
Noname manuscript No.
(will be inserted by the editor)

A Comparative Study on the Intensity and

Harmfulness of Late Propagation in Near-Miss Code

Clones

Manishankar Mondal · Chanchal K.
Roy · Kevin A. Schneider

Received: date / Accepted: date

Abstract Exact or nearly similar code fragments in a software system’s source
code are referred to as code clones. It is often the case that updates (i.e.,
changes) to a code clone will need to be propagated to its related code clones
to preserve their similarity and to maintain source code consistency. When
there is a delay in propagating the changes (possibly because the developer is
unaware of the related cloned code) the system might behave incorrectly. A
delay in propagating a change is referred to as ‘late propagation’ and a num-
ber of studies have investigated this phenomenon. However, these studies did
not investigate the intensity of late propagation nor how late propagation dif-
fers by clone type. In this research we investigate late propagation separately
for each of the three clone types (Type 1, Type 2, and Type 3). According
to our experimental results on thousands of revisions of eight diverse sub-
ject systems written in two programming languages, late propagation occurs
more frequently in Type 3 clones compared to the other two clone-types. More
importantly, there is a higher probability that Type 3 clones will experience
buggy late propagations compared to the other two clone-types. Also, we dis-
covered that block clones are more involved in late propagation than method
clones. Refactoring and tracking of SPCP clones (i.e., the clone fragments that
evolve following a Similarity Preserving Change Pattern) can help us minimize
the occurrences of late propagation in clones.

Manishankar Mondal
Department of Computer Science, University of Saskatchewan, Canada
E-mail: mshankar.mondal@usask.ca

Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Canada
E-mail: chanchal.roy@usask.ca

Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada
E-mail: kevin.schneider@usask.ca

COLcN KeUe WR dRZQORad MaQXVcULSW MLQRUReYLVLRQIWSC2014.We[

Click here to YieZ linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/sqjo/download.aspx?id=42921&guid=d1752011-3b15-4b7e-a5ad-49a60eb4e4c4&scheme=1
http://www.editorialmanager.com/sqjo/download.aspx?id=42921&guid=d1752011-3b15-4b7e-a5ad-49a60eb4e4c4&scheme=1
http://www.editorialmanager.com/sqjo/viewRCResults.aspx?pdf=1&docID=1309&rev=3&fileID=42921&msid=%7B308625A6-DA26-4CD2-9551-DF791C20DA53%7D

2 Manishankar Mondal et al.

Keywords Code Clones · Late Propagation · Clone Genealogy · Near-Miss
Clones

1 Introduction

Software maintenance is one of the most important phases of the software de-
velopment life cycle. Studies [GH11,GK11,LW08,LW10,Kri07,Kri08,ACP07,
TCAP09,BKZ13,KG08,MRR+12,MRS12c,MRS12b,MRS14c] show that code
clones have both positive [Kri07, GH11, GK11, KG08] and negative [LW08,
LW10,MRR+12,MRS12c,MRS12b,MRS14c,ACP07,TCAP09] impacts on soft-
ware maintenance and evolution. Code clones are exactly or nearly similar
code fragments scattered in the code-base of a software system. These are
mainly created because of the frequent copy-paste activities of the program-
mers with an aim to repeat the same or similar functionalities during software
development and maintenance. If a code fragment is copied from one place of
a code-base and pasted to some other places with or without modifications,
then the original code fragment and the pasted code fragments become clones
of one another.

Evolution of clones [KSNM05, ACP07, TCAP09, BKZ13] has been inves-
tigated by di↵erent studies in di↵erent ways. In this study we investigate
a particular clone evolution pattern which is known as late propagation in
clones according to the literature [ACP07,TCAP09,BKZ13]. There are strong
empirical evidences [ACP07,TCAP09,BKZ13] that late propagation is related
to bugs [ACP07,TCAP09] and inconsistencies [BKZ13] in the code-base. Re-
searchers have investigated di↵erent specific patterns [BKZ13] of late prop-
agation and identified which patterns are more related to bugs, faults, and
inconsistencies. However, the existing studies regarding late propagation in
clones have the following draw-backs.

(1) None of the studies investigate the intensities of late propagation in
di↵erent types of clones separately. Such a study is important because, if late
propagation is observed to be more intense in a particular clone type compared
to the others, we might consider being more conscious while changing clones of
that particular type. Also, we might want to refactor clones of that particular
type with higher priority.

(2) None of the existing studies investigate the bug-proneness of late propa-
gation in di↵erent types of clones separately. Such an investigation is also very
important for understanding the comparative harmfulness of late propagation
in di↵erent clone-types.

Focusing on these issues, we investigate late propagation in three types of
clones (Type 1, Type 2, and Type 3) separately and answer seven important
research questions presented in Table 1. According to our experimental re-
sults on thousands of revisions of eight diverse subject systems written in two
di↵erent programming languages we can state that:

– The percentage of late propagations in Type 3 clones occurred only be-
cause of the changes in the non-matched (i.e., non-cloned) portions of the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 3

Table 1 Research Questions

Serial Research Question

1 What percentage of late propagations in Type 3 clones occur only because of
the changes in the non-cloned portions of the participating clone fragments?

2 Are the intensities of late propagation di↵erent in di↵erent types of clones?
3 Late propagations in which types of clones are more related to bugs?
4 Clones of which clone-type(s) have higher possibilities of experiencing bug-fixing

changes at the time of convergence?
5 Do the participating clone fragments in a clone pair that experience late prop-

agation generally remain in di↵erent files?
6 Do block clones or method clones exhibit higher intensity of late propagation?
7 Do late propagations mainly occur to the SPCP clones or non-SPCP clones?

clone fragments is very low (less than one) for most of our candidate sys-
tems. However, this proportion can sometimes be considerable (for exam-
ple our subject system jEdit). Such late propagations should be ignored
when making clone management decisions. Our implemented system can
automatically detect such ignorable late propagations. We perform our
investigations related to research questions RQ 2 to RQ 7 (Table 1) by
disregarding these ignorable late propagations.

– The intensity of late propagations in Type 3 clones is higher compared to
the other two clone-types.

– Type 3 clones have a higher possibility of experiencing buggy late propa-
gations compared to the clone fragments of the other two clone-types.

– Almost all of the clone fragments that experience late propagations are
block clones. According to our statistical significance tests, the percentage
of block clones that experience late propagations is significantly higher than
the corresponding percentage of method clones. It seems that creating block
clones is more risky than creating method clones.

– Around 89% of the late propagations involve SPCP clones [MRS14b] (i.e.,
the clone fragments that evolved following a Similarity Preserving Change
Pattern called SPCP). In other words, late propagations mainly occur to
the SPCP clones. By refactoring and tracking SPCP-clones we can possibly
minimize future occurrences of late propagations considerably.

The rest of the paper is organized as follows. Section 2 describes the re-
lated terminology, Section 3 elaborates on the detection of late propagation
in clones, the experimental results are presented and analyzed to answer the
research questions in Section 4, Section 5 discusses the related work, Section
6 mentions possible threats to validity and finally, we conclude our paper by
mentioning future work in Section 7. The research work presented in this pa-
per is a significant extension of our earlier work [MRS14d]. In our previous
study [MRS14d] we detected late propagations in three types of clones sep-
arately and answered three research questions (Table 1): RQ 2, RQ 5, and
RQ 6. We extend this work with a number of investigations: (1) investigating

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Manishankar Mondal et al.

which proportion of late propagations in Type 3 clones occurred only because
of the changes in the non-cloned portions of the participating clone fragments,
(2) analyzing and comparing the bug-proneness of the late propagations in
three types of clones, and (3) investigating late propagation in SPCP clones.
We perform these investigations for answering the four new research questions:
RQ 1, RQ 3, RQ 4, and RQ 7.

2 Terminology

Types of Clones. We conduct our experiment regarding late propagation
considering exact (Type 1) and near-miss clones (Type 2 and Type 3 clones).
As is defined in the literature [Roy09], if two code fragments are exactly the
same disregarding the comments and indentations, they are Type 1 clones of
each other. Type 2 clones are syntactically similar code fragments. In general,
Type 2 clones are created from Type 1 clones because of renaming variables or
changing data types. Type 3 clones are mainly created because of additions,
deletions, or modifications of lines in Type 1 or Type 2 clones.

Clone Class. A group (i.e., two or more) of clone fragments that are the
same (Type 1) or similar (Type 2 or Type 3) to one another form a clone class.
We detect clones using NiCad [CR11,RC08] clone detector that reports clones
by grouping them into classes.

Clone Pair. Two clone fragments belonging to the same clone class form a
clone pair. Thus, every possible pair (i.e., combination) of two clone fragments
in a particular clone class is a clone pair. From each of the clone classes reported
by NiCad [CR11] we determine all possible clone pairs for conducting our
experiment.

Cloned Method. If a method contains cloned (Type 1, Type 2, or Type 3)
lines, we call this method a cloned method. If all lines of a method are cloned
lines, then this method is a fully cloned method.

Method Clones. If two or more methods are clones (Type 1, Type 2, or
Type 3) of one another, we refer to these as method clones. Method clones are
fully cloned methods.

Here, we should note that we conduct our experiment considering - (1)
method clones and (2) block clones that reside in methods as was done in a
previous study [BKZ13].

Late Propagation in a Clone Pair. Let us consider a pair of clone
fragments. We say that this clone pair has experienced late propagation if it
receives a diverging change followed by a converging change [BKZ13].

– Diverging Change. Let us assume a particular commit Ci where one or
both of these two clone fragments were changed. Because of this change,
the fragments were not considered as clones of each other. In other words,
the clone fragments diverged. Such a change is called a diverging change

for the clone pair.
– Converging Change. Let us assume a later commit Ci+n (n >= 1) where

one or both of these fragments were changed, and because of this change,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 5

Fig. 1 A possible example of late propagation

the fragments were again considered as clones of each other. In other words,
the fragments converged. The change for which the fragments converged is
termed as a converging change.

A particular clone pair may experience late propagation more than once
during evolution. Fig. 1 shows a possible example of late propagation expe-
rienced by a clone pair (CF1, CF2). The commit Ci applied on revision Ri

modified CF1 and as a result, CF1 and CF2 diverged. However, in commit
Ci+2, the fragment CF2 changed and CF1 and CF2 again became clones of
each other in Ri+3.

SPCP Clones. In a previous study [MRS14b] we empirically showed
that SPCP clones are important for refactoring or tracking. SPCP-Clones
are those clone fragments that evolved following a particular change pattern
called Similarity Preserving Change Pattern (SPCP). A Similarity Preserving

Change Pattern consists of only Similarity Preserving Change and/or Re-

synchronizing Change.
Similarity Preserving Change. Let us consider two code fragments

that are clones of each other in a particular revision of a subject system. A
commit operation was applied on this revision, and any one or both of these
code fragments (i.e., clone fragments) received some changes. However, in the
next revision (created because of the commit operation) if these two code
fragments are again considered as clones of each other (i.e., the code frag-
ments preserve their similarity), then we say that the code fragments received
Similarity Preserving Change in the commit operation.

Re-synchronizing Change. Let us consider two code fragments that
are clones of each other in a particular revision. If these two clone fragments
experience a diverging change followed by a converging change, then we say
that they experienced a re-synchronizing change. A re-synchronizing change
can also be termed as a late propagation.

