*Manuscript

Click here to view linked References

An Empirical Study on Bug Propagation through Code
Cloning

Manishankar Mondal Banani Roy Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada
{mshankar.mondal, banani.roy, chanchal.roy, kevin.schneider } Qusask.ca

Abstract

Code clones are identical or nearly similar code fragments in a code-
base. According to the existing studies, code clones are directly related to
bugs. Code cloning, creating code clones, is suspected to propagate tem-
porarily hidden bugs from one code fragment to another. However, there
is no study on the intensity of bug-propagation through code cloning. In
this paper, we define two clone evolutionary patterns that reasonably indi-
cate bug propagation through code cloning. By analyzing software evolution
history, we identify those code clones that evolved following the bug propa-
gation patterns. According to our study on thousands of commits of seven
subject systems, overall 18.42% of the clone fragments that experience bug-
fixes contain propagated bugs. Type-3 clones are primarily involved with
bug-propagation. Bug propagation is more likely to occur in the clone frag-
ments that are created in the same commit rather than in different commits.
Moreover, code clones residing in the same file have a higher possibility of
containing propagated bugs compared to those residing in different files. Se-
vere bugs can sometimes get propagated through code cloning. Automatic
support for immediately identifying occurrences of bug-propagation can be
beneficial for software maintenance. Our findings are important for priori-
tizing code clones for management.

Keywords:
Code Clones, Clone-Types, Bug Propagation, Software Maintenance

Preprint submitted to Journal of Systems and Software August 9, 2019

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=24995&rev=2&fileID=372529&msid=%7B148C4CC1-3B8F-454E-9846-C261B66597CF%7D

1. Introduction

Code cloning (i.e., copy/pasting) is a common yet controversial software
engineering practice which is often employed by the programmers during
development and maintenance for repeating common functionalities. Such a
practice results the existence of identical or nearly similar code fragments,
also known as code clones, in a code-base. Two code fragments that are
similar to each other form a clone-pair. A group of similar code fragments
forms a clone group or a clone class.

Code clones are of great importance from software maintenance perspec-
tives. A great many studies [1, 2, 7, 15, 16, 18, 25, 33, 46, 13| have investi-
gated the impacts of code clones on software evolution. While a number of
studies [1, 8, 16, 18, 19] have identified some positive impacts of code clones,
other studies [2, 15, 25, 33, 22, 13] have shown strong empirical evidence of
negative impacts too. Code clones can be directly related to bugs and incon-
sistencies in the code-base [22, 23, 44]. It is commonly suspected that bugs
can be propagated through code cloning. If a particular code fragment in a
code-base contains a temporarily hidden bug, and a programmer copies that
fragment to several other places being unaware of the presence of the bug,
the bug in the original fragment gets propagated. Fig. 1 shows a possible
way of bug-propagation through code cloning.

In Fig. 1, we can see the evolution of two clone fragments C'F'1 and C'F2.
As indicated in the figure, C'F'1 was created in commit operation C;, and
was changed in C;y ;. C'F2 was created in commit C; 5 from C'F'1, and the
two fragments, C'F'1 and C'F2, made a clone-pair. In commit C;,4, both
of the clone fragments experienced a bug-fix change. Let us assume that
the fragments were changed in the same way for bug-fixing. Thus, after
experiencing bug-fixing changes, C'F'1 and C'F2 remained as a clone-pair.
From such a phenomenon we realize that C'F'1 contained a bug before C'F'2
was created from it. The bug might be introduced to C'F'1 at the time of its
creation (i.e. in commit C;) or in commit C;1; (i.e., when C'F'1 was changed).
However, the bug was not discovered just after being introduced. When C' F'2
was created from C'F'1 (in commit C;5), the bug in C'F'1 was propagated to
CF2. Finally, in commit C;,4 the bug was fixed by making similar changes
to C'F'1 and C'F2.

Researchers suspect that code cloning can be responsible for propagating
bugs. However, there is no study on how frequently bug-propagation occurs
during code cloning. Without studying the intensity of bug-propagation we

Commits mmp C; Cii G Cis Gy

CF1- G

Creation Changes Creation Bug-fix changes
of CF1 occurred of CF2 occurredin CF1
in CF1 fromCF1 and CF2

Figure 1: A possible way of bug-propagation through code cloning

cannot properly understand the impacts of code clones on software evolution
and maintenance. Focusing on this we perform an empirical study on bug-
propagation in code clones. To the best of our knowledge, our study is the
first one to investigate bug-propagation through code cloning. We have the
following contributions:

e We define two patterns of bug propagation through code cloning.

e We propose an automatic mechanism of detecting these two bug prop-
agation patterns. Our proposed mechanism works in two steps: (i)
detecting bug-fix changes in code clones, and (ii) determining whether
the bug-fix changes occurred for fixing propagated bugs by analyzing
the evolution histories of the code fragments that experienced the bug-
fix changes.

e We implement our bug propagation detection mechanism, apply it to
seven open-source subject systems written in Java, C and C# and
investigate bug propagation through code cloning in these systems.

We answer seven important research questions (Table 1) regarding bug-
propagation in code clones. According to our investigation on thousands of
revisions of seven subject systems:

A considerable proportion of the code clones in a subject system con-
tain propagated bugs. According to our observation, overall 18.42% of
the code clones that experience bug-fixes are involved with bug propa-
gation.

e Near-miss clones (Type 2 and Type 3 clones) exhibit a higher intensity
of bug-propagation compared to identical clones (Type 1 clones). Thus,
near-miss clones should be given a higher priority for management from
the perspective of bug-propagation.

e Overall around 16.74% of the bug-fix changes that are experienced by
code clones can occur for fixing propagated bugs.

e According to our manual analysis, the clone fragments that are involved
with bug propagation are mostly method clones. Moreover, bug propa-
gation primarily occurs to the clone fragments that are created together
in the same revision (i.e., in the same commit operation). Thus, we
suggest programmers to prioritize refactoring method clones that were
created in the same revision.

e Near-miss clones residing in the same file have a higher possibility of

containing propagated bugs compared to the ones residing in different
files.

e According to our bug severity analysis, severe bugs can sometimes get
propagated through code cloning.

We believe that bug-propagation should be taken into proper considera-
tion when making clone management (such as clone refactoring or tracking)
decisions. Tool support for automatic detection of code clones having possi-
bilities of containing propagated bugs can help us get rid of propagated bugs
earlier in software evolution. Our prototype tool that we have implemented
for our study can be used for identifying code clones that are likely to contain
propagated bugs. Thus, it can help programmers in managing code clones
from the perspective of bug-propagation.

The rest of the paper is organized as follows. Section 2 contains the
terminology, Section 3 discusses the experimental steps, Section 4 defines
the bug propagation pattern in code clones, Section 5 answers our research
questions by presenting and analyzing our experimental results, Section 7

Table 1: Research Questions

SL Research Question

RQ 1 | What percentage of code clones in different clone-types can be in-
volved with bug propagation?

RQ 2 | Does clone-size have an effect on the bug-propagation possibility of
code clones?

RQ 3 | What percentage of the bugs that are experienced by different
clone-types can be propagated bugs?

RQ 4 | Which pattern of bug-propagation is more intense during evolution?

RQ 5 | How often does a propagated bug residing in two clone fragments
of a clone-pair get fixed in two different commit operations?

RQ 6 | Does bug propagation occur in the same file or across different files?

RQ 7 | Do severe bugs get propagated through code cloning?

discusses the related work, Section 8 mentions possible threats to validity,
and Section 9 concludes the paper by mentioning future work.

Our study presented in this paper is a significant extension of our earlier
work [12] on bug-propagation through code cloning. In our previous study
[12], we investigated only four subject systems written in Java and answered
three research questions. However, in this extended study, we investigate
seven subject systems in total written in Java, C, and C#. We also answer
four additional research questions (seven questions in total) in this study.
We would like to add that in our previous research [12], we performed a
case sensitive search of the bug-fix keywords in the commit messages for
identifying bug-fix commits. However, there is a possibility of missing some
bug-fix commits with case sensitive search. For this reason, in our extended
research we perform a case insensitive search. As a result, the data presented
in different tables and graphs are refined in this extended research.

Comment

publicvoid DetermineFactorial AndPrime (intn) publicvoid FindAllPrimes (intnum)
{ {
inti=1,j=1,k=1fact=1 inti=1,j=1,k=1,n=1
for (i=g;i<=n;i++) for (n = 2; n <= num; n++)
fact=fact *i; for 1=2;1<n-1;i++)
System.out.println ("factorial = "+fact); if(n%i==0)
for (i = 2;1 < n-15i++) System.out.println (n + "is not prime.");
| i '
if(n%i==0)
{ | //checking whetheri and n are equal.
System.out.println (n +" is not prime."); | if(i==n)
. System.out.println (n +" is prime.");
| ifi==n) |
Pq | ¥
| System.out.println (n +" is prime."); }
5 7
I [
Type 1 Clone Fragments

Figure 2: A pair of Type 1 clone fragments

2. Terminology

2.1. Types of Clones

We investigate bug propagation considering both exact (Type 1) and
near-miss clones (Type 2 and Type 3 clones) [39, 38].

According to the literature, if two or more code fragments in a particular
code-base are exactly the same disregarding the comments and indentations,
these code fragments are called exact clones or Type 1 clones of one
another. Fig. 2 shows two methods named ‘DetermineFactorial AndPrime(int
n)” and ‘FindallPrimes(int num)’. The two highlighted portions in these two
methods disregarding the comment at the right-hand-side method are Type
1 clones of each other.

Type 2 clones are syntactically similar code fragments in a code-base. In
general, Type 2 clones are created from Type 1 clones because of renaming
identifiers and/or changing data types. The two highlighted portions in the
two methods in Fig. 3 are Type 2 clones of each other. We see that the
variable, n, at the left side clone fragment has been renamed as j at the right
side fragment.

Type 3 clones are mainly created because of additions, deletions, or
modifications of lines in Type 1 or Type 2 clones. Type 3 clones are also
known as gapped clones. Fig. 4 shows two methods. The two highlighted

Different variable names (n is replaced by j)

publicvoid DetermineFactorial AndPrime (intn)
{

inti=1,j=1,k=1,fact=3; §>ublicvoid FindAllPrimes (int num)

for (i=y;i<=n;i++) inti=1,j=1,k=1,n=1y

fact = fact *i; for (j = 2;j <= num;j++)

System.out.println ("factorial = "+act); EHESEE)

for (i = 2;1 < n-151++) if§%i==o)

i (n %i==o0) ; System.out.println +"isnotpn'me.");§
{ |

System.out.println ?L +"is not prime."); i}f ()
[

i}f G==n) System.out.println (j +" is prime.");

System.out.println (n +" is prime.");

L2 }
} 1
|

| I
Type 2 Clone Fragments

Figure 3: A pair of Type 2 clone fragments

portions in these methods are Type 3 clones of each other. We see that the
clone fragment residing in the right side method contains a line, ‘k = k +
1;”, which is not present in the clone fragment at the left side method.

Clone-pair: If two code fragments in a particular code-base are similar
to each other according to the above definitions of code similarity, we call
them a clone-pair. A clone-pair can be of Type 1, Type 2, or Type 3.

2.2. Clone Fragment

We frequently use the term ‘clone fragment’ in our paper. A clone frag-
ment is a particular code fragment which is exactly or nearly similar to one
or more other code fragments in a code-base. Each member in a clone group
or a clone-pair is a clone fragment.

2.3. Clone Genealogy

We detect clone genealogies for the purpose of our investigations. We
define a clone genealogy in the following way. Let us assume that a clone
fragment was created in a particular revision and was alive in a number of
consecutive revisions. Thus, each of these revisions contains a snapshot of
the clone fragment. The genealogy of this clone fragment consists of the
set of its consecutive snapshots from the consecutive revisions where it was
alive. Each clone fragment in a particular revision belongs to a particular

7

A new line is added

publicvoid DetermineFactorialAndPrime (intn) publicvoid FindAllPrimes (intnum)
{ {
inti=1,j=1,k=1fact=1; inti=gj=v,k=on=1y
for (i=1;i<=n;i++) for (n = 2; n <= num;n++)
{
fact = fact *1; for (i=2;1<n-15i++)
System.out.println ("factorial = "+fact); if(n%i==0)
| ford= 2;i<n-15i++) System.out.println (n + "is not prime.");
if(n%i==0))
{ | if(i==n)
System.out.println (n +" is not prime."); {
| } | k=k+y
il i System.out.println (n +" is prime.");
[ifd==n) }
I | | ¥
| System.out.println (n +" is prime."); }
5 7
[
| [
Type 3 Clone Fragments

Figure 4: A pair of Type 3 clone fragments

clone genealogy. In other words, a particular clone fragment in a particular
revision is actually a snapshot in a particular clone genealogy. By examining
the genealogy of a clone fragment we can determine how it changed during
evolution.

We automatically detect clone genealogies using the SPCP-Miner [27]
tool. In our research, by examining the genealogy of a clone fragment we
determine which commit operation(s) made changes to it.

