Bug Replication in Code Clones: An Empirical
Study

Judith F. Islam

Manishankar Mondal

Chanchal K. Roy

Department of Computer Science, University of Saskatchewan, Canada
{judith.islam, mshankar.mondal, chanchal.roy} @usask.ca

Abstract—Code clones are exactly or nearly similar code
fragments in the code-base of a software system. Existing studies
show that clones are directly related to bugs and inconsistencies
in the code-base. Code cloning (making code clones) is suspected
to be responsible for replicating bugs in the code fragments.
However, there is no study on the possibilities of bug-replication
through cloning process. Such a study can help us discover ways
of minimizing bug-replication. Focusing on this we conduct an
empirical study on the intensities of bug-replication in the code
clones of the major clone-types: Type 1, Type 2, and Type 3.

According to our investigation on thousands of revisions of
six diverse subject systems written in two different programming
languages, C and Java, a considerable proportion (i.e., up to
10%) of the code clones can contain replicated bugs. Both Type
2 and Type 3 clones have higher tendencies of having replicated
bugs compared to Type 1 clones. Thus, Type 2 and Type 3 clones
are more important from clone management perspectives. The
extent of bug-replication in the buggy clone classes is generally
very high (i.e., 100% in most of the cases). We also find that
overall 55% of all the bugs experienced by the code clones can
be replicated bugs. Our study shows that replication of bugs
through cloning is a common phenomenon. Clone fragments
having method-calls and if-conditions should be considered for
refactoring with high priorities, because such clone fragments
have high possibilities of containing replicated bugs. We believe
that our findings are important for better maintenance of software
systems, in particular, systems with code clones.

I. INTRODUCTION

If two or more code fragments in a software system’s code-
base are exactly or nearly similar to one another we call them
code clones [44], [45]. A group of similar code fragments
forms a clone class. Code clones are mainly created because
of the frequent copy/paste activities of the programmers during
software development and maintenance. Whatever may be the
reasons behind cloning, code clones are of great importance
from the perspectives of software maintenance and evolution
[44].

A great many studies [1], [2], [10]-[12], [14], [16], [18],
[20]-[23], [25], [26], [36], [37], [51], [53] have been conducted
on discovering the impact of cloning on software maintenance.
While a number of studies [1], [11], [12], [18], [20]-[22]
have revealed some positive sides of code cloning, there is
strong empirical evidence [2], [10], [14], [16], [23], [25],
[26], [36], [37], [51] of negative impacts of code clones
too. These negative impacts include higher instability [36],
late propagation [2], and unintentional inconsistencies [10].
Existing studies [2], [39] show that code clones are related
to bugs in the code-base. Also, it is suspected that cloning
is responsible for replicating bugs [44]. If a particular code

fragment contains a bug and a programmer copies that code
fragment to several other places in the code-base without the
knowledge of the existing bug, the bug in the original fragment
gets replicated. Fixing of such replicated bugs may require
increased maintenance effort and cost for software systems.
However, although cloning is suspected to be responsible for
replicating bugs, there is no study on the possibilities of
bug-replication through cloning. Such a study can provide us
helpful insights for minimizing bug-replication as well as for
prioritizing code clones for refactoring or tracking. Focusing
on this we conduct an in-depth empirical study regarding bug-
replication in the code clones of the major clone-types: Type
1, Type 2, Type 3.

We conduct our empirical study on thousands of revisions
of six diverse subject systems written in two different program-
ming languages (Java and C). We detect code clones from
each of the revisions of a subject system using the NiCad
[6] clone detector, analyze the evolution history of these code
clones, and investigate whether and to what extent they contain
replicated bugs. We answer four important research questions
(Table I) regarding the intensity and cause of bug-replication
through our investigation. According to our investigation in-
volving rigorous manual analysis we can state that:

(1) A considerable percentage of the code clones can be
related to bug-replication. According to our observation up
to 10% of the code clones in a software system can contain
replicated bugs.

(2) Both Type 2 and Type 3 clones have higher possibilities
of containing replicated bugs compared to Type 1 clones. Thus,
Type 2 and Type 3 clones should be given higher priorities for
management.

(3) A considerable proportion (around 55%) of the bugs
occurred in code clones can be replicated bugs.