Here, we should clarify that two clone fragments (i.e., a clone-pair) might
experience late propagation (i.e., re-synchronizing change) a number of times

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Manishankar Mondal et al.

during evolution, however they might not be regarded as SPCP clones. Let
us consider that two clone fragments experienced late propagation(s) during
evolution. It might be the case that after the last occurrence of late propagation
they again diverged, but did not converge again. In such a case, these two
fragments will not be regarded as SPCP clones, because they did not preserve
their similarity lastly. As they did not preserve their similarity, their evolution
pattern is not a Similarity Preserving Change Pattern (i.e., is not an SPCP).
Examples of such cases are evident from our answer to RQ 7.

We performed an empirical study [MRS14a] on SPCP clones where we sep-
arated all the SPCP clones in a software system into two disjoint groups. The
clone fragments in one group are important for refactoring whereas, the clone
fragments in the other group are important for tracking. The clone fragments
that do not follow SPCP either evolve independently or are rarely changed
during evolution. Thus, these non-SPCP clone fragments should not be con-
sidered important for management.

Granularity of Late Propagation. We should note that we conduct our
late propagation study considering the granularity of clone pairs as was done
by each of the previous studies. While it would be good to conduct such a study
considering clone classes, consideration of clone classes might cause the loss of
important information regarding late propagation. Let us assume a clone class
consisting of six clone fragments in revision Ri. The subsequent commits might
a↵ect only two of these six clone fragments leaving the other four fragments
as they are. There is a possibility that these two clone fragments (that are
getting changed) will experience a late propagation (i.e., the changes occurred
in one clone fragment will propagate to the other one with some delay) in
future evolution. However, the other four clone fragments might not require to
be changed during the whole period of evolution. In other words, the changes
occurred to the two clone fragments might not ever need to be propagated
to the other four clone fragments. In such a situation, consideration of all
these six clone fragments for late propagation is not reasonable. While pairs
of clone fragments in a particular class might experience late propagation, the
whole class might not. Thus, we believe that investigating late propagation
considering clone pairs is reasonable.

3 Detection of Late Propagation

We detect and experiment late propagations from eight subject systems listed
in Table 2. We downloaded the revisions of each of these systems from an
open-source SVN repository SourceForge1. For each of the subject systems
we considered each of the revisions beginning from the first one. We select
these systems in our research focusing on the diversity of their application
domains (i.e., the systems belong to seven application domains), sizes (i.e.,
the subject systems are of di↵erent sizes, from very small to large), and the

1 Sourceforge: http://www.sourceforge.net

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 7

Table 2 Subject Systems

Systems Lang. Domains LOC Revisions

Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 207
BRL-CAD C 3D Modeling 40,941 735
jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
Java-ML Java Java Machine Learning Library 16,428 1200

number of revisions. Thus, we believe that our reported experimental results
are not a↵ected by these parameters.

3.1 Preliminary Steps

Detection of late propagation by mining the revisions of a particular subject
system requires the following preliminary steps to be done sequentially - (i)
Extraction of methods from each of the revisions, (ii) Detection of method
genealogies, (iii) Extraction of clones from each of the revisions, (iv) Locat-
ing these clones to the already detected methods, (v) Extraction of changes
between every two consecutive revisions, and (vi) Reflecting these changes to
the already detected methods and clones residing in these methods.

We extract methods using Ctags2. For detecting method genealogies we
follow the procedure proposed by Lozano and Wermelinger [LW08]. The ge-
nealogy of a particular method helps us to understand how a particular method
evolved during software evolution. As we detect method genealogies, we also
detect clone genealogies by locating the propagation of the clone fragments
through the methods.

Clone Genealogy. By the term clone genealogy we mean the genealogy
of a particular code fragment which is also regarded as a clone fragment by the
clone detector. By detecting the genealogy of a particular clone fragment we
can easily determine how that fragment was changed during the evolution. A
particular clone class may contain two or more clone fragments. We determine
a separate genealogy for each of these clone fragments.

We use NiCad clone detector for detecting and extracting clones from each
revision of a subject system. The main purpose of choosing NiCad is that it
can detect clones of di↵erent clone-types separately including Type 3 with
high precision and recall [RC09, RCK09]. For detecting Type 3 clones, we
considered a dissimilarity threshold of 20% with blind renaming of identifiers.
For the details of the preliminary steps mentioned above and for NiCad setup,
we refer the interested readers to our earlier work [MRS12a]. Here, we should

2 Ctags: http://sourceforge.net/projects/ctags/?source=directory

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Manishankar Mondal et al.

note that before using the NiCad outputs for Type-2 and Type-3 cases, we
pre-processed them in the following way.

(1) Every Type-2 clone class that exactly matched any Type-1 clone class
was excluded from Type-2 outputs.

(2) Every Type-3 clone class that exactly matched any Type-1 or Type-2
class was excluded from Type-3 outputs.

We performed these because we wanted to investigate each of the three
types of clones separately. The above two pre-processing steps ensure that the
set of Type 2 clone classes that we investigate does not contain any Type 1
clone class. Also, the set of our investigated Type 3 clone classes does not
contain any Type 1 or Type 2 clone classes. The detection mechanism of late
propagation clone-pairs is described in the following subsection.

3.2 Detection of Clone-Pairs that Experienced Late Propagation

After completing the preliminary steps described above we automatically mine
the late propagation clone-pairs. At the very beginning, we assume a global
list of clone pairs each of which has the potential of experiencing late propa-
gation. We call such a clone pair a CPLP (Clone Pair having the potential of
experiencing Late Propagation). We call this list the Global List.

Clone Pair having the potential of experiencing Late Propagation
(CPLP). We consider a pair of code fragments, (CF1 and CF2), which are
clones of each other in revision Ri. A commit operation Ci was applied on Ri

and one or both of these fragments changed. However, because of this change,
CF1 and CF2 were not considered as clones of each other in revision Ri+1.
In other words, the change in Ci is a diverging change for the pair (CF1,
CF2). This pair is considered as a CPLP because, there is a possibility that
in a future commit operation, the fragments CF1 and CF2 will converge (i.e.,
CF1 and CF2 will again be considered as clones of each other).

The Global List remains empty initially. We examine the commit op-
erations sequentially from the very beginning one. We only consider those
commits where there were changes to one or more clone fragments of a partic-
ular clone type. As we examine the commit operations, we update the Global
List and mark some clones pairs (i.e., some CPLPs) in this list as the late
propagation clone pairs. Suppose, Ci is such a commit which was applied on
revision Ri and the immediate next revision Ri+1 was created as a result. We
perform the following steps sequentially considering Ci.

Step 1. Determining the list of a↵ected clone fragments. We iden-
tify the list of clone fragments (in revision Ri) that received some changes
during Ci. We call this list the List of Affected Clone Fragments.

Step 2. Determining the list of a↵ected clone pairs. We make a
list of clone pairs that involve one or more clone fragments in the List of
Affected Clone Fragments. We denote this list of clone pairs as the
List of Affected Clone Pairs.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 9

Step 3. Updating the Global List using the List of A↵ected Clone
Fragments. We identify those clone pairs in the Global List each of which
involves any of the clone fragments in the List of Affected Clone Frag-
ments. There is a possibility that such a clone pair in the Global List has
converged. In order to check this we determine whether the fragments in such
a pair are considered as clones of each other in revision Ri+1 which was created
because of commit Ci. If this is true, then we understand that this clone pair
in the Global List has experienced late propagation. We mark this clone
pair as a late propagation pair.

Step 4. Updating the Global List using the List of A↵ected Clone
Pairs. If any pair in the List of Affected Clone Pairs already appears
in the Global List, we do not need to consider this pair because, this has
already been handled in the previous step. Considering the remaining pairs
(in the List of Affected Clone Pairs), we determine the CPLPs (i.e.,
the clone pairs that have the potential of experiencing late propagation). If
the two fragments in a remaining pair are not considered as clones of each
other in revision Ri+1, then this pair is a CPLP. We include the CPLPs in the
Global List.

For each of the commit operations we follow the above four steps, update
the Global List and mark some CPLPs in this list as the late propagation
pairs if they converge. After examining all the commit operations we get all
the late propagation clone pairs of a particular clone type.

Now, let us assume that a particular pair in the Global List has been
marked as a late propagation pair during the examination of the commit oper-
ation Ci. This pair has the following three possibilities during future evolution.

– The pair may again experience late propagation. In our experiment we
detect each of the occurrences of late propagations a particular clone pair
experienced during evolution.

– The fragments in the pair may evolve independently. However, independent
evolution of such fragments without any convergence is not our concern in
this research work.

– One or both fragments may form new pair(s) with other fragments of the
same or other clone types. In this case, our implementation considers the
new pairs in calculation because they can experience late propagation.

Detection of late propagation considering an individual clone-
type. Suppose we are detecting late propagation considering the clones of
Type j where j = 1, 2, or 3. The clone fragments CF1 and CF2 are clones
of this type in revision Ri. Because of the commit Ci on revision Ri, the
fragments CF1 and CF2 diverged. Let us assume that in commit Ci+n, the
fragments converged and they were again considered as clones of Type j. Then,
we consider this late propagation as a late propagation of Type j. It might be
the case that after converging, CF1 and CF2 were not considered as clones of
Type j. They were considered as clones of Type k where k= 1, 2, or 3 and j 6=
k. In this case we do not consider a late propagation, because the fragments
changed their types. While detecting late propagation in the clones of Type

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Manishankar Mondal et al.

Fig. 2 An example of late propagation in a Type 3 clone pair from subject system jEdit

k, the fragments CF1 and CF2 are considered to determine whether they
experienced a late propagation of Type k. However, we plan to investigate the
intensity of such mixed type late propagations (i.e., where the participating
fragments were considered of one clone type before divergence but of another
clone type after convergence) as a future work.

An example of late propagation in Type 3 clones. We present an
example of late propagation that occurred to a Type 3 clone pair of our sub-
ject system jEdit. We automatically detect this late propagation by applying
our late propagation detection tool. We present Fig. 2 for describing the late
propagation example.

In Fig. 2 we see a Type 3 clone pair in revision 3865 of our candidate system
jEdit. As we can see, the participating clone fragments (denoted as Clone

Fragment 1 and Clone Fragment 2) are two if-blocks. NiCad detects these
Type 3 clones by considering a dissimilarity threshold of 20% and applying
blind renaming of identifiers. These two clone fragments belong to two di↵erent

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 11

source code files3 4. The names of the container methods of these two clone
fragments are removePosition and getScreenLineForO↵set in revision 3865 .
The commit operation applied on revision 3865 changed the clone fragment
at the right hand side (i.e., Clone Fragment 2). Because of this change they
were not considered as a clone pair in revision 3866. Thus, this change is a
diverging change for the clone pair. However, the commit operation applied
on revision 3866 again changed the fragment at the right hand side and the
fragments converged (i.e., became a clone pair) in revision 3867. Thus, this
clone pair experienced a late propagation.

4 Experimental Results and Discussion

We applied our implementation on each of the eight subject systems in Table
2 and identified the clone pairs that experienced late propagation consider-
ing each of the three clone types (Type 1, Type 2, Type 3). In the follow-
ing subsections, we answer the research questions mentioned in the introduc-
tion by presenting and analyzing our experimental results. In our previous
study [MRS14d] we did not consider late propagation between clone frag-
ments remaining in the same method. We consider such late propagations in
this extended study. Also, during the period of divergence of a particular late
propagation, any one or both of the two participating code fragments (i.e., the
code fragments that were considered as a clone-pair before divergence) might
become non-clone fragments or be considered as clone fragments of di↵erent
clone classes. We identify late propagations considering both of these cases in
this extended research work.

