mechanisms perform better). However, this was not
true in case of Comparison 2. We found that the average ranks
of the correct change suggestions calculated using frequency
ranking are not significantly better than those calculated using
recency ranking. Interestingly, from our comparison between
hybrid ranking and frequency ranking we see that hybrid
ranking performs significantly better than frequency ranking
in both ways (i.e, both in Comparison 1 and Comparison 2).
From this we infer that hybrid ranking is a better choice than
frequency ranking while ranking the change recommendations.
Hybrid ranking not only provides better ranks than frequency
ranking for a significantly higher number of eligible cases
but also, the average ranks of the correct change suggestions

calculated using hybrid ranking are significantly better than
those calculated using frequency ranking.

We also compared hybrid ranking and recency ranking
mechanisms and found that hybrid ranking performs signifi-
cantly better than recency ranking both in Comparison 1 and
Comparison 2 (described above). According to our calculation,
hybrid ranking provides better ranks to the correct change
suggestions than recency ranking for overall 57.48% more
cases. We finally state that hybrid ranking is the best choice
among the three mechanisms (i.e., frequency ranking, recency
ranking, and hybrid ranking) for ranking change suggestions.

VI. RELATED WORK
Recommending changes by analyzing the past evolution

history of a software system is not new. Our focus in this
study is however the ranking of change recommendations.

In two previous studies Nguyen et al. [20], and Ray et al.
[24] implemented and investigated change recommendation
systems. They ranked change suggestions only on the basis
of their occurrence frequencies. In another study Nguyen et
al. [19] investigated recurring bug-fixes as well as recurring
changes. They implemented a system to identify code peers
and to automatically suggest changes to a code fragment where
the changes were experienced by a peer code fragment. They
did not apply any particular ranking mechanism for ranking
change suggestions. We previously conducted an empirical
study [13] on change recommendations. However, we also
did not apply any particular ranking mechanism for ranking
recommendations. In the study presented in this paper we
investigate both frequency ranking and recency ranking, and
finally propose a hybrid ranking mechanism combining these
two. We show that our proposed hybrid ranking mechanism
performs significantly better than each individual one.

We performed an empirical study [16] for identifying the
important code clones for refactoring. We applied frequency
ranking technique for ranking the refactoring candidates. The
code clones that changed together more frequently were prior-
itized for refactoring. Tsantalis and Chatzigeorgio [31] ranked
refactoring suggestions considering recency ranking. There are
also a number of studies [4], [10], [15], [34] that recommend
peer code artifacts for co-changing (i.e., changing together)
while changing a particular artifact on the basis of the past
evolution history. These studies mainly emphasize frequency
ranking technique for ranking of co-change candidates. In our
study we investigate the ranking of change recommendations
considering both frequency and recency ranking, and propose
a hybrid one that performs better than each individual one.

Toomin et al. [30] performed a study on simultaneous
editing of multiple clone fragments in the working code-
base of a software system. CloneTracker [5] also supports
simultaneous editing of the clone fragments tracked by it.
While these studies mainly deal with propagating a change
that occurred in one clone fragment to a peer clone fragment,
they cannot infer which changes might occur in a particular
code fragment. Moreover, they do not deal with any ranking
mechanism. Our study, on the other hand, deals with inferring
change suggestions for any code fragment whether it is a clone
fragment or not. Also, the primary goal of our study is the
ranking of the inferred change suggestions.

A number of studies [1], [2], [8], [9], [17], [18], [22], [23],
[28], [33] have also been done on code completion, particularly
on method call completion or method body completion. Most



[2], [9], [23], [33] of these studies used frequency ranking
technique for ranking of suggestions. Some studies [17], [18]
also used graph based techniques and context sensitivity [1].
Robbes and Lanza [28] performed recency ranking of sug-
gestions. Our investigation involves recommending possible
changes to any target code snippet by retrieving and analyzing
the changes that occurred to similar code snippets in the past.
Our primary goal is the ranking of change recommendations.
We investigate both frequency ranking and recency ranking for
ranking change suggestions. We also propose a hybrid ranking
mechanism combining these two and show that the hybrid one
performs significantly better than each individual one.

We believe that our proposed hybrid ranking mechanism
can continuously help programmers during development and
maintenance. According to our experimental results and an-
laysis, hybrid ranking is the best choice for ranking change
recommendations among our investigated ranking techniques.

VII. THREATS TO VALIDITY
We use the NiCad clone detector [3] in our experiment.

While clone detectors suffer from confounding configuration
choice problem [32], NiCad has been found to perform fairly
well [26], [27]. Also, in a recent study [29] Svajlenko and Roy
show that NiCad is a very good choice for detecting clones
compared to other modern clone detectors.

The subject systems studied in this research are not enough
to make a concrete decision about ranking change suggestions.
However, our subject systems are of diverse variety in terms
of application domains, system size (LOC), and the number
of revisions. Thus, we believe that the outcome of our study
cannot be attributed to a chance, and our findings are of
significant importance for ranking change recommendations.

VIII. CONCLUSION
In this research we perform an empirical study on ranking

change recommendations retrieved on the basis of exact simi-
larity of code fragments. We investigate and compare two pre-
existing ranking mechanisms, frequency ranking and recency
ranking, and finally propose a hybrid ranking mechanism by
reasonably combining the strengths of these two. According
to our investigation on thousands of commits of six diverse
subject systems written in two programming languages:

(1) Our proposed hybrid ranking mechanism performs sig-
nificantly better (according to our statistical significance tests)
compared to each of the other two techniques.

(2) Hybrid ranking provides better ranks to the correct
change suggestions for around 16.58% more cases when
compared with frequency ranking, and 57.48% more cases
when compared with recency ranking.

In future we would like to investigate the efficiency of the
hybrid ranking mechanism in different other contexts such
as ranking of code clones for refactoring and tracking, and
ranking of co-change candidates for different program entities.
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