(4) Most of the replicated bugs are related to the method-
calls and if-conditions residing in the clone fragments. Thus,
clone fragments containing method-calls and/or if-conditions
should be considered for refactoring or tracking with high
priorities.

Our findings imply that bug-replication tendencies of code
clones should be taken in proper consideration when making
clone management decisions. The findings from our study are
important for better management of code clones as well as for
better maintenance of software systems.

The rest of the paper is organized as follows. Section II
contains the terminology, Section III discusses the experimen-
tal steps, Section IV describes the process of identifying the

Clone Fragment 1 Revision=1080

Clone Fragment 1 Revision=1081

if (carrier.getMoveType(r) == Unit.MOVE_HIGH_SEAS && moveToEurope)
{
Element moveToEuropeElement = Message.createNewRootElement("moveToEurope");
moveToEuropeklement.setAttribute("unit", carrier.getiD());
try
{
connection.send(moveToEuropeElement);
1
catch (IOException e)
{
logger.warning("Could not send \"moveToEuropeElement\"-message!");

}

if (carrier. getMoveType(r) == Unit. MOVE_HIGH_SEAS && moveToEurope)
{
Element moveToEuropeElement = Message.createNewRootElement("moveToEurope”);
moveToEuropeElement.setAttribute("unit", carrier.getiD());
try
{
connection.sendAndWait(moveToEuropeklement);
}
catch (IOException e)
{
logger.warning("Could not send \"moveToEuropeElement\"-message!");

}

Clone Fragment 2 Revision=1080

Clone Fragment 2 Revision =1081

if (u.getLocation() instanceof Europe || u.getTile() != null && u.getTile().getColony() != null)
{
Element leaveShipElement = Message.createNewRootElement("leaveShip");
leaveShipElement.setAttribute("unit”, u.getiD());
try
{

connection.send(leaveShipElement);

catch (IOException e)
{
logger.warning("Could not send \"leaveShipElement\"-message!");

}

if (u.getLocation() instanceof Europe || u.getTile() != null && u.getTile().getColony() 1= null)
{
Element leaveShipElement = Message.createNewRootElement("leaveShip");
leaveShipElement.setAttribute("unit”, u.getiD());
try
{
connection.sendAndWait(leaveShipElement);
}
catch (IOException e)
{
logger.warning("Could not send \"leaveShipElement\"-message!");

}

Fig. 1. This figure demonstrates an example of Similarity Preserving Co-change (SPCO) of two Type 3 clone fragments (Clone Fragment 1, and Clone Fragment
2) in the commit operation applied on revision 1080. We take this example from our subject system Freecol. The snapshots of each clone fragment in the two
revisions 1080 and 1081 are shown in the figure, and the changes are highlighted. We can easily understand that in case of each clone fragment, a method named
’send’ was replaced by a method named ’sendAndWait’. We see that the clone fragments were changed in the same way. The comment from the programmer
regarding this change says that Fixed a potential synchronization bug. ”sendAndWait” should be used instead of “send” in order to ensure that the server has
completed handling the request before we make any modifications to the model. This is a necessary because the server and the Al share the same model. From
the changes to the clone fragments and programmer comments we realize that this SPCO is an example of fixing a replicated bug.

TABLE L RESEARCH QUESTIONS
SL Research Question
RQ 1 ‘What percentage of the clone fragments in different clone-types takes

part in bug-replication?

RQ 2 | What is the extent of bug-replication in the buggy clone classes of
different types of clones?

RQ 3 What percentage of the bugs that were experienced by the code clones
of different clone-types are replicated bugs?

RQ 4 Which types of statements are highly related to bug-replication?

replicated bugs, Section V answers the research questions by
presenting and analyzing the experimental results, Section VI
discusses the related work, Section VII mentions the possible
threats to validity, and Section VIII concludes the paper by
mentioning possible future work.

II. TERMINOLOGY
A. Types of Clones

We conduct our experiment considering both exact (Type
1) and near-miss clones (Type 2 and Type 3 clones) [44], [45].
The clone-types have been defined below.

Type 1 Clones. If two or more code fragments in a
particular code-base are exactly the same disregarding the
comments and indentations, these code fragments are called
exact clones or Type 1 clones of one another.

Type 2 Clones. Type 2 clones are syntactically similar
code fragments in a code-base. In general, Type 2 clones are

created from Type 1 clones because of renaming identifiers
and/or changing data types.