4.1 RQ 1: What percentage of late propagations in Type 3 clones
mainly occur because of the changes in the non-matched portions
of the participating clone fragments?

Rationale. We know that Type 3 clones have both cloned and non-cloned
portions. If a late propagation in Type 3 clones occur because of the changes
in the non-matched (i.e., non-cloned) portions only, then this late propagation
might not be important from the perspective of clone management. If it is
observed that a significant portion of the late propagations in Type 3 clones
occur because of the changes in the non-matched portions, then it is impor-
tant to identify and discard these late propagations while doing investigations
regarding clone management. We answer RQ 1 in the following way.

Methodology. Let us consider that a pair of Type 3 clone fragments has
experienced a late propagation. If the matched portions of none of these two
clone fragments were modified during the diverging and converging change, and
also, during the period of divergence, then we decide that this late propagation

3 Source code file for Clone Fragment 1: trunk/org/gjt/sp/jedit/bu↵er/O↵setManager.java
4 Source code file for Clone Fragment 2: trunk/org/gjt/sp/jedit/textarea/ChunkCache.java

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Manishankar Mondal et al.

can be ignored when making clone management decisions. We at first detect
all the occurrences of late propagations in Type 3 clones, and then determine
which late propagations occurred only because of the changes in the non-
matched portions. A particular clone pair can experience late propagation
more than once. We detect and check all those for our investigation regarding
RQ 1. We automatically check a late propagation in the following way.

Let us assume that two code fragments CF1 and CF2 are Type 3 clones of
each other. They experienced a late propagation where the diverging change
occurred in commit Ci and the converging change occurred in commit Cj (Cj

> Ci). We check all these commits from Ci to Cj to determine whether any
one or both of CF1 and CF2 changed in these commits and whether the
changes occurred in the matched or non-matched portions of the fragments.
Suppose, we are going to check the commit operation C where Ci <= C <=
Cj . We extract the two instances of the two code fragments CF1 and CF2

before this commit. Let us assume that these instances are CF1before and
CF2before respectively. We also determine the two instances, CF1after and
CF2after, after the commit. We blind-rename the instances CF1before and
CF2before and then find the di↵erences of these blind-renamed instances using
di↵ command. From di↵ output we determine the matched and non-matched
portions of CF1before and CF2before. We then determine the di↵erences be-
tween CF1before and CF1after using di↵ command to identify the changes
occurred to CF1before in terms of additions, deletions, and modifications. We
determine whether these changes occurred to matched or non-matched por-
tions of CF1before using the line numbers of the changes. In the same way
we determine whether any changes occurred to the matched or non-matched
portions of CF2before. If in each of the commit operations from Ci to Cj the
two code fragments CF1 and CF2 received changes only in their non-matched
portions, then we consider this late propagation as an ignorable one.

Considering the late propagations occurred to the Type 3 clones of each
of the subject systems we determine what proportion of late propagations
occurred only because of the changes in the non-matched portions and thus,
are ignorable. Table 3 shows these proportions for our subject systems. We
see that in case of five subject systems (Ctags, BRL-CAD, Freecol, Carol, and
Java-ML) this percentage is zero. For the remaining three subject systems:
Camellia, jEdit, and Jabref these percentages are 0.14%, 7.22%, and 0.07%
respectively.

Answer to RQ 1: According to our experimental results, the percentage

of late propagations in Type 3 clones occurred only because of the changes in

the non-matched portions of the participating clone fragments is very low (i.e.,

less than one) in most of the subject systems (i.e., seven out of eight systems)

we have studied. However, our analysis is based on only eight subject systems
which are not enough to generalize our findings. The percentage of ignorable
late propagations can be considerable for some systems (for example, 7.22%
in case of our subject system jEdit). We should ignore these late propagations
when making clone management decisions. Our implemented prototype tool
can automatically detect such ignorable late propagations so that we can dis-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 13

Table 3 Late Propagations in Type 3 Clones

Ctags Camellia BRL-CAD Freecol jEdit Carol Jabref Java-ML

LP 5 728 1593 1062 83 644 3028 65
LPNM 0 1 0 0 6 0 2 0
PLPNM 0% 0.14% 0% 0% 7.22% 0% 0.07% 0%

LP = Total number of late propagations in Type 3 clones
LPNM = Number of late propagations in Type 3 clones occurred only

because of the changes in the non-matched portions
PLPNM = Percentage of late propagations in Type 3 clones occurred only

because of the changes in the non-matched portions

Table 4 Statistics regarding late propagations in di↵erent clone-types

Type 1 Type 2 Type 3

System CG CPL LG LP CG CPL LG LP CG CPL LG LP

Ctags 146 0 0 0 170 0 0 0 549 5 6 5
Camellia 584 9 10 61 189 84 30 476 571 230 89 727
BRL-CAD 343 0 0 0 171 0 0 0 586 324 31 1593
Freecol 6593 232 47 3498 675 177 54 8903 4748 272 133 1062
jEdit 42778 14 21 14 1536 0 0 0 9756 50 68 77
Carol 1969 12 8 12 751 1 2 2 3022 225 133 644
Jabref 4262 7 9 7 895 3 4 3 5849 601 280 3026
Java-ML 429 4 5 4 404 33 19 110 1103 33 23 65

CG = Total number of clone genealogies
CPL = Total number of clone-pairs that experienced late propagation
LG = Number of distinct clone genealogies that experienced late propagation
LP = Total number of late propagations (discarding the ignorable ones in Type 3 case)

card them from considerations. For answering the remaining research questions
we ignore these ignorable late propagations occurred in Type 3 clones.

4.2 RQ 2: Are the intensities of late propagation di↵erent in
di↵erent types of clones?

Rationale. If it is observed that late propagation in a particular clone-type is
more intense compared to the other clone-types, then it is an implication that
clones of that particular clone type have a higher probability of introducing
bugs and inconsistencies to the code-base compared to the other types. Thus,
it would be beneficial if we could refactor clones of that particular type with
higher priority. By minimizing these clones we can minimize the possibility of
faults and inconsistencies to the code-base.

Methodology. For answering this research question we applied our pro-
totype tool on each of the candidate systems and determine the following
measures considering each of the three types of clones of each of the subject
systems.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Manishankar Mondal et al.

– The total number of clone genealogies
– The number of clone-pairs (i.e., pair of clone genealogies) that experienced

late propagation
– The number of distinct clone genealogies that experienced late propagation
– The total number of late propagations occurred to the clone fragments. A

particular pair of clone genealogies can experience late propagation more
than once. We determine all of the occurrences of late propagations expe-
rienced by each clone pair.

We show these measures in Table 4. We investigate the intensity of late
propagations in di↵erent clone types in the following two ways.

– Investigation 1: By determining and comparing the probability that a
clone genealogy of a particular clone type will experience a late propaga-
tion.

– Investigation 2: By determining and comparing how often a pair of clone
genealogies of a particular clone type experienced a late propagation.

Investigation 1: Comparison of the probability that a clone genealogy of

a particular clone type will experience a late propagation.

We calculate probability as percentage. Considering each clone-type of each
of the subject systems we determine the percentage of clone genealogies that
experienced late propagation. These percentages are shown in Table 5. We
calculate these percentages from Table 4.

From Table 5 we see that for five out of eight subject systems (except
Camellia, Freecol, and Java-ML) Type 3 clones exhibit the highest intensity
of late propagation in comparison with the other two clone types (Type 1,
and Type 2). For three systems (i.e., Camellia, Freecol, and Java-ML), Type
2 clones exhibit the highest intensity.

Statistical significance test regarding the intensity of late prop-
agation. We were also interested to investigate whether the intensity of late
propagation in Type 3 clones is significantly higher than the intensity of late
propagation in Type 1 or Type 2 clones. We perform our investigation us-
ing Mann-Whitney-Wilcoxon (MWW) tests. We have already determined the
percentage of clone genealogies that experienced late propagation consider-
ing each clone type of each of the subject systems. These percentages are
shown in Table 5. Thus, for a particular clone-type we get eight percentages
from eight subject systems. We performed MWW tests [mwwb] for each pair
of clone-types. For example, in case of the pair (Type 1, Type 3), we deter-
mine whether the eight percentages regarding Type 1 are significantly di↵erent
than the eight percentages regarding Type 3. Here, we should note that MWW
test is non-parametric and does not require the samples to be normally dis-
tributed [mwwa]. This test can be applied to both small and large sample
sizes [mwwc]. In our research, we perform this test considering a significance
level of 5%.

According to our MWW test result, the percentages regarding Type 3 case
are significantly higher than the percentages regarding Type 1 case with p-

value = 0.01 (approximately) for both one-tailed and two-tailed tests, and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 15

Table 5 Percentage of clone genealogies that experienced late propagations from di↵erent
clone-types

System PCGLP - Type 1 PCGLP - Type 2 PCGLP - Type 3 CTHP

Ctags 0% 0% 1.09% Type 3
Camellia 1.71% 15.87% 15.59% Type 2
BRL-CAD 0% 0% 5.29% Type 3
Freecol 0.71% 8% 2.8% Type 2
jEdit 0.05% 0% 0.7% Type 3
Carol 0.4% 0.27% 4.4% Type 3
Jabref 0.21% 0.45% 4.79% Type 3
Java-ML 1.16% 4.7% 2.09% Type 2

PCGLP = Percentage of clone genealogies that experienced late propagations
CTHP = Clone-type with the highest percentage

with an e↵ect size (r) of 0.71. We see that p-value < 0.05. Also, the e↵ect
size is large [e↵a]. The e↵ect size calculation procedure for the MWW test is
available on-line [e↵b]. Finally, we can say that the intensity of late propagation
in Type 3 clones is significantly higher than the intensity of late propagation
in Type 1 clones. However, we did not get significant di↵erences for any of the
other two pairs: (Type 1, Type 2) and (Type 2, Type 3).

Investigation 2: Comparison of how often a clone-pair of a particular

clone type will experience a late propagation.

We perform this investigation considering the clone-pairs that experienced
late propagations. Considering each clone-type of each of the subject systems
we determine how many times a particular pair of clone fragments experienced
late propagation on an average. Table 6 shows this average value for each
clone-type of each of the subject systems. We see that for five out of eight
subject systems (except Freecol, Camellia, and Java-ML), the average number
of late propagations received by a Type 3 clone-pair is higher than the average
number of late propagations experienced by a Type 1 or Type 2 clone-pair.
For Camellia, Type 1 clone pairs exhibit the highest average. For both of the
subject systems Freecol and Java-ML, the highest average values are exhibited
by the Type 2 clone pairs.

Answer to RQ 2. According to our investigation results, the intensity of

late propagation in Type 3 clones is higher compared to the intensity of late

propagation in the other two clone-types for five out of eight candidate systems.

Also, according to the MWW test results, Type 3 clones exhibit a significantly

higher intensity of late propagations than Type 1 clones. Thus, possibly Type

3 clones have a higher probability of introducing faults and inconsistencies to

a code-base than the clones of the other two clone-types.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Manishankar Mondal et al.

