
74

VizSciFlow: A Visually Guided Scripting Framework for
Supporting Complex Scientific Data Analysis

MUHAMMAD M. HOSSAIN, University of Saskatchewan, Canada
BANANI ROY, University of Saskatchewan, Canada
CHANCHAL K. ROY, University of Saskatchewan, Canada
KEVIN A. SCHNEIDER, University of Saskatchewan, Canada

Scientific workflow management systems such as Galaxy, Taverna and Workspace, have been developed to
automate scientific workflow management and are increasingly being used to accelerate the specification,
execution, visualization, and monitoring of data-intensive tasks. For example, the popular bioinformatics
platform Galaxy is installed on over 168 servers around the world and the social networking space myEx-
periment shares almost 4,000 Galaxy scientific workflows among its 10,665 members. Most of these systems
offer graphical interfaces for composing workflows. However, while graphical languages are considered easier
to use, graphical workflow models are more difficult to comprehend and maintain as they become larger
and more complex. Text-based languages are considered harder to use but have the potential to provide a
clean and concise expression of workflow even for large and complex workflows. A recent study showed that
some scientists prefer script/text-based environments to perform complex scientific analysis with workflows.
Unfortunately, such environments are unable to meet the needs of scientists who prefer graphical workflows.
In order to address the needs of both types of scientists and at the same time to have script-based workflow
models because of their underlying benefits, we propose a visually guided workflow modeling framework
that combines interactive graphical user interface elements in an integrated development environment with
the power of a domain-specific language to compose independently developed and loosely coupled services
into workflows. Our domain-specific language provides scientists with a clean, concise, and abstract view of
workflow to better support workflow modeling. As a proof of concept, we developed VizSciFlow, a generalized
scientific workflow management system that can be customized for use in a variety of scientific domains.
As a first use case, we configured and customized VizSciFlow for the bioinformatics domain. We conducted
three user studies to assess its usability, expressiveness, efficiency, and flexibility. Results are promising, and
in particular, our user studies show that VizSciFlow is more desirable for users to use than either Python or
Galaxy for solving complex scientific problems.

CCS Concepts: •Human-centered computing→ User interface management systems; User centered
design; • Applied computing→ Bioinformatics.

Additional Key Words and Phrases: Scientific Data Analysis; Workflow Modeling; Workflow Language; DSL

ACM Reference Format:
Muhammad M. Hossain, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. 2020. VizSciFlow: A Visually
Guided Scripting Framework for Supporting Complex Scientific Data Analysis. Proc. ACM Hum.-Comput.
Interact. 4, EICS, Article 74 (June 2020), 37 pages. https://doi.org/10.1145/3394976

Authors’ addresses: Muhammad M. Hossain, University of Saskatchewan, Saskatoon, SK, Canada; Banani Roy, University of
Saskatchewan, Saskatoon, SK, Canada; Chanchal K. Roy, University of Saskatchewan, Saskatoon, SK, Canada; Kevin A.
Schneider, University of Saskatchewan, Saskatoon, SK, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
2573-0142/2020/6-ART74 $15.00
https://doi.org/10.1145/3394976

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://doi.org/10.1145/3394976
https://doi.org/10.1145/3394976

74:2 Hossain, Roy, Roy, Schneider

1 INTRODUCTION
A workflow captures a set of abstract descriptions of execution steps for a scientific process. Each
step involves a data transformation or analysis task based on a set of rules alongwith the instructions
for its execution [71]. Multiple human or computing resources may take part in the processing as
data are passed from one resource to another [11]. Scientists often use a workflow language to
author a model that specifies the orchestration and order of execution of the services. Specifying
complex scientific experiments using workflows is becoming more common. Consequently, a
number of generic software tools called Scientific Workflow Management Systems (SWfMS) have
emerged that allow specification, registration, execution, visualization and monitoring of scientific
workflows [4, 30, 40, 63, 78, 118].

SWfMSs offer text-based or graphical languages to model workflows. Both approaches have
strengths and weaknesses. Initially, program comprehension is usually easier with a graphical
language. But the model often becomes confusing as the complexity of the workflow increases. It is
hard to manage a multiplex layout of wires and elements, follow data or control flow and maintain
multiple versions of a large graphical model.
Many scientists prefer text-based programming as it is conducive to rapid prototyping and

provides a more compact representation of complicated workflows [76]. Some researchers also
argue that a textual program is easy to scan [46]. But scientists usually lack a deep understanding of
complex programming constructs. We noticed that those scientists struggle to use general-purpose
scientific programming languages such as Python. For example, they have difficulty correctly
ordering tool-specific arguments. As well, general-purpose approaches have no mechanisms for
automatically generating logs or capturing output [53]. As scientific data grows exponentially, it is
more difficult to get time-critical analysis results. Running tools in a high performance computing
environment often requires specialized knowledge such as learning the Application Programming
Interface (API) of complex distributed systems such as Spark. There is a gap between a scientist’s
domain knowledge and complex programming constructs, which can be overwhelming and overly
complex when using a language like Python, and hard to scale and maintain when using a strictly
visual approach. To address these deficiencies and bridge the gap between a scientist’s domain
knowledge and complex programming constructs, we develop a framework for SWfMSs which
incorporates an interactive IDE for specifying scientific workflows with a domain-specific language
(DSL). The DSL provides a minimal set of language features and limited vocabulary specific to
a scientist’s domain knowledge. An evolutionary approach helps to enrich the domain-specific
vocabulary in an iterative and incremental manner.

The efficiency of workflow modeling depends on various factors such as the formal syntax
of the language, the experience and expertise of the users, effective use of secondary notations
[92], and the usability of the supported development tools. The secondary notations refer to the
ability of a language system to add extra information to the formal syntax of the language [105] to
increase the comprehensibility of a model or program. Indentation, comments, grouping of related
elements are some examples of textual secondary notations. On the other hand, the development
tools are the auxiliary features that are supported by the language system to ease the authoring
of a model. An Integrated Development Environment (IDE) can offer many development tools
such as interactive UI elements for automatic pipeline creation, syntax highlighting, automatic
indenting, automatic code completion, testing and debugging services, monitoring and visualization
facilities, interface for sharing and collaboration of data, services and workflows. For example, in
our proposed graphical environment for workflow modeling, workflow artifacts are represented as
visual elements which can be converted into code snippets and inserted into a code editor with
mouse and keyboard interactions.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:3

As a proof of concept of our proposed framework, we developed a customizable SWfMS –
VizSciFlow. Since our framework is not restricted to any particular research domain, we evaluate
it for the bioinformatics domain. We chose this domain because it requires numerous scientific
analyses of a complex nature. Furthermore, while there are a great many bioinformatics tools (e.g.,
FastQC [7], PEAR [122], BWA-MEM [67], Flash [75], and SAMtools [68]), they are not intuitive to
use and scientists need to have considerable expertise in using these tools to create workflows with
existing systems and platforms. In order to address these issues and make it easier for scientists to
conduct scientific analyses in bioinformatics, we customized VizSciFlow framework by integrating
services and tools from this domain. The availability of numerous bioinformatics tools and pipelines
(including quite complex pipelines) provides many examples to test the comprehensiveness and
expressiveness of the syntax and constructs of our DSL to model scientific workflows. Moreover,
by customizing our framework for computational biology, we aim to address the usability and
flexibility problems of existing bioinformatics systems, such as Galaxy, QIIME and Mothur (cf.
Section 4).
Galaxy is a web-based system and QIIME and Mothur are desktop-based command-line appli-

cations. Desktop applications have the added complexity of requiring the systems to be installed
and maintained locally, often by the bioinformaticians. Although Galaxy is a web-based platform,
in our user study, we discovered that scientists found it difficult to compose and execute complex
scientific tasks using this platform (details can be found in the evaluation Section 7). Moreover, while
most SWfMSs support a single execution platform, VizSciFlow accommodates multiple runtime
environments - local server, Galaxy server, and Hadoop cloud cluster. A single workflow can be
composed of various tasks executing in different execution environments. At the same time, our
system also provides three different data storage mechanisms - POSIX, Galaxy datasets, and HDFS.
There are numerous challenges when engineering an interactive environment for managing

scientific workflows, including how do we provide scientists the ability to specify workflow both
graphically and textually; how do we provide scientists the ability to readily distribute computation
from within an interactive environment; and how do we design and build interactive features
that enable a scientist to easily extend and adapt a toolset without further software development.
Current SWfMS user interfaces do not support these features.

We present the contributions of our work in the form of the following six research questions.

(1) RQ1: Can we create a generic SWfMS framework for complex scientific data analysis which
can be customized/adapted to different scientific domains?
• We investigate and identify the challenges and requirements for interactive workflow
modeling in a scientific workflow management system.

• We propose a generic framework for complex scientific data analysis which can be adapted
to multiple scientific research domains focusing on ease of interaction for the scientists.

• As a proof of concept of our proposed framework, we develop VizSciFlow – a scientific
workflow management system which supports composition, execution, collaboration and
management of scientific workflows.

(2) RQ2: Can we combine visual and textual elements to facilitate the composition of workflows
for domain scientists?
• We exploit the benefits of visual elements along with textual scripting in the proposed
framework. It provides a domain-specific interactive graphical environment equipped
with secondary notations, development tools, and other visual entities to support the
functionalities of a scientific workflow management system. Various workflow entities like
data sources, computational modules and services, workflows, job histories, data filters

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:4 Hossain, Roy, Roy, Schneider

are represented as interactive visual elements which scientists can drag-and-drop on the
editor. The visual elements are then transformed into concise code snippets.

(3) RQ3: Can we adapt VizSciFlow for a specific scientific domain such as bioinformatics?
• In order to show that the framework is adaptable to different scientific domains, we integrate
tools and services from the bioinformatics domain into VizSciFlow to create a scientific
workflow management system for computational biology and conducted case studies and
user studies to show the effectiveness of VizSciFlow.

(4) RQ4: Does the combination of visual and textual elements help the scientists compose
scientific workflows easily with less cognitive load?
• In order to show the effectiveness of the use of visual and textual elements in the proposed
framework, we conducted both case studies and user studies. In particular, we adapted
VizSciFlow for bioinformatics domain as a case study and then conducted two user studies.

• We use this system to evaluate our proposed framework and to compare with a widely
used scientific workflow management system, Galaxy and popular programming language,
Python in terms of their usability, efficiency and expressiveness. The results of our prelimi-
nary studies show that VizSciFlow is a better choice than them.

• To further evaluate the usability of VizSciFlow, we conducted a user study to measure the
subjective perceptions of users on the usability of the system using the System Usability
Scale (SUS) post-test survey instrument [16, 17]. The use of graphical and textual elements
gives a unique novelty in composing complex workflows. First of all, the graphical elements
provide easy drag-and-drop of useful workflow entities. Second, the textual scripts provide
concise and understandable workflows not only for ease of use but also for maintenance.
The participants of the user studies worked with most of the interactive elements of the
system to evaluate our framework.

(5) RQ5: How flexible is the proposed system in incorporating new services or new tools for a
specific domain?
• A user study was conducted to evaluate the flexibility of integrating third party tools into
VizSciFlow. The NASA-TLX [49] post-task questionnaire is used to collect the opinions of
the participants. This research question shows that the proposed framework makes it easier
for users to interact with the system in integrating new analysis tools and computational
modules using a graphical window which offers a Python code editor and JSON mapper.

(6) RQ6: Does the proposed system facilitate distributed computational environments?
• A case study was conducted to measure the performance of the system in a large data
volume and high performance scenario. We evaluate if VizSciFlow can successfully forward
data and service calls to a distributed infrastructure. A workflow of our proposed system
can consist of different services, some of which may run in local server, some in Galaxy and
some in distributed computing environments. The scientists can specify the services, right
from the framework, to make use of the hybrid computational environment as necessary.

The remainder of the document is organized as follows. Section 2 provides background informa-
tion on SWfMSs and workflow modeling languages. The research challenges of scientific workflow
modeling are described in Section 3. In Section 4 we provide an overview of the related work
in this area. The functional architecture of our proposed framework for workflow specification,
execution and management is presented in Section 5. A proof of concept implementation of our
proposed workflow, VizSciFlow, is described in Section 6. The evaluation and experimentation
to understand the usability, efficiency, expressiveness, flexibility and the support of distributed
environments of our proposed workflow modeling framework are discussed in Section 7. The

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:5

results of the evaluation are discussed in Section 8. Potential threats to validity are described in
Section 9. We conclude the paper and explain the future directions of our work in Section 10.

2 BACKGROUND
This section provides background to our approach with a discussion of scientific workflow, scientific
workflow management systems, and workflow management languages.

2.1 Scientific Workflow and Scientific Workflow Management Systems
Lin et al. [70] define scientific workflow to be “the computerized facilitation or automation of
a scientific process, in whole or part, which usually streamlines a collection of scientific tasks
with data channels and dataflow constructs to automate data computation and analysis to enable
and accelerate scientific discovery.” Scientific workflows can be used during different phases of a
larger scientific process, i.e., the cycle of hypothesis formation, experiment design, execution, and
data analysis [41, 73]. It composes a collection of interdependent tasks which acquire, generate,
transform or analyze complex datasets [73]. The life-cycle of a scientific workflow can be divided
into the following four phases [45, 71–73, 109]:
(1) Composition Phase: The definition of the abstract scientific workflow, the activities, and the

data dependencies between activities are specified in this phase.
(2) Deployment Phase: The abstract workflow is translated into an executable concrete workflow

(cf. Section 2.2). Operations such as validation, resource allocation, scheduling, optimization,
parameter binding, and data staging are part of this phase.

