
Learning from Examples to Find Fully Qualified
Names of API Elements in Code Snippets

C M Khaled Saifullah Muhammad Asaduzzaman† Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Canada

†School of Computing, Queen's University, Canada
{khaled.saifullah, chanchal.roy}@usask.ca †muhammad.asaduzzaman@queensu.ca

Abstract—Developers often reuse code snippets from online
forums, such as Stack Overflow, to learn API usages of software
frameworks or libraries. These code snippets often contain am-
biguous undeclared external references. Such external references
make it difficult to learn and use those APIs correctly. In
particular, reusing code snippets containing such ambiguous
undeclared external references requires significant manual efforts
and expertise to resolve them. Manually resolving fully qualified
names (FQN) of API elements is a non-trivial task. In this paper,
we propose a novel context-sensitive technique, called COSTER,
to resolve FQNs of API elements in such code snippets. The pro-
posed technique collects locally specific source code elements as
well as globally related tokens as the context of FQNs, calculates
likelihood scores, and builds an occurrence likelihood dictionary
(OLD). Given an API element as a query, COSTER captures the
context of the query API element, matches that with the FQNs of
API elements stored in the OLD, and rank those matched FQNs
leveraging three different scores: likelihood, context similarity,
and name similarity scores. Evaluation with more than 600K
code examples collected from GitHub and two different Stack
Overflow datasets shows that our proposed technique improves
precision by 4-6% and recall by 3-22% compared to state-of-
the-art techniques. The proposed technique significantly reduces
the training time compared to the StatType, a state-of-the-art
technique, without sacrificing accuracy. Extensive analyses on
results demonstrate the robustness of the proposed technique.

Index Terms—API usages, Context sensitive technique, Rec-
ommendation system, Fully Qualified Name

I. INTRODUCTION

Developers extensively reuse Application Programming In-
terfaces (APIs) of software frameworks and libraries to save
both development time and effort. This requires learning new
APIs during software development. However, inadequate and
outdated documentation of APIs hinder the learning process
[1], [2]. As a result, developers favor code examples over
documentation [3]. To understand APIs with code examples,
developers explore online forums, such as Stack Overflow
(SO)1, GitHub Issues, GitHub Gists2 and so on. These online
forums provide a good amount of resources regarding API
usages [4]. However, such usage examples can suffer from
external reference and declaration ambiguities when one at-
tempts to compile them [2], [5]. External reference ambiguity
occurs due to missing external references, whereas declaration
ambiguity is caused by missing declaration statements. As a
result of these ambiguities, code snippets from online forums

1https://stackoverflow.com
2https://gist.github.com/discover

are difficult to compile and run. According to Horton and
Parnin [6] only 1% of the Java and C# code examples included
in the Stack Overflow posts are compilable. Yang et al. [7]
also report that less than 25% of Python code snippets in
GitHub Gist are runnable. Resolving FQNs of API elements
can help to identify missing external references or declaration
statements.

Prior studies link API elements in forum discussions to their
documentation using Partial Program Analysis (PPA) [8], text
analysis [2], [9], and iterative deductive analysis [5]. All these
techniques except Baker [5], need adequate documentation or
discussion in online forums. However, 47% of the APIs do
not have any documentation [10] and such APIs cannot be
resolved by those techniques. Baker [5] depends on scope rules
and relationship analysis to deduce FQNs of API elements.
However, the technique fails to leverage the code context and
cannot infer 15-31% of code snippets due to inadequate infor-
mation within the scope [11]. Recently, Statistical Machine
Translation (SMT) is used to determine FQNs of APIs in
StatType [11]. However, the technique requires a large number
of code examples to train and it performs poorly for APIs
having fewer examples. The training time of StatType is also
considerably higher than other techniques.

In this paper, we propose a context-sensitive type solver,
called COSTER. The proposed technique collects locally spe-
cific source code elements as well as globally related tokens
as the context of FQNs of API elements. We calculate the
likelihood of appearing context tokens and the FQN of each
API element. The collected usage contexts and likelihood
scores are indexed based on the FQNs of API elements in
the occurrence likelihood dictionary (OLD). Given an API
element as a query, COSTER first collects the context of the
query API element. It then matches the query context with
that of the FQNs of API elements stored in the OLD, and then
rank those FQNs leveraging three different scores: likelihood,
context similarity, and name similarity scores.

We compare COSTER against two state-of-the-art tech-
niques for resolving FQNs of API elements, called Baker [5]
and StatType [11], using more than 600K code snippets from
GitHub [12] and two different Stack Overflow (SO) datasets.
We not only reuse the SO dataset prepared by Phan et al.
[11] but also build another dataset of 500 SO posts. Results
from our evaluation show that COSTER improves precision
by 4-6% and recall by 3-22% compared to state-of-the-art

techniques. COSTER also needs ten times less training time
and one third less memory than StatType that is considered
as a state-of-the-art technique for this problem. We also
investigate why the proposed technique outperforms others
through extensive analyses on i) sensitivity, ii) number of
libraries, iii) API popularity, iv) receiver expression types, and
v) multiple mapping cardinality. Thus, the contributions of this
paper are as follows:

1) A technique that leverages a context-sensitive approach
to resolve the FQN of an API element.

2) Evaluation of the proposed technique against two state-
of-the-art techniques.

3) Extensive analyses on the results of all competing tech-
niques to answer why the proposed technique outper-
forms others.

The rest of the paper is organized as follows. Section II
presents a motivating example and explains the challenges in
resolving FQNs of API elements. We describe our proposed
technique in Section III. Section IV introduces datasets and ex-
plains the evaluation procedure. Section V evaluates COSTER
against two other state-of-the-art techniques and Section VI
provides further insights on the performance of our proposed
technique. We discuss threats to the validity of our work in
section VII and Section VIII presents prior studies related to
our work. Finally, Section IX concludes the paper.

II. MOTIVATING EXAMPLE

Let us consider a code snippet collected from a SO post3

as shown in Fig. 1. The post describes a situation where a
developer wants to use the Element and Document classes,
but (s)he does not know which libraries or APIs need to be
imported.

1 private void writeFile(){
2 dFact =DocumentBuilderFactory.newInstance();
3 build = dFact.newDocumentBuilder();
4 doc = build.newDocument();
5
6 Element root = doc.createElement("outPutResult");
7 doc.appendChild(root);
8
9 for(Result r:resultList){

10 Element title = doc.createElement("Title");
11 title.appendChild(doc.createTextNode(r.getTitle));
12 root.appendChild(title);
13
14 Element add = doc.createElement("Address");
15 add.appendChild(doc.createTextNode(r.getAddress));
16 root.appendChild(address);
17 }
18 }//End of Write function

Fig. 1. A Stack Overflow post3 regarding how to use the Element class

What are the challenges in resolving the FQNs of this
code snippet? First, the code in online forums is not always
compilable or runnable. For example, in Fig. 1, the code
snippet is incomplete, having not been enclosed by a class.
Thus, we cannot compile or run the code directly as more
changes are required.

3https://stackoverflow.com/questions/20157996/

Second, the code snippets often contain identifiers without
declarations. In Fig. 1, identifiers dFact, build, and doc at
line 2, 3, and 4, respectively are not declared within the
code snippet. While completing the declaration statements of
these identifiers, declaration ambiguity will occur because of
missing type information.