Table 6 The average number of times a clone-pair experienced late propagation from dif-
ferent clone types

System AT - Type 1 AT - Type 2 AT - Type 3 CTHAT

Ctags 0 0 1 Type 3
Camellia 6.77 5.66 3.16 Type 1
BRL-CAD 0 0 4.92 Type 3
Freecol 15.07 50.29 3.9 Type 2
jEdit 1 0 1.54 Type 3
Carol 1 2 2.86 Type 3
Jabref 1 1 5.03 Type 3
Java-ML 1 3.33 1.96 Type 2

AT = Average number of times a clone-pair experienced late propagations
CTHAT = Clone-type with the highest average number of times

4.3 RQ 3: Late propagations in which types of clones are more
related to bugs?

Rationale. In a previous study Barbour et al. [BKZ13] found that late prop-
agations in clones are related to bugs. However, they studied only Type 1
and Type 2 clones. Moreover, they did not report bugs for these two cases
separately and thus, did not draw a comparative scenario between the bug-
proneness of late propagations in Type 1 and Type 2 clones. We believe that
understanding the comparative bug-proneness of the late propagations in three
types of clones is important. If it is observed that the late propagations in a
particular type of clones have a very low probability of being related to bugs
compared to the other clone-types, then the late propagations of that particu-
lar clone-type could be ignored. In our study we investigate the bug-proneness
of the late propagations in three types of clones (Type 1, Type 2, and Type
3) separately and show a comparative scenario considering these clone types.

Methodology. Previously Barbour et al. [BKZ13] performed a similar
kind of investigation. They at first determined those clone pairs that expe-
rienced late propagations. Then, they determined whether any of these pairs
ever experienced a fault fix during evolution. We perform a more in-depth in-
vestigation where we determine whether a fault fix occurred during the period
of divergence of a particular late propagation. We believe that a particular
late propagation occurred to a particular clone pair can only be related to a
bug-fix if the bug-fix occurred during the late propagation period (i.e., the
period of divergence). A pair of clones that experienced a late propagation
can also experience a bug-fix however, the bug-fix might not occur during the
period of late propagation. In this case we cannot relate this late propagation
to the bug-fix.

We at first extract the SVN commit logs for each of the subject systems.
The log contains the purpose why each of the revisions was created. If a re-
vision was created because of a bug-fix, the corresponding log mentions it
and generally includes the bug-ID. We identify the bug-fix commits from the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 17

commit log of a subject system using the heuristic proposed by Mockus and
Votta [MV00]. Barbour et al. [BKZ13] also used the same heuristic in order
to identify the bug-fix commits. As an example, if a commit message contains
the word ‘bug’, then we consider the commit as a bug-fix commit. However,
such an heuristic might cause false positives (i.e., identifying a commit as a
bug-fix commit which was not actually done because of a bug-fix). According
to the investigation results of Barbour et al. [BKZ13], this heuristic can help
us detect bug-fix commits with a precision of 87%. We also perform manual
investigations on the bug-fix commits detected from our candidate systems
using this heuristic. From our analysis on 400 bug-fix commits (the first 50
bug-fix commits from each of the eight subject systems) we find that around
84% of these commits are true positives (i.e., are really bug-fix commits).

We detect late propagations considering each type of clones. A particular
pair of clone fragments might experience late propagation more than once. In
this investigation we detect all the late propagations that a particular clone
pair experienced during evolution. A late propagation consists of a clone pair, a
diverging commit, and a converging commit. We identify a late propagation to
be related to a bug-fix if the following two conditions are satisfied: (1) at least
one of the bug-fix commits (detected using our heuristic) occurred in between
the diverging and converging commits of the late propagation, and (2) at least
one clone fragment of the clone-pair was changed in this bug-fix commit. In
this way we determine how many late propagations were related to bug fix.
Considering each type of clones we determine the number of late propagations
that were related to bug-fix. In case of Type 3 clones we disregard all those
late propagations that occurred because of the changes in the non-matched
portions of the clones. We compare the intensity of buggy late propagations
in three types of clones in the following two ways.

– Investigation 1: By determining and comparing the possibility that a
late propagation occurred to a clone-pair of a particular clone-type will be
a buggy late propagation.

– Investigation 2: By determining and comparing the possibility that a
clone fragment of a particular clone-type will experience a buggy late prop-
agation.

Investigation 1: Comparison of the possibility that a late propa-
gation occurred to a clone-pair of a particular clone-type will be a
buggy late propagation.

Considering each clone-type of the each of the subject systems we deter-
mine the total number of late propagations, and the number of late propaga-
tions that are related to bug-fix. The percentage of buggy late propagations
(i.e., the late propagations related to bug-fix) for each clone-type of each can-
didate system is shown in Table 7. Here we should note that more than one
late propagations might be related to the same bug-fix. In case of Type 3
clones we consider only those late propagations that occurred because of the
changes in matched portions of the clone fragments.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Manishankar Mondal et al.

Table 7 Percentage of late propagations related to bug-fix

Type 1 Type 2 Type 3

System LP PLPBF LP PLPBF LP PLPBF TCHP

Ctags 0 0% 0 0% 5 0 n/a
Camellia 61 3.28% 476 22.9% 727 15.13% Type 2
BRL-CAD 0 0% 0 0% 1593 22.15% Type 3
Freecol 3498 35.79% 8903 40.08% 1062 39.64% Type 2
jEdit 14 71.43% 0 0% 77 70.13% Type 1
Carol 12 0% 2 0% 644 34.63% Type 3
Jabref 7 0% 3 0% 3026 41.21% Type 3
Java-ML 4 0% 110 29.09% 65 36.92% Type 3

LP = Total number of late propagation(s).
PLPBF = Percentage of late propagations that experienced bug-fix.
TCHP = The type of clones that experienced the highest proportion

of bug-fix late propagations.

From Table 7 we see that Type 1 and Type 2 clones of Ctags and BRL-
CAD, and also, Type 2 clones of jEdit did not experience any late propa-
gations. In this table we also show the type of clones that experienced the
highest proportion of bug-fix late propagations. We see that for four systems
(BRL-CAD, Carol, Jabref, and Java-ML) out of eight subject systems, Type
3 clones experienced the highest proportion of buggy late propagations. In
case of two subject systems (Camellia, Freecol) of the remaining ones, Type
2 clones experienced the highest proportion of bug-fix late propagations. In
case of jEdit, Type 1 clones received the highest percentage of buggy late
propagations. Thus, we see that for most of the subject systems Type 3 clones
experienced the highest percentage of buggy late propagations.

Investigation 2: Comparison of the possibility that a clone frag-
ment of a particular clone-type will experience a buggy late propa-
gation.

Considering each type of clone of each of our candidates systems we deter-
mine the total number of clone genealogies created during system evolution,
and the number of clone genealogies that experienced a late propagation re-
lated to a bug-fix. The percentage of these buggy late propagation genealogies
with respect to all clone genealogies in case of each clone-type of each of the
candidates systems is shown Table 8. In case of each of the subject systems,
the table also shows the clone-type from which the highest proportion of clone
genealogies experienced buggy late propagations.

From Table 8 we see that none of the three clone-types in Ctags received
late propagations that are related to bug-fix. For most of the remaining subject
systems (four systems out of seven), the proportion of Type 3 clones that ex-
perienced buggy late propagations is the highest compared to the proportions
regarding the other two clone-types.

Statistical significance tests regarding the probability of expe-
riencing buggy late propagation. We also wanted to investigate whether

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 19

Table 8 Percentage of clone genealogies that experienced buggy late propagations

Type 1 Type 2 Type 3

System CG PGBL CG PGBL CG PGBL CTHP

Ctags 146 0% 170 0% 549 0% n/a
Camellia 584 0.51% 189 10.05% 571 8.58% Type 2
BRL-CAD 343 0% 171 0% 586 4.77% Type 3
Freecol 6593 0.71% 675 5.93% 4748 2.10% Type 2
jEdit 42778 0.04% 1536 0% 9756 0.56% Type 3
Carol 1969 0% 751 0% 3022 2.66% Type 3
Jabref 4262 0% 895 0% 5849 4.07% Type 3
Java-ML 429 0% 404 3.21% 1103 0.73% Type 2

CG = Total number of clone genealogies of a particular clone-type.
PGBL = Percentage of genealogies that experienced a buggy late propagation.
CTHP = The clone-type where the highest proportion of clone genealogies

experienced buggy late propagations.

Type 3 clones have a significantly higher probability of experiencing buggy late
propagations compared to Type 1 and Type 2 clones. Considering each clone
type for each of the candidate systems we determined the percentage of clone-
genealogies that experienced buggy late propagations. These percentages are
recorded in Table 8. We perform MWW tests [mwwb] to determine whether
the percentages regarding Type 3 case are significantly higher than the per-
centages regarding Type 1 and Type 2 cases. We perform the tests considering
the significance level of 5%. According to our test results, the percentages for
Type 3 case are significantly higher than the percentages for Type 1 case with
a p-value < 0.01 for both two-tailed test and one-tailed test, and with an e↵ect
size of 0.67. We see that the p-value is smaller than 0.05. Thus, we can say that
Type 3 clones exhibit a significantly higher probability of experiencing buggy
late propagations compared to Type 1 clones. However, there is no significant
di↵erence between probabilities regarding Type 2 and Type 3 clones and also,
between the probabilities for Type 1 and Type 2 clones.

Answer to RQ 3. From our investigations we can state that Type 3 clones

have a higher possibility of experiencing buggy late propagations compared to

the clone fragments of the other two clone-types. Moreover, the probability of

experiencing buggy late propagations for Type 3 clones is significantly higher

compared to Type 1 clones.

4.4 RQ 4: Clones of which clone-type(s) have higher possibilities of
experiencing bug-fixing changes at the time of convergence?

In the previous research question we investigated those late propagations each
of which experienced a bug-fix. A bug-fix can occur at any commit operation
during the period of late propagation. However, we believe that it is important
to know whether the bug-fix occurred at the time of convergence (i.e., at the
converging commit) or not. If a bug-fix commit a↵ects two previously diverged

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Manishankar Mondal et al.

clone fragments in such a way that they converge together, then we can un-
derstand that for fixing of the bug it was necessary to ensure consistency of
the diverged clone fragments. Thus, these clone fragments might be considered
for management with high priority. If not refactorable, then these clone frag-
ments should always be tracked to maintain their consistency. The existing
clone tracker CloneTracker [DR07,DR08] does not automatically track all the
clone fragments in a subject system. It allows programmers to select a subset
of clones for tracking. Moreover, CloneTracker does not prioritize clones for
tracking. Thus, a programmer is responsible to infer the more important clones
for tracking and let CloneTracker know about this. In such a situation auto-
matic prioritization of clone fragments for tracking can help programmers a
lot. Our implemented system can automatically identify those clone fragments
that received bug-fixing changes at the converging commit operation. Possibly
these clone fragments can be prioritized for tracking. Here, we should note
that in this research we only investigate the past evolution history of the clone
fragments. This might not be the case that a clone fragment that experienced
bug-fixing changes during a late propagation at past will also experience bugs
in the future. We would like to investigate the likeliness of occurrence of such a
phenomenon as a future work. In RQ 4 we investigate whether clone fragments
experience bug-fixing changes at the time of convergence, and if so, how the
intensity of this phenomenon di↵ers across clone-types. We answer RQ 4 in
the following way.