(3) Execution Phase: Input data are sent to the computational module, the processing algorithm
is executed on the data, and output data are generated. Monitoring, controlling and steering
are performed and provenance data are collected during the execution of the workflow.

(4) Analysis Phase: Visualization of data and analysis of provenance data are part of this phase.
A scientific workflow management system (SWfMS) defines, modifies, manages, monitors, and

executes scientific workflows by executing scientific tasks [70]. Its primary goal is to automate
the execution of scientific workflows [72] and it may additionally automate the entire scientific
workflow life-cycle.

2.2 Workflow Modeling Languages
Workflow languages need to support a user-driven, incremental, prototypical approach to workflow
composition [11] for conducting scientific experiments. Four important constructs – Sequence,
Parallelism (AND-split and AND-join), Choice (OR-split and OR-join) and Iteration are used to create
simple to complex workflows [112]. Smaller workflows are composed using these constructs to
build a larger workflow. A workflow may take either an Abstract or a Concrete form [74]. Abstract
workflows emphasize the analytical operations or functions to be performed rather than the
mechanisms for performing the operations [119]. As a result, they can be targeted to different
execution environments at run time. Scientists primarily work with abstract workflows. A concrete
(or executable) workflow is a description of the actual executable modules and their relationships
in order to perform the operations indicated in the abstract workflow.
Higher-level workflow models are based on either graphical or text-based representations.

Graphical modeling tools like Petri nets [93], UML-based [32, 117], YAWL [22, 113], Triana PSE [24],
and Ptolemy II [15] offer desktop or web-based interfaces to compose a workflow by dragging and
dropping graphical elements and connecting them. These tools hide low-level details and help
users to focus on higher-level abstractions. The proponents of visual programming claim that
these languages provide cognitive benefits for program comprehension [14]. A disadvantage is that

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:6 Hossain, Roy, Roy, Schneider

graphical models become chaotic and confusing as the number of tasks and workflow complexity
increase due to the entanglement and overlap of a large number of graphical elements and wires. It
can be quite hard to follow the direction of data flow to capture the semantics. Green et al. [47] use
match-mismatch conjecture to measure program comprehension [42] only to conclude that there is
no evidence that a visual language is better than a text-based language in all application contexts.
The choice of visual or textual language depends on various factors such as size and complexity of
the program, control or data flow, forward or reverse flow of data or control, the expertise level of
the programmers.

Text-based (or language-based) modeling is the representation of workflow models in the form
of text. Some researchers suggest that a textual program is easy to scan [46]. One type of text-based
modeling expresses abstract workflow models as configuration or serialization formats in a markup
language, such as XML (e.g., XPDL [23], WS-BPEL 2.0 [5], and Pegasus DAX [30]), YAML (e.g.,
CWL [6]) and JSON (e.g., Galaxy [2]). These workflow specifications are easy to reconfigure when
the data source or execution environment changes, but often need excessive text to meaningfully
define a workflow model. Iterative and parallel operations are not easy to define and the execution
semantics is often hard to infer from the configuration text. Although Petri nets [93] have a
formal mathematical notation in addition to its graphical notation, it is still hard to decipher for
non-mathematical users.

Scripting languages, general purpose programming languages (GPLs), and DSLs are also used to
create textual workflow models. Configuration As Code (CaC), an approach to store configuration
[89, 95] of workflow composition as source code, provides dynamic, maintainable, versionable,
testable and collaborative workflow code. Scripting can be considered as the most basic form of text-
based modeling. It is not robust due to a lack of dependencies and reentrancy [64]. Dependencies
specify the upstream data or tasks that downstream services require as input while reentrancy refers
to the resume-ability of a workflow execution from a check point. General purpose programming
languages like C/C++, Java or Python can define the most powerful and robust workflow models.
But scientists usually lack deep understanding of the complex constructs of these languages. As
well, many of these languages have a lot of boilerplate code or need overly complicated code for
accessing distributed storage and processing which is beyond the realm of scientists’ programming
abilities.
A textual domain-specific language (DSL) [37] is designed to hide the complexity of a system

and bridge the gap between the problem domain and the solution domain [115]. A DSL supports a
minimal set of language features and limited vocabulary specific to a scientist’s domain knowledge
to increase productivity and decrease maintenance effort [54]. DSLs offer substantial gains in
expressiveness and ease of use compared with general-purpose programming languages in their
domain of application [60, 82]. Some examples of prominent DSLs are YACC, SQL, HTML [12].
Current Workflow Language (CWL) [6], Nextflow [31], and SnakeMake [61] are some DSLs for
workflow composition in the scientific domain.

A DSL is developed in several phases – decision, analysis, design, implementation, and deploy-
ment [82]. Domain analysis or domain modeling is the process of extracting the conceptual model
of the problem domain (essential concepts, domain knowledge, techniques, and paradigms) and
generating tools and artifacts for the solution domain (technical space, middleware, platforms
and programming languages) [10]. A domain model generally uses the same terminologies as the
problem domain so that it can be used to communicate with domain-users, domain-experts and
non-technical stakeholders.

From a software development perspective, there are two kinds of DSLs – internal (or embedded)
and external [38]. An internal DSL is implemented on top of a host language and uses the infras-
tructure of the host [39]. Programs written with an internal DSL look similar to a host language

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:7

program. External DSLs are completely separate languages that are parsed into a form that the host
language can understand [37]. Developing internal DSLs requires less effort and has the benefit of
being able to draw from all of the features of the host language. On the other hand, an external
DSL can detect errors early and error messages can be clear and domain-specific. In a collaborative
development, domain-users will be restricted from using complex syntax of the host language.
Otherwise, complex syntax may confuse other collaborators who might have less expertise in that
host language. As well, it is possible to statically check the programs with an external DSL compiler.
For our proposed framework, we opted for the external DSL.

3 RESEARCH CHALLENGES
In order to design a framework for complex scientific data analysis, we first identify the key
challenges and requirements. We studied the existing literature for DSLs [12, 37, 60, 82], interactive
workflowworkbenches [4, 78] and bioinformatics domains [96]. We also experimented with existing
SWfMSs such as Galaxy [40], Kepler [4], Pegasus [30], Taverna [118], Workspace [25] and Bpipe
[98] which gave us good insights into the problem domain. We discussed with scientists their
problems and requirements for workflowmodeling and management in their respective domains. To
gain further knowledge, we consulted several workflow system reference architectures [51, 71], and
in particular the approach outlined in our earlier study [97]. Furthermore, recently we conducted
extensive experiments on designing collaborative Groupware Systems [84], proposed a micro-level
data management scheme [21], studied provenance Modeling for workflows [35], experimented an
attribute level locking scheme [83] and even proposed a novel mechanism for storing workflow
outputs optimally [20] to Support Complex Scientific Data Analysis, which also gave us insights on
the research challenges in this domain. In this section we describe the challenges and requirements
we identified for developing a DSL-driven SWfMS framework.

3.1 Gathering Essential Knowledge for Domain Modeling
The automated scientific problems are usually implemented in a general purpose programming
language like C, C++, Java or Python. Workflow languages orchestrate many of such solutions in a
loosely-coupled manner. Developers are naturally inclined to use a general purpose programming
language. Unfortunately, such solutions are often complex and too cumbersome to grasp easily for
domain scientists. In a large distributed system, there are inherent complexities of connecting to
servers, binding parameters, calling service methods, and comprehending return patterns. Domain
modeling emphasizes abstracting the complexity of the system and extracting the most useful
features for the domain-users. Developers need to work with domain experts, consult domain-
specific standards, ontologies and best practices, use existing similar systems to determine the
proper level of abstraction, and to identify the appropriate vocabulary in terms of the target domain.

3.2 Supporting Visual Guidance
Non-expert users are interested in graphical languages as there is less need to understand pro-
gramming. For example, graphical languages intrinsically capture parallelism without explicit
parallelism control structures [76]. Expert users can make rapid prototyping and compact repre-
sentation of potentially complicated workflows using textual languages [76]. Visual elements of a
graphical interface can complement textual modeling to increase the interest of non-expert users in
textual languages. In a visually guided workflow modeling environment, developers must provide
interactive graphical elements to represent workflow and composition artifacts. The development
life-cycle of a scientific workflow has similar steps to using general-purpose programming lan-
guages – planning, designing, composing, testing and debugging [76]. The IDE for textual workflow
modeling should provide support for the entire life-cycle. The IDE needs to provide visual elements

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:8 Hossain, Roy, Roy, Schneider

that can be added to the workflow editor using mouse or keyboard interaction (e.g., drag-and-drop).
The developers of such UI environments need to determine the visual representations to use and to
determine how they are then transformed into code when inserted into the editor.
In most graphical modeling frameworks for data-intensive scientific analysis, users create a

Data-Flow Graph (DFG) by dragging visual elements into the graph to form a chain of services
[4, 40]. A data-flow graph improves the cognition of the model. The developers need to generate a
compact data-flow graph to fit in a manageable layout with less cluttering of wires. The DAG-based
Galaxy workflow system packs a lot of information in a graph but unfortunately, it results in a
complex layout even for a relatively modest workflow.

3.3 Deriving Minimal DSL Constructs
The syntactic constructs to glue together various domain model elements become the syntax of the
DSL [39]. General purpose programming languages provide many constructs each with multiple
variants to address many possible application types. The constructs used in workflows are mostly
specified to define rulesets and to compose services effectively. The main challenges of developing
a workflow DSL is to derive a minimal set of constructs with precise syntax that can express the
workflow semantics in a clear and concise way. The keywords for the syntax to specify the DSL
constructs should be as few as possible.
We require a DSL with minimal constructs for specifying scientific workflow, but that can be

customized for different scientific domains. The vocabulary of the DSL should be easily expandable
by integrating domain-specific services. If a DSL is required to span multiple domains, develop-
ers should be able to integrate services from other domains and enhance the DSL vocabulary
accordingly.

3.4 Supporting Extensibility and Balancing Flexibility and Usability
While designing any information system, it is important to balance flexibility and usability [50,
91, 102]. A system is expected to support common activities effectively and efficiently as well as
be flexible enough to perform whatever the users want from it. Due to conflicting requirements,
it is not always possible to provide both with the same level of effectiveness and a trade-off is
often inevitable which is widely known as the flexibility-usability trade-off [69]. It is a challenge
to determine the threshold of this trade-off to adequately fulfill both flexibility and usability. An
extensibility model is necessary for experienced users to exploit the system capabilities and extend
the system to improve flexibility.

General purpose programming languages support extensibility, but at the cost of usability. DSLs
provide a higher level of abstraction but too much abstraction may hinder the system’s flexibility.
The internal system is much more powerful than the abstracted domain model. Experienced
domain-users need another level of abstraction to exploit this power.

3.5 Allowing Sharing and Collaboration
Workflow description and execution capabilities offer a new way of sharing and managing infor-
mation [41]. As the complexity of a scientific experiment increases, it becomes difficult for a single
user to author and test a large workflow. It is even harder if knowledge and resources of multiple
domains are needed in the same workflow. Sharing and collaboration of services and workflows
support reuse of scientific computational modules [43, 84] and help to stop reinventing the wheel.
A further challenge of workflow sharing is to ensure that there exists appropriate authorization for
a particular user to access the resources which the workflows and services use.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:9

3.6 Large Storage Management and High Processing Performance
Data-intensive scientific domains use heterogeneous data types, often in a massive volume. Data
for computational biology or genetics, for example, often requires many terabytes (TB) or even
petabytes (PB) of disk space. Traditional IT infrastructures are limited in handling such volumes
of data. New technologies have emerged for managing large datasets that are often referred to as
Big Data. At the same time, many scientific algorithms are compute-intensive and need enormous
processing power to execute, especially when large-scale data is involved. For instance, powerful
computing resources are essential for processing genomic data with an acceptable response time.
Next Generation Sequencing uses massively parallel methods, where thousands or even millions of
reactions occur simultaneously. Considerable complex boilerplate code is usually needed for general-
purpose programming languages to support high processing capabilities during workflow execution.
Developers face challenges to manipulate huge datasets as well as to forward service execution to
high processing clusters transparently. A carefully designed workflow system should support large
storage and high performance such that domain-users do not need any extra constructs to use high
performance services.