Type 3 Clones. Type 3 clones are mainly created because
of additions, deletions, or modifications of lines in Type 1 or
Type 2 clones. Type 3 clones are also known as gapped clones.

B. Similarity Preserving Co-change (SPCO) of two or more
clone fragments

Let us consider two code fragments, CF1 and CF2, which
are clones of each other in revision R of a subject system.
A commit operation was applied on revision R and both of
these two fragments were changed (i.e., the clone fragments
co-changed) in such a way that they were again considered
as clones of each other in the next revision R+1 (i.e., created
because of the commit). In other words, the clone fragments
preserved their similarity even after experiencing changes in
the commit operation. Thus, we call this co-change of clone
fragments (i.e., change of more than one clone fragment
together) a Similarity Preserving Co-change (SPCO).

In a previous study [34] we showed that in a similarity
preserving co-change (SPCO) more than one clone fragment
from the same clone class are changed together consistently
(i.e., the clone fragments are changed in the same way). Fig.
1 shows an example of SPCO of two Type 3 clone fragments
from our subject system Freecol. The figure caption includes
the details regarding the example. The figure demonstrates that
the two clone fragments were changed together consistently in
a particular commit operation for fixing a replicated-bug.

A

~— 1 Msthod
. Detection and Methods in Each
A Subject | Extraction from Revision
System in Each Revision
Sourceforge
Dgt:;:‘rt]lggsof Locating
Extract = TR Changes to
Revisions . Methods and
Consecutive Clones
Revisions
Clone
All Revisions of a Detection and Clones in Each
Subject System Extraction from Revision

Each Revision

Method Deted "
Genealogy Clone Genealogies BIEINLID
Detection SPCOs
Detection of i
Method Genealogies Clone ReDﬁE:ea?;%TBOJ .
Genealogies P g

i

Locating)
Clones to Detection of
i Bug-fix
Methods in X
Commits

Each Revision

Fig. 2. The execution flow diagram of the experimental steps in detecting replicated bugs in code clones. The rectangles demonstrate the steps.

TABLE II. SUBJECT SYSTEMS
Systems [Lang. [Domains [LLR [Revisions
Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 170
jEdit Java | Text Editor 191,804 | 4000
Freecol Java | Game 91,626 1950
Carol Java | Game 25,091 1700
Jabref Java | Reference Management 45,515 1545

LLR = LOC in the Last Revision

C. Late propagation in code clones

Late propagation is defined as the occurrence of one or
more inconsistent changes of a clone pair followed by a
re-synchronizing change. The re-synchronization of the code
clones indicates that the inconsistent changes were uninten-
tional [2].

III. EXPERIMENTAL STEPS

We perform our investigation on six subject systems (Table
II) downloaded from Sourceforge [41]. Fig. 2 shows the work
procedure of our experimental steps.

A. Preliminary Steps

As demonstrated in Fig. 2, we perform the following
experimental steps for detecting replicated bugs: (1) Extraction
of all revisions (as mentioned in Table II) of each of the subject
systems from the online SVN repository; (2) Method detection
and extraction from each of the revisions using CTAGS [7];
(3) Detection and extraction of code clones from each revision
by applying the NiCad [6] clone detector; (4) Detection of
changes between every two consecutive revisions using diff’;
(5) Locating these changes to the already detected methods
as well as clones of the corresponding revisions; (6) Locating
the code clones detected from each revision to the methods of
that revision; (7) Detection of method genealogies considering
all revisions using the technique proposed by Lozano and
Wermelinger [26]; (8) Detection of clone genealogies by

TABLE III. NICAD SETTINGS FOR THREE TYPES OF CLONES
Clone Types Identifier Renaming Dissimilarity Threshold
Type 1 none 0%

Type 2 blindrename 0%

Type 3 blindrename 20%

identifying the propagation of each clone fragment through a
method genealogy; (9) Detection of SPCOs by analyzing clone
change patterns; (10) Detection of bug-fix commit operations;
and (11) Detection of replicated-bugs in code clones. For
completing the first nine steps we use the tool SPCP-Miner
[31]. For the details of these steps we refer the interested
readers to our earlier work [33]. We will describe the detection
of bug-fix commits later in this section. In Section IV we will
describe how we detect replicated bugs.

