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Abstract—Clone detection on large code repository is necessary
for many big code analysis tasks. The goal is to provide
rich information on identical and similar code across projects.
Detecting near-miss code clones on big code is challenging since it
requires intensive computing and memory resources as the scale
of the source code increases. In this work, we propose SAGA, an
efficient suffix-array based code clone detection tool designed
with sophisticated GPU optimization. SAGA not only detects
Type-1 and Type-2 clones but also does so for cross-project large
repositories and for the most computationally expensive Type-3
clones. Meanwhile, it also works at segment granularity, which is
even more challenging. It detects code clones in 100 million lines
of code within 11 minutes (with recall and precision comparable
to state-of-the-art approaches), which is more than 10 times
faster than state-of-the-art tools. It is the only tool that efficiently
detects Type-3 near-miss clones at segment granularity in large
code repository (e.g., within 11 hours on 1 billion lines of code).
We conduct a preliminary case study on 85,202 GitHub Java
projects with 1 billion lines of code and exhibit the distribution
of clones across projects. We find about 1.23 million Type-3 clone
groups, containing 28 million lines of code at arbitrary segment
granularity, which are only detectable with SAGA. We believe
SAGA is useful in many software engineering applications such
as code provenance analysis, code completion, change impact
analysis, and many more.

Index Terms—clone detection, near-miss clone, segment clone,
GPU acceleration, big code

I. INTRODUCTION

Code clones, also known as duplicated code, are source
code fragments that are identical or similar to each other.
Code clones reflect the fact that developers intentionally copy,
paste, and modify source code within or across software
systems, or unintentionally write similar code according to
frameworks or API specifications [1]. Code clones can be
categorized according to the level of similarity [2], i.e., Type-
1 are exact clones, Type-2 are parameterized clones, Type-3
are clones with further modifications (like inserting or deleting
statements) based on Type-1/2, and Type-4 are clones that are
not syntactically similar but semantically similar. Typically,
near-miss clones are those exhibit high similarity.

Clone detection is an old engineering and research topic
dated back to early 1990s [3]. Tens of clone detection ap-
proaches [4] have been proposed, supporting applications like
building software libraries [5], software genealogy [6], [7],

code provenance analysis [8], [9], defect analysis and pre-
dictions [10]–[12], change impact analysis [13], [14], license
violation detection [15], and so on.

In the big data era, the applications of clone detection have
been extended to large cross-project repositories. However, it
is still challenging to detect clones in big code efficiently and
effectively. It typically takes days to detect inter-project clones
on 250 million lines of code (MLOC) even at the function
granularity [16]. Detecting clones at a finer granularity (i.e.,
segment clones, which are code segments within a function
but much smaller compared to the function body) is much
more expensive since such detections involve much more code
segments to compare and thus require enormous computation
resources.

Furthermore, for Type-3 near-miss clones, segment-grained
detection is particularly expensive because numerous Type-3
differences (i.e., insertion, deletion or modification of source
code lines or tokens) between code segments need to be
examined. While existing approaches typically rely on explicit
literal boundaries (such as braces {}) to detect Type-3 clones
on code blocks, we argue that detecting Type-3 clones on
continuous arbitrary code segments without relying on explicit
boundaries is fundamental software engineering capability that
enables fine-grained clone detection, even if the final reported
clones can be aligned with code block boundaries.

In this work, we propose SAGA1, a Suffix Array based
clone detection tool with in-built GPU Acceleration, which
detects Type-1/2/3 clones on arbitrary code segments. With
support of GPU computation capability, it constructs a suffix
array, a memory-efficient data structure, to represent the source
code, and employs a GPU-accelerated algorithm to merge
neighboring Type-1/2 clones for Type-3 clones. It also employs
data chunking to overcome the size limit of graphics memory
and supports multi-GPU to further accelerate. It has the
capability of detecting Type-3 clones and detecting clones on
continuous arbitrary segments.

We evaluate SAGA in terms of efficiency, scalability, recall,
precision, and consistency. SAGA takes less than 11 minutes
to detect clones in a 100 MLOC repository, 12 times faster

1https://github.com/FudanSELab/SAGA



than CloneWorks [17], 75 times faster than SourcererCC [16].
SAGA further scales up to 1 billion lines of code and finishes
clone detection within 11 hours. Meanwhile, SAGA achieves
comparable recall on detecting Type-1/2/3 clones, w.r.t. the
state-of-the-art clone detection tools, in experiments with the
BigCloneBench [18] and the Mutation and Injection Frame-
work [19]. Manual validation of the detected clones confirms
that the precision of SAGA is more than 99% at function
granularity and more than 70% at segment granularity, also
comparable to the competing tools. We further confirm that
clone generated by SAGA is generally consistent with Sourcer-
erCC and covers those detected by CCFinder.

We also evaluate SAGA with a preliminary case study on
85,202 Java projects from GitHub, showing that SAGA facili-
tates various clone-based applications in large code repository
which are previously impossible. We find that more than 20
million lines of code are gapped clone segments reside in long
methods, which are only detectable with SAGA. Our pilot
study shows that SAGA is a promising tool to support large-
scale clone detection and analysis and many more software
engineering applications in large code repositories.

Our main contributions are the following: 1) A GPU-based
clone detection tool, named SAGA, that not only detects Type-
1/2/3 clones from large code repositories, but also do so at
arbitrary segment granularity. This is a significant achievement
over the state-of-the-art large scale Type-3 clone detectors.
It is currently the only tool that detects Type-1/2 and Type-
3 near-miss clones at arbitrary segment level granularity on
1 billion lines of code. 2) A comprehensive evaluation of
the proposed tool with BigCloneBench and the Mutation and
Injection Framework and on consistency with the competing
clone detection tools. 3) A large scale preliminary case study
with 1 billion lines of code across 85,202 GitHub Java projects,
showing the existence and distribution of inter-project clones
especially Type-3 clones at segment granularity.

The rest of the paper is organized as follows. Section II
introduces preliminaries of code clone detection and GPU
programming. Section III presents our approach on detect-
ing Type-3 clone and optimizations based on GPU compu-
tation. Section IV presents relevant implementation details,
including transformation rules and detection parameters. Sec-
tion V shows the evaluation results with experiments on
BigCloneBench and other big code repositories. Section VI
reviews related work. Section VII concludes our work.