4 RELATEDWORK
There are various graphical workbenches for workflow modeling, such as Galaxy, iPlant [40],
Workspace [25], QIIME 2 Studio [19, 94], and Pegasus [30], which offer visual editors for composing
workflows. The user interface of Galaxy and iPlant are web based while Workspace, QIIME 2 Studio
and Pegasus provide desktop interfaces for workflow modeling which need to be installed on the
user’s machine. Galaxy and Pegasus have JSON and XML based serialization formats respectively,
and thus have similar pitfalls as the text-based modeling languages stated in Section 2. Our proposed
framework provides an interactive graphical web interface to compose workflow models in DSL
and to submit them for execution. Since our approach follows the service calls, it can express the
semantics of the natural flow of pipeline execution. While most SWfMSs support a single execution
platform, VizSciFlow accommodates a hybrid runtime environment consisting of local server,
Galaxy server and Hadoop cluster on a cloud. Users can explicitly choose an execution environment
for a task as theymodel the workflow. A single workflow can be composed of various tasks executing
in different execution environments. At the same time, our system also provides three different data
storage mechanisms - POSIX, Galaxy datasets and HDFS. Moreover, the VizSciFlow system exposes
its functionalities as RESTful web services. Network enabled client programs, such as curl and wget,
can communicate with the system using standard HTTP requests and exchanging JSON-based
messages. Furthermore, the system can generate a data-flow graph of the service composition to
support workflow comprehension.

Nextflow [31] specifies composition of parallel and reactive workflows. SnakeMake [61] and Bpipe
[98] define rules for composing bioinformatics tools as a pipeline. Current Workflow Language
(CWL) [6] uses YAML and JSON for workflow composition. None of these DSLs provide a dedicated
interactive user interface for rapid prototyping. These languages only define language constructs for
workflow composition and do not provide services for any specific scientific domain. The domain-
users are responsible for installing the tools themselves before chaining them as a workflow
using these languages. Some users find CWL code excessively verbose and clumsy [33]. Universal
configuration standards like CWL have benefits for creating multi-domain and cross-platform
workflows. But efficiency is not their strength.

Text-based domain-specific languages can be seen in many other domains such as User Interface
Management Systems (UIMSs) [28, 36, 111], Model Driven Engineering (MDE) [56, 107] and Lan-
guage Oriented Programming. There are also various IDEs to develop textual DSLs, for example,

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:10 Hossain, Roy, Roy, Schneider

Xtext [34], Eclipse Epsilon [59], ANTLR IDE [90], DSL Forge [62], and Microsoft DSL Tools [27].
Investigating the benefits of these efforts gave us motivation to identify the requirements of a DSL
and a domain-specific interactive graphical environment for workflow modeling for the scientific
data analysis domain.
Table 1 demonstrates a comparison of our proposed framework with some graphical workflow

management systems in the scientific domain. From a UI engineering perspective, all the features
listed in the table may not be interesting, but it is important to offer domain-users all the required
features along with the interactive elements to model workflow seamlessly. The REST interface
supports sending a DSL script to the VizSciFlow server for execution and for retrieving the results
using curl or wget. This operation acts like a network-enabled command line interface. Galaxy
provides an API for a similar operation, but domain-users must know Python programming and
the client machine must have Python installed to use it. Domain-users need very little or no prior
programming knowledge to write a modest workflow in our proposed DSL. They will either quickly
learn the limited language constructs and control statements that it offers or use the autocomplete
feature of the editor to insert the language constructs easily. No other framework in the list supports
large data storage and high performance processing as VizSciFlow do which is important for today’s
data-intensive scientific analysis. Using Big Data support of our proposed framework, selected
service requests are forwarded to a Hadoop cluster for execution and results are collected.

Table 1. VizSciFlow vs Existing Workflow Modeling Systems

Workflow
System UI Services Big

Data DFG Text
Workflow
Modeling
Language

Little or No
Programming

Galaxy Web
API ✓ ✗ Implicit JSON Visual ✓

Kepler Desktop ✗ ✗ Implicit XML
KML Visual ✓

Pegasus CLI ✗ ✗ Implicit XML Textual
(GPL) ✗

Taverna Desktop
CLI ✗ ✗ Implicit RDF/XML Visual ✓

Workspace Desktop ✗ ✗ Implicit XML Visual ✓

VizSciFlow Web
REST ✓ ✓ ✓ DSL Textual

(DSL) ✓

DFG = Data-Flow Graph; Services = Domain-specific services preinstalled; CLI = Command Line Interface;
Big Data = Distributed storage and processing support; Text = Serialization format

5 A FRAMEWORK FOR SCIENTIFIC DATA ANALYSIS
In this section, we describe the architecture of our proposed framework to build a generic scientific
workflow management system using both graphical and textual elements.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:11

5.1 Architecture
We follow the recommendations of functional architecture of workflowmanagement systems [51, 52,
71, 97] to derive the architecture of our proposed framework. The architecture consists of four layers
– presentation, domain, execution and infrastructure – which implement the phases of a workflow
life-cycle as depicted in Figure 1. JSON-based messaging protocol is used for communication
between layers. This framework is in general applicable to any scientific domain.

Monitoring

Provenance

P
re

s
e

n
ta

ti
o

n

Visualization

DataViz ProvViz

E
x

e
c

u
ti

o
n

In
fr

a
s

tr
u

c
tu

re

Local/Spark/Galaxy Execution

D
o

m
a

in

Composition Panel

Params

Services

DSL EditorData

Collaboration

Queue Runner

Job Scheduler

Dispatcher

Workflows

Deployment

Parsing Concrete
Workflow

DAG

DFG

Service
Definition

Cloud/Distributed/Galaxy

PostgreSQL

Neo4j

MonitorViz

DFG = Data Flow Graph DAG = Directed Acyclic Graph

REST

Fig. 1. Functional Architecture of a SWfMS with Visually Guided Scripting Framework
The Presentation Layer consists of a workflow composition panel, REST interface, visualizers for

data, monitoring and provenance as well as graphical elements for sharing and management of the
workflow system. The composition panel, which is a web interface, supports many features of a
typical Integrated Development Environment (IDE). It provides interactive graphical elements to
help make the process of writing the workflow scripts intuitive, fluent and comfortable. This layer
is comprised of the following components:

• DSLEditor: The DSL editor is built using the powerful ACE [1] online source code editor. ACE
supports familiar secondary notations and development tool features like syntax highlighting
(110 languages), automatic code completion, automatic indentation, quick info, and parameter

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:12 Hossain, Roy, Roy, Schneider

info for many popular languages. We extend and adjust the ACE code to support domain-
specific keywords and constructs. For example, domain-users can type for and press Ctrl +
Space to insert a template of a code snippet for the Iteration construct.

• Data Source Panel: The heterogeneous data sources are shown in a hierarchical layout. It
can currently show the data tree of POSIX, Galaxy and HDFS file systems. An authorization
mechanism manages the access privileges of a user on a particular dataset. The data from
this layout can be dragged over to the code editor as code snippets. A strong search-and-filter
feature powered by regular expression is provided to find data in many possible ways – name,
size, date, metadata, etc. The search history is preserved and can be saved with proper names
for later use. The saved search-and-filter query can be dragged over to the code editor and
inserted as a code snippet for execution-time querying of data.

• Service Panel: The loosely-coupled computational modules for data analysis are listed in
an interactive grid panel. Domain-users can search for a service, observe its features and
usage syntax, configure it, and drag it to the code editor as a code snippet. An authorization
mechanism manages the access privilege of a service – public, shared or private. A new
service can be added to the system using the plug-in architecture, described below.

• Workflow Panel: It manages all the workflows accessible by the currently logged-on user.
A workflow can have public, shared or private access.

• Commands Panel: Domain-users use this panel to submit the script for execution. Work-
flows are usually submitted to the job scheduler for asynchronous processing. But for quick
testing of tools or small and short-running workflows, domain-users can select Immediate
for synchronous execution and immediately view the results.

• Job History Panel: It manages the execution histories of all the workflows run by the
currently logged-on user. Domain-users can stop and restart a job.

• Logging and Reporting Panel: This panel shows the compiler error, execution error, user-
defined logs and system generated logs.

• Monitoring Panel: The monitoring panel displays the status of each service execution,
errors, output, running time etc. of an executed or currently executing workflow. Users can
select the job history of a workflow execution from the Job History Panel. They can also
decide to stop the execution and restart later.

The visualization mechanism currently uses the capabilities of the browsers to display data.
The output and provenance data are either visualized or downloaded based on browser support
for the data. Custom visualization of data will be gradually implemented. As stated below, our
plugin architecture as well as sharing and collaboration also provide visual interfaces to ease the
corresponding operations.
The Domain layer parses a workflow along with its parameters and generates an optimized

Abstract Syntax Tree (AST). The AST is then transformed into a concrete workflow by attaching the
service modules from a library manager, which keeps a catalog of available service modules in the
system and forwards calls to an appropriate service provider during execution. The library manager
holds the information about the inputs and outputs of a service and is able to automatically connect
the outputs of a service to the inputs of the next service.
The Execution Layer receives the concrete workflows and queues them in a job scheduler. It

uses the PersistentScheduler of Celery Beat1 to dispatch the workflows for execution. The Per-
sistentScheduler is a distributed task queue for asynchronous task scheduling which uses the

1https://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html/

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html/

Visually Guided Scripting Framework for Scientific Data Analysis 74:13

Publish-Subscribe messaging pattern to perform unattended operations using Redis2 message bro-
kering server.
The Infrastructure Layer is responsible for managing physical resources for workflow storage

and execution. Individual services can run in different runtime environments, for example, a local
cluster, a Galaxy server or a cloud-deployed Hadoop cluster. More details about the infrastructure
layer are given in Subsection 5.5 and Subsection 5.6.

The developer uses this framework to build a domain-specific SWfMS which provides an intuitive
graphical environment to help model workflows in DSL easily. The GUI of the developed system
supports interactive visual elements to extend the system with a plugin architecture, share and
collaborate services and workflows, manipulate large datasets of distributed storage, and delegate
execution to high performance distributed processing. The following subsections describe how we
addressed the other research challenges, which were listed in Section 3, in this framework.

5.2 Plugin Architecture
The proposed framework uses a service-oriented approach to extend its tool support by consuming
external services and computational modules. There are several ways to extend the capabilities of
VizSciFlow such as developing a new algorithm in Python, making an existing service call more
user-friendly, wrapping a library programmed in GPL, writing a full-featured plug-in. The new
service is added to the DSL as an enriched vocabulary. A basic set of services is pre-installed in the
system by default on the basis of popularity among the domain scientists. The plugin architecture
of our proposed framework is shown in Figure 2.

Library

Manager

Adaptor

Mapper
Service

Registration

Service

Module
service call

service load

execute

register

Fig. 2. Plugin Architecture of VizSciFlow

2https://redis.io/

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://redis.io/

74:14 Hossain, Roy, Roy, Schneider

1 {
2 "package": "fastqc",
3 "module": "app.biowl.libraries.fastqc.adaptor",
4 "name": "CheckQuality",
5 "internal": "run_fastqc",
6 "desc": "Measures quality of a FASTQ file",
7 "params": [
8 {
9 "name": "data",
10 "type": "file"
11 }
12],
13 "returns": [
14 {
15 "name": "html",
16 "type": "file"
17 },
18 {
19 "name": "zip",
20 "type": "file"
21 }
22],
23 "example": "html , zip = fastqc.CheckQuality(data)"
24 }

Listing 1. VizSciFlow Library Mapping

A JSON mapper associates the services provided by tools or modules with the DSL vocabulary.
This mapping mechanism, guided by a dialog in the user interface, simplifies the integration of a
tool or custom Python module into the system. The dialog provides a Python code editor and a
JSON mapper. It also allows domain-users to specify Python packages from PyPI3 or other indexes
for pip4 installation as well as to upload other packages to the system. In Listing 1, an example
mapping of the FastQC tool to DSL is shown. FastQC is a Java program used in bioinformatics
to check the quality of a genome sequence file. The mapper adds a new service CheckQuality to
the DSL vocabulary and internally binds it to an adaptor method named run_fastqc which checks
the arguments and forwards the call to the FastQC tool installed in the system. An adaptor class,
associated with each service, is responsible for packing the arguments, running the tool with those
arguments and fetching the results. The LibraryManager manages all adaptors and mappers.

5.3 Sharing and Collaboration
Services which are integrated by domain-users into the system using the plugin capabilities of the
framework, can be shared with other users. A visual interface is offered to publish a service to
all users or to share with specific users. Likewise workflows written by the domain-users can be
shared and modified collaboratively with other users using another visual interface. The workflow
descriptions and the data sources used in the workflows are made accessible with read, write
or read-write permissions to the target users. For the VizSciFlow implementation, we store the
workflows in a PostgreSQL database as a JSON datatype. In the future, we will store the workflows
in a Git repository using GitPython5 to support easier collaborative creation.