We use NiCad [6] for detecting clones because it can detect
all major types (Type 1, Type 2, and Type 3) of clones with
high precision and recall [47], [48]. Using NiCad we detect
block clones including both exact (Type 1) and near-miss
(Type 2, Type 3) clones of a minimum size of 10 LOC with
20% dissimilarity threshold and blind renaming of identifiers.
NiCad settings for detecting three clone-types (Type 1, Type
2, and Type 3) are mentioned in Table III. These settings
are explained in detail in our earlier work [33]. For different
settings of a clone detector the clone detection results can be
different and thus, the findings regarding bug-replication in
code clones can also be different. Thus, selection of reasonable
settings (i.e., detection parameters) is important. We used the
mentioned settings in our research, because in a recent study
[52] Svajlenko and Roy show that these settings provide us
with better clone detection results in terms of both precision
and recall. Moreover, code clones with a minimum size of 10
LOC are more appropriate from maintenance perspectives [4],
[44], [49]. Before using the NiCad outputs of Type 2 and Type
3 cases, we processed them in the following way.

(1) Every Type 2 clone class that exactly matched any Type
1 clone class was excluded from Type 2 outputs.

(2) Every Type 3 clone class that exactly matched any Type
1 or Type 2 class was excluded from Type 3 outputs.

We processed NiCad clone detection results in the men-
tioned ways because we wanted to investigate bug-replication
in three types of clones separately.

Clone Genealogies of Different Clone-Types. SPCP-
Miner [31] detects clone genealogies considering each clone-
type (Type 1, Type 2, and Type 3) separately. Considering a
particular clone-type it first detects all the clone fragments of
that particular type from each of the revisions of the candidate
system. Then, it performs origin analysis of these detected
clone fragments and builds the genealogies. Thus, all the
instances in a particular clone genealogy are of a particular
clone-type. An instance is a snap-shot of a clone fragment in
a particular revision. A detailed elaboration of the genealogy
detection approach is presented in our previous study [34]. As
we obtain three separate sets of clone genealogies for three
different clone-types, we can easily determine and compare
the bug-replication tendencies of these clone-types.

Tackling Clone-Mutations. Xie et al. [56] found that
mutations of the clone fragments (i.e., a particular clone
fragment may change its type) might occur during evolution.
If a particular clone fragment is considered of a different
clone-type during different periods of evolution, SPCP-Miner
extracts a separate clone-genealogy for this fragment for each
of these periods. Thus, even with the occurrences of clone-
mutations, we can clearly distinguish which bugs were expe-
rienced by which clone-types.

B. Bug-proneness Detection Technique

For a particular subject system, we first retrieve the commit
messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically infer the commit messages using
the heuristic proposed by Mockus and Votta [30] in order to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other words,
the clone fragment(s) are related to the bug. In this way we
examine the commit operations of a candidate system, analyze
the commit messages to retrieve the bug-fix commits, and
identify those clone fragments that are related to the bug-fix.
We also determine the number of changes that occurred to
such a clone fragment in a bug-fix commit using the UNIX
diff command. For the details of change detection we refer the
interested readers to our earlier work [33].

The way we detect the bug-fix commits was also previously
followed by Barbour et al. [2]. They detected bug-fix commits
in order to investigate whether late propagation in clones is
related to bugs. They at first identified the occurrences of late
propagations and then analyzed whether the clone fragments
that experienced late propagations are related to bug-fix. In
our study we detect bug-fix commits in the same way as they
detected, however, our study is different in the sense that we
investigate the bug-replication tendencies of different types of
code clones. Also, Barbour et al. [2] did not investigate the

most important clone type, the Type 3. Generally, the number
of Type 3 clones in a system is the highest among the three
clone-types. We consider Type 3 clones in our bug-replication
study. While in one of our recent studies [39], we studied the
bug-proneness of different types of clones, our focus in this
paper is to study to what extent bugs are replicated in clone
code.

IV. REPLICATED BUGS IN CODE CLONES

In Section II we defined SPCO (Similarity Preserving Co-
change) of two or more clone fragments from the same clone
class. In a previous study [34] we found that in an SPCO
the participating clone fragments (i.e., from the same clone
class) are likely to be changed consistently (i.e., each of the
participating clone fragments is likely to be changed in the
same way). We detect replicated bugs in code clones on the
basis of this finding.

