
Bug-proneness and Late Propagation Tendency of Code
Clones: A Comparative Study on Di↵erent Clone Types

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract

Code clones are defined to be the exactly or nearly similar code fragments in a

software system’s code-base. The existing clone related studies reveal that code

clones are likely to introduce bugs and inconsistencies in the code-base. How-

ever, although there are di↵erent types of clones, it is still unknown which types

of clones have a higher likeliness of introducing bugs to the software systems

and so, should be considered more important for managing with techniques such

as refactoring or tracking. With this focus, we performed an empirical study

that compared the bug-proneness of the major clone-types: Type 1, Type 2,

and Type 3.

According to our experimental results on thousands of revisions of nine di-

verse subject systems, Type 3 clones exhibit the highest bug-proneness among

the three clone-types. The bug-proneness of Type 1 clones is the lowest. Also,

Type 3 clones have the highest likeliness of being co-changed consistently while

experiencing bug-fixing changes. Moreover, the Type 3 clones that experience

bug-fixes have a higher possibility of evolving following a Similarity Preserving

Change Pattern (SPCP) compared to the bug-fix clones of the other two clone-

types. From the experimental results it is clear that Type 3 clones should be

given a higher priority than the other two clone-types when making clone man-

agement decisions. Our investigation on the relatedness between bug-proneness

and late propagation in code clones implies that bug-proneness of code clones

is not primarily related with late propagation. The possibility that a bug-fix

Preprint submitted to Journal of Systems and Software April 3, 2018

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=19701&rev=2&fileID=323111&msid=%7B8E44B1E8-6269-44D7-856E-7CEA08F4C069%7D

experienced by a clone fragment will be related with late propagation is only

1.4%. Moreover, for only 10.76% of the cases, a late propagation experienced by

clone fragments can be related with a bug. Thus, late propagation contributes

to a very little proportion of the bugs in code clones. We believe that our

study provides useful implications for ranking clones for management such as

refactoring and tracking.

Keywords: Code clones, Clone-types, Bug-proneness, Late propagation

1. Introduction

Code cloning is a common yet controversial software engineering practice

which is often employed by programmers during software development and

maintenance for repeating common functionalities. Cloning refers to the task of

copying a code fragment from one place of a code-base and pasting it to some5

other places with or without modifications [45]. The original code fragment

(i.e., the code fragment from which the copies were made) and the pasted code

fragments become clones of one another. Two exactly or nearly similar code

fragments form a clone pair. A group of similar code fragments forms a clone

class. Code clones are of four types (Type 1, Type 2, Type 3, and Type 4)10

according to the literature [45]. While clone fragments in a Type 1 clone class

exhibit exact textual similarity, clone fragments in a Type 2 clone class exhibit

syntactic similarity. Type 3 clones get created from Type 1 or Type 2 clones

because of addition or deletion of lines (i.e., program statements). We provide

detailed descriptions for these three clone types in Section 2. Finally, code frag-15

ments that perform the same task but were implemented in di↵erent ways are

known as Type 4 clones or semantic clones.

Code clones are of great importance from the perspectives of software main-

tenance and evolution. A great many studies [1, 2, 10, 11, 12, 16, 18, 20, 21,

22, 25, 26, 37, 38, 53, 23, 51, 14] have already been conducted on the impacts20

of clones on the evolution and maintenance of software systems. While some of

these studies [1, 11, 12, 18, 20, 21, 22] identify some positive impacts of code

2

clones, a number of studies [2, 16, 25, 10, 26, 37, 38, 23, 51, 14] have shown

empirical evidence of strong negative impacts of code clones such as hidden

bug propagation [23], late propagation [2], unintentional inconsistencies [2, 10],25

and high instability [38]. Because of these negative impacts, code clones are

considered to be the number one bad smell in a software system’s code-base.

According to a number of studies [23, 24, 51, 5, 14, 13, 56, 2, 10], code clones

are directly related to bugs and inconsistencies in a software system. However,

although there are di↵erent types of code clones, none of the existing studies30

investigate the comparative bug-proneness of these di↵erent clone-types. Such

an investigation is important because it can help us identify which type(s) of

clones have the highest tendency of exhibiting bug-proneness and thus, should

be considered to be the most important ones for management such as refac-

toring and tracking. Focusing on this issue in this research we investigate the35

comparative bug-proneness of the major types of code clones: Type 1, Type 2,

and Type 3 (defined in Section 2). We also investigate the relatedness of clone

bug-proneness with late propagation in code clones. Existing studies [2, 3, 1]

report that code clones that experienced late propagation have high possibilities

of experiencing bug-fixes. However, we still do not know whether bug-proneness40

of code clones is mostly (i.e., primarily) related with late propagation. Inves-

tigating what proportion of the bugs in code clones can be related with late

propagation might help us realize the extent of harmfulness of late propagation.

We answer six important research questions listed in Table 1. According to our

in-depth investigation on thousands of revisions of nine diverse subject systems45

written in three di↵erent programming languages (C, Java, and C#) we can

state that:

(1) Type 3 clones have a higher bug-proneness compared to Type 1 and

Type 2 clones. The bug-proneness of Type 1 clones is the lowest among the

three clone-types. Our statistical significance tests show that Type 3 clones50

have a significantly higher bug-proneness than Type 1 clones.

(2) Type 3 clones have the highest likeliness of being co-changed (i.e., getting

changed together) consistently among the three clone-types when changed to fix

3

a bug.

(3) Type 3 bug-fix clones have the highest possibility of evolving following a55

Similarity Preserving Change Pattern called SPCP. According to our previous

studies [35, 36], SPCP clones (i.e., clones that evolve following a Similarity

Preserving Change Pattern) are the most important ones to consider for clone

management.

(4) For only a very little proportion of the bug-fix clones (i.e., code clones60

that experience bug-fixes), the bug-fixes were related with late propagation. Ac-

cording to our subject systems, this proportion can be at most 1.4%. Moreover,

for only a little proportion of the late propagation clones (i.e., code clones that

experienced late propagation), the occurrences of late propagation were related

with bug-fix. For our subject systems, this proportion can be at most 10.76%.65

Our experimental results stated above have the following useful implications:

Implication 1. Type 3 clones should be given a higher priority than the

other two clone-types when making clone management decisions (such as clone

refactoring, or tracking) and our findings (points 2 and 3 above) can be used

to rank code clones during clone management. In our previous studies [35,70

36] we detected and ranked SPCP clones for refactoring and tracking on the

basis of their co-change tendencies. However, we should also consider their

bug-proneness. Our implemented prototype tool is capable of automatically

detecting SPCP clones that exhibited bug-proneness during evolution. Thus, it

can help us rank clones considering their bug-proneness too.75

Implication 2. Bug-fixes in code clones are rarely related with late prop-

agation. The probability that a bug-fix experienced by a clone fragment will

be related with late propagation is only 0.014 (1.4%). Thus, late propagation

does not seem to be primary reason behind clone bug-proneness. Such a finding

is supported by our statistical significance tests. Moreover, experiencing bug-80

fixes during late propagation is not a common scenario for the late propagation

clones. The possibility that a late propagation experienced by a clone fragment

will be related with a bug is only 0.107 (10.76%). Thus, late propagation does

not appear to be strongly related with clone bug-proneness.

4

Figure 1: Type 1 (identical) clone pair

The rest of the paper is organized as follows: Section 2 describes the ter-85

minology, Section 3 discusses the experimental steps, Section 4 answers the

research questions by presenting and analyzing the experimental results, Sec-

tion 5 mentions the possible threats to validity, Section 6 discusses the related

work, and finally, Section 7 concludes the paper by mentioning possible future

work.90

Our study presented in this paper is a significant extension of our earlier

work [40] on clone bug-proneness. In our earlier work [40] we did not investigate

any C# system. In this extended study we investigate two additional subject

systems written in C#. In our previous work [40] we did not investigate late

propagation in code clones. However, in this extended work we automatically95

detect late propagation in code clones, and then analyze the relatedness of

late propagation with clone bug-proneness. From this analysis we answer three

additional research questions: RQ 4, RQ 5, and RQ 6 which were not answered

in our earlier work [40].

5

Table 1: Research Questions

SL Research Question

RQ 1 Which clone types have a higher possibility of experiencing bug fixing

changes?

RQ 2 Do the clone fragments from the same clone class co-change (i.e., change

together) consistently during a bug-fix?

RQ 3 What proportion of the clone fragments that experienced bug-fixing

changes are SPCP clones?

RQ 4 Do bug-fix changes mainly occur to the late propagation clones (i.e., to

the clone fragments that experienced late propagation)?

RQ 5 Do most of the late propagation clones experience bug-fix changes?

RQ 6 What proportion of the clone fragments experienced bug-fixes that are

associated with late propagation?

6

Figure 2: Type 2 clone pair

2. Terminology100

2.1. Types of clones.

We conduct our experiment considering both exact (Type 1) and near-miss

clones (Type 2 and Type 3 clones).

As is defined in the literature [46, 45], if two or more code fragments in

a particular code-base are exactly the same disregarding the comments and105

indentations, these code fragments are called exact clones or Type 1 clones of

one another. Fig. 1 shows a Type 1 clone-pair. One fragment of the pair resides

in the method named ‘DetermineFactorialAndPrime’, and the other fragment

resides in the method ‘FindAllPrimes’. The two fragments have been shown in

the light gray boxes. We see that the fragment at the right hand side contains110

a comment. If we disregard this comment, then the two fragments become

identical (i.e., Type 1 clones).

Type 2 clones are syntactically similar code fragments. In general, Type 2

clones are created from Type 1 clones because of renaming identifiers or changing

7

Figure 3: Type 3 clone pair

data types. Fig. 2 shows a Type 2 clone pair where the two fragments in the115

pair reside in two methods ‘DetermineFactorialAndPrime’ and ‘FindAllPrimes’.

The clone fragments have also been highlighted in the methods. We see that

the fragment at the left hand side contains a variable called n. The fragment at

the right hand side the corresponding variable has been named as j. Because

of this variable renaming, these two fragments make a Type 2 clone pair.120

Type 3 clones are mainly created because of additions, deletions, or mod-

ifications of lines in Type 1 or Type 2 clones. Fig. 3 contains an example of

a Type 3 clone pair. The two fragments in the clone pair again reside in the

two methods ‘DetermineFactorialAndPrime’ and ‘FindAllPrimes’. We see that

the fragment at the right hand side contains a line ‘k=k+1’ for counting the125

number of primes. However, this line is absent in the fragment at the left hand

side. Thus, these two clone fragments make a Type 3 clone pair.

8

2.2. Clone Genealogy

Our research requires the detection of clone genealogies. A clone genealogy

can be defined in the following way. Let us assume that a clone fragment, CF,130

was created in a particular revision of a software system and was alive in a num-

ber of consecutive revisions. Thus, each of these revisions contains a snapshot

of CF. The genealogy of CF consists of the set of its consecutive snapshots from

the consecutive revisions where it was alive. Each clone fragment in a particular

revision belongs to a particular clone genealogy. In other words, a particular135

clone fragment in a particular revision is actually a snapshot in a particular clone

genealogy. By examining the genealogy of a clone fragment we can determine

how it changed during evolution. We automatically detect clone genealogies by

using the SPCP-Miner tool [32]. The procedure for detecting clone genealogies

will be described in Section 3. Before detecting clone genealogies, we need to140

detect method genealogies. We define a method genealogy in the following way.

2.3. Method Genealogy

Let us assume that a particular method was created in a particular revision

of a software system and was alive in a number of consecutive revisions. Each of

these consecutive revisions contains a snapshot of the method. The genealogy of145

the method consists of the set of consecutive snapshots of it from the consecutive

revisions where it was alive. In our research, we detect method genealogies

for the purpose of detecting clone genealogies. The process of detecting clone

genealogies from method genealogies will be described in Section 3.

2.4. Similarity Preserving Change Pattern (SPCP).150

In our previous studies [35, 36] we showed that the code clones that evolve

following a Similarity Preserving Change Pattern (SPCP) are the most impor-

tant ones for refactoring or tracking. A Similarity Preserving Change Pattern

consists of a Similarity Preserving Change and/or a Re-synchronizing Change.