Third, API elements used in a code snippet require spe-
cific external references. For example, the classes Document-
BuilderFactory, Result and Element at lines 2, 6 and 9 require
external references.

Last but not least, API elements can have name ambiguity.
For example, there are five Element classes in JDK 84 and it
is not clear which Element class we should import to compile
the code.

To tackle the above challenges, existing techniques either
use rules or heuristics [2], [5], [13], or statistical machine
translation [11]. Rule-based systems (such as RecoDoc [2] and
ACE [13]) search documentation or discussion to resolve the
types. However, they have three limitations: documentation
is rarely available [10], discussions are usually informal [5]
and using Partial Program Analysis [8] results in partially
qualified names [11]. Baker [5] resolves a type by deducing
the candidate FQNs based on the tokens within the scope of
that type. The declaration of an API element can be located
outside the current scope and Baker fails to resolve the FQN of
that API element. For example, the undeclared variables build
and dFact at lines 2 and 3 caused insufficient information for
Baker [5]. Moreover, increasing the number of libraries also
increases the likelihood of mapping the same token name to
multiple APIs with a similar name in the oracle. That creates
name ambiguities and Baker has too little information to tackle
such ambiguities. To overcome the limitations of rule-based
systems, StatType [11] used locally specific resolved code
elements to find the regularity of co-occurring tokens. How-
ever, StatType requires a large number of training examples
to perform well. Moreover, the technique also requires a long
training time. These motivate us to investigate the problem
further.

Key Idea:

Instead of relying only on the locally specific code elements
(i.e., local context), COSTER also considers globally related
token (i.e., global context) of an API element. Such combina-
tion is found effective in other research areas [14]–[16]. The
definitions of the local and global contexts are as follows:

Definition I Local Context: The local context of an API
element consists of method calls, type names, Java keywords
and operators that appear within the top four and bottom four
lines including the line in which the API element appears. For
example, local context of root.appendChild(title) at line 12 of
Fig. 1 is {for, Result, Element, =, createElement, appendChild,
createTextNode, getTitle, Element, =, createElement,
appendChild, createTextNode, getAddress, appendChild}.

4https://docs.oracle.com/javase/8/

Definition II Global Context: The global context of an
API element consists of any methods that are called on the
receiver variable, or use either the receiver variable or the
API element as a method parameter, and located outside the
top and bottom four lines of that API element. The global
context of root.appendChild(title) at line 12 of Fig. 1 is
{appenChild} since the appendChild method at line 7 uses
the receiver variable root of the API element as a parameter.

Local context captures the naturalness [17] and local-
ness [18] properties of the code. On the other hand, global
context tries to capture the long term dependency of the API
element. The motivation behind choosing global context is
mainly because they enrich the context of an API element
by adding the tokens that are related to the element but do not
closely located. For example, in Fig. 1, the local context of
doc, root, title and add have the method name appendChild.
Therefore, co-occurrence based on local context will suggest
that all four are the object of the Element class. However,
when we add the global context, doc will have other methods,
such as createTextNode, and the other three will have the
appendChild only. Thus, the global context differentiates doc
from the other three and helps to infer more accurate FQN.

III. PROPOSED TECHNIQUE

This section describes our proposed technique for finding
FQNs of API elements, called COSTER (Context Sensitive
Type Solver). Fig. 2 shows an overview of the proposed tech-
nique. Our example-based context-sensitive technique works
in two steps as follows:

• Build Occurrence Likelihood Dictionary (OLD). We
collect two different forms of contexts: local context as
per Definition I and global context as per Definition II
(see Section II, Key Idea) for each API element; i.e.,
a method call, a field call or a type variable. Next,
we combine them based on the position in the source
code to form the usage context. Finally, we calculate the
likelihood of appearing usages context tokens and the
FQN of each API element. Collected usage contexts and
likelihood scores are indexed based on the FQNs of API
elements in the OLD.

• Infer FQN of an API element. This involves searching
for any FQN in OLD whose usage context matches with
that of the target API element. COSTER collects only
those FQNs whose usage contexts share a minimum num-
ber of tokens with the target API element. We called this
the candidate list. Next, we synthesize FQNs from the
candidate list leveraging a) likelihood scores of contexts
in the candidate list, b) cosine similarity score between
the usage contexts in the candidate list and the usage
context of the target API element, and c) name similarity
score between the candidate FQNs and the name of the
target API element using the Levenshtein distance. A
combined similarity score is calculated and the technique
sorts FQNs in the candidate list in descending order of

Occurance
Likelihood
Dictonary

Collect	API	elements	with
local	and	global	contexts	and

FQNs

Calculate	likelihood
score	of	FQNs	given
usage	context's	tokens

Codebase

A	Query
API	Element Collect	local	and

global	contexts

Fetch	the
Candidate

List

Sort	list	using
likelihood,	context
similarity,	and	name
simialrity	scores

Recommend
FQNs

Building	Occurrence	Likelihood	Dictionary

Infer	FQN	of	an	API	element

Fig. 2. Overview of COSTER’s entire process of building OLD and
recommending FQN of a query API element

their combined similarity score. We recommend the top-k
FQNs after removing any duplicates.

We describe each of these steps in detail as follows.

A. Building Occurrence Likelihood Dictionary (OLD)

In this step, we build a dictionary of usage context of
API elements that will be used to infer the FQN of query
API element. To do that, COSTER uses Eclipse JDT5 to
parse source code examples and collects usage context of
API elements (e.g., method calls, class names, and field calls)
including their FQNs. The usage context of an API element
consists of two different contexts: local and global contexts
defined previously.

The FQN of each API element and the corresponding usage
context together constitute a transaction. We then calculate the
likelihood of appearing a context token and the FQN of the
corresponding API element leveraging the trigger pair concept
of Rosenfeld [19]. If a token t is significantly correlated with
the FQN fp of an API element p, then t can be considered as
a trigger for fp. However, instead of using maximum entropy
as was used by Rosenfeld [19], we estimate the likelihood of
the FQN fp given the token t appeared in the usages context
by considering the ratio of transactions that contain both t
and fp (N(t,fp)) over the number of transactions that contain
the t (N(t)) as shown below. Thus, the ratio represents the
likelihood score (ls (fp|t)) between a token and the FQN of
the corresponding API element.

ls (fp|t) =
N(t, fp) + 1

N(t) + 1
(1)

To include the distance into consideration between p and t
(i.e., the more p and t are closely located, the higher will be
the likelihood score between them), we update the likelihood
score (ls(p,t)) calculation as follows:

ls (p, t) = ls (fp|t)×
wweight

distance(p, t) + k
(2)

Here, wweight represents the weight of the token and k is a
small positive number. We set the value of k to 0.0001 for our
experiments to avoid division by zero. If the token is located in
the local context, we set the weight value to 1; otherwise, the
weight value is set to 0.5. The distance between the token and

5https://www.eclipse.org/jdt/

TABLE I
EXAMPLE CODE SNIPPET WITH CONTEXT, LIKELIHOOD, CONTEXT SIMILARITY, NAME SIMILARITY SCORES AND POSSIBLE FQN CANDIDATES