Methodology. We at first select all those late propagations each of which
experienced a bug-fix using the methodology described in the previous re-
search question. Then we automatically check each of these late propagations
to determine whether the bug-fix occurred at the converging commit (i.e., the
commit operation where two previously diverged clone fragments converged
because of the changes in any one or both of the fragments). We determine
the number of clone fragments that experienced such late propagations. Table
9 shows the percentage of clone fragments that experienced this type of late
propagations with respect to all clone fragments in each clone-type of each of
the candidate systems.

From Table 9 we see that in case of most of the subject systems disregarding
Ctags, the proportion of clones that experienced bug-fixing changes at the time
of convergence is the highest in Type 3 case. We disregard Ctags because none
of the clone fragments in Ctags experienced bug-fixing changes.

Statistical significance test regarding the possibility of experienc-
ing bug fixing changes at the time of convergence. As we have done pre-
viously, we wanted to investigate whether Type 3 clones exhibit a significantly
higher possibility of experiencing bug-fixing changes at the time of convergence
compared to Type 1 and Type 2 clones. We perform MWW tests [mwwb] to
determine whether the percentages of Type 3 clone-genealogies experiencing
bug-fixing changes at the time of convergence are significantly di↵erent than
the corresponding percentages for Type 1 and Type 2 case. According to our
tests considering a significance level of 5%, the percentages regarding Type 3
case are significantly higher than the percentages regarding Type 1 case with

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 21

Table 9 Percentage of clone genealogies that experienced bug-fixing changes at the time
of convergence

Type 1 Type 2 Type 3

System CG PCGB CG PCGB CG PCGB CTHP

Ctags 146 0% 170 0% 549 0% n/a
Camellia 584 0% 189 9.52% 571 7.9% Type 2
BRL-CAD 343 0% 171 0% 586 3.92% Type 3
Freecol 6593 0.71% 675 4.59% 4748 1.58% Type 2
jEdit 42778 0.03% 1536 0% 9756 0.42% Type 3
Carol 1969 0% 751 0% 3022 1.16% Type 3
Jabref 4262 0% 895 0% 5849 3.54% Type 3
Java-ML 429 0% 404 3.21% 1103 0.73% Type 2

CG = Total number of clone genealogies of a particular clone-type.
PCGB = Percentage of clone genealogies that received bug-fixing changes

at the time of convergence.
CTHP = The clone-type where the highest proportion of clone genealogies

experienced bug-fixing changes at the time of convergence.

p-value < 0.01 for both one-tailed and two-tailed tests, and with an e↵ect
size of 0.68. We see that the p-value is less than 0.05, and also, the e↵ect
size is large [e↵a]. Thus, we can say that Type 3 clones exhibit a significantly
higher possibility of experiencing bug-fixing changes at the time of convergence
compared to Type 1 clones. However, the di↵erence between the percentages
regarding the Type 2 and Type 3 cases is not statistically significant. The
same is true for the Type 1 and Type 2 cases.

Answer to RQ 4: According to our investigation, Type 3 clones have

higher possibilities of experiencing bug-fixing changes at the time of converging

compared to the clone fragments in each of the other two clone types. Moreover,

Type 3 clones exhibit a significantly higher probability of experiencing bug-

fixing changes at the converging commits compared to Type 1 clones. We have
already discussed that the clone fragments that experience bug-fixing changes
at the time of convergence should be considered important for tracking. Our
implemented prototype tool can automatically identify such clone fragments
by analyzing clone evolution history and thus, can help programmers identify
the important tracking candidates while dealing with CloneTracker.

4.5 RQ 5: Do the participating clone fragments in a clone pair that
experience late propagation generally remain in di↵erent files?

Rationale. According to a number of studies [DLL09,VPV10], the program
entities that often need to be changed together (i.e., that often require corre-
sponding changes) should remain in close proximity to each other so that while
changing a particular entity the developer does not miss to look at other enti-
ties that may require corresponding changes. Considering this fact we suspect
that possibly the clone fragments in a clone pair that exhibit late propagation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Manishankar Mondal et al.

Table 10 Percentage of late propagation clone pairs each having clone fragments from the
same file or from di↵erent files

Type 1 Type 2 Type 3

System CPL SF DF MLP CPL SF DF MLP CPL SF DF MLP

Ctags 0 0% 0% n/a 0 0% 0% n/a 5 100% 0% S

Camellia 9 44.4% 55.6% D 84 19% 81% D 230 39.6% 60.4% D

BRL-CAD 0 0% 0% n/a 0 0% 0% n/a 324 100% 0% S

Freecol 232 94.8% 5.2% S 177 93.2% 6.8% S 272 46.3% 53.7% D

jEdit 14 14.3% 85.7% D 0 0% 0% n/a 50 14% 86% D

Carol 12 100% 0% S 1 100% 0% S 225 20.9% 79.1% D

Jabref 7 100% 0% S 3 0% 100% D 601 26.6% 73.4% D

Java-ML 4 0% 100% D 33 87.9% 12.1% S 33 81.8% 18.2% S

CPL = Total number of clone pairs that experienced late propagations.

SF = Percentage of late propagation pairs each having clone fragments from the same file

DF = Percentage of late propagation pairs each having clone fragments from di↵erent files

MLP = The situation that occurs for most of the late propagation pairs. This filed can

have either of the two values: ‘S’ or ‘D’

S = For most of the late propagations, the two clone fragments belong to the same file

D = For most of the late propagations, the two clone fragments belong to di↵erent files

generally remain in two di↵erent files and as a result, the developers often for-
get to make corresponding changes to these clone fragments. We investigate
in the following way to look into this matter.

Methodology. We have already said that considering each of the clone
types of each of the subject systems we identify the clone pairs that experi-
enced late propagation. For each of these pairs we determined whether the
participating clone fragments remain in di↵erent files or in the same file. We
determined two percentages - (i) the percentage of the clone pairs having clone
fragments from di↵erent source code files and (ii) the percentage of clone pairs
consisting of clone fragments from the same file. These percentages are shown
in Table 10.

Analysis. From Table 10 we see that for ten cases (for example Type
1 case of jEdit, Type 2 case of Jabref) the percentage of late propagation
clone pairs each having clone fragments from di↵erent files is higher than the
percentage of late propagation clone pairs each having clone fragments from
the same file. However, the opposite is true for nine cases (for example Type
1 case of Freecol, Type 1 case of Carol). The clone fragments in the remaining
five cases (Type 1 and Type 2 cases of Ctags and BRL-CAD, and Type 2 case
of jEdit) did not experience any late propagations.

Answer to RQ 5. From our investigation we understand that whether
the two participating clone fragments in a particular clone pair remain in
di↵erent files or in the same file, the clone pair can experience late propagation.
Proximity of the constituent clone fragments in a clone pair possibly does not
have any significant e↵ect on the occurrence of late propagations to that pair.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 23

Table 11 Percentage of late propagation clone pairs each consisting of method clones or
block clones

Type 1 Type 2 Type 3

System CPL BC MC MLP CPL BC MC MLP CPL BC MC MLP

Ctags 0 0% 0% n/a 0 0% 0% n/a 5 100% 0% B
Camellia 9 100% 0% B 84 100% 0% B 230 99.1% 0.87% B
BRL-CAD 0 0% 0% n/a 0 0% 0% n/a 324 100% 0% B
Freecol 232 100% 0% B 177 100% 0% B 272 97.1% 2.9% B
jEdit 14 57.1%42.9% B 0 0% 0% n/a 50 90% 10% B
Carol 12 100% 0% B 1 100% 0% B 225 95.6% 4.4% B
Jabref 7 100% 0% B 3 0% 100% M 601 98.2% 1.8% B
Java-ML 4 0% 100% M 33 87.9% 12.1% B 33 90.9% 0.1% B

CPL = Total number of clone pairs that experienced late propagations.
BC = Percentage of late propagation pairs each consisting of at least one block clone
MC = Percentage of late propagation pairs each consisting of method clones only
MLP = The situation that occurs for most of the late propagation pairs. This filed can

have either of the two values: ‘B’ or ‘M’
B = For most of the late propagation pairs, at least one of the two clone fragments is a

block clone
M = For most of the late propagation pairs, both clone fragments are method clones

4.6 RQ 6: Do block clones or method clones exhibit higher
intensity of late propagation?

Rationale. Intuitively, copying a block of statements from one method and
pasting that block to several other methods is more di�cult compared to
copy-pasting a whole method. While pasting a block of statements into a
method, the variable names and data types in the block might need to be
changed in accordance with the variables and data types in that method.
If there is a problem in making such correspondence and as a result, the
variables are not changed correctly, then this will create inconsistency in future
evolution. If a number of block clones (forming a clone class) are created with
such inconsistencies, these inconsistencies in di↵erent clone fragments will be
discovered at di↵erent times during evolution and as a result, late propagation
will happen. Also, blocks might not have well defined boundaries as of methods.
For this reason, keeping track of block clones might seem to be more di�cult
compared to method clones to a programmer.

Methodology. We perform the following two investigations for answering
this research question.

– Investigation 1: Investigating what proportions of the late propagations

involve block-clones or method-clones.

– Investigation 2: Investigating what proportions of the block-clones and

method-clones experienced late propagation.

Investigation 1: Investigating what proportions of the late propagations

involve block-clones or method-clones.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Manishankar Mondal et al.

Considering each of the clone types of each of the subject systems, we
at first determine those clone pairs that exhibited late propagation and then
we determine whether the clone fragments in such a pair are block clones
or method clones. We calculate: (i) the percentage of late propagation clone
pairs each consisting of at least one block clone, and (ii) the percentage of late
propagation clone pairs consisting of method clones only. These percentages
regarding each clone-type of each subject system are shown in Table 11.

Analysis. From Table 11 we see that for almost all of the cases, the
percentage of late propagation clone pairs involving block clones is much higher
(100 % in many cases such as Type 2 case of Freecol) than the percentage of late
propagation pairs consisting of only method clones. Although we determine
the percentage of late propagation clone pairs having at least one block clone,
for most of the cases we observed that both of the clones in such a pair are
block clones. However, for a very few cases (such as Type 1 and Type 2 cases
of Ctags) we did not get any clone pair experiencing late propagation.

Investigation 2: Investigating what proportions of the block-clones and

method-clones experienced late propagation.

Considering each clone-type of each of the subject systems we first identify
all the clone genealogies created during evolution, and then separate those
into two disjoint subsets: (1) block clone genealogies, and (2) method clone
genealogies. We also determine which of these block clone genealogies as well as
which of the method clone genealogies experienced late propagations. Finally,
we calculate the following two percentages:

– The percentage of block clones (i.e., block clone genealogies) that experi-
enced late propagation with respect to all block clones.

– The percentage of method clones that experienced late propagation with
respect to all method clones.

Table 12 shows the following four measures considering each clone-type of
each of the subject systems: (1) the number of block clones, (2) the number
of block clones that experienced late propagation, (3) the number of method
clones, and (4) the number of method clones that experienced late propaga-
tions during evolution. Table 13 shows the percentages of block clones as well
as method clones that experienced late propagations with respect to all block
clones and method clones respectively. The percentages in this table were cal-
culated from the values in Table 12. Table 13 shows that for most of the cases,
the percentage of method clones that experienced late propagations is smaller
compared to the corresponding percentage of block clones. We found only two
cases (i.e., Type 1 case of Java-ML, and Type 2 case of Jabref) where the
percentage of method clones that experienced late propagations is higher than
the corresponding percentage of block clones.