II. PRELIMINARIES

A. Code Clone Detection

Code clones can be categorized into four types. Type-
1 (a.k.a. exact) clones are code segments that are identical
except for variations in white spaces and comments. Type-
2 (a.k.a. parameterized) clones are code segments that are
syntactically similar except for changes in identifiers, types,
constants, white spaces and comments. Type-3 clones are code
segments where insertions or deletions have been made based
on Type-1/2 clones. Type-4 clones are code segments which
are semantically similar but not syntactically or structurally

(a) Suffix Tree (b) Suffix Array

Fig. 1: An Example of Suffix Tree and Suffix Array

similar. Near-miss clones are usually referred as those Type-3
clones that are with comparatively high syntactical similarity
(e.g., 70% or more).

Clone detection approaches generally follow four steps [2],
i.e., Preprocessing in which uninteresting files are excluded,
Transformation in which source code is transformed to some
intermediate representation, Match Detection in which trans-
formed code is paired with certain data structures, and Post-
processing in which a series of tasks are done before human-
readable and meaningful clone results are generated.

Selecting the proper code representation and matching struc-
ture is essential to the performance of clone detection. For
detecting clones on continuous arbitrary code segments on a
large source code repository, the combination of token-based
transformation and suffix-tree or suffix-array based matching
is reasonable but the challenge remains on how to achieve
efficiency in a large code repository and how to detect Type-3
clones.

B. Suffix Tree and Suffix Array

Suffix tree is a dictionary tree representing all the suffixes of
a string, whereas suffix array is an alternative representation of
suffix tree that uses the index value of the string to represent
suffixes. Figure 1 shows an example of the suffix tree and the
suffix array representation of the string “BANANA”.

In Figure 1(a), a path from the root to a non-leaf node
represents a common substring. In Figure 1(b), a suffix array
of the same string is shown. It is an array of the index value of
the leading character of a suffix of the string. It ensures that,
for any two values sai, saj in the suffix array sa of string S,
if i < j, suffix(sai) is smaller than suffix(saj), where suffix(k)
is the suffix string starting at index k of S. This means that
all suffixes of the string is represented by the suffix array in
the lexicographic order.

Given a string S and its (sorted) suffix array sa, all common
substrings of S are the common prefixes of the suffix strings
represented by “neighbor” entries of sa, e.g., suffix(sa[5])
“NA” and suffix(sa[6]) “NANA” share the common prefix
“NA”. The length of the common prefix between suffix(sai)
and suffix(sai+1) is defined as heighti, which is 2 in this
case, meaning that a pair of 2-char-long common substrings
“NA” exist in the string. This representation is useful in finding
longest common substring, which can also be used in code
clone detection. Therefore, clone detection approaches based



on suffix tree or suffix array can detect any code sequences that
form a clone pair no matter whether explicit code boundaries
(such as “{” and “}”) are specified.

Note that the suffix tree stores all suffix strings, while
the suffix array stores only the index numbers of the suffix
strings. Thus, suffix arrays consume much less memory than
suffix trees. However, constructing a suffix array requires more
computation resources. In our work, we adopt suffix array for
its memory efficiency and exploit GPU parallel computation to
speed up the construction process, as we show in Section III-B.

C. GPU and GPU Programming

Nowadays, general-purpose GPU, or GPGPU, are widely
used for computation-intensive tasks, such as deep learning
and genetic algorithm [20]. GPGPU often facilitate tens of
times or even hundreds of times speedup compared to CPU
computations on tasks such as floating-point operations and
sorting an array.

Solutions for GPGPU programming include Nvidia’s
CUDA [21] and AMD’s CTM [22]. CUDA enables pro-
grammers to take full advantage of both CPU and GPU in
their applications and is easy to use. It provides a useful
development library, which contains parallel implementations
of many general-purpose functions such as array sorting,
prefix-sum [23] and binary-search.

III. OUR APPROACH

In this section, we present our approach for large scale code
clone detection based on GPU acceleration.

A. Problem Analysis

Suffix-tree and suffix-array based approaches allow us to
detect clone segments independent of any explicit bound-
aries. There are however multiple technical challenges to be
addressed if we would like to apply them to large code
repositories and to support detecting Type-3 clones.

First, constructing suffix trees requires significant amount of
memory while constructing suffix arrays requires significant
amount of computation. For instance, it was reported that
suffix-tree-based approaches fail on large repositories because
of huge temporary space and memory consumption [16], [24].
The memory issue motivated some attempts with suffix ar-
rays [24] and succeeded in clone detection on the a 250MLOC
code base. However, the detection took 23.5 hours (running
on a 64GB RAM machine) to finish because constructing a
suffix array is time-consuming. To detect clones in big code,
we need an approach which is both memory and computation
efficient.

Second, it is challenging to detect Type-3 clones at seg-
ment granularity. Existing approaches detect Type-3 clones
on files, functions, or code blocks but not on arbitrary code
segments without explicit boundaries. Although block-grained
clone reports are for a human being to read, we argue that
precise fine-grained clone detection is fundamental capability
for code analysis. In theory, one way to detect Type-3 clones
is by merging Type-1/2 clones and calculating the code

Fig. 2: Constructing a Suffix Array for Source Code

similarity [25]. However, such an approach requires extensive
computation to deal with combinatorial complexity between
Type-1/2 clones, which is computationally infeasible under
traditional computation architecture. One way to limit the
amount of Type-1/2 clones is to control the threshold on the
length of minimal clone. However, it is not always feasible to
set a large threshold as finer-grained clones may be missed.

Third, the suffix tree and even the suffix array may be
too big to fit in the memory when we deal with large scale
code. One solution is to break the data into smaller chunks so
that each may fit in the main memory [25]. For instance, D-
CCFinder [26] adopts a distributed, multi-computer approach
and breaks the token sequence into multiple sub-sequences
and processes each data chunk using a single computer. It was
reported that D-CCFinder successfully detected code clones in
a code base with 400 MLOC with 80 computers in about 2
days. However, such a distributed approach is expensive (by
using and configuring tens of computers) and not time-efficient
due to limitation on the network bandwidth.

In our approach, we design dedicated techniques to tackle
the above-mentioned challenges. In the following, we present
how each challenge is addressed.