3https://pypi.org/
4https://pypi.org/project/pip/
5https://pypi.org/project/GitPython/

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://pypi.org/
https://pypi.org/project/pip/
https://pypi.org/project/GitPython/

Visually Guided Scripting Framework for Scientific Data Analysis 74:15

5.4 DSL
As described in Section 2, domain modeling maps a scientist’s domain to a solution domain. A
DSL provides an abstracted view of the solution domain to domain-users. Developers work with
domain-experts, consult domain-specific standards and ontologies [88, 108], and use existing
workflow systems in the domain [3, 44, 78, 103] to pick the tools for integration into the system
and consequently derive domain-specific vocabulary terms for the DSL. The syntax of the DSL
glues these terms together to create a workflow model.
Our proposed DSL was developed in two phases. In the first phase, the syntax for composition

rules of the workflow pipeline was defined using Backus–Naur Form (BNF) [80], a notation for
specifying context-free grammars. Some basic constructs from the Python language are borrowed
for specifying keywords and control structures of the DSL. A parameter sweeping feature is added
to allow for the execution of the same workflow repeatedly with different configurations. In the
first phase, the DSL is not bound to any specific scientific domain. In the second phase, the DSL
becomes bound to a scientific domain by adding domain-specific vocabulary terms, which are
derived during the domain modeling. Most of the vocabulary terms correspond to computational
modules or services. Using a plugin architecture, services can also be integrated dynamically which
enhances the DSL vocabulary accordingly. Services from other domains can also be integrated.
This dynamic service integration enables the DSL to incrementally evolve. Due to the advantage of
external DSL, as explained in Section 2, we opted for it.

5.4.1 Keywords. The keyword set for the DSL is kept to a minimum to ensure a clear and concise
script. These keywords provide the expressiveness necessary for specifying a Directed Acyclic
Graph (DAG) style workflow model, which is common for data-intensive scientific domains [71].
Table 2 lists the keywords of the DSL.

Table 2. Keywords of proposed DSL

Name Description
if ... else Choice
for Iteration
parallel ... with, lock Parallelization
task Subworkflow Definition
return Exit Task

5.4.2 Operators. The proposed DSL defines a subset of arithmetic, logical and relational operators.
Several operators are overloaded with special meanings for data and workflow types as indicated
in Table 3.

5.4.3 Workflow Constructs. Our DSL supports four important pipeline constructs – Sequence,
Choice, Parallelization, and Iteration. They can be chained together in a hierarchical fashion to form
a complex workflow. A scientific workflow is often represented as a DAG or simply as a pipeline
[71]. These constructs can define a DAG or a Directed Cyclic Graph (DCG) of services. An example
workflow using these constructs is shown in Listing 2.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:16 Hossain, Roy, Roy, Schneider

Table 3. Operators of proposed DSL

Type Operator Meaning

Arithmetic

+
Addition
Union for Data
Concatenation for String, List, Subworkflow

-
Subtraction
Difference for Data
Removal for List, Subworkflow

* Multiplication
/ Division

Relational

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Logical
and True if both the operands are true
or True if either of the operands is true
not True if operand is false

1 # Iteration or Loop

2 for data in GetFiles(' / p u b l i c '):

3 # Choice

4 if GetType(data)== ' f a s t q ':#OR-split

5 # Parallelization

6 parallel: # AND -split

7 CheckQuality(data)

8 with:

9 data=Align(' C h r 1 . c d n a ',data)

10 data=SamToBam(data)

11 # AND -join

12 else:

13 print(data)

14 # OR -join

15

16 SortBam(data)

Listing 2. VizSciFlow Script Example

The DSL also supports nesting of function calls which makes sequential code even more concise
as shown in Listing 3.
1 data=SamToBam(Align(' C h r 1 . c d n a ', data))

Listing 3. VizSciFlow Function Composition Example

5.4.4 Modular Operations. The task keyword helps to construct a larger workflow from multiple
smaller subworkflows. An anonymous task starts executing as soon as the interpreter finds the task
keyword in the script. A named task, on the other hand, must be called from the downward code in
the script. Additional properties can be attached to a task definition as parameters. Listing 4 defines
a task for gene sequence analysis.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:17

1 task AnalyzeSeq(data):

2

3 CheckQuality(data)

4

5 data = Align(' C h r 1 . c d n a ', data)

6 data = SamToBam(data)

7

8 data = AnalyzeSeq(' R _ 0 0 1 . f a s t q ')

Listing 4. VizSciFlow Task Example

5.5 Middleware
The middleware of the system is primarily responsible for workflow management, scheduling
and execution. It is based on the software component model of a loosely-coupled message-based
structure [97]. The central component of our proposed middleware is implemented as aWeb Service.
There are many web frameworks like Flask6 and Django7 in Python, Spring in Java, ASP.NET in C#
for the web service development. We used Flask for VizSciFlow. A distributed task queue is used
for asynchronous task scheduling. The scheduler uses the Publish-Subscribe messaging pattern to
perform asynchronous unattended operations using message brokering servers like Redis, Apache
Kafka, JBoss Messaging.

The middleware layer also manages the multi-platform data storage and execution environment.
It hides the complexity of the communication to externally-deployed remote systems like FTP,
HTTP, Galaxy, Hadoop, etc. A generic interface is programmed to uniformly access local and
remote files. The infrastructure layer of the proposed framework, as shown in Figure 3, is derived
from the heterogeneous infrastructure model [97]. If remote data or services are referenced in the
script, the system transparently connects to the corresponding external storage or processing units.

Browser

PostgreSQL

Server

Hadoop

cluster

Server for

web service

Client for DB,

Galaxy, Big Data

Neo4j

Server

Galaxy

Server for web

service

Client for

Galaxy, Big-data

Server for

web service

REST

Client

Service

Manager

Server for

web service

Server for

web service

Client

Client

SSH/FTP
SSH

HTTP

SSHSSH

SSHHTTP

Bolt

Web Service

Fig. 3. Infrastructure Layer of Proposed Framework

6https://palletsprojects.com/p/flask/
7https://www.djangoproject.com/

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://palletsprojects.com/p/flask/
https://www.djangoproject.com/

74:18 Hossain, Roy, Roy, Schneider

5.6 Back End
The workflow details, provenance data, execution logs and user information are all stored in a
relational database (i.e., PostgreSQL). An object-relational mapper (ORM) allows an object-oriented
programming model to access the database. Graph database platforms like Neo4j8 along with graph
query languages like Cypher are used for generating, storing, and querying data-flow graphs of the
scripts. The graph platform can be used for static analysis of scripts, optimization of data routing,
and other graph analyses.
The system facilitates the storage of TB-scale data with the help of Hadoop [116]. The Hadoop

Distributed File System (HDFS) is a distributed, scalable, and portable data storage mechanism
designed to run on a cluster of inexpensive commodity hardware. A generic data source interface is
needed for uniform and interoperable access to POSIX, HDFS, HTTP, FTP, and Galaxy data sources.
The interface can also plug in new data sources into the system.

The high processing performance is provided by MapReduce [77], a distributed processing
framework with fine-grained fault-tolerance, and Apache Spark [120], a lightning-fast cluster
computing engine for large-scale data processing. A new paradigm for big data processing has
recently emerged. Apache Beam provides a unified programming model to design and construct
distributed data pipelines on a higher level of abstraction [57]. A single beam program can run on
multiple runners such as MapReduce [29], Spark [121], Apache Flink [55], and Apache Samza [87].

6 VIZSCIFLOW: A PROOF OF CONCEPT OF OUR PROPOSED FRAMEWORK
In order to answer research questions RQ1, RQ2 and RQ3 regarding a generic scientific workflow
management system using our proposed framework, we developed VizSciFlow as a proof of concept
and adapted it to bioinformatics domain. It was developed with the Python 3.6 programming
language which is very popular among data scientists for its rich support for scientific data analysis.
External services, programmed in different languages including Python, can be plugged into the
system using Python wrapper for command line access. The composition panel and visualization for
the presentation layer are developed using standard web tools, including HTML5, CSS3, JavaScript,
jQuery, and Bootstrap. The ACE [1] online source code editor is used to implement the interactive
scripting editor. Domain-specific syntax highlighting, code completion, automatic indentation,
quick info, parameter info, list services, logging, and error reporting are supported by the graphical
interface. The data-flow graph is visualized using the D3.js library. A screenshot of the user interface
during scripting is shown in Figure 4. The corresponding screenshot of data-flow graph visualization
is depicted in Figure 5.

The middleware web service is written in Flask, a Python-based micro web framework. The DSL
compiler uses PyParsing [81], an object-oriented recursive decent parser, to parse the script. Celery9,
a distributed task queue, is used for asynchronous task scheduling. Celery uses the Publish-Subscribe
messaging pattern to communicate with Redis for long running operations. Additionally, workflows
can be executed synchronously which returns results immediately, and is useful for simulation and
quick testing.

VizSciFlow facilitates the storage of TB-scale data with the help of Hadoop [116]. Our multi-node
HDFS cluster is hosted on the Compute Canada10 cloud infrastructure. Another 3-node Hadoop
cluster is deployed in our local infrastructure for simple evaluation purposes. POSIX, HDFS and
Galaxy data sources interoperate over a generic data source interface which also makes plugging

8https://neo4j.com/
9http://www.celeryproject.org/
10https://www.computecanada.ca/

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://neo4j.com/
http://www.celeryproject.org/
https://www.computecanada.ca/

Visually Guided Scripting Framework for Scientific Data Analysis 74:19

Fig. 4. VizSciFlow Script Interface

Fig. 5. Data-Flow Graph (DFG) of VizSciFlow

new data sources into the system easy. High performance distributed processing is supported by
MapReduce [77] and Spark [120] programming models on a Hadoop YARN cluster [114].

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:20 Hossain, Roy, Roy, Schneider

Answer to RQ1

RQ1: Can we create a generic SWfMS framework for complex scientific data analysis which
can be customized/adapted to different scientific domains?
Answer: VizSciFlow demonstrates that our proposed framework can be used to create an
effective SWfMS. The system was developed using the Python programming language and
the Flask web framework. The interpreted Python language supports plugging in new tools
or modules dynamically and enhances the DSL vocabulary accordingly.

Answer to RQ2

RQ2: Can we combine visual and textual elements to facilitate the composition of workflows
for domain scientists?
Answer: The code editor and interactive visual elements can be used to model workflows
more intuitively. Graphical elements representing various workflow modeling entities like
data sources, computational services, data filters, and service configuration can be used to
compose workflow. The secondary textual notations like indenting, syntax highlighting,
and comments can increase the readability of the script. Other visual elements can help
with parameter sweeping, plugin integration, data manipulation, workflow execution and
management, job scheduling and monitoring, sharing and collaboration etc.

VizSciFlow includes a basic set of services which can be used in any scientific domain. In order
to answer research question RQ3 of evaluating its capability in adapting to a new scientific domain,
we conducted a case study by integrating tools and services from computational biology to derive
a bioinformatics workflow management system. During domain modeling for this, we worked
with biologists, consulted the Software Ontology (SWO) [79] of OBO Foundry [104], experimented
with various bioinformatics tools [7, 19, 75, 94, 101, 122] and workflow management systems
[4, 18, 30, 40, 63, 78, 118] to extract potential services for the system and subsequently derived
the vocabulary of the DSL of the adapted system. This system encompasses tools for quality
control of sequence data, alignment, normalization, quantitative analysis, differential expression
and evaluation, trimming, error correction, QIIME 2™ [19] microbiome platform, OpenCV image
processing, etc. Our system uses BioBlend [103] to integrate tools from Galaxy server and forward
selected services to Galaxy server for execution.

Answer to RQ3

RQ3: Can we adapt VizSciFlow for a specific scientific domain such as bioinformatics?
Answer: The customization of VizSciFlow to derive bioinformatics workflow management
system demonstrates that our proposed framework can be adapted to the scientific workflow
management system for a particular scientific domain.

7 EVALUATION
In this section we describe the experiments and user studies that were conducted to evaluate our
proposed workflow modeling framework and answer research questions RQ4, RQ5 and RQ6 on
the evaluation of VizSciFlow.
In order to answer research questions RQ4 and RQ5, three user studies were carried out with

VizSciFlow. The evaluation procedure and results based on these user studies are explained below.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:21

7.1 Evaluation of usability, efficiency and expressiveness in comparison to Galaxy and
Python

A preliminary user study was carried out to compare the usability, efficiency, and expressiveness of
our proposed workflow modeling framework with Galaxy and Python. We chose Galaxy because it
is a popular workflow system in the bioinformatics domain with 168 enlisted servers. Python is
not a workflow language, but it is a popular language for scientific analysis and is used by many
bioinformaticians. When the required tools and libraries are installed, it is similar to other python-
based textual packages or pipeline managers for bioinformatics like QIIME [19] or Biopython [26].
Since our DSL is an integral part of our graphical framework, we did not evaluate either separately
but evaluated both together.

7.1.1 Participants. 10 graduate students took part in the user study – 8 male and 2 female. 9 were
computer science students and 1 was a bioinformatics student. Ages included 6 between 20-30
and 4 between 31-40. All of the participants were experienced with Python programming and 4
worked previously with Galaxy while 6 have worked with other scientific workflow management
systems. 3 of the participants were familiar with DSLs. The participants were given three workflow
modeling tasks, each to be completed in VizSciFlow, Galaxy, and Python. The workflows were
ordered with increasing complexity, larger data volume, and more diverse characteristics (e.g.
iteration, modification). Table 4 lists the workflow tasks used for the user study.