2.4. Bug Propagation through Code Cloning

Existing studies [22, 23, 44] reveal that code clones can be related to bugs
in software systems. It is also suspected that bugs in a code-base can get
propagated through code cloning (copy/pasting). If a particular code frag-
ment contains a bug which has not been discovered yet, then creating copies
of that code fragment (i.e., cloning that code fragment) actually propagates
the bug in all the created copies. If this bug gets discovered at a particular
point of evolution, it should be fixed in each of the clone fragments that
contains it. Thus, code cloning can increase bug-fixing effort during software
evolution. Bug propagation tendencies of code clones should be considered
when prioritizing them for management. Code clones with higher tenden-
cies should be given higher priorities. Section 4 discusses the details on bug
propagation patterns. In our definition of bug propagation patterns, we use

Table 2: Subject Systems

Systems Lang. | Domains LLR | Revs
Carol Java | Game 25,091 | 1700
Freecol Java | Game 91,626 | 1950
jEdit Java | Text Editor 191,804 | 4000
Jabref Java | Reference Management 45,515 | 1545

GLGraphics Java | Library for processing pro- | 15,509 464
gramming languages

Ctags C Code definition generator 33,270 774
MonoOSC C# | Formats & Protocols 14,883 355
LLR = LOC in the Last Revision Revs = No. of Revisions

the term Similarity Preserving Co-change. We discuss similarity preserving
co-change in the following subsection.

2.5. Similarity Preserving Co-change of Clone Fragments

Mondal et al. [31] introduced the term similarity preserving co-change.
We describe this in the following way. Let us consider two code fragments,
CF1 and CF2, which are clones of each other in revision r of a subject
system. A commit operation was applied on revision r and both of these
two fragments were changed (i.e., the clone fragments co-changed) in such
a way that they were again considered as clones of each other in the next
revision r+1 (i.e., created because of the commit). In other words, the clone
fragments preserved their similarity even after experiencing changes in the
commit operation. Thus, this co-change of clone fragments (i.e., change of
more than one clone fragment together) is a Similarity Preserving Co-change
(SPCO).

In a similarity preserving co-change (SPCO), two or more clone fragments
from the same clone class are changed together consistently (i.e., the clone
fragments are changed in the same way) [31].

3. Experimental Steps

We perform our investigation on seven subject systems written in Java,
C, and C# as listed in Table 2. We download these systems from an on-
line SVN repository [34]. We select our subject systems emphasizing their
diversity in sizes, implementation languages, and revision history lengths.
We also see that the systems are of different application domains.

3.1. Experimental Steps

We perform the following experimental steps before analyzing bug propa-
gation in code clones: (1) Extraction of all revisions (as mentioned in Table 2)
of each of the subject systems from the online SVN repository; (2) Method
detection and extraction from each of the revisions using CTAGS [6]; (3)
Detection and extraction of code clones from each revision by applying the
NiCad [5] clone detector; (4) Detection of changes between every two consec-
utive revisions using diff; (5) Locating these changes to the already detected
methods as well as clones of the corresponding revisions; (6) Locating the
code clones detected from each revision to the methods of that revision; (7)
Detection of method genealogies considering all revisions using the technique
proposed by Lozano and Wermelinger [25]; (8) Detection of clone genealo-
gies by identifying the propagation of each clone fragment through a method
genealogy; (9) Detecting clone fragments that experienced bug-fix changes;
and (10) Analyzing the evolution of bug-fix clones to identify bug propaga-
tion. For completing the first eight steps we use the tool SPCP-Miner [27].
In Section 3.2 we will discuss the technique that we apply for detecting bug-
fix changes in code clones. We will define possible bug propagation patterns,
and discuss how we detect such patterns in Section 4.

Clone Detection. We use the well-known NiCad [5] clone detector for
detecting clones because it can detect all major types (Type 1, Type 2, and
Type 3) of clones with high precision and recall [41, 42]. Using NiCad we de-
tect block clones including both exact (Type 1) and near-miss (Type 2, Type
3) clones of a minimum size of 10 LOC with 20% dissimilarity threshold and
blind renaming of identifiers. For different settings of a clone detector the
clone detection results can be different and thus, the experimental findings
can also be different. For this reason selection of reasonable settings (i.e.,
detection parameters) is important. We used the mentioned settings in our
research, because in a recent study [45] Svajlenko and Roy show that these

10

settings provide us with better clone detection results in terms of both pre-
cision and recall. We should note that before using the NiCad outputs for
Type 2 and Type 3 cases, we pre-processed them in the following way.

(1) Every Type 2 clone class that exactly matched any Type 1 clone class
was excluded from Type 2 outputs.

(2) Every Type 3 clone class that exactly matched any Type 1 or Type
2 class was excluded from Type 3 outputs.

We performed these preprocessing steps because we wanted to investigate
bug propagation in each of the three types of clones separately. When we
detect Type 2 clones using NiCad, the clone results include Type 1 clone
classes. As we wanted to consider Type 1 clone results separately, this is
important to exclude Type 1 clone classes from Type 2 clone results. If we
do not perform this exclusion, some Type 1 clone classes will be investigated
twice and this is not expected. Without this exclusion, we cannot make a
fair comparison between clone types. Finally, after filtering out Type 1 clone
classes from Type 2 results, we consider purely Type 2 clones in our research.
In the same way, we identify purely Type 3 clones by excluding Type 1 and
Type 2 clone classes from Type 3 clone results.

Clone Genealogies of Different Clone-Types. As we wanted to
investigate bug-propagation in three clone-types (Type 1, Type 2, and Type
3) individually, we detect clone genealogies for each of these three clone-types
separately. We perform the following steps for clone genealogy detection.

e Step 1: In this step, we detect code clones of three clone-types sepa-
rately using the NiCad clone detector as we have just described. Thus,
for each clone-type, we have a separate set of clone detection result.

e Step 2: In this second step, we apply the SPCP-Miner tool [27] on
the clone detection result of each clone-type separately. SPCP-Miner
detects clone genealogies from the clone detection result obtained from
all the revisions of a subject system. After completing this step, we get
three separate sets of clone genealogies for three clone-types.

As we obtain a separate set of clone genealogies for each clone-type, we
can easily investigate bug-propagation in each clone-type separately and can
make a comparison of the bug-propagation tendencies of the clone-types.

Tackling Clone-Mutations. Xie et al.[48] found that mutations of
the clone fragments (i.e., a particular clone fragment may change its type)

11

might occur during evolution. If a particular clone fragment is considered
of a different clone-type during different periods of evolution, SPCP-Miner
extracts a separate clone-genealogy for this fragment for each of these pe-
riods. Thus, even with the occurrences of clone-mutations, we can clearly
distinguish which bugs were experienced by which clone-types.

Exclusion of Auto-Generated Code and Test Code. Before con-
ducting the experiments, we excluded the auto-generated (i.e., system gen-
erated) code from our consideration, because the target of our research is
the code which is written by programmer(s). In our research, we have inves-
tigated one C system, one C# system, and five Java systems. The subject
system, Ctags, which is written in C does not contain any auto-generated
code. We manually checked the files to ensure this. For the Java systems,
we automatically searched the entire source code to identify if there is any
auto-generated code. In Java source files, auto-generated code generally
stay within the tags <editor-fold defaultstate=“collapsed” desc=“Generated
Code”> and </editor-fold>. Moreover, the auto-generated Java code often
contains a method named ‘initComponents’. Thus, we searched the entire
source code to find the key-words, ‘Generated Code’ and ‘initComponents’.
However, we did not get these key-words in any source code files of our Java
systems. Thus, our investigation does not involve auto-generated code in
Java. The auto-generated C# files contain the tags: <auto-generated> and
< /auto-generated>. We automatically searched the code-base of our C#
system to find if there is any auto-generated source file. We obtained four
files with the mentioned tags. We excluded these files from our investigation.

We found that our subject systems Carol and GLGraphics contain some
test code in the folders named as 'test’. We excluded code from these folders
during our investigation. We did not find any test code in our other subject
systems. The source code of the last revision of each of our subject systems
is available on-line [50].

3.2. Bug Detection in Code Clones

For a particular candidate system, we first retrieve the commit messages
by applying the ‘SVN log’ command. A commit message describes the pur-
pose of the corresponding commit operation. We automatically examine the
commit messages using the heuristic proposed by Mockus and Votta [26] to
identify those commits that occurred for the purpose of fixing bugs. Then
we identify which of these bug-fix commits make changes to clone fragments.
If one or more clone fragments are modified in a particular bug-fix commit,

12

then it is an implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other words, the clone
fragment(s) are related to the bug. In this way we examine the commit
operations of a candidate system, analyze the commit messages to retrieve
the bug-fix commits, and identify those bug-fix commits that affected code
clones.

The way we detect the bug-fix commits was also previously followed by
Barbour et al. [2]. They detected bug-fix commits in order to investigate
whether late propagation in clones is related to bugs. They at first identified
the occurrences of late propagations and then analyzed whether the clone
fragments that experienced late propagations are related to bug-fix. In our
study we detect bug-fix commits in the same way as they detected, however,
our study is not limited to late propagation clones only. We perform our
study considering all clone fragments of a software system. Barbour et al. did
not investigate bug-propagation. We investigate bug-propagation through
code cloning in our study. Also, they did not consider Type 3 clones in
their study. We consider Type 3 clones in our bug-propagation study. After
detecting bug-fix changes in code clones, we automatically detect whether
the bug-fix clones evolved following a bug-propagation pattern.

Investigating the availability of commit messages in the commit-
log. As we detect bug-fix commits by analyzing the commit messages, it is
important to investigate whether commit operations are often associated with
commit messages or not. We automatically check each of the commit opera-
tions recorded in the commit log and determine whether these commits are
associated with commit messages. Fig. 5 shows the percentages of commit
operations with or without commit messages. We see that the percentage
of commit operations with commit messages is almost 100% for most of our
subject systems except MonoOSC. For MonoOSC, this percentage is 57.18%
which is greater than the percentage of commits without any message. Con-
sidering all the commit operations of all the subject systems we realize that
only 2.66% of the commit operations were performed without any commit
messages. Thus, commit operations are mostly performed with commit mes-
sages. Such a finding makes us realize that detecting bug-fix commits by
analyzing the commit messages is reasonable.

13

||Percentage of commits with commit messages
DDPercentage of commits without a commit message
100 I I I
n
=
g g0l i
=
S
o, 60| |
©)
%
= 40 y
+—
g
o 20 - y
~
o
oW
0 \ \ \ \ \ \ —

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Figure 5: Percentage of commits with or without commit messages

4. Bug Propagation Patterns

In the following two subsections we first provide formal definitions of
two bug-propagation patterns, and then describe an automatic procedure
that we have used for detecting these patterns. We should note that the two
patterns we are going to describe include all possible ways of bug propagation
through code cloning where the propagated bug was fixed in at least two clone
fragments from the same clone class. Intuitively, a propagated bug should
be fixed in the clone fragment that primarily contained the bug, and also, in
the other clone fragments where the bug was propagated.

4.1. The First Bug Propagation Pattern

Propagation Pattern. Let us consider that two code fragments were
created in a particular revision. These code fragments are similar to each
other, and thus form a clone-pair. We also assume that a similar code frag-
ment was not preexisting. As these two fragments were created in the same
revision (i.e., in the same commit operation) it is likely that one fragment
was first created by the programmer, and then she created the second one
from the first one (possibly by copy/pasting). In this case, any bug that
was introduced in the first fragment during its creation can be propagated

14

to the second one. Considering such a way of bug-propagation we define the
following bug-propagation pattern.

Pattern Definition. Let us consider that a clone-pair consisting of two
clone fragments, CF1 and CF2, resides in revision r of a subject system.
For fixing a bug, these clone fragments were changed together (i.e., were co-
changed) in the commit operation ¢ which was applied on revision r. We
consider that this bug-fix change experienced by the two clone fragments in
commit c is the fixing of a propagated bug if the following conditions hold:

e Condition 1: The two clone fragments, CF1 and CF2, were created
in the same revision r'ereated- Here, rereatea < T (1-€., Tereatea i older than
r). No other similar code fragment was preexisting. In other words,
a code fragment which is similar to CF1 and CF2 was not existing in
revision 7ereated — 1. Here, 7ereateqd — 1 is the revision which was created
just before the revision 7.,cated-

e Condition 2: None or only one of the two clone fragments was changed
during the evolution from 7..cqeq to r. In other words, none or only
one of the two fragments was changed in any of the commits that were
applied on the revisions r.cqteq to 7 — 1. Here, r — 1 is the revision that
was created just before revision 7.

e Condition 3: The two clone fragments, CF1 and CF2, experienced
a similarity preserving co-change in the bug-fix commit operation ¢
which was applied on revision r. We have defined similarity preserving
co-change in Section 2. In a similarity preserving co-change, the clone
fragments are updated consistently (i.e., the fragments are changed in
the same way).

The first condition (Condition 1) implies the likeliness that one of the two
fragments was created from the other one (possibly by copy/pasting). Con-
dition 2 confirms that after being created, at least one of the two fragments
remained unchanged before they were both changed in the bug-fix commit
c. Condition 3 implies that each of the clone fragments was changed in the
same way for fixing the bug, and thus, each fragment contained the same
bug.