Statistical Significance Tests.We wanted to determine whether the per-
centages of block clones that experienced late propagations are significantly
higher than the corresponding percentages of method clones. Table 13 contains
24 cases (8 systems ⇥ 3 clone-types) in total. We perform Mann-Whitney-
Wilcoxon tests [mwwb] to determine whether the percentages regarding block

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 25

Table 12 The number of block clones and method clones that experienced late propagations

Type 1 Type 2 Type 3

System NB NBL NM NML NB NBL NM NML NB NBL NM NML

Ctags 85 0 61 0 99 0 71 0 336 6 213 0
Camellia 398 10 186 0 177 30 12 0 520 86 51 3
BRL-CAD 311 0 32 0 153 0 18 0 520 31 66 0
Freecol 5721 47 872 0 508 54 167 0 3545 116 1203 18
jEdit 16828 10 25950 11 767 0 769 0 6437 46 3319 22
Carol 907 8 1062 0 296 2 455 0 1728 112 1294 21
Jabref 2262 9 2000 0 640 0 255 4 3797 246 2052 36
Java-ML 224 0 205 5 240 13 164 6 553 18 550 5

NB = Number of block clone genealogies created during evolution.
NBL = Number of block clone genealogies that experienced late propagation.
NM = Number of method clone genealogies created during evolution.
NML = Number of method clone genealogies that experienced late propagation.

Table 13 Percentage of block clones and method clones that experienced late propagations

Type 1 Type 2 Type 3

System PBC PMC HP PBC PMC HP PBC PMC HP

Ctags 0% 0% n/a 0% 0% n/a 1.79% 0% PBC
Camellia 2.51% 0% PBC 16.94% 0% PBC 16.53% 5.88% PBC
BRL-CAD 0% 0% n/a 0% 0% n/a 5.96% 0% PBC
Freecol 0.82% 0% PBC 10.62% 0% PBC 3.27% 1.49% PBC
jEdit 0.06% 0.04% PBC 0% 0% n/a 0.71% 0.66% PBC
Carol 0.88% 0% PBC 0.67% 0% PBC 6.48% 1.62% PBC
Jabref 0.39% 0% PBC 0% 1.56% PMC 6.47% 1.75% PBC
Java-ML 0% 2.43% PMC 5.42% 3.65% PBC 3.25% 0.91% PBC

PBC = Percentage of block clones that experienced late propagation.
PMC = Percentage of method clones that experienced late propagation.
HP = The larger one of the above two percentages. This field can have

either of the two values: PBC, and PMC.

clones in these cases are significantly higher compared to the percentages re-
garding method clones. We consider a significance level of 5%. According to
our test, the percentages of block clones that experienced late propagations
are significantly higher than the corresponding percentages of method clones
with p-value = 0.02 for two-tailed test and 0.01 for one-tailed test, and with
an e↵ect size of 0.32. We see that the p-values are smaller than 0.05, and
thus, the percentages of block clones that experienced late propagations are
significantly higher than the corresponding percentages of method clones.

Answer to RQ 6: The clone pairs that experience late propagation gener-

ally consist of block clones instead of method clones. Our second investigation
shows that block clones exhibit a significantly higher tendency of experiencing

late propagation than method clones. Such an observation implies that block
clones possibly have higher probability of introducing inconsistencies to a code-
base compared to the method clones. Thus, creating block clones is more risky

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Manishankar Mondal et al.

Table 14 Statistics regarding SPCP clones and late propagations

Type 1 Type 2 Type 3

System SPCP LP LPSPCP SPCP LP LPSPCP SPCP LP LPSPCP

Ctags 26 0 n/a 16 0 n/a 118 5 3
Camellia 64 61 61 21 476 216 78 727 642
BRL-CAD 80 0 n/a 17 0 n/a 111 1593 1559
Freecol 143 3498 3498 94 8903 8885 180 1026 598
jEdit 486 14 14 21 0 n/a 128 77 25
Carol 84 12 12 110 2 2 498 644 336
Jabref 50 7 7 84 3 3 544 3026 2111
Java-ML 119 4 4 34 110 104 355 65 59

SPCP = The number of SPCP clone fragments.
LP = The total number of late propagations
LPISPCP = The number of late propagations involving SPCP clones

than creating method clones. We should possibly consider refactoring (if pos-
sible) block clones with higher priority.

4.7 RQ 7: Do late propagations mainly occur to the SPCP clones or
non-SPCP clones?

Rationale. In a previous study [MRS14b] we showed that SPCP (Similar-
ity Preserving Change Pattern) clones are the most important ones from the
perspectives of clone management (such as clone tracking or refactoring). We
suggested to mainly focus on managing SPCP clones when taking clone man-
agement decisions [MRS14b,MRS14a]. In this research question (i.e., RQ 7)
we investigate whether late propagations mostly occur to the SPCP clones. In
such a case we can say that proper management of SPCP clones (i.e., through
refactoring or tracking) can help us minimize late propagations. We perform
our investigation in the following two ways.

– Investigation 1: By investigating what proportions of late propagations
occur to the SPCP clones.

– Investigation 2: By investigating the frequency of the occurrences of late
propagations to the SPCP clones and non-SPCP clones.

Investigation 1: Investigation on the proportion of late propagations oc-

curred to the SPCP clones.

If it is observed that most of the late propagation occur to the SPCP clones
rather than non-SPCP clones, then we can decide that managing SPCP clones
through refactoring and/or tracking can help us minimize the occurrences of
late propagations considerably. We investigate in the following way.

We at first determine the SPCP clones in the code-base by applying our
detection mechanism elaborated in our previous study [MRS14a]. Then, we
determine all the occurrences of late propagations. We automatically check

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 27

Table 15 Percentage of late propagations involving SPCP clones

System PLS - Type 1 PLS - Type 2 PLS - Type 3

Ctags 0% 0% 60%
Camellia 100% 45.38% 88.31%
BRL-CAD 0% 0% 97.86%
Freecol 100% 99.8% 58.28%
jEdit 100% 0% 32.48%
Carol 100% 100% 52.17%
Jabref 100% 100% 69.76%
Java-ML 100% 94.54% 90.76%

PLS = Percentage of late propagations involving SPCP clones
OPPS = Overall percentage per system

each of these late propagations and determine which late propagations in-
volve SPCP clones (i.e., any of the two participating clone fragments in the
late propagation are SPCP clones). Considering each clone-type of each of the
candidate systems we determine how many of the corresponding late propaga-
tions involve SPCP clones. Table 14 shows the total number of SPCP clones,
total number of late propagations, and the number of late propagations that
involve SPCP clones. The percentage of late propagations involving SPCP
clones considering each clone-type of each of the candidate systems is shown
in Table 15.

From Table 15 we see that the percentage of late propagations involving
SPCP clones is zero for Type 1 and Type 2 cases of Ctags and BRL-CAD,
and also, for Type 2 case of jEdit. The reason is that we did not get any late
propagations for these cases. This is also evident from Table 14. However, from
this table (i.e., Table 14) we see that in each of these cases we found SPCP
clones. Table 15 shows that in case of each of the subject systems, all of the
late propagations in Type 1 clones involved SPCP clones. The same is true
for Type 2 cases of most of the subject systems except Camellia. From Table
15 and 14 we understand that a number of late propagations in Type 2 and
Type 3 cases do not involve SPCP clones. In Section 2 we explained that two
clone fragments might experience late propagation(s), however, they will not
be regarded as SPCP clones if they finally diverge and do not converge again.
The late propagations that do not involve SPCP clones were experienced by
such non-SPCP clone pairs.

Considering all clone types of all the candidate systems we found 20253
occurrences of late propagations in total, and 18139 of these involved SPCP
clones. Thus, around 89.56% of the total late propagations involved SPCP
clones. Such a finding implies that late propagations mainly occur to the SPCP
clones. From this we come to the decision that we can considerably minimize
the future occurrences of late propagations by managing the SPCP clones
through refactoring and tracking.

Investigation 2: Investigation on the frequency of the occurrences of late

propagations to the SPCP clones and non-SPCP clones.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Manishankar Mondal et al.

Table 16 Frequency of late propagations in SPCP and Non-SPCP clones

Type 1 Type 2 Type 3

System FLS FLNS HF FLS FLNS HF FLS FLNS HF

Ctags 0 0 n/a 0 0 n/a 1 1 n/a

Camellia 6.78 0 FLS 2.27 6.87 FLNS 2.89 3.73 FLNS

BRL-CAD 0 0 n/a 0 0 n/a 4.87 8.5 FLNS

Freecol 15.07 0 FLS 54.18 1.38 FLS 5.43 2.86 FLS

jEdit 1 0 FLS 0 0 n/a 1.77 1.35 FLS

Carol 1 0 FLS 2 0 FLS 2.52 3.34 FLNS

Jabref 1 0 FLS 1 0 FLS 6.04 3.63 FLS

Java-ML 1 0 FLS 3.59 1.5 FLS 2.19 1 FLS

FLS = Frequency of late propagations in SPCP clones.

FLNS = Frequency of late propagations in non-SPCP clones.

HF = Higher Frequency. This field can have two values: FLS or FLNS

From the previous investigation we understand that late propagations
mainly occur to the SPCP clones rather than the non-SPCP clones. In this
investigation we determine whether late propagations are more frequent to the
SPCP clones or to the non-SPCP clones. If the frequency of late propagations
to the SPCP clones is higher compared to the frequency of late propagations
to the non-SPCP clones, then we can again decide that refactoring and track-
ing of SPCP clones can help us minimize late propagations. We perform our
investigation in the following way.

Considering each clone-type of each of the candidate systems we determine
the following four measures:

– Measure 1: The number of distinct clone pairs that involve SPCP clones
and experienced late propagations,

– Measure 2: The number of distinct clone pairs that do not involve SPCP
clones and experienced late propagations,

– Measure 3: The total number of late propagations each involving SPCP
clone(s), and

– Measure 4: The total number of late propagations involving only non-
SPCP clones.

We then determine the following two frequencies from the above measures.

– The frequency of late propagations in SPCP clones by dividing Measure
3 by Measure 1 .

– The frequency of late propagations in the non-SPCP clones by dividing the
fourth measure (Measure 4) by the second one (Measure 2).

These frequencies for each clone-type of each of the subject systems are
shown in Table 16. The table shows that for most of the cases (i.e., except
Type 2 and Type 3 cases of Camellia, Type 3 case of Carol, and Type 3 case
of BRL-CAD) the frequency of late propagations in SPCP clones is higher
than the frequency of late propagations in non-SPCP clones.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 29

Statistical significance test regarding the frequency of late prop-
agations in SPCP and non-SPCP clones: We also wanted to investigate
whether the frequency of late propagations in SPCP clones is significantly
higher than the frequency of late propagations in non-SPCP clones. If we con-
sider all three clone types of all eight candidate systems we get 24 cases (3
clone-types x 8 candidate systems) in total. We have already mentioned that
we did not get any late propagations for Type 1 and Type 2 cases of Ctags
and BRL-CAD, and Type 2 case of jEdit. Considering the remaining 19 cases
we determine two sets of frequencies. One set contains the frequencies of late
propagations in SPCP clones in these 19 cases. The other set contains the
frequencies of late propagations in non-SPCP clones. We perform the Mann-
Whitney-Wilcoxon test [mwwb] to determine whether the samples in these
two sets are significantly di↵erent. We consider a significance level of 5%. Ac-
cording to the test results, the di↵erence between these two sets is significant
with p-value (probability value) = 0.04 (< 0.05) for two-tailed test and 0.02
for one-tailed test, and with an e↵ect size of 0.33. We see that the p-values are
smaller than 0.05. Thus, we can say that the frequency of late propagations
in SPCP clones is significantly higher than the frequency of late propagations
in non-SPCP clones.