1 private static int countFlips(String stack) {
2 Set<String> visited = new HashSet<>();
3 Queue<State> bfsQueue = new LinkedList<>();
4 visited.add(stack);
5 bfsQueue.add(new State(0, stack));
6 while (!bfsQueue.isEmpty() && !isSolved(bfsQueue.peek().pancakes)) {
7 State state = bfsQueue.poll();
8 for (int i = 1; i <= state.pancakes.length(); ++i) {
9 String flipped = flip(state.pancakes, i);

10 if (!visited.contains(flipped)) {
11 bfsQueue.add(new State(state.flips + 1, flipped));
12 visited.add(flipped);
13 }
14 }
15 }
16 return bfsQueue.poll().flips;
17 }

API Element: bfsQueue.add
Local Context:{State, =, poll, for, int, =, <=, length, ++, String, =, if, !, contains, State, +, add}
Global Context: {add, isEmpty, peek, poll}
Combined Context: {add, isEmpty, peek, State, =, poll, for, int, =, <=, length, ++, String, =, if, !, contains, State, +, add, poll}
Candidate Candidate Context Likelihood Score Context Similarity Name Similarity Candidate FQN

c1 ..., add, isEmpty,..., peek,....., for, poll 0.51 0.47 0.33 java.util.Queue
c2 for, int, ..., =, String,, if, ... 0.31 0.27 0.00 java.lang.String
c3, if, contains, ..., isEmpty,...., String 0.26 0.24 0.07 java.util.List
c4 poll,..., for, ..., peek, add,..., isEmpty 0.21 0.36 0.33 java.util.Queue
c5 .., add, ..., poll,, for, .., peek 0.17 0.21 0.10 java.util.LinkedList
...

the API element, referred to distance(p, t), is calculated by
considering the number of tokens between p and t. The closer
the token t to the API element p, the smaller would be the
distance. Given a set of tokens (i.e., T = {t1, t2, t3, ..., tn})
as the usages context, we calculate the likelihood score of the
FQN fp of the corresponding API element p by summing the
scores for all pairs of {p, ti}, as shown in Eq. 3.

log(ls(fp|T)) ' log(ls (p, T))

' log(ls(p, t1)) + log(ls(p, t2)) ++ log(ls(p, tn))
(3)

We note that to avoid the underflow, we use the logarithmic
form. The collected usage contexts and likelihood scores are
indexed based on the FQNs of API elements in the OLD.

B. Inferring FQN of an API element

This section discusses the steps we follow to determine the
FQN of an API element.

1) Context Collection: Given an API element for which
FQN needs to be determined, COSTER collects both local
and global contexts of the API element. Let us consider the
API element bfsQueue.add as shown in Table I. We follow
the same approach as described in the previous subsection to
collect both local and global contexts of API elements. The
global context for the above-mentioned example consists of
the following four method calls: add, isEmpty, peek, and poll.
Next, we combine tokens of local and global contexts to form a
combined context that preserves the order of tokens. Combined
Context at Table I shows the context for our example. From
now on we refer to the combined context as the query context,

API element of the query context as the query API element,
and the FQN of the query API element as the query FQN.

2) Candidate list generation: Our next step is to select
FQNs from OLD along with their contexts and likelihood
scores where each context matches with the query context.
We select only those FQNs whose combined context shares
at least 25% of the tokens with that of the query context.
The choice of the threshold value of 0.25 (25%) is made by
running the inference step for different values and getting the
most stable performance for 0.25. Our query context in Table I
has 17 unique tokens in it. Therefore, if any contexts in the
OLD has a minimum of 17 × 0.25 ≈ 4 shared tokens, we
include that in the candidate list.

3) Context similarity calculation: We now have a list of
candidate contexts along with their FQNs, and we need to
calculate how similar are they to the query context. The goal
of this step is to find similar contexts that not only contain
similar tokens but also those tokens that appear in the same
order. Thus, we calculate the cosine similarity [20] score and
multiply that with the fraction of matched tokens that are in
the same order of query context to obtain the context similarity
score as follows:

Simcontext(Tq, Tci) =
Norder

Nmatched
× Tq · Tci

||Tq|| ||Tci||
(4)

In Eq. 4, Tq and Tci are the numerical vector representations
of the set of tokens of the query context and each candidate
context, respectively, Norder is the number of tokens in order
and Nmatched is the number of tokens matched. In the case
of our example at Table I, the column Context similarity

shows the similarity score between the query context and each
candidate context.

4) Name similarity calculation: During our manual investi-
gation of FQNs of API elements, we observe that the names of
the API elements that share similarity with the FQN are most
likely the desired output. To leverage such similarity in our
ranking, we calculate the Levenshtein distance [21] between
the name of the query API element (pq) and the candidate
FQNs (fci). The distance simply calculates the number of
edits required to attain a particular FQN from the query API
element. The smaller the number of required edits, the higher
would be the similarity between the name of the query API
element and a candidate FQN. Thus, we calculate the name
similarity score using the following equation:

Simname(pq, fci) =

{
1− lev(pq,fci)

len(fci)
if len>lev

0 otherwise
(5)

In Eq. 5, lev(pq, fci) and len(fci) refer to the Levenshtein
distance between the query API element and each candidate
FQN, and the length of the candidate FQN, respectively. Col-
umn name similarity in Table I represents the name similarity
scores between the API element bfsQueue and the candidate
FQNs. We found that java.util.Queue has the highest name
similarity score having the number of edits required as 10.
Therefore, the name similarity score becomes: (1− 10

15) = 0.33.
java.lang.String requires 16 edits which is the same as the
length of FQN. Thus, the name similarity score becomes zero.

5) Recommending top-k FQNs: The candidate FQNs are
sorted in descending order of the similarity scores calculated
using Eq. 6.

candidate score(fci) = α× ls (fci|Tci)

+ β × Simcontext(Tq, Tci)

+ γ × Simname(pq, fci)

(6)

Here, ls (fci|Tci)) is the likelihood score of the candidate
FQN fci given the set of tokens in the candidate context Tci.
Moreover, α, β, and γ are the coefficients of likelihood, con-
text similarity, and name similarity scores, respectively. The
values of these variables are determined using Hill Climbing
Adaptive Learning algorithm [22] over the training data. For
our example in Table I, the final score for java.util.Queue,
java.lang.String, java.util.List and java.util.LinkedList based
on Eq. 6 are 0.68, 0.38, 0.34 and 0.27, respectively. Our
technique recommends the top-k FQNs of API elements after
removing any duplicates and the value of k can be adjusted.

IV. EVALUATION

This section compares COSTER with two state-of-the-art
techniques, Baker [5] and StatType [11]. To evaluate COSTER,
we answer the following three research questions:
• RQ1: Intrinsic Accuracy. How accurate is COSTER in

identifying FQNs of API elements in Java source code
snippets collected from Github dataset [12]?

TABLE II
DATASET OVERVIEW

GitHub Dataset Stack Overflow Dataset
Info Number Info Number
No. of Projects 50,000 No of Posts 500
No. Of Files 602,173 LOC 3,182
No. of Libraries 100 No. of Libraries 11
No. of Classes 19,259 No. of Classes 203
No. of Methods 99,473 No. of Methods 1,375
No. of Fields 21,739 No. of Fields 624

• RQ2: Extrinsic Accuracy. How accurate is COSTER in
identifying FQNs of API elements in Java code snippets
collected from Stack Overflow posts?