By analyzing the second condition (Condition 2) we realize that if none
of the clone fragments got changed during the intermediate evolution (i.e.,
in the commits that were applied on the revisions 7. .eqteq to 7 — 1), then

15

Commits —> C1 C2 Cc3 ca C5 C6

L

Fany
A\

Fa
A

Creation Creation The two clone fragments
of CF1 of CF2 experienced a bug-fix
from CF1

No changes occurred to CF1 and CF2 in commits C3 and C4

Figure 6: An example of the first bug-propagation pattern

the bug that was fixed in the two fragments in the commit operation ¢ (the
commit ¢ was applied on revision r) was certainly introduced to them at
the time of their creation (i.e., in the revision 7e.eqeq). However, we see
that Condition 2 allows only one of the fragments to be changed in the
intermediate evolution. Even with such a flexibility in the condition it is
still confirmed that the bug that was fixed by consistently changing CF1 and
CF2 in commit ¢ was not introduced by any change during the intermediate
evolution. Let us assume that the fragment CF2 was changed in a commit
in the intermediate evolution. However, Condition 3 confirms that both of
the fragments were changed in the same way for bug-fixing in commit c.
In other words, each of the changed fragment (i.e., CF2) and unchanged
fragment (i.e., CF1) contained the same bug. Reasonably, any change in the
intermediate evolution did not introduce the bug that was fixed in commit ¢,
because CF1 also experienced the same fix even after remaining unchanged
in the intermediate evolution. The bug was introduced (in one fragment)
and propagated (to the other fragment) at the time of creation of the two
fragments.

Fig. 6 graphically shows an example of the first bug-propagation pattern.
We see the evolution of two clone fragments CF1 and CF2 through a number
of commit operations. The clone fragment CF1 was created in the commit
operation C2. The fragment CF2 was also created in the same commit op-

16

eration from CF1. They experienced the same bug-fix in commit C5. Before
experiencing bug-fix they did not experience any other changes. Thus, the
example in Fig. 6 complies with our definition of the first bug-propagation
pattern.

4.2. The Second Bug Propagation Pattern

Propagation Pattern. Let us assume that a code fragment CF2 was
created in a particular revision from a similar preexisting code fragment CF1
(possibly by copy/pasting). Consequently, these two clone fragments made
a clone-pair. In such a phenomenon it is possible that an unreported bug
(i.e., a bug which has not yet been discovered) which was preexisting in the
fragment CF1 will be transferred (i.e., propagated) to CF2. Considering this
way of bug propagation we define the following bug propagation pattern.

Pattern Definition. Let us consider that two clone fragments, CF1 and
CF2, make a clone-pair in revision r of a subject system. These two fragments
were created at two different revisions: 7eeateqr aNd Tereateqz TESpectively.
Here, 7ereateqr < T and 7epeateq2 < 7. In other words, both 7..cqeqr and
Tereateq2 are older than r. We also assume that 7..cqrear < Tereateaz- Thus,
CF1 was preexisting (i.e., CF1 is older than CF2). For fixing a bug, these
two clone fragments were changed together (i.e., were co-changed) in the
commit operation ¢ which was applied on revision r. We consider that this
bug-fix change experienced by the two fragments in commit ¢ is the fixing of
a propagated bug if the following three conditions hold:

e Condition 1: Just after the creation of the younger fragment (i.e.,
CF2), it was considered similar to the older one (i.e., CF1). Thus, CF1
and CF2 made a clone-pair from revision rg.cqteq2. We should note that
Tereated2 1S Older than r.

e Condition 2: None or only one of the two clone fragments was changed
during the evolution period between the revisions 7..cqteq2 and r. In
other words, none or only one of the fragments was changed in the
commit operations applied on the revisions 7 cqteq2 to 7 — 1. We have
already mentioned that the revision r experienced the commit opera-
tion ¢ which made changes to CF1 and CF2 for fixing a bug.

e Condition 3: The co-change of the two clone fragments (i.e., CF1 and
CF2) in the commit operation c is a similarity preserving co-change.

17

Commits — C1 C2 C3 Cca (G (0

C F 1 Ay A\ \\

~
CFZ K Y a Vai

Creation Creation CFlwas Thetwo clone fragments
of CF1 of CF2 Changed experienced a bug-fix
from CF1

Figure 7: An example of the second bug-propagation pattern

As the clone fragments (CF1 and CF2) were created at two different
commits, it implies the possibility that the younger code fragment CF2 might
be created from the similar preexisting code fragment CF1. Condition 1
implies that the bug that was fixed in commit ¢ was introduced to CF2
at the time of its creation. Condition 2 and Condition 3 are similar to
the corresponding conditions in the first pattern described in Section 4.1.
This section (i.e., Section 4.1) also contains the discussions of these two
conditions. Finally, the above three conditions reasonably imply the fixing
of a bug that was preexisting in the older fragment CF1 and was propagated
to the fragment CF2 through code cloning.

Fig. 7 shows an example of the second bug-propagation pattern. The
clone fragment CF1 was created in the commit operation C1. The clone
fragment CF2 was created at a later commit operation, C2, from CF1. Both
fragments experienced the same bug-fix at Commit C5. We also notice that
only the clone fragment CF1 experienced a change in the commit operation
C3 before experiencing the bug-fix. Thus, Fig. 7 complies with our definition
of the second bug-propagation pattern.

4.3. Automatic Detection of Bug Propagation Patterns

By following the procedure described in Section 3.2 we detect the bug-fix
commits that affected code clones. Let us consider such a bug-fix commit
which we call BFC. Let us further assume that a clone-pair was changed

18

CloneFragment1, Revision 1349

public SortedSet getBuiltininputFormats() {
SortedSet result = new TreeSet();
for (Iterator i = this.formats.values().iterator(); i.nasNext();) {
ImportFormat format = (ImportFormat)i.next();
if ({format.getlsCustomimporter()) {
result.add(format);
}
}
return result;

}

Clone Fragment 2, Revision 1349

public SortedSet getCustomImportFormats() {
SortedSet result = new TreeSet();
for (Iterator i = this.formats.values().iterator(); i.nasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getlsCustomImporter()) {
result.add(format);
}
}
return result;

}

Change

[

Change

-

CloneFragment1, Revision 1350

public SortedSet getBuiltininputFormats() {

SortedSet result = new TreeSet();

for (Iterator i = this.formats.iterator(); i.hasNext();) {
ImportFormat format = (ImportFormat)i.next();
if ({format.getlsCustomimporter()) {

result.add(format);

}

}

return result;

}

The change in Clone Fragment 1 in the commit operation that was applied on Revision 1349

Clone Fragment 2, Revision 1350

public SortedSet getCustomImportFormats() {

SortedSet result = new TreeSet();

for (Iterator i = this.formats.iterator(); i.hasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getlsCustomimporter()) {

result.add(format);

}

}

return result;

}

The change in Clone Fragment 2 in the commit operation that was applied on Revision 1349

Figure 8: The figure shows a similarity preserving co-change of two clone fragments (Clone
Fragment 1, and Clone Fragment 2) in the commit operation which was applied on revision
1349 of our subject system Jabref. The commit operation that was applied on revision 1349
is a bug-fix commit. The commit message says ‘JabRef 2.0: fixed some Bugs’. We provide
the snapshots of the two clone fragments in two revisions, 1349 and 1350, and highlight the
differences between the snapshots. From the figure it is clear that the two clone fragments
contained the same bug, and the fragments were changed in the same way for fixing the
bug. This bug is a propagated bug, because the clone fragments evolved by following the
first bug-propagation pattern defined in Section 4. We see that the difference between
the two clone fragments lies in the condition part of the if-statement. Clone Fragment 1

contains a NOT operator (!) which is absent in Clone Fragment 2.

19

(i.e., both of the clone fragments in the pair were changed) in this commit
for fixing a bug. We first determine whether the clone-pair experienced a
similarity preserving co-change in the bug-fix commit BFC (i.e., we check
Condition 3 in each of the two patterns we have just described). If it did,
then we analyze the genealogies of the two clone fragments in the pair. We
previously mentioned that we use the tool SPCP-Miner [27] for detecting
clone genealogies. By automatically examining the genealogies of the clone
fragments we determine how they evolved in the past (i.e., how they evolved
before the occurrence of the bug-fix commit BFC). We check each of the first
two conditions of each of the two patterns by analyzing their genealogies.
If no clone-pair experienced a similarity preserving co-change in the bug-fix
commit BFC, then we consider that the clone related bug that was fixed in
BFC is not a propagated bug.

4.4. An Ezxample of Bug Propagation

In Fig. 8 we provide an example of fixing a propagated bug. The fig-
ure shows the similarity preserving co-change of two clone fragments (Clone
Fragment 1, and Clone Fragment 2) in a bug-fix commit operation which was
applied on revision 1349 of our candidate system Jabref. Our implemented
prototype tool detects the evolution pattern of these two clone fragments as
a bug-propagation pattern of the first category (i.e., defined in Section 4.1).
Each of these two clone fragments were created in revision 1344. We see
that the clone fragments have almost the same implementation except the
condition parts of their if-statements. Clone Fragment 1 contains a NOT op-
erator (!) which is not present in Clone Fragment 2. In such a phenomenon
it is likely that one of these fragments was created from the other (possibly
by copy/pasting), and thus the bug that was introduced in one fragment
propagated to the other one. After being created in revision 1344, each of
the fragments remained unchanged up to revision 1349. The commit oper-
ation which was applied on revision 1349 fixed the bug in these two clone
fragments. From Fig. 8 and its caption it is clear that each of the fragments
contained the same bug, and the fragments experienced a similarity preserv-
ing co-change for the purpose of bug-fixing. The changes that occurred to
the clone fragments are also highlighted in the figure.

20

5. Experimental Results and Analysis

We apply our experimental steps on each of our subject systems and
identify bug propagation patterns in each of the three types of code clones
(Type 1, Type 2, and Type 3) separately.

Comparing the bug-proneness of clone and non-clone code. Be-
fore investigating bug-propagation, it is important to analyze whether bug-
proneness of code clones is at all important for investigation while the major
portion of a code-base generally contains non-clone code and non-clone code
can also experience bug-fixes. We analyze by comparing the bug-proneness
of non-clone code and different types of clone code. In particular, we ana-
lyze whether code clones are more likely to experience bug-fixes compared to
non-clone code. We perform our analysis in the following way:.

For a particular subject system, we first identify the bug-fix commits.
Let us assume that BFC is such a bug-fix commit which was applied on a
particular revision of the subject system. We detect code clones of all three
types (Type 1, 2, and 3) from that revision. From the detected clones, we
determine which lines in that revision are clone lines. We determine the
total number of clone lines in the revision. By excluding the clone lines, we
get all the non-clone lines. We also detect the changes that occurred to the
code-base of the revision in the bug-fix commit (BFC). If one or more lines
belonging to code clones were changed in BFC, we consider this commit as a
clone bug-fix commit. In a similar way, we determine whether BFC can also
be considered as a non-clone bug-fix commit. For fixing a bug, both clone
and non-clone code might need to be changed. We examine all the bug-fix
commits and determine the following measures:

e M1: Total number of bug-fix commits experienced by clone code.
e M2: Total number of bug-fix commits experienced by non-clone code.

e M3: Average number of clone lines in the revisions that experienced
the bug-fix commits.

e M4: Average number of non-clone lines in the revisions that experi-
enced the bug-fix commits.

Table 3 shows these measures for each of our subject systems. From these
four measures, we determine the bug-proneness of clone and non-clone code
using the following equations.

21

Table 3: Bug-proneness data for non-clone code and different types of clone code

Type 1 clones Type 2 clones Type 3 clones Type clones
Systems BC ACL BC ACL BC ACL BC ANCL
Carol 11 503.13 9 454.92 31 1633.19 114 30779.74
Freecol 11 594.43 14 429.21 58 2767.33 317 50553.18
jEdit 38 83554.74 10 4415.81 44 31065.74 54 179651.86
Jabref 10 829.29 8 709.77 28 2847.19 202 49115.48
GLGraphics 7 538.80 0 217.03 15 994.28 56 11604.17
Ctags 4 107.45 7 167.67 25 554.30 218 16035.42
MonoOSC 3 445.14 2 219.35 8 1331.14 42 20916.63

BC = Number of bug-fix commits experienced by non-clone code or a particular type of code clones
ACL = Average number of clone lines in the revisions that experienced bug-fix commits
ANCL = Average number of non-clone lines in the revisions that experienced bug-fix commits

BCC = (M1 x 100)/M3 (1)

BNC = (M2 x 100)/M4 (2)

Here, BCC and BNC' are the bug-proneness of clone and non-clone code
respectively. We determine the bug-proneness per 100 lines of clone and non-
clone code. By looking at the equations we realize that the bug-proneness
measures are normalized by code-size. In a previous study [29] on comparing
the bug-proneness of clone and non-clone code, the bug-proneness measures
were not normalized by code size. Such a normalization is important be-
cause the majority of a code-base is generally non-clone code. As the size of
non-clone code is generally bigger than that of clone code, it is expected that
non-clone code will experience a higher number of bug-fixes during evolution.
Without normalization by code size, we cannot make a fair comparison of
the bug-proneness of clone and non-clone code. Fig. 9 compares the bug-
proneness of non-clone code and different types of clone code. We again
would like to note that when measuring the bug-proneness of non-clone code
we exclude clone lines of all three types (Type 1, 2, and 3) from our consid-
eration. From the figure we understand that the bug-proneness of each type
of code clones is higher than the bug-proneness of non-clone code except for
Type 2 clones of GLGraphics. From Table 3 we realize that Type 2 clones
of GLGraphics did not experience any bug-fix commit operation during the
entire period of evolution. We finally understand that bug-proneness of code
clones is generally higher than the bug-proneness of non-clone code. In the
following subsections we answer the research questions by presenting and

22

DDBug—proneness of Type 1 clones
DDBug—proneness of Type 2 clones
llBug—proneness of Type 3 clones

llBug—proneness of non-clone code

4, |

Bug-proneness
[\
[
|

0 .. .