B. Optimizing Suffix Array Construction

To address the first challenge, we decide to use suffix array,
the memory efficient data structure, for matching and take
advantage of GPU computation to speed up the construction
process. The general process of constructing a suffix array is
depicted with an example in Figure 2. Suffix array represent a
suffix string as an integer of the index of each leading token
in the suffix string, as marked on the left margin of the strings
in Figure 2. The key part is to sort the suffixes to obtain a
suffix array in which suffixes with the same prefixes become
neighbors. This process typically requires a lot of computation.

To solve this problem, we adopt an existing parallelized
solution, named Data Parallel Prefix-Doubling (DPPD) algo-
rithm [27], to construct the suffix array. To the best of our



knowledge, it is the first time that the algorithm is used in
processing token sequences of source code. While we leave
the details of the algorithm in literature, we emphasize that
the algorithm is space efficient, which is essential for deal-
ing with billions of tokens, and accelerates the construction
process dramatically using the power of GPU computation.
We evaluate the performance gain in a simple experiment,
which shows that, with an input of 1.2 million tokens, the
GPU implementation takes 2.8 seconds to construct the suffix
array, more than 150 times faster than the CPU implementation
which takes 439 seconds. The gain increases even more when
given larger input token sequences.

C. Detecting Type-3 Clones

As explained in Section III-A, detecting all Type-3 clones
would require dealing with the combinatorial complexity of
combining all Type-1 and Type-2 clones, which is infeasible
given a large code base. Thus, we design an approach which
focuses on a subset of Type-3 clones which may otherwise
be missed. The rational is as follows. Typically, the goal of
clone detection is to report clones, either Type-1, Type-2, or
Type-3, which are no shorter than a threshold on minimal
clone length (lmc) so that the results are not polluted by less
meaningful small snippets [28]. Reporting all Type-1/2 clones
is straightforward. For Type-3 clones, we partition them into
two groups. One is the Type-3 clones which are constituted by
at least one Type-1/2 clone which is no shorter than lmc. We
argue that Type-3 clones in this group are partially reported
as long as qualified Type-1/2 clones are reported. The other
group is the Type-3 clones which are constituted by only
the Type-1/2 clones which are shorter than lmc. These will
be missed completely if we do not conduct Type-3 clone
detection. Therefore, our goal is to systematically identify
Type-3 clones in the latter group. At a high level, our approach
works as follows: we detect all Type-1/2 clones to be our
candidate clones with a threshold lmcc (i.e., the minimal length
for candidate clones) smaller than lmc. The candidate clones
that are shorter than lmc are checked for merging into Type-
3 clones. Figure 3 shows an example, which we explain in
details in the following.
Representing candidate clones with suffix array. The source
code is first transformed into a sequence of tokens (shown
as 1© in Figure 3) before the suffix array (shown as 2©) is
constructed. As explained in Section II-B, the ith value sai
(i.e., a-f in Figure 3) are the indexes of the token sequence,
meaning that the entry represents a suffix string starting at
the saith token, and the height values (shown as 3©) are the
lengths of the common prefixes in the suffix strings referenced
by the neighbor entries. In fact, each common prefix represents
a height-token-long code segment. Therefore, for simplicity,
we use sai to represent the code segment. In our example, code
segment a represents a 30-token-long code segment starting at
the ath token in the token sequence. Then we may recognize
a pair of code segments (sai, sai+1) to be a candidate clone
if heighti ≥ lmcc. In our example, (a, b), (c, d), and (e, f)

Fig. 3: Detecting Type-3 Clones: An Example

are all candidate clones, since their height values (shown as
3©) are all larger than lmcc which is set to 20.

We then formally denote each candidate clone as a five-tuple
(seg1, seg2, len,method1,method2) (shown as 4©), where
seg1 and seg2 are code segments, len is the length of the
clone, and method1 and method2 are the methods in which
the the code segments reside. The candidate clones that are
shorter than lmc are then used for Type-3 clone detection,
while those longer than lmc are directly reported as Type-
1/2 clones. Since there could be cases in which clone pairs
subsume each other, the subsumed clones are removed and
only the largest clone is preserved.

This approach is flexible as we can configure an appropriate
value for lmcc to work with defined syntactic similarity for
better performance, as we discuss in Section IV-B.
Sorting candidate clones with GPU. In order to merge the
candidates into Type-3 clones, we must identify candidate
clones which are in the same method. This is achieved
efficiently by sorting the candidate clones according to both
residing methods of the two code segments. Note that sorting
usually would consume a lot of time. It is however not the
case, with the help of GPU (i.e., the CUDA library).

Our implementation of the sorting operation is based on
a stable sort API stable_sort_by_key, which is very
efficient even with a large amount of data (as we show in
Subsection V-A). Once the candidates are sorted, we only need
to consider neighboring candidates for merging into a Type-
3 clone. For instance, the candidate clones (a, b, 30,m1,m3)
and (c, d, 25,m1,m3) (shown as 5©) are neighbors after
sorting since they are in the same method, and thus may be
merged. The other candidate clone (e, f, 25,m2,m3) resides
in a different method and thus is not a neighbor after sorting.
Consequently, it will not be considered for merging with the
other two example candidates.
Detecting Type-3 clones by merging candidate clones. After
sorting the candidate clones, we merge the neighboring candi-
date clones to form Type-3 clones. The details of the merging
process is shown in Algorithm 1. The input is the sorted list



of candidate clones. The output is a set of Type-3 clones.
We apply a similarity threshold θ for controlling the merging.
Intuitively, the overall idea is to iteratively merge ‘mergeable’
neighbors until the next neighbor is not mergeable. Once we
find a merged candidate whose length is larger than lmc, we
add it into the result (at line 12) so that it will be reported.