Answer to RQ 7: According to our investigations we can state that most

of the late propagations (around 89.56%) involve SPCP clones. In other words,

late propagations mainly occur to the SPCP clones. Also, the frequency of the

occurrence of late propagations in SPCP clones is significantly higher com-

pared to non-SPCP clones. These findings imply that by managing SPCP

clones through refactoring and tracking we can minimize the occurrences of

late propagations considerably. Moreover, SPCP clones not only include those
clone fragments that experienced late propagations but also other clone frag-
ments that are important to be updated consistently [MRS14b]. Thus, we
should primarily focus on managing the SPCP clones. Management of SPCP
clones through refactoring and tracking will not only help us minimize late
propagations but also will help us in better maintenance of software systems.

4.8 Discussion

In our research we answered seven research questions. In this section we men-
tion and discuss our most important findings regarding late propagation from
the answers to these research questions, and focus on the possible reasons
behind these findings.

Finding 1: Type 3 clones have the highest possibility of experiencing late

propagations among the three clone-types: Type 1, Type 2, and Type 3.

From our investigations in RQ 2 we found that Type 3 clones exhibit the
highest intensity of late propagations among the three clone-types (Type 1,
Type 2, and Type 3). A possible reason behind why Type 3 clones exhibit a
higher tendency of late propagations is that Type 3 clones are gapped clones.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Manishankar Mondal et al.

Because of the existence of these gaps (i.e., non-cloned lines) consistent chang-
ing of Type 3 clones is not always as straight forward as of the other two
clone-types. We suspect that higher percentage of inconsistencies as well as
late propagations in Type 3 clones are caused by the gaps. However, we do
not have enough supporting evidence for this. In future, we would like to in-
vestigate whether di↵erent levels of dissimilarities (i.e., di↵erent dissimilarity
thresholds) in Type 3 clones have e↵ects on the intensity of late propagations
in such clones.

Finding 2: Late propagations in Type 3 clones have the highest possibility

of introducing bugs and inconsistencies to the code-base compared to the late

propagations in the other two clone-types: Type 1 and Type 2.

From our answers to the research questions RQ 3 and RQ 4 we understand
that the late propagations in Type 3 clones have a higher tendency of intro-
ducing bugs and inconsistencies to a software system’s code-base compared to
the late propagations in each of the other two clone-types. We again suspect
that the main reason behind such a scenario is the existence of gaps in Type
3 clone fragments. However, we do not have supporting evidence for this. We
would like to investigate this in future.

Finding 3: Creating block clones is more risky than creating method clones

because late propagations mostly occur in block clones.

According to our analysis in RQ 6, the clone fragments that experience
late propagations are mostly block clones rather than method clones. Such a
finding implies that creating block clones is more risky than creating method
clones. The reason behind why a significantly higher proportion of block clones
experience late propagations compared to method clones is that block clones
do not have well defined boundaries as of method clones. Thus, tracking as
well as consistent updating of block clones without proper tool support is
intuitively much more di�cult compared to method clones. Here, we should
again note that an existing tool called CloneTracker [DR08] provides support
for tracking and simultaneous editing of clone fragments. However, this tool
tracks only the programmer selected clone fragments. Currently there is no
tool for automatic tracking of all clone fragments in a software system. Such
a tool could help us minimize late propagations in code clones considerably.

Finding 4: Managing SPCP clones can help us minimize the occurrences

of late propagations considerably.

From our investigation regarding RQ 7 we observe that late propagations
mainly occur to SPCP clones (i.e., the clones that evolve following a simi-
larity preserving change pattern called SPCP). A previous study [MRS14b]
suggests us to mainly consider SPCP clones for refactoring and tracking. As
late propagation clones are mostly SPCP clones, we believe that managing of
SPCP clones will help us minimize late propagations considerably. Moreover,
from our findings we confirm that SPCP clones are the most important can-
didates from a clone management perspective. We also believe that a clone
tracker with the capability of automatically detecting and tracking of SPCP
clones could help programmers e�ciently manage code clones by minimizing
late propagations.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 31

5 Related Work

A number of studies have already been done on clone evolution and late prop-
agation in clones during evolution. Kim et al. [KSNM05] studied clone evolu-
tion by defining and extracting clone genealogies from two Java systems using
CCFinder5 as the clone detector. Krinke [Kri07] studied the consistent and
inconsistent changes to the Type 1 clones considering the evolutions of five
open source subject systems using Simian6 clone detector. He also studied
the stability of clones [Kri08] in comparison with non-cloned code. Göde et
al [GH11,GK11] analyzed clone evolution and its e↵ect on software mainte-
nance by enhancing Krinke’s study [Kri08].

In a recent study, Barbour et al. [BKZ13] investigated eight di↵erent pat-
terns of late propagation by studying three open-source subject systems writ-
ten in Java and identified two patterns that have higher likelihood of intro-
ducing inconsistencies to a code-base. They used three clone detection tools
NiCad, CCFinder, and Simian in their study. However, Type 3 clones were not
considered in this study. Aversano et al. [ACP07] investigated clone evolution
on two subject systems to determine how clones are maintained. According to
their observation 18% of the clones experienced late propagation. They show
that late propagation in clones can directly be related to bugs and thus late
propagation is risky. In another study Thummalapenta et al. [TCAP09] inves-
tigate late propagation in clones considering four subject systems and reported
that late propagation is often related to faults and inconsistencies.

Bazrafshan [Baz12] conducted an empirical study to investigate how di↵er-
ently the near-miss clones evolve compared to the identical clones. He investi-
gated the conversion of near-miss clones to identical clones, and also, identical
clones to near-miss clones. According to his findings, near-miss clones should
be given a higher priority than the identical clones when taking clone man-
agement decisions. Our study is di↵erent in the sense that we investigate the
intensity and harmfulness of late-propagation in three clone-types (Type 1,
Type 2, and Type 3) separately.

In a previous study [MRS15] we investigated and compared the bug-proneness
of code clones in di↵erent clone-types. We did not investigate late propaga-
tion in that study. However, in our study presented in this paper we detect
late propagation in di↵erent types of code clones, and investigate whether late
propagation in code clones is related to bugs. Thus, our contributions in this
study are di↵erent than in our previous study [MRS15].

We see that while there are a number of great studies, none of these focus
on the intensity and harmfulness of late propagation separately in di↵erent
types of clones. Also, the existing studies did not investigate the tendency of
late propagation in SPCP clones (i.e., the clone fragments that evolve following
a Similarity Preserving Change Pattern). In this study, we investigate these

5 CCFinder. http://www.ccfinder.net/ccfinderxos.html
6 Simian. http://www.harukizaemon.com/simian/index.html.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 Manishankar Mondal et al.

issues by answering seven research questions. We believe that our findings are
important and have the potential to help us in better clone maintenance.

6 Threats to Validity

The number as well as the percentage of clone genealogies that experienced late
propagation may vary because of the variation of the detection parameters of
the clone detection tool (NiCad in our study). Wang et al. [WHJK13] defined
this problem as the confounding configuration choice problem and conducted
an extensive study considering six clone detectors to ameliorate the e↵ects of
the problem. However, the settings that we have used for NiCad are considered
standard and with these settings NiCad can detect clones with higher precision
and recall [RC09, RCK09]. Thus, the experimental results reported in this
paper are of significant importance.

NiCad can detect three types of clones: Type 1 (identical), Type 2 (near-
miss), and Type 3 (near-miss). Any other near-miss clone detectors [SR14]
could provide us with di↵erent experimental results as well as di↵erent sce-
narios. However, Svajlenko and Roy [SR14] showed that NiCad is a very good
clone detector for detecting all three types of code clones in comparison with
the other modern clone detectors. Also, NiCad can report three types of clones
(Type 1, Type 2, Type 3) separately. Thus, it helped us to investigate the in-
tensity of late propagation on these clone-types separately.

Our research involves the detection of bug-fix commits. The way we detect
such commits is similar to the technique followed by Barbour et al. [BKZ13].
Such a technique proposed by Mocus and Votta [MV00] can sometimes select
a non-bug-fix commit as a bug-fix commit mistakenly. Barbour et al. [BKZ13]
showed that this probability is very low. According to their investigation, the
technique has an accuracy of 87% in detecting bug-fix commits. We also per-
form manual investigations on the bug-fix commits detected from our subject
systems. As mentioned in Section 4.3, we confirmed that around 84% of these
commits are true positives. Thus, we believe that our reported results regard-
ing the bug-proneness of di↵erent types of late propagations in code clones are
considerable.

In case of a Type 3 clone pair it might happen that one of the two clone
fragments experienced particular changes, however, the two fragments were
still considered as clones. The particular changes experienced by one frag-
ment might later be propagated to the other fragment. Our late propagation
detection mechanism cannot identify such type of late propagation where the
participating clone fragments always preserve their similarity during the whole
period of propagation.

Two clone fragments of a particular clone type might be regarded as clone
fragments of another type after experiencing the diverging period. Bazraf-
shan [Baz12] previously investigated on such conversions of clone types. Xie
et al. [XF13] called it clone mutation and performed an in-depth investigation
regarding this. According to their investigation on three subject systems, up

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 33

to 60% of the clone genealogies can experience mutation. In our research we
were concerned about the late propagations in each of the three clone-types
(Type 1, Type 2, and Type 3) separately. We ignored type conversions (i.e.,
mutations) of code clones. However, if a clone-pair is considered of di↵erent
clone-types during di↵erent periods of evolution, we find the late propagations
experienced by the clone-pair considering each duration separately. Thus, our
experimental results regarding late propagation considering individual clone-
type are not a↵ected by the type-conversion of code clones.

The di↵erence between the number of clone genealogies in di↵erent clone-
types might be a confounding factor behind our finding regarding the compar-
ative scenario of experiencing late propagations by di↵erent clone-types. We
wanted to investigate whether this is true. Our finding is that Type 3 clones

have a higher possibility of experiencing late propagations than Type 1 and

Type 2 clones. We investigate whether this finding has been a↵ected by the
number of clone genealogies in di↵erent clone-types. We first consider the two
clone-types: Type 1 and Type 3. From Table 4 we see that for five subject
systems (Ctags, BRL-CAD, Carol, Jabref, and Java-ML) the number of Type
3 clone genealogies is higher than the number of Type 1 clone genealogies.
For the remaining three systems (Camellia, jEdit, and Freecol), the number
of Type 1 clone genealogies is higher. However, from Table 5 we see that for
each of these eight systems, the percentage of clone genealogies that experi-
enced late propagation is much higher in Type 3 case than in Type 1 case.
Thus, it seems that the numbers of clone genealogies in Type 1 and Type 3
case do not impact the comparative scenario of experiencing late propagations
by the code clones of these two types. Now, we make a comparison between
the clone-types: Type 2 and Type 3. For each of our eight subject systems,
the number of Type 2 clone genealogies is much lower compared to Type 3
(c.f., Table 4). However, for three systems (Camellia, Freecol, and Java-ML)
the proportion of late propagation clone genealogies is higher in Type 2 case
compared to Type 3 (c.f., Table 5). Thus, we again see that the total numbers
of clone genealogies in the two clone-types (Type 2, and Type 3) do not a↵ect
the comparative scenario of experiencing late propagations by the code clones
of these two types. Finally, we believe that our findings are not a↵ected by the
number of clone-genealogies in di↵erent clone-types.