Carol Freecol jEdit Jabref GLGra. Ctags Mono.

Figure 9: Comparing bug-proneness of non-clone code and different types of clone code

analyzing our experimental results.

5.1. Answering RQ) 1

RQ 1: What percentage of code clones in different clone-types can be
involved with bug propagation?

Rationale. Answering RQ 1 is important. Bug propagation has always
been considered a negative impact of code cloning. However, none of the
existing studies investigated the intensity of bug propagation in code clones.
Without investigating bug propagation intensities in different clone-types, we
cannot properly realize the impact of code cloning on software evolution and
maintenance. In RQ 1 we determine bug propagation intensity in each of
the three major clone-types (Type 1, Type 2, and Type 3), and then make a
comparative analysis of the intensities to determine which clone-type exhibits
the highest intensity. We perform our investigation in the following way.

Methodology: For a particular subject system we determine all the bug-
fix commits by applying the procedure described in Section 3.2. Considering
each clone-type we select those bug-fix commits where code clones of that
particular type were changed for fixing bugs. For such a bug-fix commit for
a particular clone-type, we determine whether a clone-pair has been changed

23

(i.e., whether the two clone fragments in a clone-pair have been changed to-
gether or co-changed) in the commit. Considering each of the clone-pairs
that have been changed in the bug-fix commit we automatically determine
whether the two clone fragments in the pair evolved by following a bug propa-
gation pattern defined in Section 4. In Section 4.3 we described an automatic
procedure for detecting a bug propagation pattern. If a clone-pair evolved by
following a bug propagation pattern, we call this pair a bug propagation clone
pair. Considering all the bug-fix commits affecting a particular clone-type we
determine all the bug propagation clone pairs. For a particular clone-type of

a subject system we determine the following measures, and report these in
Table 4.

e CF (Clone Fragment): The total number of distinct clone fragments
(i.e., of the particular clone-type) that were created during the whole
period of evolution of the subject system. This number is actually the
total number of clone genealogies during system evolution.

e BC (Bug-fix Commit): The total number of bug-fix commits that
affected clone fragments of that particular clone-type.

e BCF (Bug-fix Clone Fragment): The total number of clone frag-
ments that experienced changes in the bug-fix commits. A particu-
lar clone fragment might experience changes in more than one bug-fix
commit. We determine the number of distinct clone fragments that
experienced bug-fix changes. By analyzing the genealogy of a clone
fragment we can identify which bug-fix commits it was changed in.

e BPCP (Bug Propagation Clone Pair): The number of distinct
bug propagation clone pairs (i.e., the clone pairs that evolved following
a bug propagation pattern defined in Section 4).

e BPCF (Bug Propagation Clone Fragment): The number of dis-
tinct clone fragments involved in the bug propagation clone pairs. We
can easily understand that this number is the total number of clone
fragments that were involved with bug propagation.

For each clone-type of each of the subject systems, we also determine the
following two percentages considering the above measures.

24

Table 4: Bug propagation in different clone-types

Type 1 Type 2 [Type 3
Systems CF | BC | BCF | BPCP | BPCF |CF | BC | BCF | BPCP | BPCF | CF | BC | BCF | BPCP BPCF
Carol 415 | 11 41 1 2 211 9 38 3 6 682 | 31 201 141 50
Freecol 239 | 11 25 2 4 162 | 14 13 3 6 752 | 58 151 29 44
jEdit 7398 | 38 7 0 0 399 | 10 20 1 2 2688 | 44 185 4 8
Jabref 483 | 10 9 1 2 228 | 8 14 0 0 1363 | 28 31 2 4
GLGraphics 77 7 11 3 [§ 80 0 0 0 0 209 | 15 33 19 19
Ctags 53 4 4 0 0 89 7 0 0 0 156 | 25 17 2 4
MonoOSC 153 3 2 1 2 41 2 0 0 0 184 8 9 1 2

CF = Total number of distinct clone fragments (i.e., clone genealogies) of a particular clone-type that were created

during the whole period of evolution.

BC = Total number of bug-fix commits that affected clone fragments of a particular clone-type.

BCF = Total number of distinct clone fragments of a particular clone-type that experienced bug-fix commits

(i.e., that experienced bug-fixes).

BPCP = Total number of distinct clone-pairs of a particular clone-type that evolved following a bug propagation pattern.

BPCF = Total number of distinct clone fragments of a particular clone-type that were evolved in the

bug-propagation clone-pairs.

PCFBP (Percentage of Clone Fragments involved with Bug
Propagation): This is the percentage of clone fragments that are
involved with bug propagation with respect to all clone fragments in
the system. We determine this using the following equation.

BPCF x 100
PCFBP = —— 3
OF (3)
The bar graph in Fig. 10 shows this percentage for each clone-type of

each of the subject systems.

PBCFBP (Percentage of Bug-fix Clone Fragments involved
with Bug Propagation): This is the percentage of clone fragments
that are involved with bug propagation with respect to all bug-fix clone
fragments. We calculate this in the following way.

BPCF x 100
PBCFBP = —— 4
¢ BCF 4)
Fig. 11 shows this percentage for each clone-type of each subject sys-

tem.

From Fig. 10 we realize that Type 3 clones are primarily involved with
bug-propagation. We see that for two subject systems, jEdit and Ctags, Type
1 clones were not related with bug-propagation at all. The same is true for the

Type

2 clones of Jabref, GLGraphics, Ctags, and MonoOSC. However, Type

25

DDPercentage of Type 1 clones that were involved with bug propaga-
tion with respect to all Type 1 clones

DDPercentage of Type 2 clones that were involved with bug propaga-
tion with respect to all Type 2 clones

llPercentage of Type 3 clones that were involved with bug propaga-
tion v‘vith resp?ct to all‘Type 3 c‘lones

10 :

8- . |
O
&
et 6 |
=
Q
[al

[\
[

NI | | I | oyl

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Figure 10: Percentage of clone fragments that were involved with bug propagation with
respect to all clone fragments considering each clone-type.

26

DDPercentage of Type 1 clones that were involved with bug propaga-
tion with respect to all Type 1 clones related to bug-fix

DDPercentage of Type 2 clones that were involved with bug propaga-
tion with respect to all Type 2 clones related to bug-fix

llPercentage of Type 3 clones that were involved with bug propaga-
tion With respect _to all‘TVpe 3 qlones reLated to bpg—ﬁx

60

N I ‘ |

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Percentage

Figure 11: Percentage of clone fragments that were involved with bug propagation with
respect to all bug-fix clone fragments considering each clone-type.

3 clones in each of the subject systems are related with bug-propagation. For
four subject systems (Carol, Freecol, GLGraphics, and Ctags), the percentage
of Type 3 clones that are involved with bug-propagation is the highest among
the three clone-types. The overall percentages also indicate a similar scenario.
We see that the overall percentage regarding Type 3 clones is the highest.
We should note that the percentages plotted in Fig. 10 are generally very
low. The reason behind this is that we calculate these percentages with
respect to all clone fragments that were created during evolution. We know
that a significant proportion of the code clones do not get changed at all
during evolution [17]. The percentage of code clones that experience bug-
fixes is generally very low (up to 19% according to a previous study [28]).
The percentage of clone fragments that are involved with bug propagation
should be even lower, because such clone fragments must be bug-fix clones
and evolve following particular evolution patterns (defined in Section 4).
Fig. 11 shows the percentage of bug propagation clone fragments with
respect to all bug-fix clones. We see that the percentages plotted in this
graph are higher compared to the percentages plotted in the graph of Fig.

27

10. The overall comparative scenario of bug propagation in three clone-types
presented in Fig. 11 is similar to that in Fig. 10. The overall percentages of
the bug-propagation clone fragments with respect to the bug-fix clones are
9.46%, 16.86%, and 21.06% for Type 1, Type 2, and Type 3 cases respectively.
If we consider all clone-types of all of our subject systems, then this percent-
age becomes 18.42% (161 clone fragments are involved with bug-propagation
out of 874 bug-fix clone fragments).

Answer to RQ 1. From our experimental results and analysis we
can state that overall up to 21.06% of the clone fragments that experience
bug-fizes can be involved with bug-propagation. Type 1 clones exhibit the
lowest possibility of being involved with bug propagation. Bug propagation
15 mainly observed in Type 2 and Type 3 clones with Type 3 clones showing
the highest intensity of propagation.

Our findings imply that the possibility of bug-propagation through ex-
act copy/paste activities is very low, because identical clones have a very
low possibility of containing propagated bugs. However, a considerable pro-
portion of the near-miss clones can be involved with bug-propagation. Thus,
near-miss clones should be considered more important for management (such
as refactoring or tracking) than the identical clones from the perspective of
bug-propagation. The prototype tool that we have implemented for our re-
search can be customized for identifying code clones that are likely to contain
hidden but propagated bugs. We believe that the comparative intensities of
bug-propagation in different clone-types should be taken into proper consid-
eration when making clone management decisions. Our prototype tool can
help us make such decisions.

Manual Analysis of the Bug Propagation Patterns: We manually
analyzed the evolution patterns of all the 145 bug propagation clone pairs (1
pair from Type 1 case + 3 pairs from Type 2 case + 141 pairs from Type
3 case) from our subject system Carol. We have the following observations
from our manual analysis.

(1) For most of the bug propagation clone pairs (for 141 out 145), the two
clone fragments in the pair did not get any change before experiencing the
bug-fix change in the bug-fix commit. In other words, after getting created
the first change that the two clone fragments experienced was the bug-fix
change for most of the pairs. From the two patterns defined in Section 4

28

DDAverage size of the clone fragments that were involved with bug-
propagation

DDAverage size of the clone fragments that were not involved with
bug-propagation
40 I I I I —

20 |- .

Clone-size (LOC)

—_
(en) o
T
—
—

Freecol Type 3 0z

jEdit Type 3
Jabref Type 1

Ctags Type 3 —=—

MonoOSC Type 1

MonoOSC Type 3 05—

Carol Type 1
Carol Type 2

Carol Type 3
Jabref Type 3 ———

Freecol Type 2 —F—=—
GLGraphics Type 1

Freecol Type 1

GLGraphics Type 3 —

Figure 12: Average sizes of the clone fragments that were or were not involved with
bug-propagation

we see that we allow only one of the two fragments to be changed before
experiencing the bug-fix change. We found only four pairs where one of the
two fragments got changed before both experienced the bug-fix change.

(2) For most of the bug propagation clone pairs (for 143 out 145), the
two clone fragments are full methods. It seems that bug propagation mainly
occurs in method clones. For the remaining two pairs, the clone fragments
were if-blocks and try-catch blocks respectively. Fig. 8 shows fixing of a
propagated bug in two method clones. We provide this example from our
subject system Jabref.

29

5.2. Answering RQ 2

RQ 2: Does clone-size have an effect on the bug-propagation possibility
of code clones?

Rationale. As code clones have a tendency of being related with bug-
propagation, it is important to analyze which factor(s) affects the bug-propagation
tendency. In this investigation we analyze whether clone-size has an effect on
the bug-propagation tendency of code clones. We perform our investigation
in the following way.

Investigation Procedure. We first identify those cases where code
clones were involved with bug-propagation. A particular case consists of a
subject system and a clone-type. If we look at Table 4, we realize that the
number of cases where there were occurrences of bug-propagation is 15. An
example of such case is Type 1 clones of Jabref. Table 4 shows that two Type
1 clone fragments of Jabref took part in bug-propagation. However, Type 2
clones of Jabref did not propagate bugs. Thus, we do not consider this case
in this investigation. For each of the 15 cases (i.e., cases with occurrences of
bug-propagation), we identify two sets of code clones. While one set contains
those clone fragments that were involved with bug-propagation, the other set
consists of those clone fragments that did not take part in bug-propagation.
We determine the size (in LOC) of each of the clone fragments in these two
sets. We finally determine the average size per clone fragment for each set.
Thus, for each of the two sets of a particular case, we get an average size.
Finally, from the 15 cases, we get 15 average sizes for the clone fragments
that were involved with bug-propagation and the corresponding 15 average
sizes for the clone fragments that were not involved with bug-propagation.
The average sizes of the bug-propagation and non-bug-propagation clones for
the 15 cases are shown in Fig. 12.