Algorithm 1: Detecting Type-3 Clones
Input: The sorted array ccArray of the 5-tuples of all

candidate clones
Output: Result: Set of Type-3 clones

1 Result = ∅;
2 cc = the first candidate clone in ccArray;
3 ccToMerge = cc; // a running cc for merge
4 while cc 6= null do
5 ccNext = next candidate clone in ccArray;
6 if IsMergeable (ccToMerge, ccNext) then
7 cc = Merge (cc, ccNext);
8 ccToMerge = ccNext;
9 end

10 else
11 if cc.length ≥ lmc then
12 Add cc to Result;
13 end
14 cc = next candidate clone in ccArray;
15 ccToMerge = cc;
16 end
17 end
18 return Result;

To determine whether two candidate clones are mergeable,
we apply two simple tests in Algorithm 2: (1) the two clone
segments in cc1 are in the same methods as those in cc2 (as
in lines 2 to 4 for a negative condition test) and (2) the cloned
code coverage is higher than θ. The coverage is determined
by the total length of the two segments over the length from
the start of first segment to the end of the second segment
including the length of the gap in between. Therefore if the
gap is too large (i.e., longer than the length from the start of
the first segment to the end of the second segment multiplies
(1− θ), as shown at line 5), the clone coverage falls below θ
so the clones are not mergeable.

Algorithm 2: Detect if candidate clones are mergeable
Input: Two candidate clones cc1, cc2
Output: true iff cc1 and cc2 are mergeable

1 Function IsMergeable (cc1, cc2)
2 if cc1.method1 6= cc2.method1 or

cc1.method2 6= cc2.method2 then
3 return false
4 end
5 gap = max (gap between cc1.seg1 and cc2.seg1, gap

between cc1.seg2 and cc2.seg2);
6 if gap > (cc1.length+ cc2.length+ gap) ∗ (1− θ)

then
7 return false
8 end
9 return true

D. Optimization with Data Chunking

In existing approaches, data structures used for match
detection may become too big to fit in the main memory
or graphics memory as the size of source code increases. To
address this challenge, we apply the idea of data chunking in
the setting of GPU computation as follows. First, we divide the
token sequence into data chunks so that any two chunks can be
loaded in the graphics memory for suffix array construction.
Then, for any two data chunks, we construct a suffix array in
the graphics memory and conduct match detection. Finally, the
matching results are collected to generate the final detection
result.

The first step is mostly straightforward. We thus explain the
next two steps in the following. Assume that we have N data
chunks of equal size. Let ci and cj (1 ≤ i, j ≤ N, i 6= j) be
two arbitrary chunks. We fit ci and cj in the graphics memory
for detecting clones across these two chunks and the clones
within either ci or cj . In general, we need to perform the
above for N ∗ (N−1)/2 pairs of data chunks to get all clones
detected. A similar approach is used in D-CCFinder [26].

We conduct multiple experiments in order to determine the
right size of each data chunk. Our experiments reveal that
constructing a suffix array for 200 million tokens at one time
is safe and stable and achieves high utilization of one NVidia
card with 6GB graphics memory. Based on this observation,
we decided to divide the token sequence in chunks of 100
million tokens each and designed a scheduler to feed two data
chunks to one graphic card at a time.

Although the chunking approach addresses the above-
mentioned challenges adequately, we further apply the fol-
lowing two optimizations to exploit the capability of the
GPU computation architecture. (1) Multi-GPU support. Since
each data chunk can be processed independently, they can
be executed by multiple GPU concurrently. Therefore it is
feasible to leverage multi-GPU support. (2) Pipeline solu-
tion in CPU-GPU architecture. It is even more effective to
perform pipeline-like execution on both CPU and GPU, i.e.,
in a producer/consumer pattern. The CPU is responsible for
preprocessing and transformation, whereas GPU is responsible
for suffix array construction and match detection. When the
GPU is constructing suffix array for a tokenized data chunk,
the CPU immediately schedules the next data chunk for
tokenization. This pipeline solution makes full use of the CPU-
GPU architecture and further improves the performance.

IV. IMPLEMENTATION

In this section, we present relevant implementation details.

A. Tokenization

Our tokenization module has a lightweight parser which
does not rely on any third-party parsers. The parser employs
predefined tokenization rules as stated in Table I. The rules
share similar ideas with those used in CCFinder [25]. However,
our rules are simpler and do not require language-dependent
pretty-printing beforehand. The tokenization module is gen-
erally language-independent except for a small number of



TABLE I: Tokenization Rules

Operation Examples/Description
R1 Accessibility or
modifier keywords re-
moval

Remove keywords like: protected, static,
final.

R2 Keyword replace-
ment

Some keywords, such as try, catch and
switch, are replaced by their own tokens.

R3 Basic data types
unification

Basic data types, such as int, long, Int,
Long, are replaced by a specific token.

R4 Identifier & data
replacement

All class names, variable names, and constants
are replaced by a specific token.

R5 Block boundary
recognition

Method boundaries are transformed to a specific
token. Boundaries (e.g., braces in Java) for a
block less than 4 lines are removed.

customized keywords and method boundary tokens. Methods’
boundaries are used for for locating a clone segment and for
finding neighboring clones in candidate merging.

Compared to other preprocessing tools such as TXL [29]
used in other clone detection tools [16], [25], [30], our light-
weight parser runs more efficiently because 1) it does not parse
complex code structures and 2) it does not pretty-print the
source code but conduct tokenization directly with a list of
language keywords and symbols.

B. Deciding the Minimal Length of Candidate Clones

The minimal length of candidate clones lmcc determines the
smallest code segment to be considered. Setting a smaller lmcc

helps to detect Type-3 clones since smaller fragments of code
may be detected and can participate in the merging process.
However, an overly small lmcc may produce too many tiny
candidate clones that are unlikely meaningful, which harms
the execution time and the precision.

Since it is commonly accepted that a clone needs to be
at least 50 tokens long to be meaningful [31], we assume
that a Type-3 clone must also have at least 50 cloned tokens,
apart from at least one gap. Assume the similarity threshold is
0.7. Then the typical Type-3 clone should be 71 tokens long
(50/0.7), including a 21-token gap. Candidate clone should
not be too small and should be comparable to a typical gap.
According to the results of the threshold experiment, we set
lmcc to 20, taking recall rate and efficiency into consideration.

V. EVALUATION

We evaluate SAGA on its execution time, recall, and
precision with BigCloneBench, the Mutation and Injection
Framework, and an open-source code base consisting of 1
billion lines of code, and also analyze the consistency with
the competing tools. We further conduct a preliminary case
study on 85,202 projects with SAGA to show its usefulness
in big code analysis.

A. Execution Time and Scalability

As SAGA targets large code repositories, we evaluate the
execution time on source code datasets of various scales.