We describe these two types of changes in the following paragraphs.155

9

Figure 4: Two examples of similarity preserving change

Similarity Preserving Change. Let us consider two code fragments that

are clones of each other in a particular revision of a subject system. A com-

mit operation was applied to this revision, and any one or both of these code

fragments (i.e., clone fragments) received some changes. However, in the next

revision (created because of the commit operation) if these two code fragments160

are again considered clones of each other (i.e., the code fragments preserve their

similarity), then we say that the code fragments received a Similarity Preserving

Change in the commit operation.

Fig. 4 shows two examples of similarity preserving change. In the first

example, we see a clone pair (CF1, CF2) in revision Ri. The commit operation165

onRi modified one (c.f., CF1) of these two fragments. However, in revisionRi+1,

they still remain as a clone pair. That means, although there were some changes

to one clone fragment, the two clone fragments preserved their similarity. So,

this is a similarity preserving change. In the second example, we see that both

the clone fragments changed in the commit operation. However, even after these170

changes, the fragments preserved their similarity (i.e., remained as a clone pair).

10

Figure 5: An example of re-synchronizing change (i.e., an example of late propagation)

So, this is also a similarity preserving change.

Re-synchronizing Change. A re-synchronizing change consists of a di-

verging change followed by a converging change. Let us consider two code frag-

ments that are clones of each other in a particular revision. A commit operation175

Ci was applied to this revision, and any one or both of the fragments received

some changes in such a way that the code fragments were not considered clones

of each other in the next revision. We say that the code fragments experienced

a diverging change. However, in a later commit operation Ci+n (n >= 1) any

one or both of the code fragments received some changes, and because of these180

changes the code fragments again became clones of each other. We say that the

code fragments experienced a converging change in commit Ci+n. A diverging

change followed by a converging change is termed a re-synchronizing change.

Fig. 5 shows an example of re-synchronizing change experienced by a clone

pair (CF1, CF2). The commit Ci applied on revision Ri modified CF1 and185

as a result, CF1 and CF2 diverged. However, in commit operation Ci+2, the

fragment CF2 changed and CF1 and CF2 got re-synchronized in revision Ri+3

(i.e., CF1 and CF2 again became clones of each other in revision Ri+3).

11

Table 2: Subject Systems

Systems Lang. Domains LLR Revisions

MonoOSC C# Formats and Protocols 18,991 355

SqlBuddy C# Editor for SQL 16,116 945

Ctags C Code Def. Generator 33,270 774

Camellia C Image Processing Library 89,063 170

BRL-Cad C 3-D Modeling 39,309 735

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Management 45,515 1545

LLR = LOC in the Last Revision

2.5. Late Propagation in Clones

Let us consider a pair of clone fragments. If this clone pair experiences a re-190

synchronizing change during evolution, we say that the clone pair experienced a

late propagation [2]. In other words, each occurrence of re-synchronizing change

in a clone pair is also termed as a late propagation. A particular clone pair may

experience late propagation more than once during evolution. Fig. 5 shows an

example of late propagation.195

3. Experimental Steps

We perform our investigation on nine subject systems (Table 2) downloaded

from an on-line SVN repository [42] called SourceForge.

3.1. Preliminary Steps

We perform the following preliminary steps before analyzing bug-proneness:200

(1) Extraction of all revisions (as mentioned in Table 2) of each of the subject

12

systems from the online SVN repository; (2) Method detection and extraction

from each of the revisions using CTAGS [7]; (3) Detection and extraction of code

clones from each revision by applying the NiCad [6] clone detector; (4) Detec-

tion of changes between every two consecutive revisions using di↵ ; (5) Locating205

these changes to the already detected methods as well as clones of the corre-

sponding revisions; (6) Locating the code clones detected from each revision

to the methods of that revision; (7) Detection of method genealogies consider-

ing all revisions using the technique proposed by Lozano and Wermelinger [26];

(8) Detection of clone genealogies by identifying the propagation of each clone210

fragment through a method genealogy; and (9) Detection of SPCP clone frag-

ments by analyzing clone change patterns. For completing these steps we use

the tool SPCP-Miner [32]. For the details of these steps we refer the interested

readers to our earlier work [34]. In the following paragraphs, we first provide a

short description for our method detection tool CTAGS, and then, we discuss215

detecting code clones using the NiCad clone detector.

CTAGS: We used CTAGS [7] in our experiment for detecting methods.

CTAGS [7] is a widely used tool that, when applied on the source code of a

program, generates a list of source code definitions such as variables, methods,

classes, class members, macros etc depending on the language the program was220

written in. CTAGS currently supports 41 programming languages in total. We

should note that CTAGS is one of our subject systems (c.f., Table 2) as well.

Clone detection using NiCad: We use NiCad [6] for detecting clones

because it can detect all major types (Type 1, Type 2, and Type 3) of clones

with high precision and recall [48, 49]. Using NiCad we detect block clones225

including both exact (Type 1) and near-miss (Type 2, Type 3) clones of a

minimum size of 10 LOC with 20% dissimilarity threshold and blind renaming

of identifiers. These settings are explained in detail in our earlier work [34]. For

di↵erent settings of a clone detector the clone detection results can be di↵erent

and thus, the findings regarding the bug-proneness of code clones can also be230

di↵erent. Thus, selection of reasonable settings (i.e., detection parameters) is

important. We used the mentioned settings in our research, because in a recent

13

study [52] Svajlenko and Roy show that these settings provide us with better

clone detection results in terms of both precision and recall. We detect clone

genealogies using the SPCP-Miner tool [32]. The detection procedure has been235

described below.

Detecting Clone Genealogies. As we have already mentioned, we detect

methods from each revision using CTAGS [7]. Then we detect method genealo-

gies by applying the technique proposed by Lozano and Wermelinger [26]. This

technique considers method movement, renaming and changing when detecting240

method genealogies. After detecting method genealogies, we detect code clones

of block granularity from each revision using the NiCad [6] clone detector. The

detected clones are then mapped inside the methods in each revision. As we

have already detected method genealogies, we can easily detect the propagation

of clone fragments through the method genealogies. During the evolution of a245

software system it might be seen that a particular code fragment, CF, was con-

sidered as a clone fragment in revision r. However, in the next several revisions,

it was not considered as a clone fragment. Our clone genealogy detector tracks

the evolution of CF even in the period when it did not appear as a clone frag-

ment. We track the evolution in such a period because CF might again appear250

as a clone fragment after this period. If a clone fragment gets deleted after a

particular revision and reinserted in the code-base after a certain period of time

(i.e., after a number of commits), we start a new clone genealogy for the clone

fragment after reinsertion. We believe that this is a reasonable consideration.

As the clone fragment got deleted for a period of time, we cannot keep track255

of the fragment during that period of disappearance. After reappearance, we

should consider it a new clone fragment because we stopped tracking it.

Clone Genealogies of Di↵erent Clone-Types. SPCP-Miner [32] detects

clone genealogies considering each clone-type (Type 1, Type 2, and Type 3)

separately. Considering a particular clone-type it first detects all the clone260

fragments of that particular type from each of the revisions of the candidate

system. Then, it performs origin analysis of these detected clone fragments and

builds the genealogies. Thus, all the instances in a particular clone genealogy

14

are of a particular clone-type. An instance is a snap-shot of a clone fragment in a

particular revision. A detailed elaboration of the genealogy detection approach265

is presented in our previous study [35]. As we obtain three separate sets of clone

genealogies for three di↵erent clone-types, we can easily determine and compare

the bug-proneness of these clone-types.

Tackling Clone-Mutations. Xie et al.[56] found that mutations of the

clone fragments (i.e., a particular clone fragment may change its type) might270

occur during evolution. If a particular clone fragment is considered of a di↵erent

clone-type during di↵erent periods of evolution, SPCP-Miner extracts a separate

clone-genealogy for this fragment for each of these periods. Thus, even with

the occurrences of clone-mutations, we can clearly distinguish which bugs were

experienced by which clone-types.275

3.2. Bug-proneness Detection Technique

For a particular candidate system, we first retrieve the commit messages by

applying the ‘SVN log’ command. A commit message describes the purpose

of the corresponding commit operation. We automatically infer the commit

messages using the heuristic proposed by Mockus and Votta [31] in order to280

identify those commits that occurred for the purpose of fixing bugs. Then we

identify which of these bug-fix commits make changes to clone fragments. If one

or more clone fragments are modified in a particular bug-fix commit, then it is

an implication that the modification of those clone fragment(s) was necessary for

fixing the corresponding bug. In other words, the clone fragment(s) are related285

to the bug. In this way we examine the commit operations of a candidate system,

analyze the commit messages to retrieve the bug-fix commits, and identify those

clone fragments that are related to the bug-fix. We also determine the number

of changes that occurred to such a clone fragment in a bug-fix commit using the

UNIX di↵ command. For the details of change detection we refer the interested290

readers to our earlier work [34].

The way we detect the bug-fix commits was also previously followed by

Barbour et al. [2]. Barbour et al. [2] detected bug-fix commits in order to

15

investigate whether late propagation in clones is related to bugs. They at first

identified the occurrences of late propagations and then analyzed whether the295

clone fragments that experienced late propagations are related to bug-fix. In our

study we detect bug-fix commits in the same way as they detected, however,

our study is not limited to the late propagation clones only. We investigate

the bug-proneness of all clone fragments in a software system. Also, Barbour

et al.[2] did not investigate Type 3 clones in their study. We consider Type 3300

clones in our bug-proneness analysis. Moreover, we compare the bug-proneness

of di↵erent types of code clones from di↵erent perspectives. None of the existing

studies do such comparisons.

3.3. Detecting Late Propagation in Code Clones

We detect late propagation considering code clones of each clone-type sep-305

arately. Let us consider that two code fragments, CF1 and CF2, were initially

considered as a clone-pair in revision R. We want to determine whether this

clone pair experienced a late propagation. We analyze the genealogies of these

two clone fragments. We previously mentioned that we detect clone genealo-

gies using our tool SPCP-Miner [32]. By examining the genealogies of the two310

clone fragments in the pair we determine whether they evolved by following the

resynchronizing change pattern mentioned below:

• The clone fragments diverged after a particular revisionRdiverge (Rdiverge >=

R) because of the changes that occurred to the fragments in the commit

operation which was applied on Rdiverse, and315

• The fragments again converged in a later revision Rconverge (Rconverge >

Rdiverge) because of the changes that occurred to the fragments in the

commit operation which created the revision Rconverge.

If a clone-pair evolved by following the above pattern, we consider the clone-

pair as a late propagation clone-pair. We mark the clone fragments CF1 and CF2320

as late propagation clone fragments. A particular clone-pair may experience

late propagation more than once. However, our goal is to determine whether

16

a clone-pair experienced late propagation at least once during evolution. Late

propagation detection technique has been elaborated in our earlier work [41].

We detect late propagation for each clone-type separately as we did in our325

earlier work [41]. Previously we investigated late propagation by detecting code

clones of a minimum size of 5 LOC [41]. However, in our study presented in this

paper we detect code clones using a minimum threshold of 10 LOC (we have

already discussed why we select such a setting).

4. Experimental Results and Analysis330

We present and analyze our experimental results in the following subsections

in order to answer the research questions mentioned in Table 1.

4.1. Answering RQ 1

RQ 1: Which clone types have a higher possibility of experiencing bug fixing

changes?335

Rationale. It is important to know which types of clones have a higher

probability of experiencing bug-fix changes compared to the others. The code

clones exhibiting higher bug-proneness should be given higher priorities when

making clone management decisions (such as refactoring and tracking). Refac-

toring or tracking of such clone fragments (i.e., highly bug-prone clones) could340

help us minimize the probability of the occurrences of bugs or inconsistencies

in these fragments in the future. In a previous study [38] we found Type 1 and

Type 2 clones to be more unstable (i.e., change-prone) than Type 3 clones. How-

ever, there is no empirical study on the correlation between change-proneness

and bug-proneness of code clones. Thus, we should not infer the bug-proneness345

of clone types from their change-proneness. A comparative study on the bug-

proneness of di↵erent types of code clones is important. We perform our inves-

tigations for answering RQ 1 in the following two ways.

• Investigation 1: Investigation regarding the proportion of bug-fix changes

experienced by the code clones.350

17

• Investigation 2: Investigation regarding the proportion of code clones

experiencing bug-fix changes.