7.1.2 Experiment Procedure. All the tools and services used in these tasks were pre-installed for
Python and Galaxy. We first demonstrated the three systems to the participants with two example
tasks. In those tasks, we described them how to run an external tool in Python using the subprocess
module as well as how to create and execute a workflow in Galaxy. The participants’ machines were
connected to the Internet and they were advised to search for references in Internet if necessary.
Each participant was allocated a 30-minute slot for each platform. We employed an observer
and time tracker during the user study in order to maintain fairness in the evaluation process.
The workflow modeling tasks were completed first in VizSciFlow. At this stage, participants had
already gathered knowledge on the required tools, datasets for the tasks and the outputs. Next they
performed the same tasks in Galaxy and then in Python. The participants were given a questionnaire
with three questions and asked to give an assessment score between 1-10 for each quality attribute
under consideration. The questions are listed in Table 5. They were allowed to give feedback for
that task as well. Additionally, the system logs the interactions with data, services, workflows,
reports and other resources in real-time.

7.1.3 Results. The system log shows that the users interacted with the visual elements very often
while creating the models in VizSciFlow. They were most intrigued by the search facilities for
data sources and services. Once the services and datasets were found, they were inserted into
the code editor either by dragging or double clicking the item or selecting from a context menu.
Autocomplete was also frequently used for inserting DSL constructs and services. The participants
evaluated the workflow modeling system based on three quality attributes – usability, efficiency,
and expressiveness.
All the participants were able to complete the assigned tasks in VizSciFlow successfully, but

failed to do the same tasks in Galaxy and Python within the 30-minute time frame. They found
that it is very easy to find what they need and express what they want to do in VizSciFlow. All of
them could complete the modeling tasks correctly with relative ease. They asserted that VizSciFlow
is user-friendly and easy to use. Most users could also complete Task 1 in Galaxy easily which is
relatively simple. But as soon as the complexity rises in Task 2 and Task 3, they find it difficult to
design and configure the workflow in Galaxy. One participant even commented, "Its user interface

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:22 Hossain, Roy, Roy, Schneider

Table 4. Workflow Tasks for User Study

Name Type Description
Example 1 Check Quality of a paired-end FASTQ file
Example 2 Check Quality of multiple paired-end FASTQ files

Task 1 Basic
Check Quality, Merge paired-end files to single-
end file, Align with reference genome, Convert
SAM to BAM of a paired-end FASTQ file

Task 2 Complex
Check Quality, Merge paired-end files to single-
end file, Align with reference genome, Convert
SAM to BAM of multiple paired-end FASTQ files

Task 3 Modification

Check Quality, Align forward and reverse files
with reference genome, Convert SAM to BAM,
merge BAM files of multiple paired-end FASTQ
files

Table 5. Questionnaire for Usability, Efficiency, Expressiveness comparison

Quality Question

Usability How easily could you complete the task?

Efficiency How fast could you complete the task?

Expressiveness How simply could you express your task?

is fully incompatible for large size workflows". The users need to provide the parameters every
time even if the workflow should execute with the same parameters. On the other hand, VizSciFlow
can run workflow with fixed parameters. Almost all the users had a hard time completing any of
the tasks in Python. The participants could find the appropriate services in VizSciFlow easily in
contrast to both Galaxy and Python thanks to our naming mechanism which we chose based on
the functionality of a tool rather than the tool name. For example, Burrows-Wheeler Aligner (BWA)
[67] tool aligns sequences against a reference genome. The vocabulary of our system specifies
this tool as Align, which a Genomicist can easily recognize. The participants made a perceived
assessment of the system based on how easily they can author a workflow model in the given
languages. The assessment scores are shown in Figure 6a.

Domain-users can write a modest workflow in VizSciFlow quickly without prior programming
knowledge. The generation of code snippets by mouse interactions (drag-and-drop, mouse click,
context menu) with graphical elements representing data sources, services, workflows, and reports
make the scripting experience fluent and comfortable. The language constructs can be inserted
into the code editor with autocomplete. One user commented, "Pretty user friendly interface and
straightforward design". Another wrote, "The task is easy to execute and the editor is very helpful".
Another participant said, "A little bit complicated UI at first. But it becomes easier with time" which
was totally expected as text-based modeling appears more difficult than visual modeling at first.
But as the size and complexity of the workflow increase and users become more experienced, they
feel comfortable with textual modeling. Listing 5 and Figure 8 are two equivalent workflows in
VizSciFlow and in Galaxy respectively for Task 2, listed in Table 4. Galaxy is easy to use for very

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:23

VizSciFlow Galaxy Python

2

4

6

8

10

Sc
or
es

(a) –Usability

VizSciFlow Galaxy Python

2

4

6

8

10

Sc
or
es

(b) – Efficiency

Fig. 6. Comparison of Quality Attributes

VizSciFlow Galaxy Python

2

4

6

8

10

Sc
or
es

Fig. 7. Comparison of Expressiveness Attribute

small and simple workflows. The empty space in the editor is quickly filled up even with just a
few tools if they have multiple parameters to bind. It is very difficult to follow the wires if a single
dataset is connected to multiple tools. One participant commented, "Configuring selected tool as
required is really hard to do" and another wrote, "Too much information to digest and too much
learning curve". Even though all our participants were experienced in Python programming and all
the required tools were pre-installed, they found the Python tasks very complex to model. They
needed to consult the tool documentation frequently for parameter passing in the right format and
for output interpretation. Some tools generated output to a file at a tool-specific location, some to
the console, and some to a memory buffer. Some participants were even concerned when it was

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:24 Hossain, Roy, Roy, Schneider

observed that they needed the subprocess module to execute external tools. Another participant
found it difficult to create a pipeline in Python and commented, "Hard to understand the sequence
of the workflow. It is hard to detect and control the flow of data saving". VizSciFlow hides the
complexity of tool execution and output interpretation. Users need only to call a function and pass
parameters. The output and other provenance data are automatically tracked and made persistent.

1 task alignseqs(ref , data , data2):

2 CheckQuality(data)

3 CheckQuality(data2)

4

5 data = Align(ref , data)

6 data = SamToBam(data)

7

8 data2 = Align(ref , data2)

9 data2 = SamToBam(data2)

10

11 return MergeBam(data , data2)

12

13 ds = [' C h r 1 . c d n a ', ' A l b u g o . c d n a ',

' B a c i l l u s . c d n a ']

14 fs = [' S 1 _ R 1 . f a s t q ', ' S 2 _ R 1 . f a s t q ',

' S 3 _ R 1 . f a s t q ']

15 rs = [' S 1 _ R 2 . f a s t q ', ' S 2 _ R 2 . f a s t q ',

' S 3 _ R 2 . f a s t q ']

16

17 for i in range(0, 3):

18 alignseqs(ds[i], fs[i], rs[i])

Listing 5. VizSciFlow Sequence Alignment

Fig. 8. Galaxy Sequence Alignment

All the participants could complete the workflows in VizSciFlow within the allotted 30 minute
time limit. For Galaxy, most users were able to complete only one task within the time limit. For
Python, none of the participants were able to complete a single task within the time limit. The
participants assessed how fast they were able to create the workflow task correctly and gave
assessment scores which are plotted in Figure 6b. The DSL code editor offers automatic code
completion, context-sensitive help, incremental search for data sources and services, parameter
info, logging and reporting mechanisms which help to create a workflow model efficiently. The
participants could find the desired resources quickly. Although some participants were initially
happy with the visual interface of Galaxy, they indicated later that figuring out how things work is
time consuming and sometimes seems impossible. They also needed to spend considerable amount
of time editing the workflow and managing the layout in Galaxy. On the other hand, almost all
participants explicitly complained that tasks for Python were the most time consuming to model.
Even experienced participants struggled to use the subprocess module correctly. They spent a lot
of time frequently checking the API documentation of subprocess and external tools. This is not
an absolute assessment of efficiency for VizSciFlow system since efficiency is best measured with
objective assessment, not with the subjective assessment that we did. We employed an observer
and time tracker who monitored how long a participant took to complete each task. Our intention
is to compare if the system can model workflows faster than Galaxy and Python. We found that all
participants could complete VizSciFlow tasks in the allocated 30-minute time slot while no one
could complete the tasks in Galaxy or Python within this time.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:25

Usability Efficiency Expressiveness

2

4

6

8

10

Sc
or
es

VizSciFlow
Galaxy
Python

Fig. 9. Quality of VizSciFlow vs Galaxy vs Python

The participants evaluated how easily they could express the task in the chosen language. The
assessment score is shown in Figure 7. All participants rate the tasks of VizSciFlow to be the
most expressive among these three modeling languages. VizSciFlow users create a workflow using
the supported language constructs and vocabulary. The DSL provides a minimal keyword set,
precise syntax, and only four control statements to form a clear and concise workflow script.
The participants used autocomplete to insert the control statements (Sequence, Choice, Iteration,
Parallelization [112]) into the code editor. All the participants in the user study concluded that
the Galaxy layout becomes overly complex and unmanageable even for modest workflows. One
participant found the wiring of Galaxy confusing. As well, it is not possible from the tool element
to distinguish between required and optional parameters. Some participants skipped assigning
parameters, only to get an execution error later. The VizSciFlow service mapping indicates required
and optional parameters. The vocabulary provides standard and meaningful names to the services
to increase the expressiveness of the language for better readability and comprehensibility which
generally leads to better workflow maintenance.
In order to compare the participants’ scores for usability, efficiency and expressiveness quality

attributes in VizSciFlow, Galaxy and Python, we plot the assessment scores in Figure 9. We can
notice that the quality scores for VizSciFlow is significantly better than Galaxy and Python.

7.2 Evaluation of Usability
In order to study the usability of VizSciFlow further, we evaluated its user interface more rigorously
using the System Usability Scale (SUS) [16, 17]. SUS is a post-test instrument, given to a participant
after an entire usability testing session is over. It is one of the most widely used tools for assessing
the perceived usability of a system or product. It has been shown to be robust even with relatively
small numbers of participants (e.g., 8–10) [110]. SUS uses 10 Likert-type statements with responses
based on a 5-point scale. The Likert formatting ranged from strongly disagree to strongly agree.
The SUS score of a participant, in the range of possible values of 0 to 100, is calculated from his
responses to the 10 questions. The final SUS score is derived by averaging the individual scores of
the participants. The details of the SUS score calculation method can be found in [17].

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:26 Hossain, Roy, Roy, Schneider

7.2.1 Participants. 8 graduate students took part in this user study – 7males, 1 female. 4 participants
have used scientific workflow management systems before and 1 participant used domain-specific
languages before. 5 of them were aged between 20-30 years, 2 between 31-40 years and 1 preferred
not to divulge the age. 50% of the participants have worked with web-based SWfMSs before, but
not with VizSciFlow.

7.2.2 Experiment Procedure. The participants were first given an introduction to the SUS survey
instrument and then were asked to complete 5 tasks which required them to interact with most of
the graphical elements in the system – code editor, data sources, services, workflows, job histories,
monitoring, logs and so on. The operations spanned over the following tasks: i) create a new
workflow model, ii) search and drag data to code editor, iii) search and drag services to code editor,
iv) test a service by running it and checking logs and outputs, v) write DSL constructs and use
editor supports, vi) modify an existing workflow, vii) check the executed and executing workflow
instances, viii) execute and monitor a workflow, and ix) save and load a workflow. After finishing
the tasks, the participants were asked to fill out the SUS questionnaire and their response scores
are collected.

7.2.3 Results and Discussion. In Figure 10 the responses of the participants for each question are
shown. The green bars at the upper and lower X-Axes indicate whether the question is positive
when the score is high or low. The SUS score of each participant is calculated from the response
scores. The average of the individual scores gives the final SUS score. Once the assessment was
completed by all participants, we calculated the final SUS score to be 86.56. As determined with
over 5000 users across 500 different evaluations, an SUS score of 68 is considered average, over 68
is above average and below 68 is below average [100]. In the Adjective Rating Scale, our score 86.56
is considered excellent or has a grading scale of Grade A [8]. The result of the SUS score indicates
that the usability of our proposed framework is promising.
While SUS was initially intended to measure a single dimension of perceived ease-of-use only,

research found that it provides a global measure of system satisfaction and sub-scales of usability
and learnability. The learnability dimension is provided by items 4 and 10 while the other 8 items
provide the usability dimension. Hence it is possible to track and report on both subscales and the
global SUS score [66]. But the same authors later suggested to treat the SUS as a unidimensional
measure of perceived usability, rather than as usability and learnability subscales [65].

Answer to RQ4

RQ4: Does the combination of visual and textual elements help the scientists compose
scientific workflows easily with less cognitive load?
Answer: The result of our first user study, although preliminary, shows that a workflow
system can be derived from our framework and can solve real-world scientific data analysis
problems. It showed good usability, efficiency, and expressiveness quality attributes in
respect to two other popular alternatives for the same domain, Galaxy and Python.
The result of our second user study, the SUS-based post-test usability assessment, reveals
that the participants are satisfied with the usability of our system.