• RQ3: Timing and memory performance. Does
COSTER improve the timing and memory performance
compared with Baker and StatType?

All experiments were performed on a machine with an Intel
Xeon processor having a processing speed of 2.10 GHz, 16
GB of memory, and running on Ubuntu 16.04 LTS operating
system.

A. Dataset Overview

We collected datasets from two different sources for evalu-
ating our technique and for comparing with the state-of-the-art
techniques. A brief overview of the datasets is shown in Table
II.

GitHub Dataset: We consider a collection of 50K Java
projects collected from GitHub, called 50K-C projects [12].
We use the term GitHub Dataset to refer to the dataset as
shown in Table II. The dataset consists of 19K unique class-
es/types, 99K unique methods, and 21K fields. Our selection
of this dataset is based on the fact that all these projects are
compilable and include all required dependencies in the form
of jars to resolve FQNs of all APIs. We select the top frequent
100 libraries used by these projects. Then we use Eclipse
JDT5 to parse the source code and to resolve FQNs of all
API elements for those libraries.

Stack Overflow Datasets: We leverage two different Stack
Overflow (SO) datasets to conduct the extrinsic experiment.
First, we consider the SO dataset used in the study of Stat-
Type [11]. We use the term StatType-SO to refer to this dataset.
We also built another dataset by collecting code snippets from
SO posts considering eleven popular libraries, referred to as
COSTER-SO. Out of eleven libraries, ten are selected as the
top frequent libraries of GitHub dataset and the remaining one
is JDK8. We downloaded the latest SO data dump to collect
code snippets. For each selected library, we searched the
class, method and field names in the code snippet to identify
library posts. Similar to StatType [11], we collected code
snippets from both questions and answers. We then randomly
collected 500 code snippets with an equal number of code
snippets selected for each library of interest. Code snippets in
SO often do not contain required import statements, variable
declarations, class names or method bodies. To resolve FQNs,
we need to convert those code snippets to compilable Java

source files by incorporating those missing information. Five
annotators, all are computer science graduate students, made
those code snippets to compilable code snippets by manually
incorporating the missing information. The dataset consists of
API elements from 203 unique classes, 1,375 unique methods,
and 624 unique fields, as shown in table II.

B. Evaluation Procedure

In the case of intrinsic evaluation, we apply the 10-fold
cross-validation technique to measure the performance of each
technique for resolving FQNs of API elements. We divide
the dataset into ten different folds, each containing an equal
number of API elements. Nine of those folds are used to train
and the remaining fold is used to test the performance of the
competing techniques. We use precision, recall, and F1 score
to measure the performance of each of the techniques. For each
API element in the test dataset, we present the code example
to each technique to recommend the FQN of the selected
API element. If the target FQN is within the top-k positions
in the list of recommendations, we consider it relevant. The
precision, recall, and F1 are defined as follows.

Precision =
recommendations made ∩ relevant

recommendations made
(7)

Recall =
recommendations made ∩ relevant

recommendations requested
(8)

F1 =
2 · Precision · Recall
Precision + Recall

(9)

Here, recommendations requested is the number of API
elements in the test set. The recommendation made is the
number of cases the technique can recommend FQNs. We use
two-tailed Wilcoxon signed-rank test [23] for our study. For
each evaluation metric (i.e., precision, recall and F1 score),
we collect the result of COSTER for each fold as one data
point and compare ten data points we obtain from ten different
folds with that of Baker and StatType. Since we are performing
two comparisons (i.e., comparing COSTER with StatType and
Baker), our result can be affected by the type I error in
null hypothesis testing. To minimize the error, we restrict the
false discovery rate (FDR) by adjusting the p-values using
Bonferroni correction [24]. If adjusted p-values are less than
the significance level then we reject the null hypothesis (i.e.,
statistically, the results of COSTER are significantly different
than Baker and StatType).

For the extrinsic evaluation, we evaluate the effectiveness of
all the competing techniques in recommending FQNs of API
elements in SO code snippets. We train each technique using
code examples of GitHub dataset and then test the technique
using two different SO datasets. We then compute precision,
recall and F1 scores for each dataset separately. For both of
the state-of-the-art techniques (i.e., Baker and StatType), we
use the settings used in their prior studies.

V. EXPERIMENTAL RESULT AND ANALYSIS

This section presents the evaluation results and answers
research questions described in Section IV.

A. RQ1: Intrinsic Accuracy. How accurate is COSTER in
identifying FQNs of API elements in Java source code snippets
collected from Github dataset [12]?

Table III shows the evaluation results for all three can-
didate techniques on the GitHub dataset. We determine the
performance of candidate techniques for top-1, top-3 and top-5
recommendations. Table III only shows the top-1 recommen-
dation for Baker since the technique only recommends the best
match.

TABLE III
PRECISION (PREC.), RECALL(REC.) AND F1 SCORE (F1) OF ALL

COMPETING FOR GITHUB DATASET [12]

Techniques Recc. Prec. Rec. F1

Baker
Top-1 83.63 68.19 75.12
Top-3 - - -
Top-5 - - -

StatType
Top-1 85.91 86.74 86.32
Top-3 89.34 90.76 90.04
Top-5 91.74 92.47 92.10

COSTER
Top-1 89.48 90.04 89.76
Top-3 92.11 93.26 92.68
Top-5 95.43 95.84 94.63

Results from our evaluation show that Baker gives compar-
atively lower precision and recall. While the precision for the
top-1 recommendation is 83.63%, the recall drops to 68.19%.
Compared with Baker, StatType improves both precision and
recall by 2.28% and 18.55%, respectively. Among the three
compared techniques, COSTER obtains the best precision
and recall. While the precision is 89.48%, the recall reaches
to 90.04% for the top-1 recommendation. Thus, COSTER
achieves 5.85% higher precision and 21.85% higher recall in
comparison with Baker and 3.57% higher precision and 3.30%
higher recall than StatType. These indicate the effectiveness
of the context that COSTER collects to capture the usages of
FQNs of API elements. Performance improves as we increase
the number of recommendations. For example, the precision
and recall for the top-5 recommendations are 95.43% and
95.84%, respectively for COSTER. Statistically, the precision,
recall and F1 scores of COSTER are significantly different
than the compared techniques for top-1, top-3, and top-5
recommendations.

B. RQ2: Extrinsic Accuracy. How accurate is COSTER in
identifying FQNs of API elements in Java code snippets
collected from Stack Overflow posts?

Table IV shows the evaluation results for the StatType-SO
dataset considering the topmost recommendation. The dataset
consists of API elements from six different libraries. Since
StatType performed better than Baker for this dataset in their
experiment [11], we only report results for StatType and
COSTER.