A. Identifying replicated bugs in code clones

If two or more clone fragments of a clone class experience
an SPCO in a bug-fix commit operation (i.e., if two or more
clone fragments are changed together consistently, that means
in the same way, for fixing a bug), then we understand that
those clone fragments contained the same bug, and for fixing
that bug each of the fragments was changed in the same way.
Thus, this case is an example of fixing a replicated bug in code
clones.

B. Steps in identifying replicated bugs in code clones

By analyzing the clone evolution history of a software
system we identify the cases of fixing replicated bugs in code
clones. Our identification consists of the following two steps.

Step 1: In this step we detect all the bug-fix commit
operations of a subject system. The procedure of detecting
bug-fix commits was discussed in Section III-B.

Step 2: Considering each of the bug-fix commits detected
in Step 1 we determine whether clone fragments of any clone-
type experienced an SPCO in this commit. Let us consider a
bug-fix commit BFC which was applied on revision R of a
subject system. If we see that two or more clone fragments
from a clone class in revision R experienced an SPCO in the
commit BFC, then this is a case of fixing a replicated bug
(i.e., fixing the same bug in each of the clone fragments that
experienced an SPCO), because in an SPCO the participating
clone fragments are likely to be changed together in the same
way (i.e., consistently). We detect SPCOs of clone fragments
of different clone-types using our tool SPCP-Miner [31].

We identify all the cases of fixing replicated bugs in each
of the three types (i.e., Type 1, Type 2, and Type 3) of code
clones by analyzing the clone evolution history of each of our
candidate systems listed in Table II.

C. Manual analysis of the SPCOs in the bug-fix commits

After detecting the SPCOs in the bug-fix commits, we
manually investigate the changes that occurred to the par-
ticipating clone fragments in each SPCO to check whether
the clone fragments were actually changed in the same way

TABLE IV. NUMBER OF SPCOS EXPERIENCED BY DIFFERENT TYPES
OF CODE CLONES DURING BUG-FIX COMMIT OPERATIONS

Ctags Camellia | jEdit Freecol Carol Jabref
Type 1 1 1 5 6 10 1
Type 2 0 0 5 5 14 5
Type 3 0 4 35 37 40 17

(i.e., whether the clone fragments were changed consistently).
Table IV shows the number of SPCOs that occurred in the
bug-fix commits considering each clone-type of each of the
subject systems. From our manual investigation on each of
these 186 SPCOs (in total) we can state that in each SPCO,
two or more clone fragments from a particular clone class
were changed together consistently (i.e., in the same way).
Fig. 1 shows an SPCO of two Type 3 clone fragments in
the bug-fix commit operation applied on revision 1080 of
our subject system Freecol. In RQ 4 (i.e., the fourth research
question) we investigate the change-types experienced by the
clone fragments in the SPCOs that occurred in the bug-fix
commits.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we answer the research questions listed in
Table I by presenting and analyzing our experimental results.

A. Answering the first research question (RQ 1)

RQ 1: What percentage of the clone fragments in different
clone-types takes part in bug-replication?

Motivation. Answering this question is important since a
clone-type with a higher tendency of replicating bugs should
be given a higher priority compared to the other clone-types
when making clone management decisions. We conduct our
study considering the major clone-types: Type 1, Type 2, and
Type 3. We should note that any code fragment in the code-
base can contain a bug. However, cloning of this fragment
is responsible for replicating/propagating that bug in several
other places. Without studying bug-replication in code clones
we cannot understand the real impact of cloning in propagating
bugs.

Methodology. For answering RQ 1 we identify bug-
replication in three types (Type 1, Type 2, Type 3) of code
clones by mining the clone evolution history of each of our
subject systems. Section IV elaborates on the procedure we
follow for detecting replicated bugs in code clones.

We automatically detect the bug-fix commits and then iden-
tify the similarity preserving co-changes (SPCOs) of clones
in these commits. Table IV shows the number of SPCOs
considering each clone-type of each of our subject systems.
If an SPCO of two or more clone fragments occurs in a bug-
fix commit, then it is an indication of fixing of a replicated
bug. Table V shows the following four measures concerning
bug-replication in each clone-type.

Measure CG: This is the total number of clone genealogies
created during the whole period of evolution (the columns in
Table V with the heading CG).