Investigation 1. Investigating what proportion of the changes that occurred

to the clone fragments of di↵erent clone-types are related to a bug-fix.

Considering the code clones of a particular clone-type of a particular subject355

system, we first determine how many changes occurred to the code clones during

the period of evolution (consisting of the revisions mentioned in Table 2). Then

we identify which of these changes were related to a bug-fix. Finally, we calculate

the percentage of changes related to a bug-fix considering each clone-type of each

of the candidate systems using the following equation.360

PCB =
NBC ⇥ 100

TNC
(1)

TNC is the total number of changes that occurred to the code clones of a
particular clone type of a particular subject system, NBC is the number of

bug-fix changes that occurred to those code clones, and lastly, PCB denotes the

percentage of changes related to a bug-fix with respect to all the changes (TNC)

that occurred to those code clones. Table 3 shows the TNC and PCB for each365

clone-type of each of the subject systems. We also plot the percentages (PCB)

in the graph of Fig. 6 to get a visual understanding regarding their comparison.

From Fig. 6 we see that for seven out of nine subject systems (i.e., except

Camellia, and MonoOSC) the percentage of bug-fix changes is the lowest for the

Type 1 case. For six systems (MonoOSC, SqlBuddy, Ctags, Camellia, Freecol,370

and Carol) the percentage regarding the Type 3 case is the highest among the

three cases (Type 1, Type 2, and Type 3). For the remaining three systems

(BRL-CAD, jEdit, and Jabref), the percentage regarding the Type 2 case is the

highest. The figure also shows the overall percentages (i.e., measured over all

the subject systems) for the three clone-types. We see that the percentage of375

bug-fix changes is the highest in Type 3 case, and is the lowest in Type 1 case.

We calculate the overall percentages using the following equation.

18

M
o
n
o
O
S
C

S
q
lB

u
d
d
y

C
t
a
g
s

C
a
m
e
ll
ia

B
R
L
-
C
a
d

F
r
e
e
c
o
l

j
E
d
it

C
a
r
o
l

J
a
b
r
e
f

O
v
e
r
a
ll

0

10

20

30

40

PCB (Percentage of Changes related to a Bug-fix) for Type 1 case

PCB (Percentage of Changes related to a Bug-fix) for Type 2 case

PCB (Percentage of Changes related to a Bug-fix) for Type 3 case

Figure 6: Comparison regarding the percentage of bug-fix changes that occurred to the clone

fragments.

19

Table 3: Percentage of changes related to bug-fix

Type 1 Type 2 Type 3

Systems TNC PCB TNC PCB TNC PCB

MonoOSC 516 1.74% 40 0% 270 2.22%

SqlBuddy 35 0% 50 0% 284 1.41%

Ctags 40 10% 84 11.90% 161 14.29%

Camellia 21 9.52% 20 0% 259 14.67%

BRL-Cad 322 0.93% 41 19.51% 215 7.9%

Freecol 134 20.89% 126 21.43% 766 30.42%

jEdit 1594 25.91% 145 47.59% 1265 43.08%

Carol 245 14.69% 279 21.86% 1123 23.15%

Jabref 304 4.27% 244 6.56% 1164 6.44%

TNC = Total Number of Changes that occurred to the Clones

PCB = Percentage of Changes related to a Bug-fix.

OPType i =
100⇥

P
for all systems NBCType iP

for all systems TNCType i
(2)

OPType i is the overall percentage of bug-fix changes occurred to the Type i

clones. NBCType i is the number of bug-fix changes to the Type i clones of

a particular subject system. TNCType i is the total number of changes that380

occurred to the Type i clones of a subject system.

Investigation 2. Investigating what proportion of the clone fragments in

di↵erent clone-types are related to bug-fix changes?

We mentioned (in Section 3) that we determine the genealogies of the de-

tected clone fragments. Considering each clone-type of each of the subject385

systems we determine how many clone genealogies were created during the evo-

lution and how many of these experienced a bug-fix. From these two values

we determine the percentage of clone genealogies that experienced bug-fixing

changes using equation Eq. 3.

20

M
o
n
o
O
S
C

S
q
lB

u
d
d
y

C
t
a
g
s

C
a
m
e
ll
ia

B
R
L
-
C
a
d

F
r
e
e
c
o
l

j
E
d
it

C
a
r
o
l

J
a
b
r
e
f

O
v
e
r
a
ll

0

5

10

15

20

PCGB (Percentage of Clone Genealogies related to a Bug-fix) for Type 1 case

PCGB (Percentage of Clone Genealogies related to a Bug-fix) for Type 2 case

PCGB (Percentage of Clone Genealogies related to a Bug-fix) for Type 3 case

Figure 7: Comparison regarding the percentage of clone fragments that experienced bug-fixing

changes.

21

Table 4: Percentage of clones related to bug-fix

Type 1 Type 2 Type 3

Systems TNCG PCGB TNCG PCGB TNCG PCGB

MonoOSC 152 1.97% 40 0% 183 2.73%

SqlBuddy 112 0% 31 0% 97 4.12%

Ctags 52 7.69% 88 4.55% 155 9.03%

Camellia 300 0.67% 48 0% 177 6.21%

BRL-Cad 136 2.2% 28 7.14% 127 7.87%

Freecol 239 5.86% 162 7.41% 752 14.23%

jEdit 7398 0.99% 399 5.01% 2688 6.85%

Carol 415 7.47% 211 15.17% 682 19.65%

Jabref 483 1.66% 228 6.14% 1363 2.27%

TNCG = Total Number of Clone Genealogies created during evolution.

PCGB = Percentage of Clone Genealogies related to a Bug-fix.

PCGB =
NCGB ⇥ 100

TNCG
(3)

For a particular clone-type, TNCG is the total number of clone genealo-390

gies created during evolution, NCGB is the number of clone genealogies that

experienced bug-fixes, and PCGB is the percentage of clone genealogies that

experienced bug-fixes during evolution. Table 4 shows the total number of

clone genealogies (the column TNCG) as well as the percentage of bug-fix clone

genealogies (the column PCGB) for each clone-type of each of the candidate395

systems. We also plot the percentages (PCGB) in the graph of Fig. 7 for easily

understanding the comparison of bug-proneness among the three clone-types.

The figure also shows the overall percentages of clone genealogies related bug-fix

for each clone-type. Overall percentages were calculated using Eq. 4.

OPCGBType i =
100⇥

P
for all systems NCGBType iP

for all systems TNCGType i
(4)

22

For a particular clone-type, Type i (i = 1, 2, or 3), OPCGB is the overall400

percentage (considering all subject systems) of clone genealogies that experi-

enced bug-fixes, NCGB is the number of clone genealogies that experienced

bug-fixes, and TNCG is the total number of clone genealogies that were cre-

ated during entire evolution. From Fig. 7 we see that for all of the subject

systems except Jabref, the percentage of clones related to bug-fix is the highest405

in the Type 3 case. Also, the percentage of bug-fix clones is the lowest in the

Type 1 case for most of the systems except MonoOSC, Ctags, and Camellia.

The overall percentages of the bug-fix clones in the three clone-types provide

such implications. Finally, the graph in Fig. 7 implies that Type 3 clones gen-

erally have a higher tendency of experiencing bug-fixing changes compared to410

the clone fragments of the other two clone-types.

Statistical Significance Tests. We were also interested to investigate

whether Type 3 clones have a significantly higher tendency of experiencing bug-

fixing changes compared to the clones of the other two types. We performed

Mann-Whitney-Wilcoxon (MWW) tests [27, 28] considering the percentages of415

the bug-fix clone genealogies of the three cases (Type 1, Type 2, and Type 3)

as recorded in Table 4. We should note that MWW test is nonparametric, and

thus, it does not require the samples to be mormally distributed [29, 27]. This

test can be applied to both small and large data samples [29].

Our test results are shown in Table 5. We first determine whether the420

percentages regarding the Type 3 case are significantly higher than those of

the Type 1 case. Our MWW test result (Table 5) implies that the percentages

regarding Type 3 case are significantly higher than the percentages regarding

Type 1 case with a p-value of 0.017 (for two tailed test) which is less than

0.05. However, we observe that the percentages for the Type 3 case are not425

significantly higher than those of the Type 2 case. The MWW test is non-

parametric and does not require the samples to be normally distributed [27].

This test can be applied to both small and large sample sizes. In our research, we

perform this test considering a significance level of 5%. Finally, it appears that

the percentage of Type 3 clones that experience bug-fixing changes is significantly430

23

Table 5: Mann-Whitney-Wilcoxon test result for comparing di↵erent clone types

Comparison between Type 1 and Type 3

Sample Size 9

Significance level 5%

U-value 13

Probability value (i.e., p-value) for two tailed test case 0.017

Probability value (i.e., p-value) for one tailed test case 0.0085

The two samples are significantly di↵erent (p-values are less than 0.05).

Comparison between Type 2 and Type 3

Sample Size 9

Significance level 5%

U-value 27

Probability value (i.e., p-value) for two tailed test case 0.25

Probability value (i.e., p-value) for one tailed test case 0.125

The two samples are not significantly di↵erent (p-values are greater than 0.05).

24

higher than the percentage of bug-fix clones in the Type 1 case.

Answer to RQ 1. From our investigations we can state that while Type

3 clones have a higher bug-proneness compared to the other two clone-types in

general, the bug-proneness of Type 1 clones is the lowest for most of our subject

systems. Our statistical significance test results indicate that Type 3 clones have435

a significantly higher bug-proneness compared to Type 1 clones.

In general, the total number of Type 3 clones in a software system is higher

compared to the other two clone-types as is evident in Table 4 (except SqlBuddy,

Camellia, jEdit, and BRL-Cad). Also, our investigation results indicate that

Type 3 clones have the highest possibility of introducing bugs. Finally, our440

findings imply that possibly Type 3 clones should be managed (i.e., refactored

or tracked) with the highest priority.

A possible reason behind why Type 3 clones exhibit the highest bug-proneness

is that these are gapped clones (i.e., there are some non-clone lines in the Type 3

clone fragments). Thus, copy-pasting and consistently changing a Type 3 clone445

fragment is not as straight forward as in the cases of Type 1 and Type 2 clones.

Also, because of the gaps in the Type 3 clones, refactoring of such clones might

sometimes be di�cult, and it causes an increased number of Type 3 clones in the

software systems (i.e., as can be seen from our experimental results). Because

of the existence of the gaps, possibly tracking is the best suitable management450

technique for Type 3 clones.

4.2. Answering RQ 2

RQ 2: Do the clone fragments from the same clone class co-change (i.e.,

change together) consistently during a bug-fix?

Rationale. From our answer to RQ 1 we understand that code clones of455

each clone-type have a tendency of experiencing bug-fixing changes, and Type 3

clones have the highest tendency. However, it is also important to know whether

two or more clone fragments from the same clone class co-changed (i.e., changed

together) consistently (i.e., the clone fragments were modified in the same way)

during bug-fixes. Such clones are more important for clone management than460

25

those clones that did not experience consistent co-change during bug-fixes for

the following reasons.

(1) If more than one clone fragments from the same clone class are changed

together consistently during a bug-fix, then it is an implication that those clone

fragments contained the same bug and fixing of that bug required those clone465

fragments to be modified together consistently. Unification of these clone frag-

ments (i.e., that co-changed consistently during bug-fixes) into a single one

through refactoring can possibly help us fix future bugs or inconsistencies with

reduced e↵ort, because in that case the bug-fixing changes will require to be

implemented in a single code fragment rather than implementing/propagating470

the same changes to multiple similar code fragments.

(2) If only a single clone fragment from a particular clone class is modified

for fixing a bug leaving the other fragments in that class as they are, then it is

an implication that this particular clone fragment does not require to maintain

consistency with the other clone fragments in its class, and it has a tendency of475

evolving independently. Such a fragment might not be regarded as a member of

the class if it continues to evolve independently, and in that case it should not

be considered for clone management.

For this research question we investigate whether clone fragments from the

same clone class have a tendency of co-changing consistently during a bug-fix,480

and if so, how this tendency di↵ers across the clone-types. The clone-type

with a higher tendency should be given a higher priority when making clone

management decisions.