From Fig. 12 we see that for most of the cases (i.e., 10 out of 15 cases), the
average size of the clone fragments that were involved with bug-propagation
is higher than the average size of the clone fragments that were not involved
with bug-propagation. We conduct Wilcoxon Signed Rank test [51, 52| to
determine whether the average sizes of the bug-propagation clones are sig-
nificantly different than the average sizes of the non-bug-propagation clones.
We should note that Wilcoxon Signed Rank test is suitable for paired sam-
ples. This test is non-parametric, and thus, it does not require the samples
to be normally distributed [52]. We conduct the test considering a signifi-
cance level of 5%. The p-value regarding the test is 0.057 which is greater
than 0.05. Thus, according to our significance test, the difference between

30

the sizes of the bug-propagation and non-bug-propagation clones is not sta-
tistically significant.

Answer to RQ 2: According to our experiment, the clone fragments
that are involved with bug-propagation are mostly bigger than the clone
fragments that are not involved with bug-propagation. However, the
difference between the average sizes of the bug-propagation and non-
bug-propagation clones is not statistically significant.

5.8. Answering RQ 3

RQ 3: What percentage of the bugs that are experienced by different
clone-types can be propagated bugs?

Rationale. From our answer to RQ 1 we realize what proportions of the
clone fragments in different clone-types can be involved with bug propaga-
tion. However, we still do not know what percentage of the bugs experienced
by code clones can be propagated bugs. Without this information we cannot
fully realize the bug propagation scenarios in different clone-types. In RQ 3
we first determine what percentage of the bugs experienced by each clone-
type can be propagated bugs, and then make a comparison considering the
percentages regarding three clone-types of each of the subject systems. We
investigate in the following way.

Methodology. We first identify the bug-fix commit operations for a
subject system following the procedure described in Section 3.2. Consid-
ering a particular clone-type we select those commits where code clones of
that particular type were changed. For such a commit we identify whether a
clone-pair was changed (i.e., whether both of the clone fragments in the pair
were co-changed) in it. Considering each such pair we determine whether
the participating clone fragments evolved following a bug propagation pat-
tern. The procedure for determining whether a clone-pair followed a bug
propagation pattern has been discussed in Section 4.3. If a bug-fix commit
modifies a clone-pair that evolved following a bug propagation pattern, we
consider that the bug that was fixed in that commit is a propagated bug. We
analyze each of the bug-fix commits that affected code clones of a particular
clone-type and determine which bugs were propagated bugs. Considering
each clone-type of each of the subject systems we determine the following
two measures, and report these in Table 5:

31

Table 5: Number of propagated bugs in different clone-types

Type 1 Type 2 Type 3
Systems BC BCPB BC BCPB BC BCPB
Carol 11 1 9 3 31 7
Freecol 11 2 14 3 58 17
jEdit 38 0 10 1 44 3
Jabref 10 1 8 0 28 2
GLGraphics 7 2 0 0 15 3
Ctags 4 0 7 0 25 2
MonoOSC 3 1 2 0 8 1

BC = Total number of bug-fix commits that affected clone fragments of a
particular clone-type.

BCPB = Number of bug-fix commits that indicate fixing of a propagated bug.

e BC (Bug-fix Commit): The total number of bug-fix commits (i.e.,
the number of bugs) experienced by the code clones of that particular
clone-type.

¢ BCPB (Bug-fix Commit indicating fixing of a Propagated
Bug): The number of bug-fix commits that indicate fixing of prop-
agated bugs.

For a particular clone-type of a particular subject system, we also deter-
mine the percentage of bug-fix commits that indicate fixing of a propagated
bug (this percentage = (BC'PB x 100)/BC'), and show this percentage in
the bar graph of Fig. 13.

From Fig. 13 we see that for two subject systems, jEdit and Ctags, none
of the bug-fix commits affecting Type 1 clones indicate fixing of a propagated
bug. The same is true for the Type 2 clones of Jabref, GLGraphics, Ctags,
and MonoOSC. Such a scenario is similar to the scenarios in Fig. 10 and
11. From the overall percentages in Fig. 13 we realize that the percentage of
commits that fixed propagated bugs is the highest in Type 3 clones among
the three clone-types.

32

DDPercentage of bug-fix commits that indicate fixing of propagated
bugs in Type 1 clones

DDPercentage of bug-fix commits that indicate fixing of propagated
bugs in Type 2 clones

llPercentage of bug-fix commits that indicate fixing of propagated
bugs in Type 3 clones ‘

30 [—)
&)
o0 -
g 20 |- i
<]
u
(@]
A~ 10 2
A | | | 1]

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Figure 13: Percentage of bug-fix commits that indicate fixing of propagated bugs in dif-
ferent clone-types

33

Answer to RQ 3: According to our experimental results and anal-
ysis, overall up to 16.74% of the bugs experienced by code clones can be
propagated bugs. The overall percentage of propagated bugs is the highest
i Type 3 case, and the lowest in Type 1 case.

Our findings from RQ 3 are similar to those from RQ 1. We find that
near-miss clones (Type 2 and Type 3) have higher possibilities of containing
propagated bugs compared to Type 1 clones. Thus, near-miss clones should
be given a higher priority for management.

5.4. Answering RQ

RQ 4: Which pattern of bug-propagation is more intense during evolu-
tion?

Rationale. We have defined two bug propagation patterns in Section 4.
It is important to investigate which pattern is more intense during evolution.
If a particular pattern appears to be more intense than the other one, then
we can prioritize refactoring of clone fragments that have evolved as well as
that have the possibility of evolving following that pattern. We perform our
investigation in the following way.

Methodology. Considering each clone-type of each of the subject sys-
tems we identify the bug-propagation clone-pairs as we did for answering our
previous research questions. Then, we determine the following two measures:
(i) the number of clone-pairs that followed the first bug propagation pattern
defined in Section 4.1, and (ii) the number of clone-pairs that followed the
second bug propagation pattern defined in Section 4.2. These two measures
for each clone-type of each of the subject systems have been reported in Ta-
ble 6. Using the data in Table 6 we also draw a stacked bar graph in Fig. 14
showing the percentage of bug propagation clone-pairs following each pat-
tern.

From both Table 6 and Fig. 14 it is clear that bug propagation of the
first category (defined in Section 4.1) is more likely to occur compared to
the second one (defined in Section 4.2) during evolution. From the overall
scenario (i.e., considering all subject systems) we realize that around 87.5%,
71.42%, and 87.9% of the bug-propagation clone-pairs in Type 1, Type 2,
and Type 3 case respectively followed the first bug-propagation pattern.

34

Table 6: Number of clone-pairs following different bug propagation patterns

Type 1 Type 2 Type 3
Systems PF PS PF PS PF PS
Carol 1 0 2 1 138 3
Freecol 2 0 2 1 20 9
jEdit 0 0 1 0 2 2
Jabref 0 1 0 0 0
GLGraphics 3 0 0 0 10 9
Ctags 0 0 0 0 2 0
MonoOSC 1 0 0 0 0 1

PF = Number of clone pairs that followed the first pattern

PS = Number of clone pairs that followed the second pattern

Answer to RQ 4: According to our investigation, the first bug propa-
gation pattern where the two clone fragments in the bug propagation clone
pair were created in the same revision is more likely to occur compared
to the second pattern where the two clone fragments were created in two
different revisions.

Our finding implies that clone fragments that are created together in
the same commit operation have higher possibilities of containing propa-
gated bugs compared to the clone fragments that were created in different
revisions. Thus, for minimizing bug propagation we prioritize refactoring of
clone fragments that were created together.

5.5. Answering RQ 5

RQ 5: How often does a propagated bug residing in two clone fragments
of a clone-pair get fized in two different commit operations?

Rationale. In the bug-propagation patterns described in Section 4, a
propagated bug residing in the two clone fragments of a clone-pair always
gets fixed in both fragments in the same commit operation. However, the two

35

B of clone-pairs that followed the first bug-propagation pattern with
respect to all bug-propagation clone-pairs

0% of clone-pairs that followed the second bug-propagation pattern with
respect to all bug-propagation clone-pairs

100

80

60

40

Percentage

20

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Figure 14: Comparing the likeliness of occurrence of two bug propagation patterns.

Table 7: Number of bug-propagation clone-pairs having clone fragments from the same or
different files

Type 1 Type 2 Type 3
Systems SF DF SF DF SF DF
Carol 0 1 3 0 136 5
Freecol 0 2 3 0 20 9
jEdit 0 0 1 0 4 0
Jabref 0 1 0 0 2 0
GLGraphics 0 3 0 0 6 13
Ctags 0 0 0 0 2 0
MonoOSC 0 1 0 0 1 0

SEF' = Number of clone pairs each having clone fragments from the same file

DF = Number of clone pairs each having clone fragments from two different files

36

B of bug-propagation clone-pairs where the two clone fragments in each
pair belong to the same file (Percentage 1)

% of bug-propagation clone-pairs where the two clone fragments in each
100 pair belong to two different files (Percentage 2)

80 |-
O
%0 60
=
S
= 40 +
A,
20| I
0
N AN M 4 ANM A4 ANM A ANNM AN M NN~ NN~ ANM
o O O O O 0 O O O O O O O O O O O O O O O OO O O
< Y V< P < T < V< W < Y < VN < PR < Y < < YR < Y < VY < PR < Y < < Y < S < P < S <V < A <
= = S SR BE R RS SSEBRSBSSSBRBRBSS S5
HHHHEHEHHEHEHEBHEEHEEHHEHEHEEHEEHEEHEBEHEHEEBEBEH

Carol Freecol jEdit Jabref GLGra. Ctags Mono. Overall

Figure 15: Percentages of bug-propagation clone-pairs having clone fragments from the
same or different source code files

37

Table 8: Number of potential clone-pairs of different clone-types

Systems Type 1 | Type 2 | Type 3
Carol 2 1 8
Freecol 0 3 11
jEdit 0 0 2
Jabref 0 0 0
GLGraphics 1 0 4
Ctags 1 1 8
MonoOSC 0 0 1

fragments might also experience the fix in two different commit operations.
In this experiment, we investigate whether such cases really exist.

Investigation Procedure. We perform our investigation in the follow-
ing two steps. While the first part (Step 1) is automatic, the second part
(Step 2) involves manual investigation.

Step 1: In the first step, we identify bug-fix commit operations where
code clones were modified. We analyze each of these commit operations for
our investigation. Let us assume that BF'C' is such a bug-fix commit oper-
ation which was applied on a particular revision r of a subject system. We
identify clone-pairs in revision r such that one fragment in the pair experi-
enced the bug-fix (i.e., was modified in the bug-fix commit BFC') but the
other fragment did not. From these identified pairs, we select each pair such
that the fragment (of the pair) that did not have the bug-fix change in BFC
experienced a bug-fix later. We call these selected pairs as the potential pairs.
From all our subject systems, we obtained 43 potential pairs in total. Table
8 shows the number of potential pairs for different clone-types of different
subject systems.

Step 2: In this step, we manually analyze each of the potential pairs
obtained from Step 1. From our discussion in Step 1 it is clear that the
two clone fragments in a potential pair experienced bug-fixes in two different
commit operations. We manually analyze these bug-fix changes that occurred
to the two fragments in order to realize whether the same fix was experienced
by both fragments. For each clone-type of each of the subject systems, Table

38

Table 9: Number of potential clone-pairs where the two clone fragments experienced the
same bug-fix in two different commits

Systems Type 1 | Type 2 | Type 3
Carol 0 0 1
Freecol 0 0 0
jEdit 0 0 0
Jabref 0 0 0
GLGraphics 0 0 0
Ctags 1 0 0
MonoOSC 0 0 1

9 shows the number of potential clone-pairs where the two clone fragments
experienced the same bug-fix in two different commits. As we can see in
Table 9, we obtained three potential clone-pairs (one pair from Type 3 case of
Carol, one pair from Type 1 case of Ctags, and the remaining pair from Type
3 case of MonoOSC) where the two clone fragments in the pair experienced
the same bug-fix at different commit operations. We discuss these examples
as follows.

In the case of Ctags, we found one Type 1 clone-pair residing in revision
633. One of the two clone fragments in the pair was located in a file named
‘jscript.c” and the other one was located in a file named ’sql.c’. The fragment
located in ’jscript.c” was changed for fixing a bug in the commit operation
which was applied on revision 633. The commit message says, jscript.c was
not properly handling escaped quotes. The clone fragment in file 'sql.c” con-
tained the same bug which was fixed in the same way in the commit operation
which was applied on revision 636. This commit message says, Ported the
same change made to handle escaped strings in jscript.c into sql.c. In the
case of MonoOSC, we found a Type 3 clone pair where one fragment in the
pair experienced a bug-fix in the commit operation on revision 307, and the
other one experienced the same fix in the commit operation on revision 312.
From the Type 3 clones of Carol, we found a clone pair where one fragment
in the pair experienced a bug-fix in the commit on revision 396. The other
fragment experienced a similar fix in the immediate next commit operation.

39

While performing manual analysis, we ensured that these three bugs (each
fixed in two different commits) were propagated bugs.

Answer to RQ 5. According our experiment, a propagated bug that
resides in two or more clone fragments mostly gets fixed in all the con-
tainer fragments in the same commit operation. Fixing of a propagated
bug in different commits is a rare phenomenon according to our analysis.

5.6. Answering RQ 6

RQ 6: Does bug propagation occur in the same file or across different
files?