D [Percentage of clone fragments related to bug-replication w.r.t all clone
fragments (Type 1)

D [Percentage of clone fragments related to bug-replication w.r.t all clone
fragments (Type 2)

I H Percentage of clone fragments related to bug-replication w.r.t all clone
fragments (Type 3)

10 \ \ \ \ \

8 I |

Z T o

Freecol Carol Jabref

Ctags Camellia jEdit Overall

Fig. 3. Percentage of clone fragments related to bug-replication with respect
to all clone fragments.

Measure CGBF: This is the total number of clone genealo-
gies related to bug-fix (the columns with the heading CGBF
in Table V).

Measure CGBR: This is the total number of clone ge-
nealogies related to bug-replication (the columns with the
heading CGBR in Table V).

Measure PCGBR: This is the percentage of clone ge-
nealogies related to bug-replication with respect to all clone
genealogies (The columns with the heading PCGBR in Table
V). We calculate this percentage for a particular clone-type of
a particular subject system using the following equation.

100 x CGBR
PCGBR= ——FF—+— 1
rolE ey

We also calculate the overall percentage (i.e., consider-
ing all subject systems) of clone fragments related to bug-
replication considering each clone-type. This overall percent-
age was calculated using the following equation.

100 x Zall systems CGBRTz

OPCGBRy, =
" Zall systems CGTl

(@)

Here, OPCGBRy, is the overall percentage of clone
fragments related to bug-replication with respect to all clone
fragments of clone-type 7; (i = 1, 2, or 3).

Fig. 3 shows the percentage PCGBR for each clone-type
of each subject system. It also shows the overall percentage
OPCGBR for each clone-type. Looking at the percentages
(PCGBRs) we understand that although the percentage of clone
fragments containing replicated bugs is low for some subject
systems (such as: jEdit, Jabref), this percentage can sometimes
be considerable (for example, the percentages regarding our
subject systems: Freecol, and Carol). We also see that for most
of the subject systems (i.e., for four systems out of six) the

TABLE V.

NUMBER OF CLONE GENEALOGIES RELATED TO BUG-REPLICATION

Type 1 Type 2 Type 3
Subject Systems CG CGBF | CGBR | PCGBR | CG | CGBF | CGBR | PCGBR CG CGBF | CGBR | PCGBR
Ctags 52 4 2 3.85% 88 4 0 0.00% 155 14 0 0.00%
Camellia 300 2 2 0.67% 48 0 0 0.00% 177 11 5 2.82%
jEdit 7398 73 6 0.08% 399 20 6 1.50% 2688 184 45 1.67%
Freecol 239 14 8 3.35% 162 12 6 3.70% 752 107 55 7.31%
Carol 415 31 12 2.89% 211 32 16 7.58% 682 134 68 9.97%
Jabref 483 8 2 0.41% 228 14 4 1.75% 1363 31 21 1.54%

CG = Number of Clone Genealogies
CGBR = Number of Clone Genealogies Related to Bug-Replication

CGBF = Number of Clone Genealogies Related to Bug-Fix

PCGBR = Percentage of Clone Genealogies Related to Bug-Replication with respect to all clone genealogies

percentage regarding Type 3 case is the highest. From Table
V we see that for the Type 2 and Type 3 cases of Ctags and
Type 2 case of Camellia we did not get any clone fragments
related to bug-replication.

We also wanted to investigate what percentage of code
clones that are related to bugs contain replicated bugs. We
calculate this percentage using the following equation.

100 x CGBR

Here, PCGBRBF is the percentage of clone fragments
containing replicated bugs with respect to all buggy clone
fragments of a particular clone-type of a particular subject
system. We also calculate the overall value (i.e., considering
all system) of this percentage for each clone-type using an
equation which is similar to Eq. 2. We show these percentages
(PCGBRBF, and the overall one) in Fig. 4.

From Fig. 4 we see that for three clone-types: Type 1,
Type 2, and Type 3 overall respectively 24%, 39%, and 40%
of the buggy clone fragments contain replicated bugs. From
this graph we again see that Type 3 clones have the highest
possibility of containing replicated bugs. The percentage re-
garding Type 2 clones is also very near to Type 3 clones.

Answer to RQ 1. For most of our subject systems
a small percentage of all clone fragments can contain
replicated bugs. However, this percentage can sometimes
be considerable. According to our subject systems, the
percentages for the three clone-types, Types 1, 2 and 3
can be up to 3.85%, 7.58%, and 9.97% respectively. We
also see that around 24%, 39%, and 40% of the buggy
clone fragments in Type 1, Type 2, and Type 3 case can
contain replicated bugs. According to our observation, the
percentages of code clones containing replicated bugs in
Type 2 and Type 3 case are higher than in Type 1 case.