Methodology. In a previous study [35] we showed that if two or more clone

fragments from the same clone class experience a similarity preserving co-change485

(we define it in the next paragraph) in a particular commit operation, then it is

an implication that they co-changed consistently (i.e., they were changed in the

same way) in that commit. Considering this fact we answer this research ques-

tion by automatically examining the bug-fix commits and determining whether

two or more clone fragments from the same clone class experienced similarity490

preserving co-changes in these commits. If such clone fragments really exist,

26

then these should be given higher priorities for management as we have just

discussed.

Similarity Preserving Co-change. Let us consider that two code frag-

ments CF1 and CF2 are clones of each other in revision R. A commit op-495

eration C was applied on this revision and both of these two code fragments

were changed (i.e., the clone fragments were co-changed) in this commit. If in

revision R+1 (created because of the commit operation C) these two code frag-

ments are again considered as clones of each other (i.e., if they preserve their

similarity), then we say that CF1 and CF2 experienced a similarity preserving500

co-change in the commit operation C. The second example (i.e., Example 2) in

Fig. 4 demonstrates a similarity preserving co-change.

Considering each clone-type of each of the subject systems we determine

which clone fragments experienced bug-fix commits and which of these clone

fragments received similarity preserving co-changes in the bug-fix commits. Fi-505

nally, we determine the percentage of clone fragments that received similarity

preserving co-changes in the bug-fix commits with respect to all clone fragments

related to bug-fix. Table 6 shows the total number of clones related to bug-fix

and the percentage of bug-fix clones that experienced similarity preserving co-

changes during bug-fix commits. We also show these percentages in Fig. 8 to510

do a visual comparison of the percentages regarding di↵erent clone-types.

From Fig. 8 we see that there are no vertical bars for Type 2 case of

MonoOSC, Type 1 and Type 2 cases of SqlBuddy, Type 2 and Type 3 cases of

Ctags, and also, for Type 2 case of Camellia. The reason is that the number of

bug-fix clones that experienced similarity preserving co-changes is zero for each515

of these cases. This is also evident from the column BFCS in Table 6. From

the overall percentages (Fig. 8) we see that bug-fix clones of Type 3 have the

overall highest tendency of experiencing similarity preserving co-changes in the

bug-fix commits. The tendency for Type 2 case is also very near to that of the

Type 3 case. Bug-fix clones of Type 1 have the lowest tendency of experiencing520

similarity preserving co-changes during bug-fix.

We also manually analyzed the similarity preserving co-changes that oc-

27

Table 6: Percentage of bug-fix clones that experienced similarity preserving co-change in the

bug-fix commits

Type 1 Type 2 Type 3

Systems CGBF BFCS CGBF BFCS CGBF BFCS

MonoOSC 3 66.67% 0 0% 5 40%

SqlBuddy 0 0% 0 0% 4 50%

Ctags 4 50% 4 0% 14 0%

Camellia 2 100% 0 0% 11 45.45%

BRL-Cad 3 66.67% 2 100% 10 60%

Freecol 14 57.14% 12 50% 107 51.4%

jEdit 73 8.21% 20 30% 184 24.45%

Carol 31 38.7% 32 50% 134 50.74%

Jabref 8 25% 14 28.57% 31 67.74%

CGBF = Number of Clone Genealogies related to a Bug-fix.

BFCS = Percentage of Bug-fix Clone genealogies that experienced

similarity preserving co-change in bug-fix commits.

28

M
o
n
o
O
S
C

S
q
lB

u
d
d
y

C
t
a
g
s

C
a
m
e
ll
ia

B
R
L
-
C
a
d

F
r
e
e
c
o
l

j
E
d
it

C
a
r
o
l

J
a
b
r
e
f

O
v
e
r
a
ll

0

20

40

60

80

100

% of bug-fix clone fragments that experienced similarity preserving co-changes

(BFCS) in bug-fix commits (Type 1 case)

% of bug-fix clone fragments that experienced similarity preserving co-changes

(BFCS) in bug-fix commits (Type 2 case)

% of bug-fix clone fragments that experienced similarity preserving co-changes

(BFCS) in bug-fix commits (Type 3 case)

Figure 8: Comparison regarding the percentage of bug-fix clones that experienced similarity

preserving co-changes during bug-fix commits.

29

curred to the bug-fix clones of each clone-type of Freecol during the bug-fix

commits to see whether the clone fragments were really modified consistently

(i.e., whether the clone fragments were modified in the same way). According525

to our manual analysis in each case of similarity preserving co-change, the clone

fragments were changed together consistently. Fig. 9 shows an example of simi-

larity preserving co-change of two Type 3 clone fragments in the bug-fix commit

operation applied to revision 1075 of Freecol. We show the instances of these

two clone fragments in revisions 1075 and 1076 and highlight the changes that530

occurred to them. We see that the clone fragments changed together consis-

tently (i.e., in the same way) in the bug-fix commit operation. The commit log

as stated by the programmer is “Fixes a bug relating to giving units equipment

while onboard a carrier in Europe”. We see that the bug-description is relevant

to the context. Fig. 9 shows that both the clone fragments contained the same535

bug and were fixed in the same way. The example reveals the fact that unifica-

tion of these two clone fragments into a single one could help us fix future bugs

with reduced e↵ort.

During our manual investigation of the bug-fixes that occurred to code

clones, we mostly observed the following bug-fixing categories: fixing the same540

semantically incorrect implementation in multiple clone fragments from the

same class, addition of the same missing implementations in multiple clone

fragments of the same class, and fixing the same GUI related error in multiple

clone fragments.

Answer to RQ 2. Our investigation results show that clone fragments from545

the same clone class have a tendency of co-changing (i.e., changing together)

consistently during the bug-fix commit operations. Consdering all the subject

systems, bug-fix clones of Type 1 exhibit the lowest tendency (c.f., Fig. 8).

The tendencies regarding both Type 2 and Type 3 cases are higher compared

to Type 1 case. According to our findings, we should possibly prioritize Type550

3 and Type 2 clones over Type 1 clones when making refactoring or tracking

decisions.

Through our investigation of this research question (RQ 2) we suggest to

30

Figure 9: An example of a similarity preserving co-change of two Type 3 clone fragments (i.e.,

Clone Fragment 1, and Clone Fragment 2) of Freecol in a bug-fix commit operation applied

to revision 1075. Each of these two clone fragments is a method clone (i.e., the whole method

is a clone fragment). The figure shows that they were changed consistently in the bug-fix

commit and were again considered as Type 3 clones of each other in revision 1076.

31

consider higher priorities for managing those clones that experienced similarity

preserving co-changes during bug-fixes. Our findings are important for ranking555

clones for both refactoring and tracking. However, we require further investi-

gations of the evolution histories of the bug-fix clones because of the following

two issues.

Issue 1. The clone fragments that experienced similarity preserving co-

changes in bug-fix commits might evolve independently afterwards. In that560

case we should possibly not consider these clone fragments important for man-

agement.

Issue 2. A clone fragment that was changed in a bug-fix commit without

experiencing a similarity preserving co-change might co-evolve consistently with

the other fragments in its class afterwards. In that case this clone fragments565

should be considered important for management.

In order to address these two issues, we need to investigate the entire evo-

lution histories of the bug-fix clones to analyze whether they co-evolved with

the other clone fragments in their respective clone classes following a similarity

preserving change pattern which we called SPCP in our previous studies [35, 36].570

We perform such an investigation in RQ 3.

4.3. Answering RQ 3

RQ 3: What proportion of the clone fragments that experienced bug-fixing

changes are SPCP clones?

Rationale. From our discussion at the end of RQ 2 we realize that it is im-575

portant to analyze whether the clone fragments that experienced bug-fixes also

have the tendencies of evolving following a similarity preserving change pattern

called SPCP (defined in Section 2). As the bug-fix clones have tendencies of

experiencing similarity preserving co-changes (revealed from RQ 2), we suspect

that they might have tendencies of following SPCP too. In other words, bug-fix580

clones might also be regarded as SPCP clones. In our previous studies [35, 36]

we empirically showed that SPCP clones are important candidates for refactor-

ing or tracking. The clone fragments that do not follow SPCP either evolve

32

independently or are rarely changed during evolution. Thus, the non-SPCP

clones should not be considered important for clone management.585

To answer this research question we investigate which of the bug-fix clones

are also SPCP clones. Such clone fragments (i.e., the SPCP clones that experi-

enced bug-fixes) should be given the highest priorities for management. In our

previous studies [35, 36] we ranked the SPCP clones on the basis of their co-

change tendencies. We did not consider the bug-proneness of the SPCP clones.590

We believe that bug-proneness should also be considered for ranking the SPCP

clones. However, ranking of SPCP clones considering both bug-proneness and

co-change tendencies is not our main focus in this research. We focus on inves-

tigating whether bug-fix clones also have the possibility of following an SPCP,

and if so, how this possibility di↵ers across di↵erent clone-types.595

A clone fragment that experienced a bug-fix (whether through a similarity

preserving co-change or not) might not evolve following an SPCP afterwards

(related to Issue 1 stated in RQ 2). In this case we understand that the

particular clone fragment evolved independently and thus, is not important

from the perspectives of clone management.600

Methodology. Considering each clone-type of each of the subject systems

we determine the SPCP clones using SPCP-Miner [32]. We also determine those

clone fragments that experienced bug-fixes following the procedure described in

Section 3. Then we identify which of these bug-fix clones also appear in the

list of SPCP clones. Finally, we determine the percentage of bug-fix clones that605

have also been selected as the SPCP clones. We determine the following four

measures for each clone-type of each candidate system and show these measures

in Table 7.

• Measure 1: The total number of bug-fix clones (The column CGBF in

Table 7).610

• Measure 2: The total number of SPCP clones (The column CGSPCP

in Table 7).

• Measure 3: The total number of bug-fix clones which have also been

33

selected as SPCP clones (The column CGBFSPCP in Table 7).

• Measure 4: The total number of bug-fix clones which have been selected615

as SPCP clones and are alive in the last revision (The column CGBF-

SPCPL in Table 7). We determine and present this measure because

while making refactoring or tracking decisions we are primarily concerned

with those clone fragments that are alive in the last revision (i.e., the most

recent revision) of the system.620

It might be the case that only a single clone fragment from a clone class

got changed in a bug-fix commit operation however, the clone fragment later

co-evolved with the other clone fragments in its class by preserving similarity

and thus, can be selected as an SPCP clone fragment (related to Issue 2 stated

in RQ 2). Such examples are evident in Type 3 case of Ctags. From Table 6 we625

see that the bug-fix clone fragments (14 in total) of Type 3 case of Ctags did

not experience similarity preserving co-changes. However, Table 7 shows that

some of these clone fragments (6 in total) evolved following SPCPs (similarity

preserving change patterns). If we compare Table 6 and 7 we can discover some

other examples of such cases.630

We also determine the following two percentages from the above four mea-

sures considering each clone-type of each of the candidate systems.

(1) The percentage of the bug-fix clones that are selected as SPCP clones.

This percentage (Measure 3 * 100 / Measure 1) is shown in Fig 10.

(2) The percentage of the bug-fix clones that have been selected as SPCP635

clones and are also present in the last revision with respect to all bug-fix clones.

This percentage (Measure 4 * 100 / Measure 1) is shown in Fig. 11.

From Fig. 10 we see that for most of the subject systems, the percentages

regarding Type 2 and Type 3 cases are higher compared to the percentage

regarding Type 1 case. The overall percentages for the three clone-types also640

reflect this. From these overall percentages we can see that the bug-fix clones

of the Type 3 case have the highest possibility of evolving following an SPCP

(Similarity Preserving Change Pattern). The possibility regarding the Type 1

34

Table 7: No. of bug-fix clones that evolved following an SPCP (similarity preserving change

pattern)

Type 1 Type 2 Type 3

Systems C
G
B
F

C
G
S
P
C
P

C
G
B
F
S
P
C
P

C
G
B
F
S
P
C
P
L

C
G
B
F

C
G
S
P
C
P

C
G
B
F
S
P
C
P

C
G
B
F
S
P
C
P
L

C
G
B
F

C
G
S
P
C
P

C
G
B
F
S
P
C
P

C
G
B
F
S
P
C
P
L

MonoOSC 3 16 2 2 0 14 0 0 5 103 5 5

SqlBuddy 0 2 0 0 0 17 0 0 4 47 4 0

Ctags 4 20 4 2 4 27 0 0 14 85 6 1

Camellia 2 4 2 2 0 2 0 0 11 36 10 0

BRL-Cad 3 42 2 2 2 8 2 2 10 41 8 4

Freecol 14 43 9 3 12 49 10 2 107 331 80 10

jEdit 73 50 0 0 20 63 11 2 184 614 157 96

Carol 31 82 16 0 32 73 20 3 134 325 117 22

Jabref 8 104 5 2 14 51 11 0 31 293 25 10

CGBF = Total number of Clone Genealogies (i.e., clones) that are related to a Bug-fix.