Interestingly, as we see from Table IV for the Hibernate
library, COSTER obtains 3.9% and 8.9% higher precision and
recall compared to that of StatType. For the remaining five
libraries, the differences between the evaluation results of Stat-
Type and COSTER are very small. StatType has marginally

TABLE IV
PRECISION (PREC.), RECALL(REC.) AND F1 SCORE (F1) COMPARISON

BETWEEN STATTYPE AND COSTER FOR STATTYPE-SO

Libraries Total
APIs

StatType COSTER
Prec. Rec. F1 Prec. Rec. F1

Android 1,022 98.7 97.9 98.3 98.4 98.1 98.2
Joda Time 652 98.3 98.0 98.1 97.6 98.4 98.0
XStream 463 99.8 99.6 99.7 99.3 99.6 99.4
GWT 1,243 96.6 95.9 96.2 97.1 96.5 96.8
Hibernate 840 89.8 86.3 88.0 93.7 95.2 94.4
JDK 2,934 98.9 99.1 99.0 97.6 98.8 98.2

better precision for four libraries but COSTER obtains a
slightly better recall. While the Precision of COSTER ranges
between 93.7% and 98.4%, the recall ranges between 95.2%
and 99.6%.

TABLE V
PRECISION (PREC.), RECALL(REC.) AND F1 SCORE (F1) COMPARISON
BETWEEN ALL COMPETING TECHNIQUES FOR COSTER-SO DATASET

Techniques Recc. Prec Rec. F1

Baker
Top-1 87.34 75.92 81.23
Top-3 - - -
Top-5 - - -

StatType
Top-1 90.65 91.66 91.15
Top-3 93.76 94.86 94.31
Top-5 95.73 97.05 96.39

COSTER
Top-1 92.17 93.27 92.72
Top-3 96.65 97.09 96.87
Top-5 98.27 98.95 98.61

Next, we compare all three techniques for COSTER-SO
dataset and the results are shown in Table V. Similar to the
intrinsic experiment, Baker recommends only top-1 with com-
paratively poor performance. The technique obtains 87.34%
and 75.92% precision and recall, respectively. StatType obtains
3.31% and 15.74% higher precision and recall compared to
that of Baker. COSTER outperforms both Baker and StatType
for top-1 recommendation by obtaining 92.17% precision and
93.27% recall. For top-3 and 5 recommendations, COSTER
achieves 1-3% more precision and recall than StatType. Sim-
ilar to intrinsic experiment, statistical test after adjusting p-
values shows that the results of COSTER are significantly
different than Baker and StatType.

C. RQ3: Timing and memory performance. Does COSTER
improve the timing and memory performance compared with
Baker and StatType?

This section compares the time and memory performances
that include training and testing times, and the sizes of
vocabulary, language model and dictionary. The sum of times
required to parse source code to identify API elements and to
determine their FQNs is reported as the code extraction time in
Table VI. Training time includes the creation of OLD, training
any machine learning model and so on. Inference time refers
to the time needed to detect the FQN of a query API element.
Vocabulary, language model, and dictionary sizes refer to the
number of words in the vocabulary, size of the language model

(if any), and the size of the dictionary (if any), respectively.
To have a fair comparison, all these techniques were run on
the same machine for GitHub dataset.

TABLE VI
TIMING AND MEMORY PERFORMANCE FOR ALL THREE COMPETING

TECHNIQUES

Baker StatType COSTER
Code Extraction Time (hrs) 7.9 9.1 8.2
Training Time (hrs) - 109 11
Inference Time (ms) 6.2 4.3 5.2
Vocabulary Size (n words) 1.7M 7.9M 2.8M
Language Model Size (GB) - 6.9 -
Dictionary Size (GB) 1.63 - 2.3

Baker requires the least amount of time for parsing source
code whereas COSTER takes 30 more minutes to collect the
usage context of all API elements in the Github dataset. Stat-
Type, on the other hand, requires more time, possibly because
of generating source and target languages, and to check the
alignment between them. Baker does not require any training
time since it simply stores the APIs in the dictionary without
calculating any scores. COSTER calculates the likelihood of
the FQN of each API element given usage context tokens
in the training code examples (i.e., likelihood scores) and
builds the OLD. It takes around 11 hours to complete these
operations. StatType requires significantly higher training time.
It takes more than 100 hours to train. One can argue that
training is a one-time operation. However, we would like to
point to the fact that supporting a new library would require
training the technique. Such a long training time can increase
the cost significantly if a user leverages any web services for
model training. For example, on Amazon EC26, StatType will
cost more than 200 USD to train the technique only once
whereas COSTER will cost between 18-20 USD. In the case
of inference, COSTER requires 0.9 milliseconds more than
StatType to determine FQN of a query API element. The
difference is negligible and can be ignored.

Baker has the least memory requirement, having 1.7 million
tokens in the vocabulary that requires 1.63 gigabytes of mem-
ory. Having just 0.9 million more tokens and 700 megabytes
more memory, COSTER performs significantly better than
Baker. StatType requires about three times the number of
tokens and memory required by COSTER. In short, the results
in Table VI show that our proposed technique is capable to
exhibit the best performance (reported in Table III), requiring
one-tenth training time and one-third memory than StatType.
Thus, our proposed technique can be considered as efficient,
not only in terms of accuracy but also in terms of timing and
memory requirements.

VI. DISCUSSION

The evaluation results in the previous section provide a
ranking of competing techniques in terms of their performance.
However, it does not answer why COSTER performs better
than other techniques. We hypothesize that this is because of

6https://aws.amazon.com/ec2/pricing/on-demand/

COSTER’s ability to capture the fuller context of the FQNs of
API elements. To provide further insights into this hypothesis,
we conduct a set of studies and present their results in this
section. All the experiments and analyses in this section are
performed on GitHub Dataset.

A. Sensitivity Analysis: Impact of decision

This section validates our design decisions for building the
model. Our local context consists of the top and the bottom
four lines, including the line in which the API element is
located. We select four lines because we observe that the
precision becomes steady after considering more than four
lines whereas the execution time increases exponentially. We
conduct a set of studies to understand how the selection of
tokens, different contexts, and similarity scores affect the
performance of the technique. Our initial context C0 contains
tokens from the top four lines only. Next, we add the tokens
of the bottom four lines with C0 to create the context C1

(i.e., local context). To understand the importance of using
the global context, first, we incorporate those methods of
the global context that are called on the receiver variable
to create C2, and then add the methods that use either the
receiver variable or the API element as a method parameter
to create C3. Therefore, the context-wise categories are:
C0: Context containing tokens from the top four lines.
C1: C0 + Tokens from the bottom four lines.
C2: C1 + Methods of global context that are called on the
receiver variable.
C3: C2 + Methods of global context that use either the
receiver variable or the API element as a method parameter.

COSTER considers three different similarity scores: likeli-
hood score, context similarity score, and name similarity score.
To understand the effect of those similarity scores, we train
and test COSTER using different context settings (i.e., C0, C1,
C2, and C3) using only the likelihood score. Next, we train
and test COSTER by including the context similarity score
and the name similarity score, one at a time. We record the
precision, recall, and F1 score after each run, as shown in
Table VII.

Considering only top four lines of the local context, pre-
cision and recall values reach to 45.72% and 46.27% for the
top-1 recommendation. Adding the bottom four lines of the
local context also helps to improve the result, precision and
recall values are increased by 5.95% and 1.94%, respectively.
We also observe that the inclusion of the global context also
has a positive impact on the performance. The precision and
recall values reach to 71.38% and 72.94%, respectively for
the top-1 recommendation. Context similarity score plays a
more important role than the name similarity score. Adding the
context similarity score increases precision and recall values to
85.67% and 86.19%, respectively. Finally, when we consider
all the contexts and similarity scores we obtain the best result.
The precision and recall values reach to 89.48% and 90.04%
for the top-1 recommendation. We also observe similar effects
when we consider top-3 and top-5 recommendations.