Datasets: One source code dataset is the IJaDataset [32],
which contains about 250 million lines of Java source code

mined from SourceForge and Google Code. The full IJa-
Dataset and its subsets are often used for evaluating execution
time and scalability of clone detection tools [16], [30], [33].
Another source code dataset we use is 85,202 non-fork Java
projects downloaded from GitHub, containing about 1 billion
lines of source code. Among them, there are about 8,000
projects (300MLOC) that have earned more than 100 stars
each. Combining the 300MLOC with the IJaDataset, we have
550MLOC, which is of medium size between 250MLOC and
1 billion LOC for scalability tests and also used in recall
experiments later.

Environment and Settings: We run SourcererCC2, CCFind-
erX3, NICAD4, Deckard5, CloneWorks6, and our own tool
SAGA, on the above-mentioned source code datasets. All
experiments are run on a single workstation equipped with
an Intel i7 CPU (8-core, 16-thread), 32GB RAM, 1TB SSD,
and one NVIDIA GTX 1080Ti graphics card with 6GB
graphics memory. We configure SourcererCC, CCFinder, and
CloneWorks to use all 16 CPU threads in order to fully utilize
computation capability of the workstation.

We also compare execution time with iClone [34],
CCAligner [30], and Oreo [33]. iClone is a tool originally
designed for incrementally detecting evolution of clones within
a project although it is also able to detect clones on single-
version projects. Considering its limited scalability, we did not
run the tool on our own workstation but took the execution
time reported in the literature [16]. CCAligner and Oreo are
tools optimized for detecting large gap clones and weakly
Type-3 clones, respectively. Since we do not have these
tools at hand, we estimate the execution time of these two
tools according to the literature, with comparison to our own
execution time of SourcererCC.

SAGA was configured to detect clones longer than 50
tokens, with minimal candidate clone length 20 tokens. Simi-
larity was set to 0.6, a comparatively low threshold that may
produce more outputs. So the execution time should be close
to the upper bound. If similarity were set higher for better
precision, execution time would be lower. Settings for SAGA
and the competing tools are listed in Table II.

Results: The execution time results are shown in Table III.
SAGA finishes clone detection on 100 MLOC source code
in 10m57s, about 50-70 times faster than SourcererCC and
CCFinder 7, and about 12 times faster than CloneWorks8. At
the 100MLOC scale, NICAD, Deckard, and iClones fail to
parse the code or report out-of-memory errors.

2SourcererCC 2.0, https://github.com/Mondego/SourcererCC/releases
3CCFinderX 10.2.7.4, http://www.ccfinder.net/ccfinderxos.html
4NICAD 4.0, https://www.txl.ca/nicaddownload.html
5Deckard 2.0, https://github.com/skyhover/Deckard/releases
6CloneWorks 0.3, https://jeffsvajlenko.weebly.com/cloneworks.html
7It was previously reported [16] that CCFinder took twice as much time as

SourcererCC. But in our setting, CCFinder outperforms SourcererCC on the
100 MLOC dataset. It is reasonable because we provide more main memory
so that CCFinder needs less temporary disk space.

8In our replication experiment, CloneWorks works faster in Conservative(C)
configuration than in Aggressive(A) configuration, which is different from
previous reported results [17]. It is possibly because we provide more memory
and more powerful CPU which significantly accelerate the “build” phase.



TABLE II: Tool Settings for Scalability Test

Tool Settings

SAGA Min clone length 50 tokens, min candidate length 20
tokens, min similarity 0.6, function granularity

SourcererCC Min length 6 lines, min similarity 0.7, function granularity
CloneWorks Min length 6 lines, min clone length 50 tokens, min

similarity 0.7, function granularity
CCFinder Min clone length 50 tokens
NICAD Min clone length 6 lines, identifier abstraction none,

similarity 0.7
Deckard Min clone length 50 tokens, similarity 0.85, 2 token stride

We investigated the distribution of time in each step of
SAGA. It spent 3m48s (35% of total time) in preprocessing
and tokenization, 1m2s (9%) in constructing suffix array,
5m0s in finding Type-1/2 clones (46%), and 1m7s (10%) in
generating Type-3 clones and post-processing. The two phases
utilizing GPU take less than 19% of total time while CPU takes
the rest.

Furthermore, SAGA finishes clone detection on the IJa-
Dataset (with 250 MLOC) in 1 hour 24 minutes. According to
the literature [16], [17], SourcererCC and CloneWorks are the
only ones that scales up to this size with a single workstation9.
CloneWorks takes 18h27m in conservative(C) mode and 8h3m
in aggressive(A) mode. However, SourcererCC terminates with
a parser error when we try to run it with the IJaDataset. Since
it was reported [16] that SourcererCC finished in 4 days 12
hours on the 250 MLOC dataset and 1 day 12 hours 54 minutes
on the 100 MLOC dataset, we assume SourcererCC executes
2.9 times longer on the 250 MLOC dataset than on the 100
MLOC dataset. Therefore, considering SourcererCC actually
finished in 12h27m on 100MLOC dataset in our setting, we
estimate SourcererCC should spend no shorter than 36 hours
(12h27m * 2.9 = 36.1h) on the IJaDataset.

As for CCFinder, although it was reported that CCFinder
failed on IJaDataset due to insufficient disk space [16], we
still had a try since CCFinder outperformed SourcererCC in
our environment on the 100 MLOC dataset. Unfortunately
CCFinder ends up with an internal error on 250MLOC. Again,
we estimate that the execution time of CCFinder on 250MLOC
would be no less than 25 hours according to the fact that
CCFinder’s execution time was 0.7 times of SourcererCC’s
when previously dealing with the 100 MLOC dataset.

We then run SAGA on the 550 MLOC dataset and it finishes
clone detection in 4 hours 50 minutes after processing 2.08
billion tokens. We further run SAGA on the dataset with 1
billion lines of code except that the detection is at segment
granularity so that the results can be used for our preliminary
case study. SAGA successfully finishes clone detection within
11 hours.

Alternative Settings and Results: We also tried different
settings for SAGA on the 550 MLOC dataset. For detecting
Type-1/2 clones only, SAGA finished in 4 hours 18 minutes.