CGSPCP = Total number of Clone Genealogies that followed an SPCP (Similarity

Preserving Change Pattern).

CGBFSPCP = Total number of bug-fix clones (i.e., the clones that were changed in bug-fix

commits) that followed an SPCP.

CGBFSPCPL = Total number of bug-fix clones that followed an SPCP and are also alive

in the last revision.

35

M
o
n
o
O
S
C

S
q
lB

u
d
d
y

C
t
a
g
s

C
a
m
e
ll
ia

B
R
L
-
C
a
d

F
r
e
e
c
o
l

j
E
d
it

C
a
r
o
l

J
a
b
r
e
f

O
v
e
r
a
ll

0

20

40

60

80

100

% of bug-fix clones that have also been selected as SPCP clones with respect to all

bug-fix clones (Type 1 case)

% of bug-fix clones that have also been selected as SPCP clones with respect to all

bug-fix clones (Type 2 case)

% of bug-fix clones that have also been selected as SPCP clones with respect to all

bug-fix clones (Type 3 case)

Figure 10: Comparison regarding the percentage of clone fragments that have experienced

bug-fixes and have also been selected as SPCP clones.

36

M
o
n
o
O
S
C

S
q
lB

u
d
d
y

C
t
a
g
s

C
a
m
e
ll
ia

B
R
L
-
C
a
d

F
r
e
e
c
o
l

j
E
d
it

C
a
r
o
l

J
a
b
r
e
f

O
v
e
r
a
ll

0

20

40

60

80

100

% of bug-fix clones that are SPCP clones and are also alive in the last revision w.r.t.

all bug-fix clones (Type 1 case)

% of bug-fix clones that are SPCP clones and are also alive in the last revision w.r.t.

all bug-fix clones (Type 2 case)

% of bug-fix clones that are SPCP clones and are also alive in the last revision w.r.t.

all bug-fix clones (Type 3 case)

Figure 11: Comparison regarding the percentage of bug-fix clones that have been selected as

SPCP clones and are also present in the last revision.

37

case is the lowest among the three cases. Such an overall scenario can also be

observed from the bar-graph in Fig. 11.645

Answer to RQ 3. From our investigations we can state that a considerable

proportion of the clone fragments that experienced bug-fixing changes have a

tendency of evolving by following a similarity preserving change pattern (SPCP)

and thus, are the most important candidates for refactoring or tracking. We also

observe that the bug-fix clones of the Type 3 case generally have the highest650

probability of following an SPCP. Thus, we again infer that Type 3 clones should

be given the highest priority for management.

Our findings from Fig. 11 also imply that for more than 50% of the subject

systems a considerable proportion of the bug-fix clones that evolve following

a similarity preserving change pattern remain alive in the last revision (i.e.,655

the most recent revision) of the subject systems. Such clones should be given

the highest importance for management, because programmers are mostly con-

cerned with the last revision of the code-base (i.e., the working copy). The

findings from this research question and also, from the previous one are impor-

tant for ranking clones considering their bug-proneness. In future, on the basis660

of these findings we would like to propose a clone ranking mechanism considering

both the co-change tendencies and bug-proneness of code clones.

4.4. Answering RQ 4

RQ 4: Do bug-fix changes mainly occur to the clone fragments that experi-

enced late propagation?665

Rationale. In a previous study Barbour et al.[3] investigated late propa-

gation in code clones. They showed that the code clones that experience late

propagation are sometimes related to bug-fix. However, it is still unknown

whether bug-fixing changes mainly occur to the late propagation clones or not.

We investigate this matter in this research question.670

Methodology. Considering each clone-type of each of the subject systems

we determine two sets of code clones (i.e., clone genealogies). One set contains

all those clones that experienced bug-fixing changes during their evolution. The

38

Figure 12: An example of late propagation of two Type 1 clone fragments (i.e., Clone Fragment

1, and Clone Fragment 2) in the code-base of our subject system Carol has been shown here.

These two fragments made a clone-pair in revision 520. The commit operation that was

applied on revision 576 made a change to Clone Fragment 1. Because of this change, the two

fragments diverged. We see that the fragments did not make a clone-pair in revision 577.

The period of divergence ended in revision 588 because of the change that occurred to Clone

Fragment 2 in the commit operation on revision 587. We see that the two fragments again

made a clone-pair in revision 588.

39

other set contains each of those clone fragments that experienced late prop-

agation(s). Then, we identify which code clones experienced both bug-fixing675

change(s) and late propagation(s) during their evolution from the intersection

of the two sets. Finally, we determine what proportion of the bug-fix clones (i.e.,

the clones that experienced bug-fixing changes) also experienced late propaga-

tions. We detect late propagations following the procedure described in Section

3.3. We also manually analyzed each of the occurrences of late propagations and680

confirm that in each case, the two participating clone fragments in the clone pair

actually experienced a late propagation. Fig. 12 shows an example of late prop-

agation experienced by a Type 1 clone-pair from our subject system Carol. The

figure caption contains the details regarding late propagation. Table 8 contains

the following measures for each clone-type of each of the subject systems.685

• The number of code clones that experienced bug-fixes (The column named

CGBF in Table 8),

• The number of code clones (i.e., clone genealogies) that experienced late

propagations (The column named CGLP in Table 8),

• The number of code clones that experienced both bug-fixing changes and690

late propagations (The column named CGBFLP in Table 8).

• The percentage of bug-fix clones that also experienced late propagations

with respect to all bug-fix clones (The column named PBFLP in Table

8). We calculate PBFLP using the following equation.

PBFLP = (CGBFLP ⇥ 100)/CGBF (5)

We also calculate the overall value of the percentage (PBFLP) considering695

all subject systems using the following equation.

PBFLPoverall =
100⇥

P
s✏S CGBFLPsP

s✏S CGBFs
(6)

40

Table 8: Percentage of bug-fix clones that also experienced late propagations

Type 1 Type 2 Type 3

Systems C
G
B
F

C
G
L
P

C
G
B
F
L
P

P
B
F
L
P

P
L
P
B
F

C
G
B
F

C
G
L
P

C
G
B
F
L
P

P
B
F
L
P

P
L
P
B
F

C
G
B
F

C
G
L
P

C
G
B
F
L
P

P
B
F
L
P

P
L
P
B
F

MonoOSC 3 0 0 0% 0% 0 0 0 0% 0% 5 2 2 40% 100%

SqlBuddy 0 0 0 0% 0% 0 2 0 0% 0% 4 3 0 0% 0%

Ctags 4 2 0 0% 0% 4 5 0 0% 0% 14 3 0 0% 0%

Camellia 2 0 0 0% 0% 0 0 0 0% 0% 11 0 0 0% 0%

BRL-CAD 3 2 0 0% 0% 2 0 0 0% 0% 10 2 0 0% 0%

Freecol 14 0 0 0% 0% 12 0 0 0% 0% 107 20 0 0% 0%

jEdit 73 3 0 0% 0% 20 8 1 5% 12.5% 184 17 2 1.09% 11.76%

Carol 31 5 3 9.67% 60% 32 0 0 0% 0% 134 9 5 3.73% 55.56%

Jabref 8 6 1 12.5% 16.67% 14 6 0 0% 0% 31 9 3 9.67% 33.33%

CGBF = Total number of Clone Genealogies that experienced Bug-fixing change.

CGLP = Total Number of Clone Genealogies (i.e., clones) that experienced late propagation.

CGBFLP = Total number of Clone Genealogies that experienced both Bug-fixing change(s)

and Late Propagation(s).

PBFLP = Percentage of Clone Genealogies that experienced both bug-fixing change(s)

and late propagation(s) with respect to all clones that experienced Bug-fixing changes.

PBFLP = CGBFLP * 100 / CGBF

PLPBF = Percentage of Clone Genealogies that experienced both bug-fixing change(s) and

late propagation(s) with respect to all clones that experienced late propagations.

PBFLP = CGBFLP * 100 / CGLP

41

0 0.5 1 1.5 2 2.5 3

Type 1

Type 2

Type 3

Overall percentage of bug-fix clones that experi-

enced late propagation w.r.t. all bug-fix clones

Figure 13: Overall percentage of bug-fix clones that experienced late propagation with respect

to all bug-fix clones

Here, S is the set of all subject systems, and s denotes a particular system in

this set. We have already defined the terms CGBFLP, CGBF, and CGLP.

If we look at the percentage PBFLP (Percentage of bug-fix clones that also

experienced late propagation) in Table 8 we realize that it is generally very low.700

The percentage is 0% for most of the cases. For only seven cases (for example

Type 1 case of Carol), this percentage is greater than zero. If we look at the

overall percentages for each clone-type in Fig. 13 we realize that a very little

proportion of the code clones that experience bug-fix changes also experience

late propagation. This proportion is the highest (2.89%) in Type 1 case and705

lowest (1.19%) in Type 2 case. In other words, bug-fix clones rarely experience

late propagations. Most of the code clones that experienced bug-fix changes

have never experienced late propagations.

Statistical significance test. From our previous discussions and analysis

we understand that bug-fix clones generally do not experience late propagations.710

We also wanted to investigate whether the number of clone fragments that

experienced both bug-fixes and late propagations is significantly smaller than

the number of clone fragments that experienced bug-fixes but did not experience

late propagations. Table 9 shows these two numbers for each clone-type of each

of the subject systems. From Table 9 we see that there are 27 cases (9 subject715

systems ⇥ 3 clone-types) in total, and for each case there are two numbers,

CGBFLP and CGBFNLP:

42

Table 9: Number of bug-fix clones that experienced or did not experience late propagations

Type 1 Type 2 Type 3

Systems CGBFNLP CGBFLP CGBFNLP CGBFLP CGBFNLP CGBFLP

MonoOSC 3 0 0 0 3 2

SqlBuddy 0 0 0 0 4 0

Ctags 4 0 4 0 14 0

Camellia 2 0 0 0 11 0

BRL-Cad 3 0 2 0 10 0

Freecol 14 0 12 0 107 0

jEdit 73 0 19 1 182 2

Carol 28 3 32 0 129 5

Jabref 7 1 14 0 28 3

CGBFLP = Number of Clone Genealogies that experienced both Bug-fixing

change(s) and Late Propagation(s).

CGBFNLP = Number of Clone Genealogies that experienced Bug-fixing changes(s)

but did not experience late propagations.

43

Table 10: Mann-Whitney-Wilcoxon test result for CGBFLP and CGBFNLP values from Table

9

Sample Size 27

Significance level 5%

U-value 85

Probability value (i.e., p-value) for two tailed test case < 0.001

Probability value (i.e., p-value) for one tailed test case < 0.001

The two samples are significantly di↵erent (p-values are less than 0.05).

Thus, CGBFNLP values are significantly di↵erent than the CGBFLP values.

• CGBFLP: The number of clone genealogies (i.e., clone fragments) that

experienced both bug-fix changes and late propagations.

• CGBFNLP: The number of clone fragments that experienced bug-fix720

changes but did not experience late propagations.

Here, the summation of these two numbers for a particular case in Table

9 equals the CGBF value for that particular case in Table 8. We perform the

Mann-Whitney-Wilcoxon (MWW) test [27, 28] to determine whether the 27

values of CGBFLP are significantly di↵erent than the 27 values of CGBFNLP.725

We perform the test considering a significance level of 5%. The test details have

been reported in Table 10. We should note that MWW test is non-parametric

[27]. It does not require the samples to be normally distributed [27].

From the test result reported in Table 10 we realize that the CGBFNLP

values in Table 9 are significantly di↵erent than the CGBFLP values in the730

same table. Also, as CGBFLP values are always smaller than the correspond-

ing CGBFNLP values, we can state that CGBFLP is significantly smaller

than CGBFNLP. In other words, the number of clone fragments that experi-

44

enced both bug-fix changes and late propagations is significantly smaller than the

number of clone fragments that experienced bug-fix changes but did not experi-735

ence late propagations. Thus, bug-proneness of code clones does not seem to be

primarily related with late propagation.