From our investigation and analysis in RQ 1 we realize
that bugs in code fragments can often get replicated through
cloning process. These replicated bugs can cause higher insta-
bility as well as increased maintenance efforts and costs for
the software systems. Also, as Type 2 and Type 3 clones have
higher possibilities of containing replicated bugs compared
to Type 1 clones, we should possibly consider refactoring or
tracking of Type 2 and Type 3 clones with high priorities.

D [Percentage of clone fragments related to bug-replication w.r.t all clone
fragments related to bug (Type 1)

D [Percentage of clone fragments related to bug-replication w.r.t all clone
fragments related to bug (Type 2)

I H Percentage of clone fragments related to bug-replication w.r.t all clone
fragments related to bug (Type 3)

100 | | | | |

80 [~ -
60 - -

40 -

LA LT L

jEdit

Ctags Camellia Freecol Carol Jabref ~ Overall

Fig. 4. Percentage of clone fragments related to bug-replication with respect
to all clone fragments related to bug-fix.

B. Answering the second research question (RQ 2)

RQ 2: What is the extent of bug-replication in the buggy
clone classes of different types of clones?

Motivation. From our answer to the previous research
question (RQ 1) we can understand what percentage of clone
fragments from which clone-type contain replicated bugs.
However, we still do not know the extent to which the clone
fragments in a clone class of a particular clone-type can contain
replicated bugs. Intuitively, a clone-type with a higher extent of
bug-replication should be considered more harmful compared
to the other clone-types. We answer RQ 2 in the following
way.

Methodology. We first detect the bug-fix commits fol-
lowing the procedure described in Section III-B. Considering
each of these commits we determine whether a clone class
was affected in that commit (i.e., whether one or more clone
fragments from the clone class were changed in that commit
for fixing a bug). Let us consider a bug-fix commit BFC
which was applied on a particular revision R. We determine
all the clone classes in this revision, and then identify which
of these clone classes were affected by the commit BFC. Let
us consider a clone class CC which was affected by BFC.
We determine whether two or more clone fragments from

CC experienced a similarity preserving co-change (SPCO) in
BFC. If this is true, then we select this clone class for our
investigation in RQ 2. We call such a clone class an Eligible
Clone Class (ECC). According to our previous discussions we
can easily understand that an ECC contains a replicated bug.
An affected clone class which is not ECC did not experience
a similarity preserving co-change, and thus, this class does not
contain replicated bugs.

Considering each of the eligible clone classes (ECCs) we
determine the following two measures:

CF: The total number of clone fragments in the eligible
clone class (i.e., in the ECC).

CFRB: The number of clone fragments that experienced
similarity preserving co-change (SPCO). In other words, this is
the number of clone fragments that contained replicated bugs.

From the above two measures of a particular ECC (eligible
clone class) we can determine the extent of bug-replication in
that ECC in the following way.

100 x CFRB
EBR=—"~""" 4
R CF 4)

Here, EBR is the extent of bug-replication for a particular
ECC. Considering all the ECCs of a particular clone-type
from all the bug-fix commits of a particular subject system
we determine the above two measures, and then calculate the
overall extent of bug-replication using the following equation.

100 x Za” poos CFBR
Zall ECCs CF

Here, OEBR is the overall extent of bug-replication in the
code clones of a particular clone-type of a subject system. We
show the measure OEBR for the three clone-types of each of
our subject systems in Fig. 5. The figure shows that the extent
of bug-replication in the buggy clone classes of Type 1 case
is 100% for five out of six subject systems (except jEdit).
Also, for three subject systems (jEdit, Freecol, and Jabref)
the extent of bug-replication in the buggy clone classes of
Type 2 case is 100%. Bug-replication extent is also very high
in the Type 3 buggy clone classes of three subject systems:
Freecol, Carol, and Jabref. We also show the overall scenario
(i.e., considering all subject systems) of the extent of bug-
replication in the buggy clone classes of three clone-types. We
see that while the buggy clone classes of Type 2 case show
the highest extent of bug replication, Type 3 case shows the
lowest extent. However, according to our candidate systems,
the extent of bug replication in the buggy clone classes is very
high in case of each of the clone-types.