9Gabel et al. [35] extended Deckard to deal with big code. However we
currently are not able to have access to the tool. Nevertheless, our tool is
potentially a substitution for Deckard in their code clone studies.

This confirms that generating Type-3 clones takes around 10%
of total detection time in SAGA. For detecting clones at
segment granularity, SAGA took 4 hours 36 minutes to finish,
under the same settings except for the similarity threshold
set to 0.7. This is about 15 minutes faster than detection at
function granularity because we have optimized the merging-
based Type-3 clone detection at segment granularity with GPU
whereas the detection of Type-3 clones at function granularity
is based on calculation of code lines coverage which is purely
CPU-based and we are not able to further optimize.

Furthermore, changing lmc from 50 to 40 while keeping
lmcc = 20 slightly increases the execution time (i.e., only
several minutes longer averagely). However, when lmcc is
reduced from 20 to 15, we soon run out of disk space due
to enormous increase of candidate clones. This indicates that
the number of candidate clones is essential for the efficiency.

B. Recall

In order to evaluate the recall of our approach, we use
two benchmarks, i.e., BigCloneBench [18], a well-recognized
code clone benchmark with real clones, and the Mutation
and Injection Framework [19], a synthetic benchmark that
evaluates a tool’s recall with automatically-generated artifi-
cial clones. These benchmarks are widely used in previous
work [16], [30], [31], [33]. Since the benchmarks only provide
validated clones at function granularity, we set our tool to
report clones at function granularity by checking whether the
Type-1/2 clone coverage (by tokens) in a method is above
predefined similarity threshold.

For BigCloneBench, we consider benchmarked clones with
at least 6 pretty-printed lines and 50 tokens. This setup has
been accepted as a standard when measuring recall [16], [31],
[33]. We also replicated the recall experiments for any tools
that we have at hand. We report in Table IV the recall of SAGA
with various configurations, along with the recalls of other
tools. All results are categorized by clone types, i.e., Type-1,
Type-2, Very Strong Type-3, Strong Type-3, Moderately Type-
3, and Weakly Type-3/Type-4 [16], [18].

It shows that the recall of SAGA is comparable to the com-
peting tools when sim=0.6 and lmc=40. When the similarity
threshold changes from 0.6 to 0.7, the recall on Type-1/2
clones almost does not drop but there is an obvious drop of
recall on Type-3 clones. The reason of the drop is that SAGA
computes the similarity differently from how the benchmark
does, especially in the Strong Type-3 (ST3) part which is at
the edge of the 0.7 threshold. We have set lmcc=20 so SAGA
ignores code clone candidates shorter than 20 tokens. This
continuous-token-similarity strategy is a stronger constraint
than the overall-similarity in the bags-of-tokens or statement-
level approaches. For example, 0.7 similarity in 50 tokens need
only 35 tokens to be the same regardless whether the 35 tokens
are continuous or not. If the 35 tokens are continuous, the code
segment will look more similar. In SAGA’s strategy, the 0.6
similarity on a 50-token-long function requires a 30-token-long
continuous token sequence, which is still a strong similarity
constraint.



TABLE III: Execution Time

LOC SAGA SourcererCC CCFinder NICAD Deckard iClones CCAligner Oreo CloneWorks(C) CloneWorks(A)

1K 1s 3s 2s 1s 1s 1s* 1s** – 3s 3s
10K 1s 5s 5s 1s 4s 1s* 1s** – 3s 3s
100K 4s 7s 10s 5s 32s 2s* 3s** – 4s 4s
1M 9s 37s 39s 12s 27m12s MEM* >20s** – 26s 26s
10M 59s 12m21s 6m30s 19m49s ERROR – >5m** – 11m12s 11m3s

100M 10m57s 12h27m 9h49m ERROR – – – – 2h19m 1h55m
250M 1h24m 36h** >25h** – – – – >222h** 18h27m 8h3m
550M 4h50m – – – – – – – – –

* Data reported in the literature ** Data estimated based on reported time with consideration of environment differences

When the lmc changes from 40 to 50, the drop of recall is
caused by different calculation of number of tokens. SAGA has
its own code parser and calculates total length of the function
differently. SAGA only tokenizes the body of a method but
the competing tools and BigCloneBench itself consider both
the body and the signature of the method. Therefore, the
number of tokens of SAGA is slightly smaller than those of
the tools and the benchmark, causing SAGA to miss some
target code segments with the length slightly longer than 50
tokens. Typically, SAGA would get around 40 tokens for a
50-token method. Therefore, we decide that setting lmc=40 is
fair and reasonable.

On overall, the recall of SAGA is comparable to that of
the competing tools on not only Type-1/2 clones but also
Type-3 clones. CloneWorks and NICAD are top in recalling
VST3 and ST clones. SAGA performs well on VST3 clones,
following CloneWorks and NICAD, and performs similar
to SourcererCC on ST3 clones. If SAGA is further tuned
in the calculation of the number of tokens to match the
benchmark criteria, then setting lmc=50 can perform better
in the benchmark test.

Also note that SAGA achieves the same recall of the
benchmarked clones embedded in the 550 MLOC dataset
(which we used earlier in the scalability experiment), showing
that the recall of our tool is stable as the dataset grows.

For the Mutation and Injection Framework, we run SAGA
with 1,050 mutants generated from 7 functions and 150
mutators each, including Type-1/2 clones and Type-3 clones
with at least 0.7 similarity. The recall is perfect or near perfect
on all three types, which is the comparable to SourcererCC,
NICAD, and CCAligner as previously reported [16], [30], and
better than CCFinder which recalls 0 Type-3 mutants.

C. Precision

The precision is measured manually by validating a random
and statistically significant sample [16], [30], [33] of the clones
detected by SAGA. Each clone is examined independently by
two experts. If there is a conflict, a final decision is made after
discussion with a third expert. The principle rule for judging is
based on the overall similarity between the two clone segments
and on whether they perform similar tasks. Since SAGA can
be configured to output clones at either function granularity
or segment granularity, we evaluate the precision separately.