TABLE VII
PRECISION (PREC.), RECALL (REC.) AND F1 SCORE (F1) OF COSTER

FOR CONSIDERING DIFFERENT CONTEXTS AND SIMILARITY SCORES

Models Description Recc. Prec. Rec. F1

M0
C0+
Likelihood Score

Top-1 45.72 46.27 45.99
Top-3 52.94 51.73 52.33
Top-5 54.28 53.61 53.94

M1
C1+
Likelihood Score

Top-1 51.67 48.21 49.88
Top-3 54.34 53.71 54.02
Top-5 55.07 54.83 54.95

M2
C2+
Likelihood Score

Top-1 62.76 65.17 63.94
Top-3 71.83 74.33 73.06
Top-5 75.28 77.92 76.58

M3
C3+
Likelihood Score

Top-1 71.38 72.94 72.15
Top-3 79.17 82.94 81.01
Top-5 83.77 85.67 84.71

M4
M3+
Context Similarity

Top-1 85.67 86.19 85.93
Top-3 90.82 92.08 91.45
Top-5 94.33 95.17 94.75

M5
M4+
Name Similarity

Top-1 89.48 90.04 89.76
Top-3 92.11 93.26 92.68
Top-5 95.43 95.84 95.63

B. Effect of increasing the number of libraries

Increasing the number of libraries can have the following
two effects. First, with the increase of libraries, the number
of infrequent APIs also increases. Second, the likelihood of
mapping the same API name to multiple FQNs in the training
examples also increases. We were interested in examining how
these affect the performance. Baker and COSTER can easily
be adapted to an iterative experiment setting where we increase
the number of libraries by adding one library at a time and
record the performance at each step. However, we could not
do so for StatType because the technique takes a considerable
amount of time for training. Thus, we conduct the experiment
by considering seven different number of libraries and record
the performance of all three competing techniques for the
top-1 recommendation at each number. Note that we apply
the same 10-fold cross-validation technique to measure the
performance.

Fig. 3(a) shows the F1 score of Baker, StatType and
COSTER for different number of libraries. Among the three
competing techniques, Baker performs relatively poorly where
it has around 90% F1 score for five libraries and the per-
formance drops as we increase the number of libraries. The
primary reason for such declination is that the more we
increase the number of libraries, the more the API names are
mapped to multiple FQNs. Thus, Baker fails to reduce the
size of the candidate set into one for those multiple mapping
cases. StatType and COSTER have similar F1 score when the
number of libraries is five. However, increasing the number
of libraries affects the performance of StatType more than
that of COSTER. Increasing the number of libraries also
increases the number of APIs and many of those APIs lack
a large number of examples. This affects the performance of
StatType. However, the performance of COSTER affects the
least. This is possible because the technique considers different
information sources to recommend FQNs of APIs and does not
require large training examples to capture their usage patterns

Fig. 3. The effect of increasing the number of libraries on the (a) performance
(i.e., F1 score) and (b) Code extraction + Training time of Baker, StatType
and COSTER

(discussed more in the next analysis).
With respect to timing, shown in Fig. 3(b), StatType has

the worst outcome. With the increase of libraries, the num-
ber of examples also increases and the training time grows
exponentially for StatType. Baker has the best performance
since it does not require any training time. On the other hand,
COSTER consumes twice more time than Baker and ten times
less than StatType, and manages to maintain the highest F1

score.

C. Impact on API popularity

This section investigates the relationship between the per-
formance of recommending FQNs of APIs and popularity
of those APIs. The popularity of an API is defined as the
number of times that API is used in source code examples.
We categorize APIs into five different groups based on their
popularity or frequency of usages. The first group consists of
APIs whose usage frequency is no more than 5% of all usages
of APIs. We refer to this group as the very unpopular APIs
(VU). The usage frequency of the second group of APIs ranges
between 6-25%, referred to as the unpopular APIs (UP). The
usage frequency of the next two groups ranges between 26-
50% and 51-75%, and are called the popular (P) APIs and very
popular (VP) APIs, respectively. Finally, APIs whose usage
frequency is more than 75% of all API usages are referred to
as the extremely popular (EP). We calculate the precision and
recall for all five groups of APIs using the GitHub dataset.

From Fig. 4, we see that the performance of StatType
and COSTER are very close for the extremely popular APIs.
The difference is no more than 2% for both precision and
recall. However, the performance difference becomes more
significant as the popularity of APIs decreases. For example,
for the popular APIs COSTER achieves 4-7% higher precision
and 3-16% higher recall than the other two techniques. The
difference becomes the highest for the very unpopular APIs,

where COSTER is about 6-28% more accurate in terms of
precision and recall compared with the other two techniques.
Thus, among the three techniques we compared, API popular-
ity affects the performance of COSTER the least. Moreover,
for unpopular and very unpopular API categories, StatType
obtains the worst precision values. For these APIs, StatType
could not find enough examples in the training dataset and
that affects the performance of the technique. We collected
30 examples of very unpopular APIs where StatType failed
to produce the correct result and manually investigated them.
We found that StatType returned FQNs in 16 cases which are
nowhere close to the actual FQNs. This indicates that StatType
cannot perform well in detecting FQNs of those APIs that
are either unpopular or very unpopular. However, COSTER
considers a rich set of information to form a context of an
API and does not require a large number of examples for
training. Statistically, the precision and recall of COSTER are
significantly different than those of the compared techniques
for API popularity analysis.

D. Effect of receiver expression types

We categorized receiver expressions of API method or field
calls based on their AST node types. We were interested in
learning whether the performance of Baker, StatType, and
COSTER vary across different receiver expression types.

Table VIII shows the performance of all three techniques
across different receiver expression types. The second column
of the table shows the percentage of test cases for each receiver
expression type.

TABLE VIII
PRECISION (PREC.) AND RECALL(REC.) OF BAKER, STATTYPE AND

COSTER FOR DIFFERENT RECEIVER EXPRESSION TYPES.

Expr. Type Data(%) Baker StatType COSTER
Prec. Rec. Prec. Rec. Prec. Rec.

Class Inst. Creat. 0.27 0 0 84.13 85.11 89.43 91.53
Array Access 0.28 76.14 78.34 85.43 87.76 90.17 91.27
Type Literal 0.34 66.34 72.43 86.73 87.11 89.73 90.17
String Literal 1.20 67.14 72.14 98.34 99.47 98.34 99.71
Simple Name 72.21 83.14 76.17 85.17 86.20 90.43 91.83
Qualified Name 16.21 80.73 78.59 86.74 89.43 91.74 92.68
Method Invoc. 6.93 18.24 11.49 84.21 85.27 84.91 86.72
Field Access 1.11 64.14 75.18 87.34 87.66 88.17 89.17

The simple name is the most popular expression type,
followed by the qualified name and the method invocation.
Around 95% of test cases belong to these three expression
types. The difference in performance between COSTER and
StatType for these expression types are small compared to
other expression types. The lack of code examples contributes
to the difference between StatType and COSTER for other
expression types (discussed in Section VI-C). For the three
most frequent receiver expression types, the precision and
recall of StatType range between 84-86% and 85-89%, respec-
tively. In the case of COSTER, the precision and recall range
between 85-91% and 86-92%, respectively. We investigated 50
incorrect predictions made by StatType which were correctly
inferred by COSTER, and found that global context played the
primary role for such difference. Due to the presence of global

(a) (b)

Fig. 4. Comparing precision and recall of Baker, StatType and COSTER for API groups of different popularity.

context, COSTER was able to find similar contexts from OLD
and determined the correct FQNs. StatType considers only the
last four tokens and was not able to determine FQNs of those
cases. Baker performs very poorly compared to StatType and
COSTER. Finally, results from two-tailed Wilcoxon signed-
rank test [23] after adjusting p-values show that, statistically
the precision and recall of COSTER are significantly different
than Baker and StatType for all receiver expression types.