Rationale. It is important to know whether bug-propagation mainly
occurs within the same file or across different files. If it is found that the
clone fragments that are involved with bug-propagation have a high tendency
of residing in the same file or in different files, then such clone fragments
can be prioritized for refactoring. Refactoring/merging of code clones having
high tendencies of being involved with bug-propagation, can help us minimize
efforts for fixing propagated bugs in multiple clone fragments. We perform
our investigation for answering RQ 6 in the following way:.

Investigation Procedure. For each clone-type of each of our subject
systems, we identify the clone-pairs that were involved with bug-propagation
as we did for answering our previous research questions. Considering each
of these bug-propagation clone-pairs we determine whether the fragments in
the pair belong to the same file or in different files. Table 7 shows the results
from our investigation. From the data recorded in Table 7 we determine the
following two percentages for each clone-type of each of our subject systems.

e Percentage 1: Percentage of bug-propagation clone-pairs where the
two clone fragments in each pair belong to the same source code file
with respect to all bug-propagation clone-pairs.

e Percentage 2: Percentage of bug-propagation clone-pairs where the
two clone fragments in each pair belong to two different source code
files with respect to all bug-propagation clone-pairs.

The stacked bar graph in Fig. 15 shows these two percentages for our
subject systems. From the figure we see that for each of the bug-propagation

40

clone-pairs in Type 1 case, the two clone fragments in the pair belong to two
different source code files. The opposite is true for Type 2 case. Each Type
2 bug-propagation clone-pair consists of clone fragments belonging to the
same file. For most of the Type 3 bug-propagation clone pairs of each of our
subject systems, Percentage 1 is greater than Percentage 2. The overall
percentages regarding the three clone-types indicate a similar scenario.

Answer to RQ 6. According to our experiment results and analysis,
while each bug-propagation clone-pair in Type 1 case contains clone frag-
ments from two different source code files, most of the bug-propagations
in near-miss code clones (Type 2 and 3) occur in the same file.

Our finding is important for making clone management decisions from
the perspective of bug-propagation. When identifying Type 1 clone-pairs
having the possibility of containing propagated bugs, we can mainly focus on
clone-pairs each containing clone fragments from different source code files.
However, when working with near-miss clones, we should primarily focus on
the clone-pairs each having clone fragments from the same source code file.

5.7. Answering RQ 7

RQ 7: Do severe bugs get propagated through code cloning?

Rationale. From our answer to R(Q) 3 we realize that a considerable
proportion of the bugs contained by code clones can be propagated bugs.
We wanted to do further investigations in order to understand whether bugs
that get propagated through code cloning can be severe bugs. If we see that
propagated bugs can often be severe, then it is important to identify clone
pairs that have a high possibility of containing propagated bugs so that we
can refactor them with high priority. We perform our investigation in the
following way.

Investigation Procedure. We conduct our investigation in two steps:
(1) identifying the bug-fixing commits that occurred for fixing severe bugs,
and (2) investigating propagation of severe bugs. We discuss these two steps
in the following paragraphs.

(1) Identifying the bug-fixing commits that occurred for fixing
severe bugs. For each of our subject systems, we first identify the commit
log that contains the commit messages of all the commit operations. We

41

automatically identify the message for each commit separately and deter-
mine whether this is a bug-fix commit by applying the technique proposed
by Mockus and Votta [26]. If a particular commit is a bug-fix commit, then
we identify whether this commit occurred for fixing a severe bug. For identi-
fying whether a commit operation occurred for fixing a severe bug, we apply
the technique proposed by Lamkanfi et al. [21]. They suggested a list of
keywords [21] from their investigation such that if the commit message of a
bug-fix commit operation contains any of those keywords, we can consider
that commit as a severe bug-fix commit. We identify all the severe bug-fix
commits from each of our subject systems. Lamkanfi et al. [21] reported
that the precision and recall of their bug severity detection technique can
vary within the range 65% to 75%.

(2) Investigating propagation of severe bugs. In Section 4.3, we
discussed how we identify the bug-propagation patterns by analyzing the
bug-fix commit operations. We follow the same procedure of identifying
bug-propagation patterns by considering only the severe bug-fix commits.
From all the bug-propagation clone-pairs of a subject system, we determine
how many of those were involved in propagating severe bugs. Table 10 shows
the number of clone-pairs that were involved in propagating severe bugs.

From Table 10 we realize that propagation of severe bugs through code
cloning is not a common phenomenon during software evolution. One Type
1 clone-pair of Freecol and respectively ten and one Type 3 clone-pairs of
Freecol and jEdit were involved in propagating severe bugs. We answer RQ
7 in the following way.

Answer to RQ 7. According to our investigation result, severe bugs
can sometimes get propagated through code cloning. However, the possi-
bility of this propagation is very low. Only 5.16% of all bug-propagation
clone-pairs (11 out of 213 bug propagation clone pairs from all clone-types
of all subject systems) were involved with propagating severe bugs.

Although code cloning has a very low probability of propagating severe
bugs, we see that propagation of severe bugs can sometimes occur to a consid-
erable extent. Around 34.48% (10 out of 29) of the Type 3 bug-propagation
clone-pairs of Freecol were involved in propagating severe bugs. Thus, bug-
propagation through code cloning should not be ignored. Code clones having
high possibilities of propagating bugs should be identified and refactored with

42

Table 10: The number of bug-propagation clone-pairs that are involved with propagating

severe bugs

Systems PSB (Type 1) | PSB (Type 2) PSB (Type 3)
Carol 0 0 0
Freecol 1 0 10
jEdit n/a 0 1
Jabref 0 n/a 0
GLGraphics 0 n/a 0
Ctags n/a n/a 0
MonoOSC 0 n/a 0

PSB = Number of clone pairs that propagated severe bugs.
n/a = Analysis regarding propagating severe bugs is not applicable for the

case because no clone pair for that case was involved with bug-propagation.

high priority.

6. Implications from Our Findings

Although existing studies [33, 28, 37, 38] on code clone detection and
analysis suspect that code cloning can be responsible for bug-propagation,
none of the existing studies investigated it. Our study is the first one to show
that bug-propagation is a fact. As bug-propagation occurs through code
cloning, it is important to know which types of clones are more involved
with bug-propagation so that programmers can avoid making such clones
during programming. Also, if such clones are already existing in the code-
base, we should consider refactoring or tracking them with high priority. In
the following subsections, we first summarize our findings, and then discuss
how these findings can be important from two different perspectives: (1)
clone management perspective and (2) programming perspective.

6.1. Summary of our findings

We summarize our findings in the following points.

43

e Finding 1: According to our answer to RQ 1, near-miss clones are
more involved with bug-propagation compared to exact clones. We
should consider managing (refactoring or tracking) near-miss clones
with higher priorities compared to exact clones.

¢ Finding 2: According to our manual analysis, method clones have high
possibilities of being involved with bug-propagation. Thus, program-
mers should assume higher priorities for refactoring or tracking method
clones than block clones in order to minimize bug-propagation.

e Finding 3: According to our answer to RQ 6, near-miss code clones
residing in the same file have a higher possibility of being related to
bug-propagation compared to the ones residing in different files. The
opposite is true for the identical clones. These findings can help us
develop a clone-type sensitive automatic tool for identifying code clones
having high possibilities of containing propagated bugs.

e Finding 4: According to our answer to RQ 4, the first bug-propagation
pattern is more frequent than the second one. Thus, making clones from
a previously committed code fragment is safer than making clones from
a newly created (uncommitted) code fragment.

¢ Finding 5: According to our answer to RQ 7, severe bugs can some-
times get propagated through code cloning. Thus, bug-propagation
through code cloning should not be ignored.

Our findings are important from two perspectives: (1) managerial per-
spective and (2) programming perspective as discussed below.

6.2. Importance of our findings from clone management perspective

Our first three findings (i.e., Finding 1, 2, and 3) in Section 6.1 are im-
portant from the perspective of clone management (i.e., clone refactoring
and tracking). A software system generally contains a huge number of code
clones. It is impractical to aggressively refactor or track all these code clones
[17]. Clone refactoring often requires a lot of time and effort from the pro-
grammers. Clone tracking is resource intensive. In such a situation, it is
necessary to identify code clones that should be considered important for
refactoring or tracking. Our first three findings can help us pin-point the
important clones. If we combine the first three findings, we realize that

44

near-miss method clones residing in the same file should be prioritized for
management. The percentage of such clones in the entire code-base of each
of our subject systems is shown in Fig. 16. From Fig. 16 we realize that the
percentage of code clones that can be considered important (i.e., that can be
prioritized) for refactoring or tracking is very low for each system compared
to the percentage of the remaining clones in that system.

We also perform Wilcoxon Signed Rank (WSR) test [51, 52] to determine
whether the percentage of code clones that we recommend as important for
management is significantly lower than the percentage of the remaining clones
in a software system. We perform WSR test, because it is suitable for paired
samples. Moreover, WSR test is non-parametric [52], and thus, the samples
do not need to be normally distributed for applying this test. This test can
be applied for both small and large data samples [52]. We conduct the test
considering a significance level of 5%. The p-value regarding our test is 0.001
which is smaller than 0.05. Thus, according to our test, the percentage of
code clones that we recommend as important is significantly smaller than
the percentage of the remaining code clones in a software system. We also
determine the Cohen’s d effect size [53, 54] for our test and find that the
effect size is 0.632. We finally realize that prioritizing the code clones that
we recommend as important for management can save a considerable amount
of clone refactoring and tracking effort and time.

6.3. Importance of our findings from programming perspective

Our fourth finding in Section 6.1 is important from programming per-
spective. According to this finding, copying from uncommitted code is riskier
than copying from a previously committed code. Thus, we strongly recom-
mend programmers to stop copying from newly written or uncommitted code.
In general, copy/pasting cannot be completely stopped during programming.
However, if our recommended copying discipline is followed, it will minimize
the risk of bug-propagation through code cloning. Our fifth finding raises the
awareness that code cloning can be responsible for propagating severe bugs
too. The programmers can minimize bug-propagation through applying our
recommended copying discipline.

7. Related Work

A great many studies have investigate code clones from different perspec-
tives such as: clone detection [37, 36, 45, 42], impact analysis [1, 2, 7, 8, 9,

45

llPercentage of code clones that we recommend as important for
management (for refactoring and tracking)

DDPercentage of the remaining clones in the system

100 -
80] 1 : |
)
o0 -
s 60| |
=
[}
5 40| :
a¥
20 |- I 1
SN 1 Y T

Carol Freecol jEdit Jabref GLGra. Ctags Mono.

Figure 16: Percentage of code clones that we recommend as important for management
(refactoring and tracking)

15, 16, 18, 19, 20, 24, 25, 32, 33, 22, 44, 13], maintenance [49, 46, 27, 31],
and bug-proneness [22, 23, 7, 48, 28]. Our study in this paper focuses on the
bug-proneness of code clones.

Bug-proneness of code clones has been investigated by a number of stud-
ies. Li and Ernst [22] performed an empirical study on the bug-proneness
of clones by investigating four software systems and developed a tool called
CBCD on the basis of their findings. CBCD can detect clones of a given
piece of buggy code. Li et al. [23] developed a tool called CP-Miner which
is capable of detecting bugs related to inconsistencies in copy-paste activi-
ties. Steidl and Gode [44] investigated on finding instances of incompletely
fixed bugs in near-miss code clones by investigating a broad range of features
of such clones involving machine learning. Gode and Koschke [7] investi-
gated the occurrences of unintentional inconsistencies to the code clones of
three mature software systems and found that around 14.8% of all changes
occurred to the code clones are unintentionally inconsistent. Chatterji et
al.[4] performed a user study to investigate how clone information can help
programmers localize bugs in software systems. Jiang et al.[13] performed
a study on the context based inconsistencies related to clones. They devel-
oped an algorithm to mine such inconsistencies for the purpose of locating

46

bugs. Using their algorithm they could detect previously unknown bugs from
two open-source subject systems. Inoue et al.[10] developed a tool called
‘Clonelnspector’ in order to identify bugs related to inconsistent changes to
the identifiers in the clone fragments. They applied their tool on a mobile
software system and found a number of instances of such bugs. Xie et al.[48]
investigated fault-proneness of Type 3 clones in three open-source software
systems. They investigated two evolutionary phenomena on clones: (1) mu-
tation of the type of a clone fragment during evolution, and (2) migration
of clone fragments across repositories and found that mutation of clone frag-
ments to Type 2 or Type 3 clones is risky. We see that a number of studies
investigated bug-proneness in code clones. However, none of these studies
focus on bug propagation through code cloning.

Islam et al. [11] investigated bug-replication in code clones. They iden-
tified which of the clone fragments in a clone class contains the same bug.
If more than one clone fragment in a clone class contain the same bug, they
considered that the bug is a replicated one. However, it does not imply
that this bug is a propagated bug. It might be the case that similar buggy
changes occurred to the clone fragments in a clone class during evolution.
Such a bug will be considered as a replicated bug according to Islam et al.’s
[11] consideration. However, this is not a propagated bug. Bug propagation
only occurs when a particular code fragment contains a bug, and this code
fragment is copied to several other places in the code-base being unaware of
the presence of the bug. In our study, we define two bug-propagation pat-
terns and propose an automatic mechanism for identifying propagated bugs
in code clones. Thus, our bug propagation study is significantly different
from Islam et al.’s study [11].