Function Granularity: Five of the authors divided in two
groups spent 3 weeks in inspecting 12,700 clones from the

detection results of SAGA in the recall experiment with
BigCloneBench. The result shows that SAGA has a high
precision of 99%. False positives are mainly due to very
short consecutive assignment statements, different API calls
repeated in the case clause in switch-case structure,
or extremely long single statements doing a lot of string
concatenating. We also sampled 400 clones, also a statistically
significant sample as accepted in the literature [30], [33], from
the detection results detected by SourcererCC and NICAD
in the recall experiment with BigCloneBench. We find that
the precision is lower than previously reported, so we adopt
previously reported precisions in Table IV for comparison.
Precision results of CloneWorks, CCAligner, and Oreo are
also taken from the literature. The results show that SAGA
performs comparably with the other tools.

Segment Granularity: We run SAGA and CCFinder on real-
world projects downloaded from GitHub. Since the whole
dataset is too big for CCFinder, we randomly select 2.3 MLOC
as input to CCFinder. We randomly check 400 clones reported
by each tool and find that the precision of CCFinder is lower
than previously reported [16]. So we adopt reported precision
in Table IV. The results suggest that SAGA has comparable
precision with CCFinder. Note that CCFinder only outputs
Type-1/2 clones, whereas SAGA outputs not only Type-1/2 but
also Type-3, which is more challenging in terms of precision.
The other tools do not support segment-grained detection, so
the precisions for segment granularity are left empty.

D. Consistency across Tools
We compare the real clones reported by SAGA, Sourcer-

erCC, and CCFinder, in order to check whether the results are
consistent.

We choose SourcererCC and CCFinder for comparison
because SourcererCC is a large-scale Type-1/2/3 clone detector
that can work at function granularity and CCFinder detects
clones at segment granularity. Our tool covers the detection
capability of both tools.

Since intra-project clones are relatively easier to detect, we
focus on inter-project clones in the GitHub dataset. Since
the full dataset (1 billion lines of code) is too big for
SourcererCC and CCFinder to finish clone detection timely,
we randomly choose 353 Java projects (about 10 MLOC) to
be our experiment dataset. However, CCFinder ends up with an
internal error on this dataset possibly due to lack of robustness.
Therefore, we run CCFinder multiple times and each time on



TABLE IV: Recall and Precision on BigCloneBench

Tool Threshold/Setting T1(35,800) T2 (4,574) VST3 (4,156) ST3 (15,013) MT3(79,922) WT3/T4(7.75M) Precision
% # % # % # % # % # % # Func Sgmt

SAGA sim=0.6, lmc=40, function 100 35,781 100 4,552 95 3,932 60 9,030 10 7,686 0 5,936 99 –
SAGA sim=0.7, lmc=40, function 100 35,781 98 4,504 91 3,769 45 6,715 5 4,141 0 2,171 99 –
SAGA sim=0.6, lmc=50, function 99 35,552 96 4,375 93 3,866 56 8,396 8 6,055 0 3,126 99 –
SAGA sim=0.7, lmc=50, segment – – – – – – – – – – – – – 75

SourcererCC∗ sim=0.7, MIT=1 100 35,797 98 4,462 93 3,871 61 9,099 5 4,187 0 2,005 98 –
SourcererCC+ sim=0.7, MIL=6 98 35,185 85 3,849 89 3,680 58 8,651 7 5,211 1 80,520 83 –

CCFinder∗ MIT=50 100 – 93 – 62 – 15 – 1 – 0 – – 72
CloneWorks(A)∗ sim=0.7, MIT=1 100 35,777 99 4,544 98 4,090 93 13,976 3 2,700 0 35 99 –

NICAD∗ sim=0.7, MIL=6 100 35,769 99 4,541 98 4,091 93 13,910 1 671 0 12 99 –
CCAligner∗ sim=0.7, q = 6, e = 1 100 – 99 – 97 – 70 – 10 – – – 80 –

Oreo∗ sim=0.55, MIT=15, τ=0.6 100 35,798 99 4,547 100 4,139 89 13,391 30 23,834 1 57,273 90 –
* Data reported in the literature (same configuration) + Data collected in the authors’ replication experiment

one part of the projects, resulting in much less inter-project
clones.

Since it is infeasible to manually cross-check all clones
detected by the three tools across 353 projects, we select 5
target projects, with stars from 95 to 4,900, to manually check
the relevant clones (i.e., the clone pairs that touch at least one
of the 5 selected projects).

In SourcererCC’s results, there are 6,749 clone pairs relevant
to the 5 projects; there are 9,548 in SAGA’s results. CCFinder
only detects parts of the code separately and therefore the
number of detected clones is much smaller. Although we do
not consider CCFinder to be comparable to SourcererCC and
SAGA, we randomly check 400 clone pairs in CCFinder’s
results and find that all are reported by SAGA, showing a
good one-way consistency.

As for SourcererCC, we check 3,000 true positive clones
that are at least 10 lines long reported by SourcererCC and find
that 2,641(88%) of them are reported by SAGA as segment
clones. The missing clones are mainly of two categories.
The first are those small methods whose lengths in tokens
are below the minimal clone threshold (lmc). The other are
Type-3 clones that consist of multiple very small separated
identical code snippets that fall below the minimal candidate
clone threshold (lmcc). Reversely, we check 1,000 true positive
clones reported in SAGA and find that, if the segment clone
reported by SAGA covers almost the whole method, it is also
reported by SourcererCC; if the segment clone is in a long
method (e.g., ≥ 50 lines) and only covering a small part
of the residing methods, it is not reported by SourcererCC.
This difference shows the finer-grained detection capability of
SAGA.

In general, SAGA shows good consistency with Sourcer-
erCC at function granularity and also detects clones at segment
granularity.

E. A Preliminary Case Study

We further explore how SAGA is useful in large real-world
code base and thus conduct a preliminary case study on the
85,202 GitHub Java projects to exemplify the use of the tool.
We remark that due to limited scalability of existing code
clone detection tools, previous studies are limited to either
clones in a small code base (less than 6,000 Java projects) [36]

or clones at file granularity [37], [38]. It is thus not clear
whether the results obtained with a small code base is valid in
the large or how finer-grained code clones exist in the large.
Using SAGA, we aim to analyze how pervasive code clones
at segment granularity are in big code (with one billion lines-
of-code) and see how these clones distribute within and across
the projects.