E. Multiple Mapping Cardinality Analysis

Name ambiguity poses a threat for resolving FQNs of
APIs, as indicated by prior studies [2], [5], [11], [13]. Name
ambiguity occurs when multiple classes, methods, or fields
with the same name exist in different libraries or differ-
ent packages of the same library. This section investigates
COSTER’s ability in resolving the name ambiguity for API
elements with one or multiple FQN mapping candidates and
compared the result with that of Baker and StatType. We
use the term cardinality to refer to the number of FQN
mapping candidates and the test cases are categorized based on
different cardinality values. Next, we calculate the precision
of Baker, StatType, and COSTER for those categories for the
top-1 recommendations. We only consider precision because
we cannot determine cardinality for missing cases. The first
column of Table IX shows different cardinality values. The
second column shows the percentage of test cases for each
cardinality value. The remaining three columns show the
precision of Baker, StatType, and COSTER.

Table IX shows that 46.7% of total test APIs have only
one mapping candidate. Therefore, for around half of the test
cases, the techniques do not need to deal with ambiguities.
According to Table IX, COSTER can solve all single mapping
cases successfully similar to Baker and StatType. With the
increase of cardinality, the precision decreases to 19.7% for
Baker. In the case of StatType, the precision drops from
100% to 83.5% as we increase the cardinality. However, the
performance of COSTER affects the least among all three
competing techniques. The precision of COSTER drops from
100% to 88.17% when cardinality value changes from 1 to

TABLE IX
PRECISION (FOR TOP-1 RECOMMENDATION) OF BAKER, STATTYPE AND

COSTER FOR MULTIPLE MAPPING CARDINALITY ANALYSIS

Cardinality Data (%) Baker StatType COSTER
1 46.72 100 100 100

<3 16.54 91.73 92.61 96.73
<10 11.46 84.36 90.43 92.47
<20 7.30 78.98 88.81 91.26
<50 6.34 68.51 86.72 90.72
<100 4.50 62.43 85.12 89.43
<500 3.68 54.72 84.73 89.02
<1K 2.92 43.57 84.28 88.43
1K+ 0.53 19.76 83.52 88.17

1K+. Statistically, the precision of COSTER is significantly
different than both Baker and StatType.

F. Limitation

Despite having the best results for all of the experiments,
COSTER has some limitations that are discussed in this
section.

First, if an API element contains multiple method
calls, COSTER often fails to resolve the FQN of
the last method call. For example, consider the
following method call statement: “DownloadMan-
ager.getInstance().getDownloadsListFiltered().toString()”,
COSTER was able to detect the FQN of the first two method
calls but failed for the last method call (i.e., toString).
However, such cases are very rare (0.0004%).

Second, Stack Overflow code fragments can be very short,
which can even contain only one line. In such cases, COSTER
finds very few to no context at all and fails to resolve FQNs
of API elements. However, we investigated 20 such cases and
found that 16 of them can be solved by reading the posts. That
gives us a future research direction of resolving FQNs of API
elements leveraging textual content of SO posts. That can be
combined with the current implementation of COSTER.

Finally, similar to StatType, out-of-vocabulary issue also
affects the recall of our technique. However, our proposed
technique received a high accuracy by considering code ex-
amples collected from open-source software repositories.

VII. THREATS TO VALIDITY

This section discusses threats to the validity of this study.
First, we considered 100 most frequently used libraries of

the GitHub dataset in this study. One can argue that the result
may not generalize to other frameworks or libraries. However,
all these libraries are popular and have been actively used by
developers. we also observed that increasing the number of
libraries affected the performance of COSTER the least (see
Section VI-B). Thus, our results should largely carry forward.

Second, the accuracy of our proposed technique can be
affected by the ability to correctly find API usages in Stack
Overflow code snippets. To mitigate this issue, each code
snippet was analyzed by two different annotators. When there
were ambiguities, they talked to each other to resolve the issue.
However, such cases were very rare.

Third, the process of making Stack Overflow code compil-
able by the annotators can be erroneous by importing incorrect
import statements for code compilation. However, the first two
authors of the paper manually validated the random selection
of those compilable Java source files, and they did not find
any such errors.

Finally, we consider the likelihood score, cosine [20] based
context similarity score and Levenshtein distance [21] based
name similarity score. Other similarity measures could give us
different results. However, those similarity measures that we
selected are widely used and we are confident with the results.

VIII. RELATED WORK

One closely related work to ours is that of Baker [5]. For
each API element name, the technique builds a candidate list
and shorten after each iteration based on the scoping rules
and a set of relationships. The process continues until all
elements are resolved or the technique cannot shorten those
lists further. Our work is also closely related to StatType [11].
The technique uses the type and resolution context of API
elements and statistical machine translation to infer FQNs of
API elements. However, we capture long-distance relations
of an API Element through global context along with local
context and reduces search space step by step. Thus, COSTER
performs better than both Baker and StatType with lesser
training time than StatType (see Section V-C).

Another related work is Partial program analysis (PPA) [8].
The technique leverages a set of heuristics to identify the
declared type of expressions. PPA can be an inclusion of
a technique rather than being standalone for resolving API
names. For example, RecoDoc [2] uses PPA [8] to link
between code elements and their documentation. However,
47% of libraries in the Maven repository do not contain any
documentation [10]. Therefore, RecoDoc cannot be applied to
those libraries. ACE [13] is another technique that works on
SO posts, analyzes texts around the code and links them. ACE
involves text to code linking rather than code to code linking,
and thus not suited for evaluation.

Techniques have been developed that focus on type res-
olution for dynamically typed languages, such as JavaScript
(JS) and Python [5], [25]–[28]. JSNice [25] uses conditional

random fields to perform a joint prediction of type annotation
for JavaScript variables. DeepTyper [26] leverages a neural
machine translation to provide type suggestions for JS code
whereas NLP2Type [28] uses a deep neural network to infer
the function and its parameter from docstring. Tran et al. [27]
recognize the variable name from minified JS, and the work
of Xu et al. [29] resolves Python’s variable by applying prob-
abilistic method on multiple sources of information. However,
the primary challenge and application of these techniques
are different than ours. An interesting research direction can
be combining any of these techniques with our solution and
examine the effect for dynamically typed languages.

A number of studies in the literature trace the links between
source code and documentation using various approaches.
These include but are not limited to topic modelling [30], [31],
Latent Semantic Indexing [32], [33], text mining [9], feature
location [34], Vector Space Model [35], [36], classifier [37],
Structure-oriented Information Retrieval [38], [39], ranking
based learning [40] and deep learning [41]. However, these
techniques primarily focus on documentation, bug reports,
and email content whereas we focus on linking between code
elements.