7.3 Evaluation of Flexibility
In order to answer research question RQ5 regarding the flexibility of VizSciFlow, we conducted
another user study and collected participants’ opinion using the NASA Task Load Index (NASA-
TLX) workload assessment tool [48, 49]. Unlike the SUS instrument which collects post-test opinions,

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:27

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1

1.5

2

2.5

3

3.5

4

4.5

5

Sc
or
es

Fig. 10. SUS Usability of VizSciFlow

NASA-TLX is a post-task questionnaire that is useful for studying complex products and tasks.
NASA-TLX consists of a set of six rating scales to evaluate the workload of the users for a task.
The rating scales are mental demand, physical demand, temporal demand, performance, effort and
frustration. The participants give a score in a range of possible values of 1 to 21. A coding system
similar to SUS is used to transform and map the raw responses to a hundred-point scale.

7.3.1 Participants. We selected 5 graduate students to conduct this user study. All of them were
males. 4 of them had experience with bioinformatics tools and technologies while 3 had worked
with web-based SWfMSs before. Though 2 of the participants took part in our SUS-based usability
study stated before, but they never used the flexibility feature.

7.3.2 Experiment Procedure. At the start of the study, the participants were introduced to the
NASA-TLX questionnaire and then they were asked to start a task. After task completion, they
were requested to fill out the NASA-TLX questionnaire. In this study, the participants start with
an existing workflow and are required to use a new service, which is not currently available in
the system. So this study guides the participants to integrate this service into the system which
consequently enhances the DSL vocabulary. They can use this service in the workflow immediately.

7.3.3 Results and Discussion. The NASA-TLX responses of the participants are shown in Figure
11. The green bars at the upper and lower X-Axes indicate whether the rating scale is positive

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:28 Hossain, Roy, Roy, Schneider

when the value is high or low. The average score of performance is 19 which indicates that all the
participants could add a new service to the system with ease.

Mental
Demand

Physical
Demand

Temporal
Demand

Performance Effort Frustration
0

10

20

30

40

50

60

70

80

90

100

Sc
or
es

Fig. 11. NASA-TLX Flexibility of VizSciFlow

Answer to RQ5

RQ5: How flexible is the proposed system in incorporating new services or new tools for a
specific domain?
Answer: At the presentation layer, our plugin mechanism provides a dialog with a Python
code editor and JSON mapper to attach a service or computational module to the system
and enhance the DSL vocabulary accordingly. Our post-task user study based-on NASA-
TLX questionnaire suggests a low perceived workload as well as high performance while
examining the flexibility quality goal.

7.4 Performance Study of Large Data and High Performance Support
In order to answer research question RQ6 regarding the support of large data volume and high
performance processing, we want to demonstrate that our proposed framework can access large

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:29

volumes of data and can forward datasets and instructions of selected services to high performance
remote machines for execution using the DSL syntax. As the framework suggested, VizSciFlow
system uses the Hadoop Distributed File System (HDFS) [116] for large data storage and the Spark
[120] cluster computing engine for high performance computing. A scientific workflow spends
much of its time during the execution phase. The execution time depends on i) the tool or algorithm
which implements the service, ii) network latency, iii) the location of the data, and iv) the location
of the runtime host. We selected a set of our services that are hosted on the local VizSciFlow
server, Galaxy server, and Spark on a Hadoop YARN cluster. In order to ease the performance
comparison we set up a small Hadoop cluster of 3 nodes, each having the same hardware and
software configuration as the local server. Similarly, we installed the Galaxy server on another
identical machine. We used the following equation to mathematically capture the performance of a
workflow execution:

𝑇 = 𝑇𝑛 +𝑇𝑙 +𝑇𝑒 where, 𝑇𝑛 – data transfer time
𝑇𝑙 – loading time
𝑇𝑒 – execution time

(1)

We conducted three experiments with MiSeqSOPData 11, the 16S rRNA example dataset from the
Schloss lab [101], which is used for many bioinformatics tutorials and benchmarking. The dataset
consists of 40 FASTQ files with total size of 163𝑀𝐵. For sequence alignment we used reference
genome Chr1.cdna12(size 14𝑀𝐵) from Rice Annotation Project Database (RAP-DB) [99]. Figure
12a depicts a performance comparison of a bioinformatics workflow which uses POSIX data sources
residing on the VizSciFlow server for service execution. It can be noticed from the figure that
Galaxy and Spark have much higher execution times than VizSciFlow server. For local execution
on VizSciFlow server, no data is transferred over the network and the service module load time is
negligible, therefore, 𝑇𝑛 = 0 and 𝑇𝑙 ≈ 0. For Galaxy and Hadoop services, data is first transferred to
the respective servers and then the service is executed. For this experiment, we did not calculate
the data transfer time explicitly. Hence, the total execution times for Galaxy and Hadoop services
are much higher. In another experiment, the datasets are first transferred to the service hosts and
then the same services are executed on those datasets which are now residing on the respective
native data storage of service hosts. The transfer time and execution time of this experiment are
collected separately and shown in Figure 12b. The execution times on Galaxy and Hadoop hosts
are now better than the previous experiment.
In the above scenarios, we notice that Hadoop execution is substantially slower than local or

Galaxy execution. Although Spark is intended for long running application on huge volumes of data,
the Hadoop YARN cluster has an indispensable library load time for each service execution (𝑇𝐿ℎ ≫
𝑇𝐿𝑙). We depicted another test scenario in Figure 13 which was similar to previous experiment
but ran on 40 FASTQ files (163𝑀𝐵). Since Galaxy cannot manipulate directories conveniently, we
omitted it from this scenario. In our small Hadoop cluster of 3 nodes, we observed nearly 3 times
higher performance than local execution.

11https://www.mothur.org/w/images/d/d6/MiSeqSOPData.zip
12https://tinyurl.com/u6pdwqz

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://www.mothur.org/w/images/d/d6/MiSeqSOPData.zip
https://tinyurl.com/u6pdwqz

74:30 Hossain, Roy, Roy, Schneider

Lo
cal

Ga
lax
y

Sp
ark

20

40

60

80

100

18

52

99

Ex
ec
ut
io
n
Ti
m
e
(s
)

Total Execution Time

(a) – Total Execution Time: Data on VizSciFlow
Server (implicit transfer to Service Host)

Lo
cal

Ga
lax
y

Sp
ark

0

20

40

60

80

0

18 2018

34

79

Ex
ec
ut
io
n
Ti
m
e
(s
)

Transfer Time Execution Time

(b) –Data Transfer: VizSciFlow to Service Host
Execution Time: Data on Service Host

Fig. 12. Performance: Execution on Few Datasets (Local and Native)

Lo
cal

Sp
ark

0

100

200

300

400

500

0

55

473

174

Ex
ec
ut
io
n
Ti
m
e
(s
)

Transfer Time Execution Time

Fig. 13. Performance: Execution on Many Native Datasets

Answer to RQ6

RQ6: Does the proposed system facilitate distributed computational environments?
Answer: We experimented with VizSciFlow to evaluate its support for large data storage
and high performance processing. The experiment demonstrates that the system can trans-
parently connect to a distributed storage and high performance computing system to access
large data volumes and forward selected services for compute-intensive execution.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

Visually Guided Scripting Framework for Scientific Data Analysis 74:31

8 RESULT ANALYSIS
We proposed a framework for a visually guided DSL workflow modeling system in Section 5 and
evaluated it in Section 7. We also implemented the VizSciFlow system as a proof of concept of
the proposed framework and demonstrated that it can address the requirements of DSL workflow
modelingwithin an interactive graphical development environment and that it supports extensibility
with a flexible plugin architecture, asynchronous job scheduling, sharing and collaboration of
services and workflows, large data storage and high performance processing, data-flow graph
visualization, and so on.

From our user studies we observed that our DSL-based workflow system with support for sec-
ondary notations and development tools in the form of visual representation of workflow elements,
autocomplete, context-sensitive help, visualization, reports and other resources leads to a usable,
efficient, expressive, and flexible workflow modeling system. With VizSciFlow we addressed real-
world problems from the bioinformatics domain and compared the process with two other common
alternatives – Galaxy and Python; VizSciFlow performed better in key quality attributes. The post-
test assessment of usability using the SUS instrument also shows user satisfaction. Additionally,
we demonstrated that the implemented VizSciFlow system using our proposed framework can
transparently connect to remote high performance systems, manipulate large data storage, trigger
workflow execution and combine output with local datasets.

9 THREATS TO VALIDITY
There are thousands of bioinformatics tools in research and commercial domains as well as in
the Galaxy toolshed. We evaluated our system only with a small subset of these tools. Although
we evaluated the proposed framework for usability, efficiency, expressiveness, and flexibility of
workflow modeling, there still exists the threat of result bias since using other tools may show
different results. Scientific tools are mainly involved with data analysis and developers typically
provide similar abstract usage patterns to ease tool use by scientists. Therefore, using other tools may
not change the modeling procedure and participants’ behavior much if a similar abstraction is used.
Almost all participants who took part in the user study were computer science graduate students
rather than domain experts. However, most of them had prior experience using bioinformatics tools
and concepts which partly minimizes the concern. The proposed framework is implemented and
evaluated only for a single scientific domain which may potentially have result biases. However,
nearly all scientific domains have data analysis as the primary task for workflow. So the workflow
patterns are expected to be similar as the ones our proposed framework addresses. We understand
that the efficiency is best measured with objective data captured by an instrument independent
from a participant’s opinion, not with perceived efficiency from subjective assessment as in our
user study. Along with our subjective data collection, we also allocated a specific time (30 minutes)
to complete the tasks in each system and an observer monitored if the tasks were completed by
each participant in the allocated time period. We wanted to show a comparison of VizSciFlow
with Galaxy and Python and that domain users can model the same workflow in VizSciFlow faster
than in the other two. Another threat to validity is that only a small number of participants took
part in the user studies. Usability experts claim that a small number of users can detect a high
number of usability improvement opportunities in a product [85] and recommended to plan for five
users to catch 85% of the usability problems [86]. An experiment by Kieburtz et al. demonstrates
how a meaningful assessment can be performed with only four participants [58]. On the other
hand, recent findings found that more participants are required, especially in web testing [13, 106].
As an early evaluation of the framework, though, using a small number of participants is also
interesting [9]. We can therefore state that from a preliminary evaluation with few users, we have

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

74:32 Hossain, Roy, Roy, Schneider

gathered some indications that VizSciFlow provides a usable scientific workflow composition and
management system, but more participants would be required to evaluate the statistical significance
of the results. The test scenarios for performance study definitely do not provide an exhaustive
benchmarking of our system. We only experimented with a limited sample size and few operations.
However, the intention for the performance study was only to demonstrate that our framework can
transparently connect to a remote high performance distributed system, access large data volumes,
execute selected services, and return results. The Hadoop cluster is scalable both in storage capacity
and performance. New hardware can be attached to it in order to increase its storage capacity and
performance. The hardware configuration is also not important for our performance comparison
as long as the VizSciFlow server and each computing node of the distributed system are running
on the same configuration.

10 CONCLUSION AND FUTUREWORK
In this paper, we identified the requirements of a usable, efficient, expressive, and flexible workflow
modeling system and proposed a graphical framework for workflow systems that provides domain-
specific interactive visual elements to ease modeling workflow with a domain-specific language. As
a proof of concept, we developed a general SWfMS system, VizSciFlow, and customized it for the
bioinformatics domain as a product to solve real-world scientific problems. We also demonstrated
that code generation by mouse and keyboard interactions with graphical elements representing
data sources, services, workflows, reports and other resources along with autocomplete, context-
sensitive help, syntax highlighting and incremental search improved the usability, efficiency and
expressiveness of the workflow modeling system substantially. Our flexible framework provides an
evolutionary approach to enrich the DSL vocabulary by extending the capabilities of the workflow
system dynamically. The data-flow graph of the workflow helps to identify the routing of data
during service execution. We propose that a visually guided DSL scripting framework is a viable
alternative to existing workflow systems and improves usability, expressiveness, efficiency and
flexibility.

Real-time collaboration using visual languages has been shown to be effective formulti-disciplinary
scientific data analysis [84]. In the future, we will investigate whether workflow modeling with
textual languages is also accelerated through real-time collaborative development. We would also
like to investigate the usability of VizSciFlow in other domains such as Code Cloning, Source Code
Analysis, Plant Phenotyping and Genotyping, and Image Processing. We also want to conduct a
more comprehensive qualitative and quantitative evaluation of the framework with real world
users in the respective domains.

ACKNOWLEDGEMENTS
This research is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and by two Canada First Research Excellence Fund (CFREF) grants coordinated by the
Global Institute for Food Security (GIFS) and the Global Institute for Water Security (GIWS).

REFERENCES
[1] Ajax.org B.V. 2012. ACE: The High Performance Code Editor for the Web. Ajax.org B.V. Retrieved Dec 12, 2019 from

https://ace.c9.io
[2] Enis Afgan, Dannon Baker, Marius Van den Beek, Daniel Blankenberg, Dave Bouvier, Martin Čech, John Chilton, Dave

Clements, Nate Coraor, Carl Eberhard, et al. 2016. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update. Nucleic acids research 44, W1 (2016), W3–W10.