A clone pair which was created just before the last revision of our investi-
gated evolution history of a candidate system, and diverged at the last revision
can converge in near future (i.e., shortly after the last revision) which is un-
known to us. The earliest possible revision of convergence can be the one which
will be created just after the last revision. However, as the future is unknown
to us we consider this pair as a non-SPCP clone pair in our experiment. We
should also note that this pair has not yet completed experiencing a late prop-
agation according to the known evolution history. Thus, we believe that our
decision about considering this pair as a non-SPCP clone pair is reasonable
and such a consideration has not a↵ected our findings.

The number of subject systems that we have used in our experiment is not
su�cient to take a concrete decision regarding the possible causes of late prop-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 Manishankar Mondal et al.

agation. However, we selected our subject systems focusing on the diversity of
sizes (from small to large) and application domains (five di↵erent application
domains) to generalize our findings. Thus, we believe that our findings are
important and have the potential to minimize late propagation in clones.

7 Conclusion

In this paper, we investigate late propagation in three types of clones (Type 1,
Type 2, and Type 3) separately. Through our experiment we tried to answer
seven important research questions (mentioned in the Introduction) regarding
the intensity, and bug-proneness of late propagation. According to our study
on thousands of revisions of eight diverse subject systems written in two pro-
gramming languages,

– The percentage of late propagations in Type 3 clones occurred only because
of the changes in the non-matched (i.e., non-cloned) portions of the clone
fragments is very low (less than one) for most of our candidate systems.
However, this proportion can be considerable for some subject systems (for
example our subject system jEdit). Such late propagations should be ig-
nored when making clone management decisions. Our implemented system
can automatically detect such ignorable late propagations so that we can
discard these from considerations while taking clone management decisions.

– The intensity of late propagation in Type 3 clones is higher compared to
the other two clone-types (Type 1, and Type 2).

– More importantly, Type 3 clones have higher possibilities of experiencing
buggy late propagations than the clone fragments in the other two types.

– Most of the clone fragments that experience late propagations are block
clones. It seems that the creation of block clones is more risky than the
creation of method clones.

– Refactoring and tracking of SPCP-clones can possibly help us minimize
the future occurrences of late propagations considerably.

As a future work, we plan to investigate whether programming languages as
well as application domains of the subject systems can bias the intensity of late
propagation. Considering Type 3 clones, we plan to investigate di↵erent late
propagation patterns, their frequencies and e↵ects on software maintenance.

References

[ACP07] L. Aversano, L. Cerulo, M. D. Penta. How Clones Are Maintained: An Empirical
Study. In CSMR. Pp. 81–90. IEEE Computer Society, 2007.

[Baz12] S. Bazrafshan. Evolution of Near-Miss Clones. In SCAM. Pp. 74 – 83. 2012.
[BKZ13] L. Barbour, F. Khomh, Y. Zou. An empirical study of faults in late propagation

clone genealogies. Software: Evolution and Process 25:1139 – 1165, 2013.
[CR11] J. R. Cordy, C. K. Roy. The NiCad Clone Detector. In Tool Demo Track, ICPC.

Pp. 219 – 220. 2011.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 35

[DLL09] M. D’Ambros, M. Lanza, M. Lungu. Visualizing co-change information with the
evolution radar. IEEE Transactions on Software Engineering 35:720 – 735, 2009.

[DR07] E. Duala-Ekoko, M. P. Robillard. Tracking Code Clones in Evolving Software.
In ICSE. Pp. 158 – 167. 2007.

[DR08] E. Duala-Ekoko, M. P. Robillard. CloneTracker: Tool Support for Code Clone
Management. In ICSE. Pp. 843 – 846. 2008.

[e↵a] E↵ect Size.
http://en.wikipedia.org/wiki/Effect_size

[e↵b] E↵ect Size Calculation for MannWhitneyWilcoxon Test.
http://www.let.rug.nl/~heeringa/statistics/stat03_2013/lect09.pdf

[GH11] N. Göde, J. Harder. Clone Stability. In CSMR. Pp. 65–74. 2011.
[GK11] N. Göde, R. Koschke. Frequency and risks of changes to clones. In ICSE. Pp. 311

– 320. 2011.
[KG08] C. Kapser, M. W. Godfrey. “Cloning considered harmful” considered harmful:

patterns of cloning in software. Empirical Software Engineering 13:645 – 692,
2008.

[Kri07] J. Krinke. A study of consistent and inconsistent changes to code clones. In
WCRE. Pp. 170 – 178. 2007.

[Kri08] J. Krinke. Is cloned code more stable than non-cloned code? In SCAM. Pp. 57
– 66. 2008.

[KSNM05] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy. An empirical study of code clone
genealogies. In ESEC-FSE. Pp. 187 – 196. 2005.

[LW08] A. Lozano, M. Wermelinger. Assessing the e↵ect of clones on changeability. In
ICSM. Pp. 227 – 236. 2008.

[LW10] A. Lozano, M. Wermelinger. Tracking clones’ imprint. In IWSC. Pp. 65 – 72.
2010.

[MRR+12] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A. Schneider.
Comparative Stability of Cloned and Non-cloned Code: An Empirical Study. In
ACM SAC. Pp. 1227–1234. ACM, 2012.

[MRS12a] M. Mondal, C. K. Roy, K. A. Schneider. Connectivity of co-changed method
groups: a case study on open source systems. In CASCON. Pp. 205 – 219. 2012.

[MRS12b] M. Mondal, C. K. Roy, K. A. Schneider. Dispersion of changes in cloned and
non-cloned code. In IWSC. Pp. 29 – 35. 2012.

[MRS12c] M. Mondal, C. K. Roy, K. A. Schneider. An Empirical Study on Clone Stability.
ACM SIGAPP Applied Computing Review 12(3):20–36, 2012.

[MRS14a] M. Mondal, C. K. Roy, K. A. Schneider. Automatic Identification of Important
Clones for Refactoring and Tracking. In SCAM. P. 10pp. (to appear). 2014.

[MRS14b] M. Mondal, C. K. Roy, K. A. Schneider. Automatic Ranking of Clones for Refac-
toring through Mining Association Rules. In CSMR-WCRE. Pp. 114 – 123. 2014.

[MRS14c] M. Mondal, C. K. Roy, K. A. Schneider. An insight into the dispersion of changes
in cloned and non-cloned code: A genealogy based empirical study. Science of

Computer Programming 95:445 – 468, 2014.
[MRS14d] M. Mondal, C. K. Roy, K. A. Schneider. Late Propagation in Near-Miss Clones:

An Empirical Study. In IWSC. P. 17pp. 2014.
[MRS15] M. Mondal, C. K. Roy, K. A. Schneider. A Comparative Study on the Bug-

Proneness of Di↵erent Types of Code Clones. In ICSME. Pp. 91 – 100. 2015.
[MV00] A. Mockus, L. G. Votta. Identifying Reasons for Software Changes using Historic

Databases. In ICSM. Pp. 120 – 130. 2000.
[mwwa] MannWhitneyWilcoxon Test.

http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

[mwwb] MannWhitneyWilcoxon Test Online.
http://elegans.som.vcu.edu/~leon/stats/utest.cgi

[mwwc] Nonparametric Tests.
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/

mobile_pages/BS704_Nonparametric4.html

[RC08] C. K. Roy, J. R. Cordy. NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization. In ICPC.
Pp. 172–181. IEEE Computer Society, 2008.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 Manishankar Mondal et al.

[RC09] C. K. Roy, J. R. Cordy. A mutation / injection-based automatic framework for
evaluating code clone detection tools. In Mutation. Pp. 157–166. 2009.

[RCK09] C. K. Roy, J. R. Cordy, R. Koschke. Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach. Science of Computer

Programming 74:470 – 495, 2009.
[Roy09] C. K. Roy. Detection and analysis of near-miss software clones. In ICSM.

Pp. 447–450. 2009.
[SR14] J. Svajlenko, C. K. Roy. Evaluating Modern Clone Detection Tools. In ICSME.

Pp. 321 – 330. 2014.
[TCAP09] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta. An empirical study

on the maintenance of source code clones. Empirical Software Engineering 15:1
– 34, 2009.

[VPV10] A. Vanya, R. Premraj, H. V. Vliet. Interactive Exploration of Co-evolving Soft-
ware Entities. In CSMR. Pp. 260 – 263. 2010.

[WHJK13] T. Wang, M. Harman, Y. Jia, J. Krinke. Searching for Better Configurations:
A Rigorous Approach to Clone Evaluation. In ESEC/SIGSOFT FSE. Pp. 455
– 465. 2013.

[XF13] S. Xie, Y. Z. F. Khomh. An Empirical Study of the Fault-Proneness of Clone
Mutation and Clone Migration. In MSR. Pp. 149 – 158. 2013.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Biographies of the Authors

Manishankar Mondal

Manishankar Mondal is a graduate student in the Department of Computer Science of the University of
Saskatchewan, Canada under the supervision of Dr. Chanchal Roy and Dr. Kevin Schneider. He is a
lecturer at Khulna University, Bangladesh and currently on leave for pursuing his higher studies. He
received the Best Paper Award from the 27th Symposium On Applied Computing (ACM SAC 2012) in
the Software Engineering Track. His research interests are software maintenance and evolution including
clone detection and analysis, program analysis, empirical software engineering and mining software
engineering.

Chanchal K. Roy

Chanchal Roy is an associate professor of Software Engineering/Computer Science at the
University of Saskatchewan, Canada. While he has been working on a broad range of topics in
Computer Science, his chief research interest is Software Engineering. In particular, he is
interested in software maintenance and evolution, including clone detection and analysis,
program analysis, reverse engineering, empirical software engineering and mining software
repositories. He served or has been serving in the organizing and/or program committee of major
software engineering conferences (e.g., ICSM, WCRE, ICPC, SCAM, ICSE-tool, CASCON, and
IWSC). He has been a reviewer of major Computer Science journals including IEEE
Transactions on Software Engineering, International Journal of Software Maintenance and
Evolution, Science of Computer Programming, Journal of Information and Software Technology
aQd VR RQ. HH UHcHLYHd KLV PK.D. aW QXHHQ¶V UQLYHUVLW\, adYLVHd b\ JaPHV R. CRUd\, LQ AXJXVW
2009.

Kevin A. Schneider

Kevin Schneider is a Professor of Computer Science, Special Advisor ICT Research and Director
of the Software Engineering Lab at the University of Saskatchewan. Dr. Schneider has
previously been Department Head (Computer Science), Vice-Dean (Science) and Acting Chief
Information Officer and Associate Vice-President Information and Communications
Technology.
Before joining the University of Saskatchewan, Dr. Schneider was CEO and President of
Legasys Corp., a software research and development company specializing in design recovery
and automated software engineering. His research investigates models, notations and techniques
that are designed to assist software project teams develop and evolve large, interactive and
usable systems. He is particularly interested in approaches that encourage team creativity and
collaboration.

AXWhRU BiRgUaShieV

Photos of the Authors

Manishankar Mondal

Chanchal K. Roy

Kevin A. Schneider

AXWhoU PhoWogUaphV