Answer to RQ 4. According to our observations only a very little pro-

portion of the code clones that experience bug-fixing changes can experience late

propagations. Our statistical significance test result indicates that the number740

of code clones that experience bug-fixes without experiencing late propagations

is significantly higher compared to the number of code clones that experienced

both bug-fixes and late propagations. Thus, bug-proneness of code clones does

not seem to be primarily (i.e., strongly) related with late propagation.

Although we realize that bug-proneness of code clones is not strongly related745

with late propagation, we still do not know whether late propagation in code

clones is primarily related with clone bug-proneness. We investigate this in RQ

5.

4.5. Answering RQ 5

RQ 5: Do most of the late propagation clones experience bug-fix changes?750

Rationale. In RQ 4 we investigated what percentage of the bug-fix clones

experienced late propagations. We found that only a very little proportion of

the bug-fix clones can experience late propagation. However, we still do not

know whether most of the late propagation clones experience bug-fix changes or

not. If most of the late propagation clones experience bug-fixes, then it implies755

that we should be careful of the occurrences of late propagations. For example,

programmers can be automatically notified for each diverging change to the

clone fragments. We mentioned that Barbour et al. [3] studied late propagation

in code clones. We also have a previous study [41] on late propagation. However,

these existing studies do not necessarily answer our fifth research question (i.e.,760

RQ 5). Also, our previous study [41] was performed considering code clones of

at least 5LOC. However, in this study we consider code clones of at least 10LOC,

because Svajlenko and Roy [52] show that these settings provide us with better

45

0 5 10 15 20

Type 1

Type 2

Type 3

Overall percentage of late propagation clones that

experienced bug-fixes w.r.t. all late propagation

clones

Figure 14: Overall percentage of late propagation clones that experienced bug-fixes with

respect to all late propagation clones

clone detection results in terms of both precision and recall. We answer RQ 5

in the following way.765

Methodology. For answering RQ 5, we proceed in the same way as we did

in our previous research question (RQ 4). From the two measures, CGLP and

CGBFLP, recorded in Table 8 we determine the percentage of late propagation

clones that experienced bug-fixes with respect to all late propagation clones.

We call this percentage PLPBF (Percentage of Late Propagation clones that770

experienced Bug Fixes) and calculate it in the following way.

PLPBF = (CGBFLP ⇥ 100)/CGLP (7)

In Table 8, we show this percentage for each clone-type of each of the subject

systems. We also calculate the overall value of this percentage considering all

subject systems using the following equation.

PLPBFoverall =
100⇥

P
s✏S CGBFLPsP

s✏S CGLPs
(8)

From the percentage PLPBF (Percentage of late propagation clones that775

experienced bug-fixes) in Table 8 we understand that sometimes a considerable

proportion of the late propagation clones can experience bug-fixes. If we look

at the overall values of the percentage (PLPBFoverall) in Fig. 14 we can see

46

that the overall percentage for Type 1 clones is the highest (22.22%) and that

of Type 2 clones is the lowest (5.26%). From such a scenario we realize that780

most of the late propagation clones do not experience bug-fixes. In other words,

experiencing bug-fixes is not a common scenario for the late propagation clones.

Statistical significance test. We perform statistical significance tests to

determine whether the number of late propagation clones that experience bug-

fixes is significantly smaller compared to the number of late propagation clones785

that did not experience bug-fixes. In Table 11 we record these two numbers

(CGLPNBF and CGBFLP) for each clone-type of each of the subject systems.

We define CGLPNBF and CGBFLP in the following way.

• CGLPNBF: The number of clone genealogies that experienced late prop-

agations but did not experience bug-fixes.790

• CGBFLP: As we defined previously, it is the number of clone genealogies

that experienced both late propagations and bug-fixes.

The summation of these two numbers for a particular case (i.e., for a particu-

lar clone-type of a particular subject system) is equal to the CGLP value for that

case in Table 8. There are 27 cases (9 subject systems ⇥ 3 clone-types) in total.795

As we did in RQ 4, we perform MWW tests [27, 28] to determine whether the 27

values of CGBFLP are significantly di↵erent than the 27 values of CGLPNBF.

We perform the tests considering a significance level of 5%. The test details

are shown in Table 12. From the test results we realize that CGLPNBF values

are significantly di↵erent CGBFLP values. As CGBFLP values are most of the800

time smaller than the corresponding CGLPNBF values, we can say that CG-

BFLP is significantly smaller than CGLPNBF. In other words, the number of

late propagation clones that experience bug-fixes is significantly smaller than

the number of late propagation clones that did not experience bug-fixes. Thus,

late propagation clones do not generally experience bug-fixes.805

Answer to RQ 5. According to our investigation and analysis, overall only

a small proportion of the late propagation clones experience bug-fixes. Most of

the late propagation clones do not experience bug-fix changes.

47

Table 11: Number of late propagation clones that experienced or did not experience bug-fixes

Type 1 Type 2 Type 3

Systems CGLPNBF CGBFLP CGLPNBF CGBFLP CGLPNBF CGBFLP

MonoOSC 0 0 0 0 0 2

SqlBuddy 0 0 2 0 3 0

Ctags 2 0 5 0 3 0

Camellia 0 0 0 0 0 0

BRL-Cad 2 0 0 0 2 0

Freecol 0 0 0 0 20 0

jEdit 3 0 7 1 15 2

Carol 2 3 0 0 4 5

Jabref 5 1 6 0 6 3

CGBFLP = Number of Clone Genealogies that experienced both Bug-fixing

change(s) and Late Propagation(s).

CGLPNBF = Number of Clone Genealogies that experienced Late Propagations

but did not experience bug-fix changes.

48

Table 12: Mann-Whitney-Wilcoxon test result for CGLPNBF and CGBFLP values from Table

11

Sample Size 27

Significance level 5%

U-value 215

Probability value (i.e., p-value) for two tailed test case 0.00988

Probability value (i.e., p-value) for one tailed test case 0.00494

The two samples are significantly di↵erent (p-values are less than 0.05).

Thus, CGLPNBF values are significantly di↵erent than the CGBFLP values.

From our answer to RQ 5 we again realize that late propagation is not

primarily related with bugs in code clones. However, sometimes a considerable810

proportion of the late propagation clones can experience bug-fixes. For Type

1 case of our subject system Carol, 3 out of 5 late propagation clones (60% of

the late propagation clones) experienced bug-fixes. Thus, it is better not to

ignore late propagations. We should take proper measures for minimizing late

propagations that might occur because of unconsciousness of the programmers.815

4.6. Answering RQ 6

RQ 6: What proportion of the clone fragments experienced bug-fixes that

are associated with late propagation?

Rationale. From our answer to RQ 4 we realize that only a very little

proportion of the clone fragments that experience bug-fixes also experience late820

propagation. However, we still do not know whether the bug fixes experienced

by this little proportion of clone fragments are really associated with late prop-

agations occurred in those fragments. A clone fragment can experience both a

bug-fix and a late propagation during evolution. However, if a bug-fix does not

49

occur during the diverging period of late propagation, then the bug-fix cannot825

be considered associated with late propagation. In order to realize the asso-

ciativity of bug-fixes and late propagations, we need to perform time analysis

of the occurrences of bug-fixes and late propagations considering those clone

fragments that experienced both late propagations and bug-fixes. We perform

such an analysis in RQ 6. The details of our analysis have been given below.830

Methodology. In Table 8 we see that the number of clone fragments that

experienced both bug-fixes and late propagations has been reported in the col-

umn named CGBFLP. This column contains zero for most of the cases except

for Type 1 case of Carol and Jabref, Type 2 case of jEdit, and Type 3 case

of MonoOSC, jEdit, Carol, and Jabref. We manually analyze the evolution835

of each of the clone fragments in each of these non-zero cases and determine

whether the late propagations experienced by these clone fragments are really

associated with bug-fixes. We investigate 17 clone genealogies (calculated from

CGBFLP column of Table 8) in total. Table 13 shows our manual analysis re-

sults. We see that for each clone genealogy that experienced both bug-fixes and840

late propagation we have recorded the followings:

• The commit operation where the clone fragment experienced a bug-fix.

• The starting and ending commit operations of the period of late propa-

gation that the clone fragment experienced. The starting commit is the

commit where the divergence occurred and the ending commit is the one845

where the convergence occurred.

• Our decision regarding whether the bug-fix change in the clone fragment

is related with the late propagation that it experienced.

From the first row of Table 13 we understand that a Type 1 clone fragment

(c.f., Clone Genealogy 1) of our subject system, Carol, experienced a bug-fix850

in commit operation 430. However, this clone fragment experienced late prop-

agation between commits 576 and 588. Such a scenario clearly implies that

the bug-fix experienced by the clone fragment cannot be related with the late

50

propagation experienced by it, because the bug-fix occurred long before the oc-

currence of late propagation. However, if we consider the Type 1 clone fragment855

of subject system, Jabref, we see that the fragment experienced a bug-fix during

the period of late propagation. The bug-fix commit, 77, in this example falls

in the late propagation period (from commit 76 to 78). In such a scenario, we

manually analyze the bug-fix commit message, and the changes that occurred

to the clone fragment during the late propagation period. From our manual860

investigation, we decide whether the bug-fix is really related with late propaga-

tion. Our decision is recorded in the last column of Table 13. The last column

of this table corresponding to the row for Type 1 case of Jabref we realize that

the bug-fix experienced by the Type 1 clone fragment is associated with the

late propagation that it experienced. From Table 13 we again see that a Type865

3 clone fragment (c.f., Clone Genealogy 1) of the subject system, Carol, expe-

rienced bug-fixes in three commit operations: 182, 430, and 730. We manually

analyze whether the bug-fixes occurred in commits 430 and 730 are related

with late propagation, because these two bug-fix commits occurred in the late

propagation period. From our analysis we found that the bug-fix change that870

occurred in commit 730 is related with late propagation.

By analyzing the last column in Table 13 we realize that for only 8 out of

17 clone genealogies, the bug-fixes are really associated with late propagation.

Considering all the bug-fix clone genealogies (the column CGBF in Table 8) in

all the subject systems we determine what proportion of these clone genealogies875

experienced bug-fixes that are really associated with late propagation. This

percentage for each of the three clone-types (Type 1, Type 2, and Type 3) is

shown in the graph of Fig. 15. In a similar way, by considering all the late

propagation clone genealogies from all the subject systems we determine what

proportion of these clone genealogies experienced late propagations that are880

really associated with bug-fixes. This percentage for each clone-type is shown

in Fig. 16. Each of the two graphs demonstrates that the percentage regarding

Type 2 is zero. From Table 8 we see that only one Type 2 clone genealogy of

our subject system, jEdit, experienced both a bug-fix and a late propagation.

51

However, from Table 13 we realize that the bug-fix experienced by this clone885

genealogy is not related with the late propagation experienced by it. No other

Type 2 clone genealogy of any other subject system experienced both a bug-fix

and a late propagation. As a result, the percentage regarding Type 2 case in

each of the two graphs, Fig. 15 and Fig. 16, becomes zero. From these two

graphs we can state the followings:890

• The bug-fixes in a very little proportion of the bug-fix clone genealogies

can be associated with late propagation. This proportion is the lowest

(i.e., zero) for Type 2 case. For Type 3 clones, this proportion is the

highest which is only 1.4%.

• The late propagations occurred in a very little proportion of the late prop-895

agation clone genealogies can be associated with bug-fixes. While this

proportion is the lowest (zero) for Type 2 clones, Type 3 clones exhibit

the highest proportion which is only 10.76%.

Answer to RQ 6. Our findings imply that bug-proneness in code clones is

not primarily related with late propagation. Moreover, only a little proportion900

of the occurrences of late propagation can be associated with bug-fix. Thus, it

seems that late propagation is not strongly related with bug-proneness of code

clones.

5. Threats to Validity

We used the NiCad clone detector [6] for detecting both exact and near-miss905

clones. We detected near-miss clones considering a dissimilarity threshold of

20% with blind renaming of identifiers. For di↵erent settings of NiCad, the

statistics that we present in this paper might be di↵erent. Wang et al. [55]

defined this problem as the confounding configuration choice problem and con-

ducted an empirical study to ameliorate the e↵ects of the problem. However,910

the settings that we have used for NiCad are considered standard [47] and with

these settings NiCad can detect clones with high precision and recall [48, 49, 52].