In another study, Mondal et al. [28] compared the bug-proneness of three
types of code clones. They investigated which types of code clones experience
bug-fixes more frequently. However, they did not investigate bug-propagation
in their study.

Rahman et al. [35] made a comparison of the bug-proneness of clone and
non-clone code and found that clone code is less bug-prone than non-clone
code. They performed their investigation on the evolution history of four
subject systems using DECKARD [14] clone detector. However, they did
not investigate bug-propagation through code cloning. Thus, our study on
the intensity of bug-propagation in different types of code clones is different
from their study.

Selim et al. [43] used Cox hazard models in order to assess the impacts

47

of cloned code on software defects. They found that defect-proneness of
code clones is system dependent. However, they considered only method
clones in their study. We consider block clones in our study. While they
investigated only two subject systems, we consider four subject systems in
our investigation. Also, we investigate bug propagation in different types of
code clones. Selim et al. [43] did not perform such an investigation.

A number of studies have also been done on the late propagation in
clones and its relationships with bugs. Aversano et al.[1] investigated clone
evolution in two subject systems and reported that late propagation in clones
is directly related to bugs. Barbour et al.[2, 3| investigated eight different
patterns of late propagation considering Type 1 and Type 2 clones of three
subject systems and identified those patterns that are likely to introduce
bugs and inconsistencies.

We see that different studies have investigated clone related bugs in dif-
ferent ways and have developed different bug detection tools. However, none
of these studies investigate the intensity of bug-propagation through code
cloning. Investigating bug-propagation through code cloning is important.
Without such an investigation we cannot properly realize the impacts of code
cloning on software maintenance and evolution. Focusing on this issue we
define and investigate two bug propagation patterns in code clones in our
study. Our investigation involving manual analysis of the clone fragments
that evolved following the bug-propagation patterns results interesting find-
ings which are important for better management of code clones.

Our study presented in this paper is a significant improvement of our
previous work [12] on bug-propagation. In this extended work, we answer
four new research questions (RQ 2, RQ 5, RQ 6, and RQ 7) involving file-
proximity of the bug-propagation clones, and propagation of severe bugs.
We did not investigate these in our previous study [12]. We also investigate
three additional subject systems written in Java, C, and C+# in this extended
study. In our previous study, we only studied four Java systems. Moreover,
we considered a case sensitive search of the bug-fix commits in our previous
study [12]. However, this search has the possibility of missing some bug-
fix commits. Focusing on this, we made a case insensitive search of the
bug-fix commits in this extended study. Thus, all the tables and figures
in this extended study beside the newly added ones have been refined with
updated data. One of the major findings from our extended research is that
severe bugs can sometimes get propagated through code cloning. Thus, bug-
propagation should be taken into proper consideration when making clone

48

management decisions.

8. Threats to Validity

We used the NiCad clone detector [5] for detecting clones. For different
settings of NiCad, the experimental results that we present in this paper
might be different. Wang et al. [47] defined this problem as the confounding
configuration choice problem and conducted an empirical study to ameliorate
the effects of the problem. However, the settings that we have used for NiCad
are considered standard [40] and with these settings NiCad can detect clones
with high precision and recall [41, 42, 45]. Thus, we believe that our findings
on bug propagation through code cloning are of significant importance.

Our research involves the detection of bug-fix commits. The way we de-
tect such commits is similar to the technique followed by Barbour et al.[3].
Such a technique proposed by Mocus and Votta [26] can sometimes select a
non-bug-fix commit as a bug-fix commit mistakenly. However, Barbour et
al.[3] showed that this probability is very low. According to their investiga-
tion, the technique has an accuracy of 87% in detecting bug-fix commits.

In our experiment we did not study enough subject systems to be able
to generalize our findings regarding the comparative bug-proneness of clone-
types. However, we selected our candidate systems emphasizing their diver-
sity in sizes and revision history lengths. Thus, we believe that our findings
cannot be attributed to a chance. Our findings are important from the per-
spectives of clone management and can help us in better ranking of code
clones for refactoring and tracking.

Identifying severity from the commit log is not necessarily precise. Our
implementation for identifying severe bugs was based on the keywords sug-
gested by Lamkanfi et al. [21]. While our analysis could be based on the
severity values assigned to the bugs in the bug database, the assigned sever-
ity values often do not indicate the extent of severity of the bugs. In most
of the cases, bugs are given a default severity value. Thus, the way [21] we
perform bug severity analysis is reasonable. Lamkanfi et al. [21] reported
that their technique had a precision and a recall in the range 65% to 75% in
detecting severe bugs.

In our last research question (RQ 8), we have shown the time duration
between propagation and fixing of the propagated bugs. This would be good
to determine fixing time of the bugs in non-clone code, and then make a
comparison between the fixing time of the bugs in non-clone code and the

49

propagation time of the propagated bugs in clone code. However, our bug
detection technique does not support identifying when a particular bug was
introduced to the code-base. As a result, we cannot determine the fixing
time of the bugs occurred in non-clone code, and we could not make such
a comparison in our research. However, our technique supports identifying
when a particular bug was propagated through code cloning. Thus, in RQ 8,
we could report the time duration between propagation and fixing of prop-
agated bugs. Our finding from our RQ 8 indicates that bugs generally take
a long time to get fixed after being propagated through code cloning. Thus,
bug-propagation should be taken into proper consideration.

9. Conclusion

In this study we investigate the intensity of bug-propagation through
code cloning. We define two bug-propagation patterns, and automatically
mine these patterns by analyzing the entire evolution history of our subject
systems. We perform our investigation on thousands of revisions of seven
subject systems and answered seven important research questions. Accord-
ing to our analysis, overall 18.42% of the code clones that experience bug-
fix changes can be related with bug-propagation. Near-miss clones (Type
2, and Type 3 cones) have a higher tendency of being involved with bug-
propagation compared to identical clones (Type 1 clones). Thus, near-miss
clones should be given a higher priority for management from the perspec-
tive of bug-propagation. We also observe that overall 16.74% of the bug-fix
changes in code clones can occur for fixing propagated bugs. We manually in-
vestigate the occurrences of bug-propagation in code clones and discover that
method clones are mostly involved with bug-propagation. Bug-propagation
primarily occurs in the clone fragments that got created together in the same
commit operation. We also realize that near-miss code clones belonging to
the same source code file have a higher possibility of propagating bugs com-
pared to those that reside in different source code files. Code cloning can
sometimes propagate severe bugs according to our analysis. An automatic
tool for immediate detection of the occurrences of bug-propagation through
code cloning can be beneficial for software maintenance and evolution. Our
prototype tool implemented for this study can assist programmers in identi-
fying code clones that are likely to contain propagated bugs. Thus, our tool
can be helpful for prioritizing code clones considering their likeliness of being
involved with bug-propagation.

50

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained: An empirical
study”, Proc. CSMR, 2007, pp. 81 — 90.

[2] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”, Proc. ICSM,
2011, pp. 273 — 282.

[3] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late propagation
clone genealogies”, Journal of Software: FEvolution and Process, 2013, 25(11):1139 —
1165.

[4] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring the Efficacy
of Code Clone Information in a Bug Localization Task: An Empirical Study”, Proc.
ESEM, 2011, pp. 20 — 29.

[5] J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool Demo, 2011,
pp. 219 — 220.

[6] CTAGS: http://ctags.sourceforge.net/

[7] N. Gode, Rainer Koschke, “Frequency and risks of changes to clones”, Proc. ICSE,
2011, pp. 311 — 320.

[8] N. Gode, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 — 74.

[9] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More Frequently Mod-
ified than Non-duplicate Code in Software Evolution?: An Empirical Study on Open
Source Software”, Proc. EVOL/IWPSE, 2010, pp. 73 — 82.

[10] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, E. Lee, “Ex-
perience of Finding Inconsistently-Changed Bugs in Code Clones of Mobile Software”,
Proc. IWSC, 2012, pp. 94 — 95.

[11] J. F. Islam, M. Mondal, C. K. Roy, “Bug Replication in Code Clones: An Empirical
Study”, Proc. SANER, 2016, pp. 68 - 78.

[12] M. Mondal, C. K. Roy, K. A. Schneider, “Bug Propagation through Code Cloning:
An Empirical Study”, Proc. ICSME, 2017, pp. 227 — 237.

[13] L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related Bugs”, Proc.
ESEC-FSE, 2007, pp. 55 — 64.

[14] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and accurate tree-based
detection of code clones”, Proc. ICSE, 2007, pp. 96105.

[15] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones Matter?”,
Proc. ICSE, 2009, pp. 485 — 495.

[16] C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered harmful: pat-
terns of cloning in software”, Empirical Software Engineering, 2008, 13(6): 645 — 692.

51

[17] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of code clone
genealogies”, Proc. ESEC-FSE, 2005, pp. 187 — 196.

[18] J. Krinke, “A study of consistent and inconsistent changes to code clones”, Proc.
WCRE, 2007, pp. 170 — 178.

[19] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc. SCAM, 2008,
pp. 57 — 66.

[20] J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC, 2011, pp.
28 - 33.

[21] A. Lamkanfi and S. Demeyer and E. Giger and B. Goethals, “Predicting the Severity
of a Reported Bug”, Proc. MSR, 2010, pp. 1 — 10.

[22] J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE, 2012, pp.
310 — 320.

[23] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code”, Proc. OSDI, 2004, pp. 20 — 20.

[24] A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC, 2010, pp. 65 —
72.

[25] A. Lozano, M. Wermelinger, “Assessing the effect of clones on changeability”, Proc.
ICSM, 2008, pp. 227 — 236.

[26] A. Mockus, L. G. Votta, “Identifying Reasons for Software Changes using Historic
Databases”, Proc. ICSM, 2000, pp. 120 — 130.

[27) M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for Mining Code
Clones that are Important for Refactoring or Tracking”, Proc. SANER, 2015, 5pp. (to

appear).

[28] M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study on the Bug-proneness
of Different Types of Code Clones”, Proc. ICSMFE, 2015, pp. 91 - 100.

[29] J. F. Islam, M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study of
Software Bugs in Clone and Non-Clone Code”, Proc. SEKF, 2017, pp. 1 - 8.

[30)] M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed Method
Groups: A Case Study on Open Source Systems”, Proc. CASCON, 2012, pp. 205
— 219.

[31] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones for Refac-
toring through Mining Association Rules”, Proc. CSMR-WCRE, 2014, pp. 114 — 123.

52

[32] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A. Schneider,
“Comparative Stability of Cloned and Non-cloned Code: An Empirical Study”, Proc.
SAC, 2012, pp. 1227 — 1234.

[33] M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone Stability”,
ACM SIGAPP Applied Computing Review, 2012, 12(3): 20 — 36.

[34] Online SVN repository: http://sourceforge.net/

[35] F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?” | Proc. MSR, 2010,
pp. 72 — 81.

[36] D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A Systematic Review”,
Information and Software Technology, 2013, 55(7): 1165 — 1199.

[37] C. K. Roy, J. R. Cordy, “A Survey on Software Clone Detection Research”, Technical
Report No. 2007-541, 2007, School of Computing Queens University, pp. 1 - 115.

[38] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone Management:
Past, Present, and Future (Keynote paper)”, Proc. CSMR-WCRE, 2014, pp. 18 — 33.

[39] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc. ICSM, 2009,
pp. 447 — 450.

[40] C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional Clones
Using Flexible Pretty-Printing and Code Normalization”, Proc. ICPC, 2008, pp. 172
— 181.

[41] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative Approach”, Science of Computer Pro-
grammang, 2009, 74 (2009): 470 — 495.

[42] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic Framework for
Evaluating Code Clone Detection Tools”, Proc. Mutation, 2009, pp. 157 — 166.

[43] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y. Zou, “Studying
the Impact of Clones on Software Defects”, Proc. WCRE, 2010, pp. 13 - 21.

[44] D. Steidl, N. Gode, “Feature-Based Detection of Bugs in Clones”, Proc. IWSC, 2013,
pp. 76 — 82.

[45] J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”, Proc. ICSME,
2014, pp. 321 — 330.

[46] S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical study on

the maintenance of source code clones”, Empirical Software Engineering, 2009, 15(1):
1-34.

53

[47] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configurations: A
Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT FSE, 2013, pp. 455
— 465

[48] S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness of Clone
Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 — 158.

[49] M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code Clone Refac-
toring”, IET Software, 2013, 7(3): 167 — 186.