[3] Ilkay Altintas. 2011. Distributed Workflow-driven Analysis of Large-scale Biological Data Using Biokepler. In
Proceedings of the 2Nd International Workshop on Petascal Data Analytics: Challenges and Opportunities (Seattle,
Washington, USA) (PDAC ’11). ACM, New York, NY, USA, 41–42. https://doi.org/10.1145/2110205.2110215

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://ace.c9.io
https://doi.org/10.1145/2110205.2110215

Visually Guided Scripting Framework for Scientific Data Analysis 74:33

[4] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and Steve Mock. 2004. Kepler: An
Extensible System for Design and Execution of Scientific Workflows. In Proceedings of the 16th International Conference
on Scientific and Statistical Database Management (SSDBM ’04). IEEE Computer Society, Washington, DC, USA, 423–.
https://doi.org/10.1109/SSDBM.2004.44

[5] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, Francisco Curbera, M. Ford, Y. Goland, A. Guzar, Neelakantan
Kartha, C. Liu, and Rania Khalaf. 2007. Web Services Business Process Execution Language Version 2.0 (OASIS
Standard). OASIS Standard 11 (01 2007).

[6] Peter Amstutz, Nebojša Tijanić, Stian Soiland-Reyes, John Kern, Luka Stojanovic, Tim Pierce, John Chilton, Maxim
Mikheev, Samuel Lampa, Hervé Ménager, Scott Frazer, Venkat S. Malladi, and Michael R. Crusoe. 2015. Beyond
Galaxy: portable workflows and tool definitions with the CWL. https://cesgo.genouest.org/resources/129

[7] Simon Andrews et al. 2010. FastQC: a quality control tool for high throughput sequence data.
[8] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what individual SUS scores mean: Adding an

adjective rating scale. Journal of usability studies 4, 3 (2009), 114–123.
[9] Ankica Barišic, Vasco Amaral, Miguel Goulão, and Bruno Barroca. 2014. Evaluating the usability of domain-specific

languages. In Software Design and Development: Concepts, Methodologies, Tools, and Applications. IGI Global, 2120–2141.
[10] Ankica Barišić, Pedro Monteiro, Vasco Amaral, Miguel Goulão, and Miguel Monteiro. 2012. Patterns for Evaluating

Usability of Domain-Specific Languages. In Proceedings of the 19th Conference on Pattern Languages of Programs
(Tucson, Arizona) (PLoP ’12). The Hillside Group, USA, Article 14, 34 pages.

[11] Adam Barker and Jano Van Hemert. 2007. Scientific workflow: a survey and research directions. In International
Conference on Parallel Processing and Applied Mathematics. Springer, New York, NY, 746–753.

[12] Jon Bentley. 1986. Programming pearls: little languages. Commun. ACM 29, 8 (1986), 711–721.
[13] Nigel Bevan, Carol Barnum, Gilbert Cockton, Jakob Nielsen, Jared Spool, and Dennis Wixon. 2003. The magic number

5: is it enough for web testing?. In CHI’03 extended abstracts on Human factors in computing systems. ACM, New York,
NY, USA, 698–699.

[14] Alan F Blackwell. 1996. Metacognitive theories of visual programming: what do we think we are doing?. In Visual
Languages, 1996. Proceedings., IEEE Symposium on. IEEE, 240–246.

[15] Shawn Bowers and Bertram Ludäscher. 2005. Actor-oriented design of scientific workflows. In International Conference
on Conceptual Modeling. Springer, New York, NY, 369–384.

[16] John Brooke. 2013. SUS: a retrospective. Journal of usability studies 8, 2 (2013), 29–40.
[17] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation in industry 189, 194 (1996), 4–7.
[18] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger, Cláudio T Silva, and Huy T Vo. 2006.

VisTrails: visualization meets data management. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data. ACM, New York, NY, USA, 745–747.

[19] J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D Bushman, Elizabeth K Costello,
Noah Fierer, Antonio Gonzalez Pena, Julia K Goodrich, Jeffrey I Gordon, et al. 2010. QIIME allows analysis of
high-throughput community sequencing data. Nature methods 7, 5 (2010), 335.

[20] Debasish Chakraborti, Banani Roy, Chanchal Roy, and Kevin Schneider. 2018. Optimized Storing of Workflow Outputs
through Mining Association Rules. In 2018 IEEE International Conference on Big Data (Big Data). 508–515.

[21] Debasish Chakroborti, Banani Roy, Amit Kumar Mondal, Golam Mostaeen, Ralph Deters, Chanchal K. Roy, and
Schneider Kevin A. 2020. A Data Management Scheme for Micro-Level Modular Computation-intensive Programs in
Big Data Platforms. In In: Alhajj R., Moshirpour M.,and Far B. (eds), Data Management and Analysis: Case Studies in
Education, Healthcare and Beyond, Studies in Big Data, Vol. 65. 1–20.

[22] Jinjun Chen and Wil van der Aalst. 2007. On scientific workflows. IEEE Computer Society’s Technical Committee for
Scalable Computing 9 (2007).

[23] Michele Chinosi and Alberto Trombetta. 2012. BPMN: An introduction to the standard. Computer Standards &
Interfaces 34, 1 (2012), 124–134.

[24] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robinson, Matthew Shields, Ian Taylor, and
Ian Wang. 2006. Programming Scientific and Distributed Workflow with Triana Services: Research Articles. Concurr.
Comput. : Pract. Exper. 18, 10 (Aug. 2006), 1021–1037. https://doi.org/10.1002/cpe.v18:10

[25] Paul Cleary, Matt Bolger, Lachlan Hetherton, Chris Rucinski, David Thomas, and Damien Watkins. 2014. Workspace:
A Platform for Delivering Scientific Applications. Proceedings eResearch (2014), 4.

[26] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke, Iddo Friedberg, Thomas
Hamelryck, Frank Kauff, Bartek Wilczynski, et al. 2009. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25, 11 (2009), 1422–1423.

[27] Steve Cook, Gareth Jones, Stuart Kent, and Alan Cameron Wills. 2007. Domain-specific development with visual studio
dsl tools. Pearson Education.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://doi.org/10.1109/SSDBM.2004.44
https://cesgo.genouest.org/resources/129
https://doi.org/10.1002/cpe.v18:10

74:34 Hossain, Roy, Roy, Schneider

[28] Fredy Cuenca, Jan Van den Bergh, Kris Luyten, and Karin Coninx. 2014. A domain-specific textual language for rapid
prototyping of multimodal interactive systems. In Proceedings of the 2014 ACM SIGCHI symposium on Engineering
interactive computing systems. ACM, New York, NY, USA, 97–106.

[29] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM
51, 1 (2008), 107–113.

[30] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maechling, Rajiv Mayani, Weiwei Chen,
Rafael Ferreira Da Silva, Miron Livny, et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17–35.

[31] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo, and Cedric Notredame. 2017.
Nextflow enables reproducible computational workflows. Nature biotechnology 35, 4 (2017), 316–319.

[32] Marlon Dumas and Arthur ter Hofstede. 2001. UML Activity Diagrams as a Workflow Specification Language. Springer
Berlin Heidelberg, Berlin, Heidelberg, 76–90. https://doi.org/10.1007/3-540-45441-1_7

[33] elephantlaboratories. 2019. Does anyone use CWL? Does it actually help you get work done? https://www.reddit.
com/r/bioinformatics/comments/7gxsk0/does_anyone_use_cwl_does_it_actually_help_you_get/, visited 2019-07-08.

[34] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your language faster than the quick and dirty way. In
Proceedings of the ACM international conference companion on Object oriented programming systems languages and
applications companion. ACM, New York, NY, USA, 307–309.

[35] Rayhan Ferdous, Banani Roy, Chanchal Roy, and Kevin Schneider. 2020. Workflow Provenance for Big Data: From
Modelling to Reporting. In Alhajj R., Moshirpour M.,and Far B. (eds), Data Management and Analysis: Case Studies in
Education, Healthcare and Beyond, Studies in Big Data, Vol. 65. 1–18.

[36] Peter Forbrig, Anke Dittmar, and Mathias Kühn. 2018. A Textual Domain Specific Language for Task Models:
Generating Code for CoTaL, CTTE, and HAMSTERS. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM, New York, NY, USA, 5.

[37] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[38] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley Professional, Reading, MA.
[39] Debasish Ghosh. 2011. DSL for the uninitiated. Commun. ACM 54, 7 (2011), 44–50.
[40] Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans, Laura Elnitski, Prachi Shah, Yi Zhang, Daniel

Blankenberg, Istvan Albert, James Taylor, et al. 2005. Galaxy: a platform for interactive large-scale genome analysis.
Genome research 15, 10 (2005), 1451–1455.

[41] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble, et al.
2007. Examining the challenges of scientific workflows. Computer 40, 12 (2007), 24–32.

[42] David J. Gilmore and Thomas R. G. Green. 1984. Comprehension and recall of miniature programs. International
Journal of Man-Machine Studies 21, 1 (1984), 31–48.

[43] Carole A Goble et al. 2010. myExperiment: a repository and social network for the sharing of bioinformatics workflows.
Nucleic acids research 38, suppl_2 (2010), W677–W682.

[44] Jeremy Goecks, Anton Nekrutenko, et al. 2010. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome biology 11, 8 (2010), R86.

[45] Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter. 2011. Conventional
workflow technology for scientific simulation. In Guide to e-Science. Springer, New York, NY, 323–352.

[46] Thomas RG Green and Marian Petre. 1992. When visual programs are harder to read than textual programs. In
Human-Computer Interaction: Tasks and Organisation, Proceedings of ECCE-6 (6th European Conference on Cognitive
Ergonomics). GC van der Veer, MJ Tauber, S. Bagnarola and M. Antavolits. Rome, CUD. 167–180.

[47] Thomas RG Green, Marian Petre, and RKE Bellamy. 1991. Comprehensibility of visual and textual programs: A test of
superlativism against the’match-mismatch’conjecture. ESP 91, 743 (1991), 121–146.

[48] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and
ergonomics society annual meeting, Vol. 50. Sage publications Sage CA, Los Angeles, CA, 904–908.

[49] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and
theoretical research. In Advances in psychology. Vol. 52. Elsevier, 139–183.

[50] Petra Heinl, Stefan Horn, Stefan Jablonski, Jens Neeb, et al. 1999. A comprehensive approach to flexibility in workflow
management systems. In ACM SIGSOFT Software Engineering Notes, Vol. 24. ACM, New York, NY, USA, 79–88.

[51] D Hollingsworth. 1995. Workflow Management Coalition: The Workflow Reference Model. Workflow Management
Coalition 68 (01 1995).

[52] David Hollingsworth et al. 2004. The workflow reference model: 10 years on. In Fujitsu Services, UK; Technical
Committee Chair of WfMC. Citeseer, 295–312.

[53] Shawn Hoon, Kiran Kumar Ratnapu, Jer-ming Chia, Balamurugan Kumarasamy, Xiao Juguang, Michele Clamp,
Arne Stabenau, Simon Potter, Laura Clarke, and Elia Stupka. 2003. Biopipe: a flexible framework for protocol-based
bioinformatics analysis. Genome Research 13, 8 (2003), 1904–1915.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://doi.org/10.1007/3-540-45441-1_7
https://www.reddit.com/r/bioinformatics/comments/7gxsk0/does_anyone_use_cwl_does_it_actually_help_you_get/
https://www.reddit.com/r/bioinformatics/comments/7gxsk0/does_anyone_use_cwl_does_it_actually_help_you_get/

Visually Guided Scripting Framework for Scientific Data Analysis 74:35

[54] Paul Hudak. 1998. Modular domain specific languages and tools. In Software Reuse, 1998. Proceedings. Fifth International
Conference on. IEEE, 134–142.

[55] Kevin Jacobs and Kacper Surdy. 2016. Apache Flink: Distributed stream data processing. Technical Report.
[56] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. 2006. TCS:: a DSL for the specification of textual concrete syntaxes

in model engineering. In Proceedings of the 5th international conference on Generative programming and component
engineering. ACM, New York, NY, USA, 249–254.

[57] Holden Karau. 2017. Unifying the open big data world: The possibilities∗ of apache BEAM. In 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 3981–3981.

[58] Richard B Kieburtz, Laura McKinney, Jeffrey M Bell, James Hook, Alex Kotov, Jeffrey Lewis, Dino P Oliva, Tim
Sheard, Ira Smith, and Lisa Walton. 1996. A software engineering experiment in software component generation. In
Proceedings of the 18th international conference on Software engineering. IEEE Computer Society, 542–552.

[59] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. Eclipse development tools for epsilon. In Eclipse
Summit Europe, Eclipse Modeling Symposium, Vol. 20062. 200.

[60] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. 2016. Domain-specific languages: A systematic mapping study.
Information and Software Technology 71 (2016), 77–91.

[61] Johannes Köster and Sven Rahmann. 2012. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics
28, 19 (2012), 2520–2522.

[62] A. Lajmi, J. Martinez, and T. Ziadi. 2014. DSLFORGE: Textual modeling on the web. CEUR Workshop Proceedings 1255
(01 2014), 25–29.