52

Table 13: Description of the cases where a clone fragment experienced both a bug-fix and late

propagation

Cases CGBFLP Clone Genealogies Experienced bug-fix Experienced Late propagation Is Bug-fix associated

in commit between commits with late propagation?

Type 1 case of

Carol

3 Clone genealogy 1 430 576 and 588 No

Clone genealogy 2 422 217 and 277 No

Clone genealogy 3 422 217 and 277 No

Type 1 case of

Jabref

1 Clone genealogy 1 77 76 and 78 Yes

Type 2 case of

jEdit

1 Clone genealogy 1 3928 3826 and 3860 No

Type 3 case of

jEdit

2 Clone genealogy 1 3960 3959 and 3963 Yes

Clone genealogy 2 3846 3893 and 3900 No

Type 3 case of

Carol

5 Clone genealogy 1 182, 430, 730 397 and 730 Yes

Clone genealogy 2 397, 430 396 and 398 Yes

Clone genealogy 3 430, 464 396 and 398 No

Clone genealogy 4 398, 430 397 and 730 Yes

Clone genealogy 5 1597 1522 and 1578 No

Type 3 case of

Jabref

3 Clone genealogy 1 881, 883 880 and 883 Yes

Clone genealogy 2 881, 883 880 and 883 Yes

Clone genealogy 3 881, 883 880 and 883 Yes

Type 3 case of

MonoOSC

2 Clone genealogy 1 302 312 and 352 No

Clone genealogy 2 302 312 and 352 No

CGBFLP = Number of Clone Genealogies that experienced both Bug-fixing change(s) and late propagation(s)

53

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Type 1

Type 2

Type 3

Overall percentage of bug-fix clones that experi-

enced late propagation related with bug-fix w.r.t.

all bug-fix clones

Figure 15: Overall percentage of bug-fix clones that experienced late propagation which is

related with bug-fix with respect to all bug-fix clones

0 2 4 6 8 10

Type 1

Type 2

Type 3

Overall percentage of late propagation clones that

experienced bug-fixes which are related with late

propagation w.r.t. all late propagation clones

Figure 16: Overall percentage of late propagation clones that experienced bug-fixes which are

associated with late propagation with respect to all late propagation clones

54

Thus, we believe that our findings on the bug-proneness of code clones are of

significant importance.

Our research involves the detection of bug-fix commits. The way we detect915

such commits is similar to the technique followed by Barbour et al.[3]. Such a

technique proposed by Mocus and Votta [31] can sometimes select a non-bug-fix

commit as a bug-fix commit mistakenly. However, Barbour et al.[3] showed that

this probability is very low. According to their investigation, the technique has

an accuracy of 87% in detecting bug-fix commits.920

We detect bug-fix commits by automatically analyzing the commit messages.

Issue tracking system could be an option for identifying bugs. However, we did

not use issue tracking system for a number of reasons. First, we were interested

about the bugs that got fixed. Generally, an issue tracking system contains

a lot of bug reports. However, many of these bugs are open for a long time.925

Also, existing research shows that fixing priorities for these reported bugs are

often assigned without properly considering their importance or severity. This

might also be the case that a particular bug has been fixed but the corresponding

entry in the issue tracking system has not been updated. Thus, an issue tracking

system might not always reflect the latest information on bug-fixing. Second,930

during our manual analysis of the bug-fixing commits we realize that many

bugs get fixed without a reported bug-id. It implies that either those bugs were

not reported in the issue tracking system or those bugs were reported but the

developer did not mention the bug-id (i.e., issue id) in the commit message

after fixing. If we only rely on the bugs reported in the issue tracking or bug935

tracking system, we will miss bug-fixes without any bug-id. Third, by manually

examining the commit messages of the all the bug-fixes that occurred during

late propagation periods we see that none of these commit messages report a

bug-id or issue-id. However, the commit messages report which bugs were fixed

in which ways. Thus, for our subject systems, if we rely on the issue tracking940

system, we will not get any bug-id or issue-id related with late propagation. We

finally believe that our decision of not including issue tracking system in our

research is reasonable.

55

In our experiment we did not study enough subject systems to be able to

generalize our findings regarding the comparative bug-proneness of clone-types.945

However, our candidate systems were of diverse variety in terms of application

domains, sizes and revisions. Thus, we believe that our findings are important

from the perspectives of clone management and can help us in better ranking

of code clones for refactoring and tracking.

6. Related Work950

Bug-proneness of code clones has already been investigated by a number of

studies. Li and Ernst [23] performed an empirical study on the bug-proneness of

clones by investigating four software systems and developed a tool called CBCD

on the basis of their findings. CBCD can detect clones of a given piece of buggy

code. Li et al. [24] developed a tool called CP-Miner which is capable of detect-955

ing bugs related to inconsistencies in copy-paste activities. Steidl and Göde [51]

investigated on finding instances of incompletely fixed bugs in near-miss code

clones by investigating a broad range of features of such clones involving machine

learning. Göde and Koschke [10] investigated the occurrences of unintentional

inconsistencies to the code clones of three mature software systems and found960

that around 14.8% of all changes occurred to the code clones are unintentionally

inconsistent. Chatterji et al.[5] performed a user study to investigate how clone

information can help programmers localize bugs in software systems. Jiang et

al.[14] performed a study on the context based inconsistencies related to clones.

They developed an algorithm to mine such inconsistencies for the purpose of lo-965

cating bugs. Using their algorithm they could detect previously unknown bugs

from two open-source subject systems. Inoue et al.[13] developed a tool called

‘CloneInspector’ in order to identify bugs related to inconsistent changes to the

identifiers in the clone fragments. They applied their tool on a mobile software

system and found a number of instances of such bugs. Xie et al.[56] investigated970

fault-proneness of Type 3 clones in three open-source software systems. They

investigated two evolutionary phenomena on clones: (1) mutation of the type of

56

a clone fragment during evolution, and (2) migration of clone fragments across

repositories and found that mutation of clone fragments to Type 2 or Type 3

clones is risky.975

In a previous study [41] we only investigated late propagation and late prop-

agation related bugs in code clones. However, in our study presented in this

paper we identify all the bugs that occurred to code clones (i.e., not only the

late propagation related bugs) and make a comparison of the bug-proneness of

the three clone-types. Such a comparison was not done in our previous study980

[41]. In this study we also investigate whether bug-proneness of code clones is

primarily related with late propagation by answering three research questions:

RQ 4, RQ 5, and RQ 6. Such an investigation was not done in our previous

study. From this investigation with manual verification we find that a very little

proportion (1.4%) of the bug-fix clones experienced bug-fixes that are related985

with late propagation. Such a finding is a new addition to clone research. None

of the existing studies reveals this finding. This finding indicates that late prop-

agation contributes to only a very little proportion of bugs in code clones. In

our previous study we considered code clones of at least 5LOC. However, in this

study we consider code clones of at least 10LOC, because Svajlenko and Roy990

[52] found that with such a setting NiCad can provide better clone results in

terms of precision and recall.

Rahman et al. [43] found that bug-proneness of cloned code is less than that

of non-cloned code on the basis of their investigation on the evolution history

of four subject systems using DECKARD [15] clone detector. However, they995

considered monthly snap-shots (i.e., revisions) of their systems and thus, they

have the possibility of missing buggy commits. In our study, we consider all the

snap-shots/revisions (i.e., without discarding any revisions) of a subject system

as mentioned in Table 2 from the beginning one. Thus, we believe that we are

not missing any bug-fix commits. Moreover, our goal in this study is di↵erent.1000

We compare the bug-proneness of di↵erent types of code clones.

Barbour et al. [4] investigated evolution of code clones in four subject sys-

tems with the goal of identifying factors that can a↵ect the bug-proneness of

57

code clones. According to their findings, clone size can be directly related to

the bug-proneness of clone pairs. They also found that time interval between1005

consecutive changes to clone pairs does not have a considerable impact on clone

bug-proneness. Our study is di↵erent than Barbour et al.’s study. We inves-

tigate the evolution history of code clones from nine subject systems in order

to make a comparison among the bug-proneness of di↵erent clone-types. We

also investigate the relatedness of late propagation in code clones with clone1010

bug-proneness. Barbour et al. [4] did not perform such investigations.

Selim et al. [50] used Cox hazard models in order to assess the impacts of

cloned code on software defects. They found that defect-proneness of code clones

is system dependent. However, they considered only method clones in their

study. We consider block clones in our study. While they investigated only two1015

subject systems, we consider nine diverse subject systems in our investigation.

Also, we compare the bug-proneness of di↵erent types of clones. Selim et al.

[50] did not perform a type centric analysis in their study.

A number of studies have also been done on late propagation in code clones

and its relationships with bugs.1020

Barbour et al. [2, 3] investigated di↵erent types of late propagation in code

clones. They reported that clone genealogies that experienced late propaga-

tion have a higher possibility of experiencing bug-fixes compared to the clone

genealogies that did not experience late propagations. In their experiment,

they first identified the late propagation clone genealogies, and then determined1025

which ones of these genealogies experienced bug-fixes. However, they did not

determine whether the late propagation clone genealogies experienced bug-fixes

during their late propagation periods. A particular clone genealogy might ex-

perience both late propagation and bug-fix. An occurrence of late propagation

can be related to a bug-fix, only if the bug-fix occurs during the late propaga-1030

tion period. Barbour et al. did not investigate whether the late propagation

genealogies experienced bug-fixes during the period of late propagation. Thus,

their investigation does not report how many of the clone genealogies experi-

enced bug-fixes that are really associated late propagation. In our research, we

58

report this statistic by incorporating time analysis and manual investigations.1035

Moreover, Barbour et al. investigated using Simian and CCFinder clone detec-

tors with a minimum clone size of 6 lines and 50 tokens (equivalent to 5 lines)

respectively. We have used NiCad clone detector because NiCad is a better

choice according to a recent study [52] of Svajlenko and Roy. We considered a

minimum clone size of 10 lines as was suggested by Svajlenko and Roy.1040

By investigating two subject systems, Aversano et al. [1] reported that

around 18% of the code clones undergo late propagation during evolution. They

also observed that around 41% of the clone related bug-fixes occurred during

late propagation. While such a finding establishes the fact that late propagation

is risky, it does not imply whether bug-proneness of code clones is mostly related1045

with late propagation. In our study, we investigate thousands of revisions of 9

diverse subject systems and analyze whether bug-proneness of code clones is

mostly related with late propagations or not.

From an investigation on four open source subject systems written in C

and Java, Thummalapenta et al. [53] reported that code clones that experi-1050

ence late propagations are more prone to faults. However, their experiment

does not report what percentage of bug-fixes experienced by code clones were

directly related with late propagation. In our research we quantify late prop-

agation related bugs from two directions: (i) by determining what proportion

of the bug-fixes experienced by code clones are related to late propagation, and1055

(2) by determining what proportion of the late propagation clone genealogies

experienced bug-fixes. From these measures we try to determine whether late

propagation is the primarily related to bugs in code clones.

Our finding regarding the proportion of late propagation clone genealogies

is consistent with the findings from existing studies [53, 1, 2, 3]. We support1060

that clone genealogies experiencing late propagations sometimes have high pos-

sibilities of containing bugs (i.e., high possibilities of experiencing bug-fixes).

However, we additionally investigate whether bug-proneness of code clones is

mostly associated with late propagation or not. Such an investigation was not

done by the existing studies.1065

59

We see that di↵erent studies have investigated clone related bugs in dif-

ferent ways and have developed di↵erent bug detection tools. However, none

of these studies make a comparison of the bug-proneness of di↵erent types of

code clones. Comparing the bug-proneness of di↵erent clone-types is impor-

tant from the perspectives of clone management. The clone-type with a higher1070

bug-proneness can be given a higher priority when making clone management

decisions. Focusing on this issue we make a comparison of the bug-proneness

of the major types (Type 1, Type 2, Type 3) of clones from di↵erent perspec-

tives and identify which types of clones have a higher bug-proneness and thus,

should be given a higher priority for management. None of the existing studies1075

made such a comparison. Our study also provides useful implications regarding

ranking of code clones for refactoring and tracking.