[50] Last revisions of the subject systems: https://drive.google.com/drive/folders/
1xgmHCx jIDav9Q5A7ar JNXjsYrm50pjcD7usp=sharing

[51] Wilcoxon Signed Rank Test Calculator: http://www.statskingdom.com/
175wilcoxon_signed_ranks.html

[52] Wilcoxon Signed Rank Test: https://en.wikipedia.org/wiki/Wilcoxon_
signed-rank_test

[63] Effect Size calculator: https://www.ai-therapy.com/psychology-statistics/
effect-size-calculator

[54] Effect size: http://staff.bath.ac.uk/pssiw/stats2/page2/pageld/pagels.
html

o4

*Biography

Manishankar Mondal

Manishankar Mondal is an Assistant Professor in the Computer Science and Engineering Discipline of
Khulna University, Bangladesh. He completed his M.Sc. in Software Engineering from the Computer
Science Department of the University of Saskatchewan, Canada by working under the supervision of Dr.
Chanchal K. Roy and Dr. Kevin A. Schneider. During M.Sc. studies, he received the Best Paper Award
from the 27th Symposium On Applied Computing (ACM SAC 2012) in the Software Engineering Track.
He also received his PhD in February, 2017 from the same department by working under the same
advisors. His research interests are software maintenance and evolution including clone detection and
analysis, program analysis, empirical software engineering and mining software repositories. He has been
a reviewer of a number of software engineering conferences and journals. He has served as the web and
publicity co-chair of ICPC 2014 and as a program committee member of IWSC 2016. He has also served
as a research associate in the software research laboratory of the Computer Science Department of the
University of Saskatchewan.

Banani Roy

Banani Roy is an Assistant Professor at the Department of Computer Science at the University of
Saskatchewan. Dr. Roy closely works with the graduate, summer, and undergraduate students, and
postdoctoral fellows in the Cloud-based Big Data Analytics for Crop Phenomics project (a.k.a P2IRC
Project 3.1, a USask CFREF funded project) and Global Water Future Project (a.k.a. GWF project,
second USask CFREF funded project). Led by Prof. Kevin Schneider, she was also able to secure a
Compute Canada Resource Allocation Competition ($178,543.00) grant for the P2IRC project. She
received her Ph.D. in Engineering Interactive Systems from the Queen’s University in 2013 under the

supervision of Prof. Nicholas Graham and Prof. Carl Gutwin, She worked as a faculty member at the
Computer Science and Engineering Department at Khulna University of Engineering and Technology
(KUET). She also received several awards including a Queen’s Graduate Scholarship and the highly
competitive Ontario Graduate Scholarship in Science and Technology (OGSST). Her research interests
are Engineering Interactive Systems, Software Reengineering, Software Architecture, Big Data Analytics
and Empirical Software Engineering.

Chanchal K. Roy

Chanchal Roy is an associate professor of Software Engineering/Computer Science at the
University of Saskatchewan, Canada. While he has been working on a broad range of topics in
Computer Science, his chief research interest is Software Engineering. In particular, he is
interested in software maintenance and evolution, including clone detection and analysis,
program analysis, reverse engineering, empirical software engineering and mining software
repositories. He served or has been serving in the organizing and/or program committee of major
software engineering conferences (e.g., ICSE, ICSME, SANER, ICPC, SCAM, CASCON, and
IWSC). He has been a reviewer of major Computer Science journals including IEEE
Transactions on Software Engineering, International Journal of Software Maintenance and
Evolution, Science of Computer Programming, Journal of Information and Software Technology
and so on. He received his Ph.D. at Queen’s University, advised by James R. Cordy, in August
2009.

Kevin A. Schneider

Kevin Schneider is a Professor of Computer Science, Special Advisor ICT Research and Director
of the Software Engineering Lab at the University of Saskatchewan. Dr. Schneider has
previously been Department Head (Computer Science), Vice-Dean (Science) and Acting Chief
Information Officer and Associate Vice-President Information and Communications
Technology.

Before joining the University of Saskatchewan, Dr. Schneider was CEO and President of
Legasys Corp., a software research and development company specializing in design recovery
and automated software engineering. His research investigates models, notations and techniques
that are designed to assist software project teams develop and evolve large, interactive and
usable systems. He is particularly interested in approaches that encourage team creativity and
collaboration.

Figure(s)

Click here to download high resolution image

Commits mmp C; Cir Gz Gz Gy
------ O @O0 0O @ ——
N N N
------------------------------------ O—O— @
N /!
Creation Changes Creation Bug-fix changes
of CF1 occurred of CF2 occurredin CF1
in CF1 fromCF1 andCF2

http://ees.elsevier.com/jss/download.aspx?id=372488&guid=853bbbc6-ff4c-4624-9db4-cd2ab16581ce&scheme=1

Figure(s)

Click here to download high resolution image

Clone Fragmentl, Revision 1349

public SortedSet getBuiltininputFormats() {

SortedSet result = new TreeSet();

for (Iterator | = this.formats.values{).iterator{); L.hasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getisCustomimporter()) {

result.add(format);

}

}

return result;

}

Change

Clone Fragment1, Revision 1350

public SortedSet getBuiltininputFormats() {

SortedSet result = new TreeSet();

for (Iterator | = this formats.iterator{); LhasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getisCustomimporter()) {

result.add(format);

}

)

return result;

}

The change in Clone Fragment 1 in the commit operation that was applied on Revision 1349

Clone Fragment2, Revision 1349

public SortedSet getCustomimportFormats() {

SortedSet result = new TreeSet();

for (Iterator | = this.formats.values().iterator(); l.hasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getisCustomimporter()) {

result.add(format);

)

}

return result;

}

Change

A

-

Clone Fragment2, Revision 1350

public SortedSet getCustomimportFormats() {

SortedSet result = new TreeSet();

for (Iterator | = this.formats.iterator(); l.hasNext();) {
ImportFormat format = (ImportFormat)i.next();
if (format.getisCustomimporter()) {

result.add(format);

}

)

return result;

}

The change in Clone Fragment 2 in the commit operation that was applied on Revision 1349

http://ees.elsevier.com/jss/download.aspx?id=372490&guid=25dec778-72f0-43c4-8eba-9b2f3e3c613a&scheme=1

Figure(s)
Click here to download high resolution image

Commits — C1 C2 C3 C4 CS (6

B | D D ® S, >
e v
CFZ P Y o ’_ Van >
S
V vV vV WV WV V
Creation Creation The two clone fragments
of CF1 of CF2 experienced a bug-fix
from CF1

No changes occurred to CF1 and CF2 in commits C3 and C4

http://ees.elsevier.com/jss/download.aspx?id=372495&guid=38758699-19f4-45b6-ace1-2987ab1e21f1&scheme=1

Figure(s)
Click here to download high resolution image

Commits — C1 C2 C3 C4 B Cé6
CF1 /<> 4 0\ = q\ de
CF2 B——1— q\ b—>
Vv Vv v Vv v v
Creation Creation CFlwas Thetwo clone fragments
of CF1 of CF2 Changed experienced a bug-fix

from CF1

http://ees.elsevier.com/jss/download.aspx?id=372496&guid=7f5fac38-9914-43bb-a56c-1b605cb89d56&scheme=1

Figure(s)
Click here to download high resolution image

Comment

public void DetermineFactorialAndPrime (intn)
{

inti=1,j=1,k=1,fact=1;

for (1=11<=n;i++)

{
¥

System.out.println ("factorial = "+fact);

for (1 = 2;1 < n-1;i++)

fact = fact *i;

{
if(n%1==0)
{
System.out.println (n +" is not prime.");
}
S
if G==n)
{
System.out.println (n + " is prime.");
; s
l} ... A J

l

public void FindAllPrimes (int num)
{

inti=1,j=1,k=1,n=1;

for (n = 2; n <= num;n++)
for 1=2;1<n-1;i++)
{

if(n%i==0)
{

}

System.out.println (n + "is not prime.");.

H

> //checking whetheri and n are equal.
if i==n)
{

System.out.println (n +" is prime.");

}i S —— J
}

|

Type 1 Clone Fragments

http://ees.elsevier.com/jss/download.aspx?id=372497&guid=27300f7c-d793-4a9f-adf7-64da889826c6&scheme=1

Figure(s)

Click here to download high resolution image

Different variable names (n is replaced by j)

{

publicvoid DetermineFactorialAndPrime (int n)

inti=1,j=1,k=1fact=1y
for (i=1;i<=n;i++)
fact = fact *1;
é}'stem.out.println ("factorial = "+fact);

for (i = 2;1 < n-1;1++)

{

if (n %i==0) J{
i
System.out.printin (n +" is not prime.");

System.out.println (n + " is prime.”);

...)\.--.-.--------.--.-.-.------‘.--.---.-o..'

|

public void FindAllPrimes (intnum)
{

inti=1,j=1,k=1,n=1;

for (j = 2;) <= num;j++)

{

Ffor(i=2;1<j-1;1+4)
b o
‘ if(%1==0)
{ v

S
3% 3

L ifGi==])
P A

B L]

System.out.println (j + "is not prime."); |

System.out.println (j +" is prime.”);

" o

ceecccrercccececmeeeed

I

Type 2 Clone Fragments

http://ees.elsevier.com/jss/download.aspx?id=372498&guid=a3bbf085-f729-4095-9f33-b4bf9fb4f00d&scheme=1

Figure(s)
Click here

to download high resolution image

A new line is added

{

public void DetermineFactorialAndPrime (intn)

inti=1,j=1,k=1fact=1;

for (i=1:1<=n:i++)

{

}
System.out.println ("factonial = "+fact);

fact = fact *i;

for (1 = 2;1 < n-1;1+4)

{ if (n %1==0)
(System.out.println (n +" is not prime.");
\ ¥
if i==n)
: System.out.println (n +" is prime.");

... e eeeeeened

publicvoid FindAllPrimes (int num)

{

inti=y,j=r,k=0o,n=1;

for (n = 2: n <= num: n++)

{: """"""""""""""""""""""""""""""""""""""" =

| for i=2;1<n-15i++)
i |

‘ if(n%1==0)

{

}
(i==n)

> k=k+1;

el ~ et

4
1

4

4

1

H }
e

Svstem.out.printin (n +" is prime.");

!
1
)

)
1
]

Svstem.out.printin (n + "is not prime."); |

/

l

Type 3 Clone Fragments

http://ees.elsevier.com/jss/download.aspx?id=372499&guid=3857ccd9-5714-4d06-918b-ca36eb37e9fa&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugpronenesscomparison.tex

http://ees.elsevier.com/jss/download.aspx?id=372487&guid=b46d4226-9628-48a8-bd12-3e38b186609e&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: commitmessages.tex

http://ees.elsevier.com/jss/download.aspx?id=372489&guid=2263b892-ba69-4a15-a12a-320eb8da3a79&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: figure1.tex

http://ees.elsevier.com/jss/download.aspx?id=372491&guid=77166866-9179-4802-8fdb-52bb15ac4bb6&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: figure2.tex

http://ees.elsevier.com/jss/download.aspx?id=372492&guid=0f4096a6-4ff6-43a8-b996-54cc81edc778&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: figure3.tex

http://ees.elsevier.com/jss/download.aspx?id=372493&guid=6b5b3a67-469c-4813-9e84-f0314f032b8f&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: figure4.tex

http://ees.elsevier.com/jss/download.aspx?id=372494&guid=ec3a8fd7-416b-450c-9e91-fcf84ee64fe2&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugfixstatistics.tex

http://ees.elsevier.com/jss/download.aspx?id=372500&guid=5f7497ec-1ed8-4ebe-bbfd-0ea00140b6c8&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugpatternstatistics.tex

http://ees.elsevier.com/jss/download.aspx?id=372501&guid=660cde16-df36-4e29-b2d1-21ae3dfd242d&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugpronenessstatistics.tex

http://ees.elsevier.com/jss/download.aspx?id=372502&guid=ab0afc64-f291-466f-896d-fa18fc937d7e&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugpropagationstatistics.tex

http://ees.elsevier.com/jss/download.aspx?id=372503&guid=f8a0f63d-4291-4a4b-aed0-b328c22ad418&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: table6.tex

http://ees.elsevier.com/jss/download.aspx?id=372504&guid=76ea5928-0b3f-43de-a25c-eec50f4d6418&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: table7.tex

http://ees.elsevier.com/jss/download.aspx?id=372505&guid=b22e8500-623d-4af3-ba17-16f219150f89&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: table8.tex

http://ees.elsevier.com/jss/download.aspx?id=372506&guid=a2521c27-6fe2-4fa5-b756-e2f21e0ee1ae&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: table10.tex

http://ees.elsevier.com/jss/download.aspx?id=372507&guid=84c0b2db-a9f6-4cba-a871-480097f2ed0f&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: elsarticle.dtx

http://ees.elsevier.com/jss/download.aspx?id=372508&guid=11ea0601-d677-4a86-89be-1d9c1305b7a4&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: clonesizes2.tex

http://ees.elsevier.com/jss/download.aspx?id=372514&guid=2afd1b4c-6aae-4daf-9b24-cbc2151b7d29&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: figureimportant.tex

http://ees.elsevier.com/jss/download.aspx?id=372515&guid=119e76c9-4f44-41db-8f5d-a914682a2dbc&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: mybibliography.tex

http://ees.elsevier.com/jss/download.aspx?id=372516&guid=cb943d31-c8ac-45ab-ae68-bed03067b870&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: clonesizes.tex

http://ees.elsevier.com/jss/download.aspx?id=372527&guid=adae1e64-9d1c-46d9-ab37-f39afd27df5b&scheme=1

LaTeX Source Files
Click here to download LaTeX Source Files: bugpropagation_manuscript.tex

http://ees.elsevier.com/jss/download.aspx?id=372530&guid=382fb101-f28e-4956-8bf9-e68b6c10ac79&scheme=1