IX. CONCLUSION

This paper explores an important and non-trivial problem
of finding FQNs of API elements in the code snippets.
We propose a context-sensitive technique, called COSTER.
COSTER collects locally specific source code elements
(i.e., local context) and globally related tokens (i.e., global
context) for each API element. We calculate the likelihood
of appearing those tokens and the FQN of each API element.
The collected usage contexts, likelihood scores and FQNs
of API elements are stored in the occurrence likelihood
dictionary (OLD). Using the likelihood score along with
context and name similarity scores, the proposed technique
resolves FQNs of API elements. Comparing COSTER with
two other state-of-the-art techniques for both intrinsic and
extrinsic settings show that our proposed technique is more
robust and time-efficient. The technique improves precision
by 4-6% and recall by 3-22% along with an improvement
of training time by a factor of ten in comparison with
existing state-of-the-art technique. Experiments on the effect
the number of libraries, API popularity, receiver expression
types, multiple mapping cardinality, and sensitivity analysis
elaborates why COSTER performs better than Baker and
StatType. Future studies can combine our solution with those
techniques developed for dynamically typed programming
languages.

Acknowledgments: We would like to thank the authors of
StatType for providing us the implementation (both StatType
and Baker) and the dataset (StatType-SO). This research is
supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

REFERENCES

[1] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: understanding the decisions of open source contributors,”
in Proceedings of the 18th International Symposium on Foundations of
Software Engineering, 2010, pp. 127–136.

[2] ——, “Recovering traceability links between an api and its learning
resources,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 47–57.

[3] J. Singer, “Practices of software maintenance,” in Proceedings of the
15th International Conference on Software Maintenance, 1998, pp. 139–
145.

[4] C. Parnin and C. Treude, “Measuring api documentation on the web,” in
Proceedings of the 2nd international workshop on Web 2.0 for software
engineering, 2011, pp. 25–30.

[5] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 643–652.

[6] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code: an
analysis of stack overflow code snippets,” in Proceedings of the 13th
International Conference on Mining Software Repositories, 2016, pp.
391–402.

[7] E. Horton and C. Parnin, “Gistable: Evaluating the executability of
code snippets on the web,” in Proceedings of the 34th International
Conference on Software Maintenance and Evolution, 2018, pp. 217–
227.

[8] B. Dagenais and L. Hendren, “Enabling static analysis for partial
java programs,” in Proceedings of the 23rd International Conference
on Object-oriented Programming Systems Languages and Applications,
vol. 43, no. 10, 2008, pp. 313–328.

[9] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd International Conference on
Software Engineering, 2010, pp. 375–384.

[10] S. Raemaekers, A. van Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proceedings of the
10th International Conference on Mining Software Repositories, 2013,
pp. 221–224.

[11] H. Phan, H. Nguyen, N. Tran, L. Truong, A. Nguyen, and T. Nguyen,
“Statistical learning of api fully qualified names in code snippets of
online forums,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 632–642.

[12] P. Martins, R. Achar, and C. V. Lopes, “50k-c: A dataset of compilable,
and compiled, java projects,” in Proceedings of the 15th International
Conference on Mining Software Repositories, 2018, pp. 1–5.

[13] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 35th International
Conference on Software Engineering, 2013, pp. 832–841.

[14] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 38–49.

[15] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Cscc:
Simple, efficient, context sensitive code completion,” in Proceedings
of the 30th International Conference on Software Maintenance and
Evolution, 2014, pp. 71–80.

[16] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommendation
using statistical learning from fine-grained changes,” in Proceedings of
the 24th International Symposium on Foundations of Software Engineer-
ing, 2016, pp. 511–522.

[17] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 837–847.

[18] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd Joint Meeting on the Foundations of Software
Engineering, 2014, pp. 269–280.

[19] R. Lau, R. Rosenfeld, and S. Roukos, “Trigger-based language models:
A maximum entropy approach,” in Proceedings of the 19th International
Conference on Acoustics, Speech, and Signal Processing, vol. 2, 1993,
pp. 45–48.

[20] R. Mihalcea, C. Corley, C. Strapparava et al., “Corpus-based and
knowledge-based measures of text semantic similarity,” in AAAI, vol. 6,
2006, pp. 775–780.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[22] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate re-
trieval of duplicate bug reports,” in Proceedings of the 26th International
Conference on Automated Software Engineering, 2011, pp. 253–262.

[23] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[24] M. Aickin and H. Gensler, “Adjusting for multiple testing when reporting
research results: the bonferroni vs holm methods.” American journal of
public health, vol. 86, no. 5, pp. 726–728, 1996.

[25] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from big code,” in Proceedings of the 42nd Annual Symposium on
Principles of Programming Languages, vol. 50, no. 1, 2015, pp. 111–
124.

[26] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep
learning type inference,” in Proceedings of the 26th Joint Meeting on
the Foundations of Software Engineering, 2018, pp. 152–162.

[27] H. Tran, N. Tran, S. Nguyen, H. Nguyen, and T. Nguyen, “Recovering
variable names for minified code with usage contexts,” in Proceedings
of the 41st International Conference on Software Engineering, 2019, pp.
1–11.

[28] R. S. Malik, J. Patra, and M. Pradel, “Nl2type: inferring javascript
function types from natural language information,” in Proceedings of
the 41st International Conference on Software Engineering, 2019, pp.
304–315.

[29] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of the
24th Joint Meeting on the Foundations of Software Engineering, 2016,
pp. 607–618.

[30] H. U. Asuncion and R. N. Asuncion, Arthur U.and Taylor, “Software
traceability with topic modeling,” in Proceedings of the 32nd Interna-
tional Conference on Software Engineering, 2010, pp. 95–104.

[31] A. T. Nguyen, T. T. Nguyen, and H. V. N. T. N. Al-Kofahi, J.and Nguyen,
“A topic-based approach for narrowing the search space of buggy files
from a bug report,” in Proceedings of the 26th International Conference
on Automated Software Engineering, 2011, pp. 263–272.

[32] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of the
25th International Conference on Software Engineering, 2003, pp. 125–
135.

[33] A. De Lucia, R. Oliveto, and G. Tortora, “Adams re-trace,” in Pro-
ceedings of the 30th International Conference on Software Engineering,
2008, pp. 839–842.

[34] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location via
information retrieval based filtering of a single scenario execution trace,”
in Proceedings of the 22nd International Conference on Automated
Software Engineering, 2007, pp. 234–243.

[35] L. D. Wang, S. and J. Lawall, “Compositional vector space models
for improved bug localization,” in Proceedings of the 30th International
Conference on Software Maintenance and Evolution, 2014, pp. 171–180.

[36] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 14–24.

[37] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE Transactions on Software
Engineering, vol. 39, no. 11, pp. 1597–1610, 2013.

[38] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
111–120.

[39] M. Saha, R. K.and Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Proceedings of
the 28th International Conference on Automated Software Engineering,
2013, pp. 345–355.

[40] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
International Symposium on Foundations of Software Engineering, 2014,
pp. 689–699.

[41] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining
deep learning with information retrieval to localize buggy files for bug
reports (n),” in Proceedings of the 30th International Conference on
Automated Software Engineering, 2015, pp. 476–481.