[63] Peter Lawrence (Ed.). 1997. Workflow Handbook 1997. John Wiley & Sons, Inc., New York, NY, USA.
[64] Jeremy Leipzig. 2017. A review of bioinformatic pipeline frameworks. Briefings in bioinformatics 18, 3 (2017), 530–536.
[65] James Jim R Lewis and Jeff Sauro. 2017. Revisiting the factor structure of the System Usability Scale. Journal of

Usability Studies 12, 4 (2017), 183–192.
[66] James R Lewis and Jeff Sauro. 2009. The factor structure of the system usability scale. In International conference on

human centered design. Springer, New York, NY, 94–103.
[67] Heng Li. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv 1303 (2013).
[68] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, and

Richard Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 16 (2009), 2078–2079.
[69] William Lidwell et al. 2010. Universal principles of design, revised and updated: 125 ways to enhance usability, influence

perception, increase appeal, make better design decisions, and teach through design. Rockport Pub.
[70] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai, Farshad Fotouhi, and Jing Hua. 2009. A

reference architecture for scientific workflow management systems and the VIEW SOA solution. IEEE Transactions
on Services Computing 2, 1 (2009), 79–92.

[71] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. 2015. A survey of data-intensive scientific workflow
management. Journal of Grid Computing 13, 4 (2015), 457–493.

[72] Bertram Ludäscher et al. 2009. Scientific process automation and workflow management. In Scientific Data Manage-
ment: Challenges, Technology, and Deployment. CRC press.

[73] Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. 2009. Scientific workflows: Business as
usual?. In International Conference on Business Process Management. Springer, New York, NY, 31–47.

[74] Bertram Ludäscher, Ilkay Altintas, and Amarnath Gupta. 2003. Compiling Abstract Scientific Workflows into Web
Service Workflows. In 15th International Conference on Scientific and Statistical Database Management, 2003., Vol. 2003.
IEEE, 251–254. https://doi.org/10.1109/SSDM.2003.1214990

[75] Tanja Magoč and Steven L Salzberg. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies.
Bioinformatics 27, 21 (2011), 2957–2963.

[76] Ketan Maheshwari and Johan Montagnat. 2010. Scientific workflow development using both visual and script-based
representation. In 2010 6th World Congress on Services. IEEE, 328–335.

[77] Seema Maitrey and C.K. Jha. 2015. MapReduce: Simplified Data Analysis of Big Data. Procedia Computer Science
57 (2015), 563 – 571. https://doi.org/10.1016/j.procs.2015.07.392 3rd International Conference on Recent Trends in
Computing 2015 (ICRTC-2015).

[78] Shalil Majithia, Matthew Shields, Ian Taylor, and Ian Wang. 2004. Triana: A graphical web service composition and
execution toolkit. In Web Services, 2004. Proceedings. IEEE International Conference on. IEEE, 514–521.

[79] James Malone, Andy Brown, Allyson L Lister, Jon Ison, Duncan Hull, Helen Parkinson, and Robert Stevens. 2014. The
Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation.
Journal of biomedical semantics 5, 1 (2014), 25.

[80] Daniel D McCracken and Edwin D Reilly. 2003. Backus-naur form (bnf). (2003).
[81] Paul McGuire. 2007. Getting started with pyparsing. " O’Reilly Media, Inc.", 1005 Gravenstein Highway North,

Sebastopol, CA 95472, USA.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://doi.org/10.1109/SSDM.2003.1214990
https://doi.org/10.1016/j.procs.2015.07.392

74:36 Hossain, Roy, Roy, Schneider

[82] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to develop domain-specific languages.
ACM computing surveys (CSUR) 37, 4 (2005), 316–344.

[83] GolamMostaeen, Banani Roy, Chanchal Roy, and Kevin Schneider. 2018. Fine-Grained Attribute Level Locking Scheme
for Collaborative Scientific Workflow Development. In 2018 IEEE International Conference on Services Computing
(SCC). 273–277.

[84] GolamMostaeen, Banani Roy, Chanchal Roy, and Kevin Schneider. 2019. Designing for Real-Time Groupware Systems
to Support Complex Scientific Data Analysis. Journal Proceedings of the ACM on Human-Computer Interaction 3, EICS,
Article 9 (June 2019), 28 pages.

[85] Jakob Nielsen. 1994. Usability engineering. Elsevier.
[86] Jakob Nielsen. 2000. Why You Only Need to Test with 5 Users, Jakob Nielsen’s Alertbox. "https://www.nngroup.

com/articles/why-you-only-need-to-test-with-5-users/"
[87] Shadi A Noghabi et al. 2017. Samza: stateful scalable stream processing at LinkedIn. Proceedings of the VLDB

Endowment 10, 12 (2017), 1634–1645.
[88] Andres Ojamaa, Hele-Mai Haav, and Jaan Penjam. 2015. Semi-automated generation of DSL meta models from formal

domain ontologies. In Model and Data Engineering. Springer, New York, NY, 3–15.
[89] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy Glover, James Holman, John Micco,

et al. 2017. The top 10 adages in continuous deployment. IEEE Software 34, 3 (2017), 86–95.
[90] Terence Parr. 2013. The definitive ANTLR 4 reference. Pragmatic Bookshelf.
[91] Maja Pesic, Helen Schonenberg, and Wil van der Aalst. 2010. Declarative workflow. In Modern Business Process

Automation. Springer, 175–201.
[92] Marian Petre. 1995. Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Commun.

ACM 38, 6 (June 1995), 33–44. https://doi.org/10.1145/203241.203251
[93] Carl Adam Petri. 1962. Kommunikation mit Automaten. Ph.D. Dissertation. Universität Hamburg.
[94] q2studio: A graphical user interface for QIIME 2 2017. QIIME 2 Studio (q2studio). Retrieved December 12, 2019 from

https://docs.qiime2.org/2019.10/interfaces/q2studio/
[95] Akond Rahman et al. 2018. What questions do programmers ask about configuration as code?. In Proceedings of the

4th International Workshop on Rapid Continuous Software Engineering. ACM, New York, NY, USA, 16–22.
[96] Anthony Rowe, Dimitrios Kalaitzopoulos, Michelle Osmond, Moustafa Ghanem, and Yike Guo. 2003. The discovery

net system for high throughput bioinformatics. Bioinformatics 19, suppl 1 (2003), i225–i231.
[97] Banani Roy, Amit Kumar Mondal, Chanchal K Roy, Kevin A Schneider, and Kawser Wazed. 2017. Towards a reference

architecture for cloud-based plant genotyping and phenotyping analysis frameworks. In 2017 IEEE International
Conference on Software Architecture (ICSA). IEEE, 41–50.

[98] Simon P Sadedin, Bernard Pope, and Alicia Oshlack. 2012. Bpipe: a tool for running and managing bioinformatics
pipelines. Bioinformatics 28, 11 (2012), 1525–1526.

[99] Hiroaki Sakai et al. 2013. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for
rice genomics. Plant and Cell Physiology 54, 2 (2013), e6–e6.

[100] Jeff Sauro. 2011. Measuring usability with the system usability scale (SUS).
[101] Patrick D Schloss, Sarah L Westcott, Thomas Ryabin, Justine R Hall, Martin Hartmann, Emily B Hollister, Ryan A

Lesniewski, Brian B Oakley, Donovan H Parks, Courtney J Robinson, et al. 2009. Introducing mothur: open-source,
platform-independent, community-supported software for describing and comparing microbial communities. Appl.
Environ. Microbiol. 75, 23 (2009), 7537–7541.

[102] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil van der Aalst. 2008. Process flexibility: A
survey of contemporary approaches. In Advances in enterprise engineering I. Springer, New York, NY, 16–30.

[103] Clare Sloggett, Nuwan Goonasekera, and Enis Afgan. 2013. BioBlend: automating pipeline analyses within Galaxy
and CloudMan. Bioinformatics 29, 13 (2013), 1685–1686.

[104] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J Goldberg,
Karen Eilbeck, Amelia Ireland, Christopher J Mungall, et al. 2007. The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nature biotechnology 25, 11 (2007), 1251.

[105] Kenia Sousa, Jean Vanderdonckt, Brian Henderson-Sellers, et al. 2012. Evaluating a graphical notation for modelling
software development methodologies. Journal of Visual Languages & Computing 23, 4 (2012), 195–212.

[106] Jared Spool and Will Schroeder. 2001. Testing web sites: Five users is nowhere near enough. In CHI’01 extended
abstracts on Human factors in computing systems. ACM, New York, NY, USA, 285–286.

[107] Jonathan Sprinkle, Marjan Mernik, Juha-Pekka Tolvanen, and Diomidis Spinellis. 2009. Guest editors’ introduction:
What kinds of nails need a domain-specific hammer? IEEE software 26, 4 (2009), 15–18.

[108] Robert Tairas, Marjan Mernik, et al. 2008. Using ontologies in the domain analysis of domain-specific languages. In
International Conference on Model Driven Engineering Languages and Systems. Springer, New York, NY, 332–342.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

"https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/"
"https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/"
https://doi.org/10.1145/203241.203251
https://docs.qiime2.org/2019.10/interfaces/q2studio/

Visually Guided Scripting Framework for Scientific Data Analysis 74:37

[109] Gabor Terstyanszky, Tamas Kukla, Tamas Kiss, Peter Kacsuk, et al. 2014. Enabling scientific workflow sharing through
coarse-grained interoperability. Future Generation Computer Systems 37 (2014), 46–59.

[110] Tom Tullis and Bill Albert. 2013. Chapter 6 - Self-Reported Metrics. In Measuring the User Experience (Second
Edition) (second edition ed.), Tom Tullis and Bill Albert (Eds.). Morgan Kaufmann, Boston, 121 – 161. https:
//doi.org/10.1016/B978-0-12-415781-1.00006-6

[111] Jan Van den Bergh and Kris Luyten. 2017. DICE-R: Defining human-robot interaction with composite events. In
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. ACM, 117–122.

[112] Wil van der Aalst and Arthur ter Hofstede. 1999. Workflow Patterns Initiative. Retrieved December 12, 2019 from
http://www.workflowpatterns.com

[113] Wil van der Aalst and Arthur ter Hofstede. 2005. YAWL: yet another workflow language. Information systems 30, 4
(2005), 245–275.

[114] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing. ACM, New York, NY, USA, 5.

[115] Markus Völter, Sebastian Benz, Christian Dietrich, et al. 2013. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org. http://www.dslbook.org

[116] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472, USA.

[117] Guido Wirtz, Mathias Weske, and Holger Giese. 2000. Extending UML with Workflow Modeling Capabilities. Springer
Berlin Heidelberg, Berlin, Heidelberg, 30–41. https://doi.org/10.1007/10722620_3

[118] Katherine Wolstencroft, Robert Haines, Fellows, et al. 2013. The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic acids research 41, W1 (2013), W557–W561.

[119] Xiaorong Xiang and Gregory Madey. 2007. Improving the reuse of ScientificWorkflows and their by-products. In
IEEE International Conference on Web Services (ICWS 2007). IEEE, 792–799.

[120] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing
with working sets. HotCloud 10, 10-10 (2010), 95.

[121] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng,
Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. 2016. Apache spark: a unified engine for big data
processing. Commun. ACM 59, 11 (2016), 56–65.

[122] Jiajie Zhang, Kassian Kobert, Tomáš Flouri, and Alexandros Stamatakis. 2013. PEAR: a fast and accurate Illumina
Paired-End reAd mergeR. Bioinformatics 30, 5 (2013), 614–620.

Received July 2019; revised December 2019; accepted January 2020

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 74. Publication date: June 2020.

https://doi.org/10.1016/B978-0-12-415781-1.00006-6
https://doi.org/10.1016/B978-0-12-415781-1.00006-6
http://www.workflowpatterns.com
http://www.dslbook.org
https://doi.org/10.1007/10722620_3

	Abstract
	1 Introduction
	2 Background
	2.1 Scientific Workflow and Scientific Workflow Management Systems
	2.2 Workflow Modeling Languages

	3 Research Challenges
	3.1 Gathering Essential Knowledge for Domain Modeling
	3.2 Supporting Visual Guidance
	3.3 Deriving Minimal DSL Constructs
	3.4 Supporting Extensibility and Balancing Flexibility and Usability
	3.5 Allowing Sharing and Collaboration
	3.6 Large Storage Management and High Processing Performance

	4 Related Work
	5 A Framework for Scientific Data Analysis
	5.1 Architecture
	5.2 Plugin Architecture
	5.3 Sharing and Collaboration
	5.4 DSL
	5.4.1 Keywords
	5.4.2 Operators
	5.4.3 Workflow Constructs
	5.4.4 Modular Operations

	5.5 Middleware
	5.6 Back End

	6 VizSciFlow: A Proof of Concept of Our Proposed Framework
	7 Evaluation
	7.1 Evaluation of usability, efficiency and expressiveness in comparison to Galaxy and Python
	7.1.1 Participants
	7.1.2 Experiment Procedure
	7.1.3 Results

	7.2 Evaluation of Usability
	7.2.1 Participants
	7.2.2 Experiment Procedure
	7.2.3 Results and Discussion

	7.3 Evaluation of Flexibility
	7.3.1 Participants
	7.3.2 Experiment Procedure
	7.3.3 Results and Discussion

	7.4 Performance Study of Large Data and High Performance Support

	8 Result Analysis
	9 Threats to Validity
	10 Conclusion and Future Work
	References