7. Conclusion

In this paper we present an empirical study on the comparative bug-proneness

of di↵erent types of code clones. We also investigate whether clone bug-proneness1080

is mainly related to late propagation in code clones. According to our investiga-

tion on the major clone-types: Type 1 (Exact clones or identical clones), Type

2 (Near-miss clones), and Type 3 (Near-miss clones) in thousands of revisions of

nine diverse subject systems written in three di↵erent programming languages

(C, Java, and C#) we can state that:1085

(1) Type 3 clones exhibit the highest bug-proneness among the three clone-

types. The bug-proneness of Type 3 clones is significantly higher than that of

Type 1 clones.

(2) Also, Type 3 clones have the highest likeliness of co-changing (i.e., chang-

ing together) consistently during the bug-fixing changes.1090

(3) Moreover, the bug-fix clones of Type 3 exhibit the highest tendencies of

evolving following a similarity preserving change pattern (SPCP). The existing

studies [35, 36] show that the SPCP clones (i.e., the clone fragments that evolve

following a similarity preserving change pattern) are important for refactoring

60

and tracking.1095

(4) Finally, it appears that bug-proneness in code clones is not primarily

related with late propagation. The possibility that a bug-fix change experienced

by a clone fragment will be associated with late propagation is only 1.4%. We

also find that late propagation in code clones is not strongly related with clone

bug-proneness. The probability that a late propagation experienced by a clone1100

fragment will be related with a bug is only 10.76%. According to our statistical

significance tests, the number of late propagation clones that experienced bug-

fixes is significantly smaller than the number of non-late-propagation clones that

experienced bug-fixes.

Our experimental results imply that Type 3 clones should be given the high-1105

est priority when making clone management decisions. Our findings regarding

the consistent co-change of bug-prone clones and also, regarding their tenden-

cies of following SPCP can be considered for ranking code clones for refactoring

and tracking. Our research also implies that late propagation in code clones is

not primarily related with bug-proneness of code clones. Such a finding helps us1110

realize the extent to which late propagation contributes to clone bug-proneness.

In future, we plan to investigate clone ranking for refactoring and tracking

considering our findings from this research. We also plan to investigate classi-

fying the bugs that occurred to the code clones.

References1115

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained: An empirical

study”, Proc. CSMR, 2007, pp. 81 – 90.

[2] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”, Proc. ICSM,

2011, pp. 273 – 282.

[3] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late propagation clone1120

genealogies”, Journal of Software: Evolution and Process, 2013, 25(11):1139 – 1165.

[4] L. Barbour, L. An, F. Khomh, Y. Zou, and S. Wang, “An investigation of the Fault-

proneness of clone evolutionary patterns”, Software Quality Journal, 2017, pp. 1 - 36.

61

[5] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring the E�cacy of

Code Clone Information in a Bug Localization Task: An Empirical Study”, Proc. ESEM,1125

2011, pp. 20 – 29.

[6] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool Demo, 2011, pp.

219 – 220.

[7] CTAGS: http://ctags.sourceforge.net/

[8] E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code Clone Manage-1130

ment”, Proc. ICSE, 2008, pp. 843 – 846.

[9] E. Duala-Ekoko, M. P. Robillard, “Tracking Code Clones in Evolving Software”, Proc.

ICSE, 2007, pp. 158 – 167.

[10] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”, Proc. ICSE, 2011,

pp. 311 – 320.1135

[11] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 – 74.

[12] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More Frequently Modified

than Non-duplicate Code in Software Evolution?: An Empirical Study on Open Source

Software”, Proc. EVOL/IWPSE, 2010, pp. 73 – 82.

[13] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, E. Lee, “Expe-1140

rience of Finding Inconsistently-Changed Bugs in Code Clones of Mobile Software”, Proc.

IWSC, 2012, pp. 94 – 95.

[14] L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related Bugs”, Proc. ESEC-

FSE, 2007, pp. 55 – 64.

[15] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and accurate tree-based1145

detection of code clones”, Proc. ICSE, 2007, pp. 96105.

[16] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones Matter?”, Proc.

ICSE, 2009, pp. 485 – 495.

[17] P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code clones and renam-

ing identifiers consistently in the IDE”, Proc. Eclipse Technology Exchange at OOPSLA,1150

2007.

[18] C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered harmful: patterns

of cloning in software”, Empirical Software Engineering, 2008, 13(6): 645 – 692.

62

http://ctags.sourceforge.net/

[19] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of code clone

genealogies”, Proc. ESEC-FSE, 2005, pp. 187 – 196.1155

[20] J. Krinke, “A study of consistent and inconsistent changes to code clones”, Proc. WCRE,

2007, pp. 170 – 178.

[21] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc. SCAM, 2008, pp.

57 – 66.

[22] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC, 2011, pp. 28 –1160

33 .

[23] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE, 2012, pp. 310

– 320.

[24] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding Copy-paste and

Related Bugs in Operating System Code”, Proc. OSDI, 2004, pp. 20 – 20.1165

[25] A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC, 2010, pp. 65 – 72.

[26] A. Lozano, M. Wermelinger, “Assessing the e↵ect of clones on changeability”, Proc.

ICSM, 2008, pp. 227 – 236.

[27] H. B. Mann, D. R. Whitney, ”On a Test of Whether one of Two Random Variables is

Stochastically Larger than the Other”, Annals of Mathematical Statistics, 1947, 18(1):1170

5060.

[28] Mann-Whitney-Wilcoxon Test Online. http://www.socscistatistics.com/tests/

mannwhitney/Default2.aspx

[29] Mann-Whitney-Wilcoxon Test Details. https://en.wikipedia.org/wiki/Mann%E2%80%

93Whitney_U_test1175

[30] R. C. Miller, B. A. Myers. “Interactive simultaneous editing of multiple text regions.”,

Proc. USENIX 2001 Annual Technical Conference, 2001, pp. 161 – 174.

[31] A. Mockus, L. G. Votta, “Identifying Reasons for Software Changes using Historic

Databases”, Proc. ICSM, 2000, pp. 120 – 130.

[32] M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for Mining Code Clones1180

that are Important for Refactoring or Tracking”, Proc. SANER, 2015, 5pp. (to appear).

[33] M. Mondal, C. K. Roy, K. A. Schneider, “Late Propagation in Near-Miss Clones: An

Empirical Study”, Electronic Communications of the EASST, 63(2014):1 – 17.

63

http://www.socscistatistics.com/tests/mannwhitney/Default2.aspx
http://www.socscistatistics.com/tests/mannwhitney/Default2.aspx
http://www.socscistatistics.com/tests/mannwhitney/Default2.aspx
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

[34] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed Method Groups:

A Case Study on Open Source Systems”, Proc. CASCON, 2012, pp. 205 – 219.1185

[35] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones for Refactoring

through Mining Association Rules”, Proc. CSMR-WCRE, 2014, pp. 114 – 123.

[36] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of Important Clones

for Refactoring and Tracking”, Proc. SCAM, 2014, pp. 11 – 20.

[37] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A. Schneider, “Compar-1190

ative Stability of Cloned and Non-cloned Code: An Empirical Study”, Proc. SAC, 2012,

pp. 1227 – 1234.

[38] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone Stability”, ACM

SIGAPP Applied Computing Review, 2012, 12(3): 20 – 36.

[39] M. Mondal, C. K. Roy, K. A. Schneider, “Prediction and Ranking of Co-change Candi-1195

dates for Clones”, Proc. MSR, 2014, pp. 32 – 41.

[40] M. Mondal, C. K. Roy, K. A. Schneider, “A comparative study on the bug-proneness of

di↵erent types of code clones”, Proc. ICSME, 2015, pp. 91 – 100.

[41] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study on the intensity and

harmfulness of late propagation in near-miss code clones”, Software Quality Journal, pp.1200

1 – 33.

[42] SourceForge Online SVN repository: http://sourceforge.net/

[43] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc. MSR, 2010, pp.

72 – 81.

[44] D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A Systematic Review”,1205

Information and Software Technology, 2013, 55(7): 1165 – 1199.

[45] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone Management: Past,

Present, and Future (Keynote paper)”, Proc. CSMR-WCRE, 2014, pp. 18 – 33.

[46] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc. ICSM, 2009, pp.

447 – 450.1210

[47] C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional Clones

Using Flexible Pretty-Printing and Code Normalization”, Proc. ICPC, 2008, pp. 172 –

181.

64

http://sourceforge.net/

[48] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of Code Clone Detec-

tion Techniques and Tools: A Qualitative Approach”, Science of Computer Programming,1215

2009, 74 (2009): 470 – 495.

[49] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic Framework for Eval-

uating Code Clone Detection Tools”, Proc. Mutation, 2009, pp. 157 – 166.

[50] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y. Zou, “Studying the

Impact of Clones on Software Defects”, Proc. WCRE, 2010, pp. 13 - 21.1220

[51] D. Steidl, N. Göde, “Feature-Based Detection of Bugs in Clones”, Proc. IWSC, 2013, pp.

76 – 82.

[52] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”, Proc. ICSME,

2014, pp. 321 – 330.

[53] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical study on the1225

maintenance of source code clones”, Empirical Software Engineering, 2009, 15(1): 1 – 34.

[54] M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with linked editing”,

Proc. IEEE Symposium on Visual Languages and Human Centric Computing, 2004, pp.

173 – 180.

[55] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configurations: A Rigor-1230

ous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT FSE, 2013, pp. 455 – 465.

[56] S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness of Clone Mutation

and Clone Migration”, Proc. MSR, 2013, pp. 149 – 158.

[57] M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code Clone Refactor-

ing”, IET Software, 2013, 7(3): 167 – 186.1235

65

Manishankar Mondal

Manishankar Mondal is an Assistant Professor in the Computer Science and Engineering Discipline of
Khulna University, Bangladesh. He completed his M.Sc. in Software Engineering from the Computer
Science Department of the University of Saskatchewan, Canada by working under the supervision of Dr.
Chanchal K. Roy and Dr. Kevin A. Schneider. During M.Sc. studies, he received the Best Paper Award
from the 27th Symposium On Applied Computing (ACM SAC 2012) in the Software Engineering Track.
He also received his PhD in February, 2017 from the same department by working under the same
advisors. His research interests are software maintenance and evolution including clone detection and
analysis, program analysis, empirical software engineering and mining software repositories. He has been
a reviewer of a number of software engineering conferences and journals. He has served as the web and
publicity co-chair of ICPC 2014 and as a program committee member of IWSC 2016. He has also served
as a research associate in the software research laboratory of the Computer Science Department of the
University of Saskatchewan.

Chanchal K. Roy

Chanchal Roy is an associate professor of Software Engineering/Computer Science at the
University of Saskatchewan, Canada. While he has been working on a broad range of topics in
Computer Science, his chief research interest is Software Engineering. In particular, he is
interested in software maintenance and evolution, including clone detection and analysis,
program analysis, reverse engineering, empirical software engineering and mining software
repositories. He served or has been serving in the organizing and/or program committee of major
software engineering conferences (e.g., ICSE, ICSME, SANER, ICPC, SCAM, CASCON, and
IWSC). He has been a reviewer of major Computer Science journals including IEEE

*Biography

Transactions on Software Engineering, International Journal of Software Maintenance and
Evolution, Science of Computer Programming, Journal of Information and Software Technology
aQd VR RQ. HH UHcHLYHd KLV PK.D. aW QXHHQ¶V UQLYHUVLW\, adYLVHd b\ JaPHV R. CRUd\, LQ AXJXVW
2009.

Kevin A. Schneider

Kevin Schneider is a Professor of Computer Science, Special Advisor ICT Research and Director
of the Software Engineering Lab at the University of Saskatchewan. Dr. Schneider has
previously been Department Head (Computer Science), Vice-Dean (Science) and Acting Chief
Information Officer and Associate Vice-President Information and Communications
Technology.
Before joining the University of Saskatchewan, Dr. Schneider was CEO and President of
Legasys Corp., a software research and development company specializing in design recovery
and automated software engineering. His research investigates models, notations and techniques
that are designed to assist software project teams develop and evolve large, interactive and
usable systems. He is particularly interested in approaches that encourage team creativity and
collaboration.