We run SAGA with lmc = 50, lmcc = 20, and similarity =
0.7 and obtain more than 142 million clone groups containing
about 327 million clone instances (i.e., clone code segments).
98% clone groups contain 4 or less clone instances, among
which 79.4% contain only 2 clone instances. About 0.3% (i.e.,
more than 220 thousand) clone groups contain more than 20
clone instances each. Furthermore, about 93.4% of the clone
groups are inter-project while only 6.6% contain clones all
from the same project. We find this result reasonable because
a clone group is regarded as inter-project as long as it contains
code segments from 2 or more projects, even if the majority
of the clone instances in the clone group come from the same
project. 79.3% clone groups contain clone code from exactly
2 projects. Nearly 99.5% of the clone groups contain clone
code from 4 or fewer projects, showing that most clones only
spread in a small range of projects.

Some code snippets even show up thousands of times in
hundreds of projects. For example, a code snippet appears
9,901 times across 2,538 projects, which we recognize as
part of the hashCode function that can be automatically
generated by Eclipse. Some clones are accidental [1], [36]
since we normalize the name of variables and method calls
into tokens (which is a common practice [25]). Tokenization
can be customized [28] to reduce reports of uninteresting
accidental clones. Some frequently-occurring clones are API
usage patterns, common algorithms, and similar switch/case
structures. We find that some interesting clones, such as
repeated functionalities, are not so frequently occurring and
are not widely spread. They often appear dozens of times
across several projects. This partly supports that clones may be
related to specific business domains [36]. Initial investigation
suggests that many of them are worthy of consideration for
better code reuse or maintenance.

Each of the clone groups contains either Type-1/2 clones or
Type-3 clones (but not both) since we detect Type-3 clones by



merging Type-1/2 clones. There are 1.23 million Type-3 clone
groups, containing 28 million lines of code. It is worthwhile to
note that 1.04 million Type-3 clone groups (i.e., 84% among
all Type-3 clone groups) contain at least one clone instance
that covers less than 70% lines of code in its residing function.
These are clones that hide in long functions, which are only
detectable with SAGA. Type-3 clones at segment granularity
exhibit fine-grained similar source code and reveal clues of
the ‘copy-paste-modify’ coding practice, such as modifications
of loop conditions, inserting logging statements, or changing
an intermediate local value to the return of a function (by
adding a return keyword). SAGA opens a door for further
investigation of source code replications within and across
projects at the segment granularity in big code repositories.

We remark that SAGA enables clone detection in big code
and is useful for many software engineering applications such
as code provenance analysis, license violations, mining the
seeds of new APIs, code completion, and many more. We
will address them in future work.

F. Threats to Validity

The performance of clone detection tools is affected by the
configurations and the environments. To achieve a fair com-
parison to other competing tools, both the benchmark dataset
and the tools are carefully tuned and, whenever possible,
experiments reported in the literatures are replicated in order
to minimize the threats to internal validity.

Another threat lies in the precision measurement. Although
we stick to explicit criteria for judging clones and try to
minimize human errors by employing three individual judgers,
we still find it difficult to confidently determine whether
a reported clone is true or false, especially when Type-3
clones at segment granularity are considered. We find that the
decision of a ‘true clone’ is sometimes related to the purpose
of the engineering task. So we save the judgement as an open
problem for future work.

We have not evaluated SAGA in programming languages
other than JAVA, which is a threat to external validity.
However, our tool is extensible to other languages and we
have already implemented a C/C++ version in an industrial
collaboration.

VI. RELATED WORK

Many code clone detection approaches and tools have been
proposed, including text-based [28], [39], token-based [11],
[25], [34], tree-based [40]–[43], and graph-based ones [44],
[45]. Matching techniques in clone detection include substring
comparison [39], longest common subsequence (LCS) [28],
subtree comparison [41], [42], hashing [46], [47], location
sensitive hashing (LSH) [48], suffix tree [25], [43], suffix
array [24], [49], indexing [46], etc.

Research work has aimed at detecting code clones at large
code repositories (e.g., 100-400 MLOC) on a single work
station [16], [17], [25] or with a network of computers [26],
[50]. Déjàvu [38] scales up to 4.5 million projects and shows
a map of code clones in the projects but it works only at

file granularity with the support of SourcererCC. A number of
empirical studies [1], [5], [36], [51]–[53] have been conducted
on various large scale of real-world code repositories. Com-
mercial products such as BlackDuck [54] and FOSSID [55],
integrate even larger code repositories with more than tens of
millions of projects to provide code scan services but do not
support detecting Type-3 clones at segment granularity.

Previous research also suggested the importance of detect-
ing Type-3 clones. NICAD [28] accurately detects near-miss
intentional clones in a line-based approach. CCAligner [30] is
suitable for detecting large gapped Type-3 clones. Oreo [33]
aims at the twilight zone of weakly Type-3 clones, combining
techniques of machine learning, information retrieval, and
software metrics. But these tools do not scale to big code.
SourcererCC [16] scales up to 400 MLOC but need to work
with specified code segment boundaries.

Deep learning-based clone detection techniques [56]–[62]
arise in recent years. These tools have an advantage over
traditional tools in detecting weakly Type-3 or Type-4 clones
by extracting higher-dimensional information from the code.
These techniques are usually supervised, which need spec-
ifying code boundaries and labeling them to make training
set. The detection result is limited to train set and not able
to reach to arbitrary fragment granularity. They make use of
GPU computation as a tool for a learning-based tasks, such as
training. Seldom do we find approaches that directly leverage
GPU computation power for code transformation or matching
tasks. The only work we find is Lavoie’s [63], which reports
a GPU implementation of dynamic programming matching
algorithm for clone detection. However, we are unable to find
reports on its precision, recall, or scalability in the literature.

VII. CONCLUSION AND FUTURE WORK

Tackling the difficulty in detecting Type-3 clones at seg-
ment granularity on big code, we propose SAGA, a suffix
array based code clone detection tool that leverages GPU
computation power to accelerate the detection process. The
tool scales up to 1 billion lines of code within 11 hours’
execution time. The recall and precision are comparable to
the state-of-the-art clone detection tools. It is the only tool to-
date that can deal with large data of that magnitude and at the
same time detect near-miss clones at arbitrary segment level
of granularity. Thanks to SAGA’s scalability and capability,
we conduct a preliminary case study on inter-project clones
with 85,202 Java projects, showing its usefulness for many
software engineering applications which enlightens our future
work.
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