OEBR = &)

Our answer to RQ 2 implies that in case of each clone-type,
most of the clone fragments in a buggy clone class contain the
same bug. For many cases the extent of replication is 100%.
This is expected. If a particular code fragment contains a bug,
then all other copies of that fragment will also contain the
same bug. However, in case of each of the subject systems
we find that there are some buggy clone classes where the
extension of bug-replication is not 100%. Only some of the
clone fragments in such a class (i.e., with partial replication

of bug) were consistently modified for fixing bug leaving
the other clone fragments in the class as they are. We were
interested to investigate why some of the clone fragments in a
partially buggy clone class were not considered buggy. We
manually investigated such clone classes from each of the
subject systems and had the following findings.

Answer to RQ 2. The extent of bug replication in the
buggy clone classes of each of Type 1 and Type 2 cases is
higher than the extent in Type 3 case. However, the overall
extent of bug-replication in each of these three clone-types
is very high (i.e., more than 70%). From such a finding we
believe that there should be automatic support for finding
clone classes with replicated bugs. When refactoring clone
classes of any clone-type we should primarily focus on the
clone classes that contain replicated bugs.

For most of the cases, one or more clone fragments were
created by copy/pasting an original code fragment making
a clone class consisting of the original one as well as the
newly created ones. However, some of the newly created clone
fragments were not properly changed to meet the contextual
requirements. Eventually, a bug-fix commit only modified
those clone fragments (i.e., the clone fragments that were
not previously modified properly) leaving the other clone
fragments in the class as they are. As an example of such a
case we can mention the commit operation applied on revision
318 of our subject system Jabref. The commit message as was
indicated by the developer says, “Fixed cut/copy/paste focus
bug”. Through further investigation we found that a clone class
in revision 318 contained two clone fragments. The commit
operation on this revision changed one of these two fragments
by commenting an if-statement in that fragment. We infer that
the if-statement that was commented was not appropriate for
the context where the copied fragment was pasted.

We finally state that although some of the eligible clone
classes (ECCs) do not exhibit a complete replication (i.e., a
bug-replication extent of 100%) of the bug, the overall extent
of bug-replication is very high for each clone-type. Thus,
bug-replication tendencies of code clones should be given
importance when taking clone management decisions.

C. Answering the third research question (RQ 3)

RQ 3: What percentage of the bugs that were experienced
by the code clones of different clone-types are replicated bugs?

Motivation. Even after answering the previous two re-
search questions it is still unknown whether most of the bugs
experienced by the code clones are replicated bugs or not.
If most of the bugs in code clones are replicated bugs then
we understand that bug-replication is a common phenomenon
during cloning, and in that case the programmers should be
suggested to be aware that the code fragments they are going
to copy are bug-free. We answer RQ 3 by investigating three
clone-types of each of the subject systems.

Methodology. We detect the bug-fix commits of a candi-
date subject system. We sequentially examine each of these
commits and update the following two counters considering
each clone-type.

D [Extent of bug-replication in the buggy clone classes (Type 1)
D [Extent of bug-replication in the buggy clone classes (Type 2)

I 0 Extent of bug-replication in the buggy clone classes (Type 3)

100 \ \ \ \ \ \

80 - il

60 —

40 —

20 —

0 T T T T T T

Ctags Camellia jEdit Freecol Carol Jabref Overall

Fig. 5. Extent of bug-replication in the buggy clone classes.

NBC (The number of bugs experienced by the code
clones): Let us consider a bug-fix commit BFC which was
applied on the revision R of a subject system. If one or more
of the clone classes residing in this revision were affected by
the commit BFC, then we increase the counter NBC by one.

NBRC (The number of bugs that were replicated in
the code clones): Let us consider that a bug-fix commit
was applied on revision R of a candidate system and one
or more clone classes in this revision were affected by the
commit. If any of these affected clone classes experienced
a similarity preserving co-change in this commit, then we
increase the counter NBRC by one. We should again note that
according our former discussions, experiencing a similarity
preserving co-change (SPCO) in a bug-fix commit operation
is an indication of the existence of replicated bugs in the code
clones.

The percentage of replicated bugs with respect to all bugs
experienced by the code clones of a particular clone-type of a
particular subject system is determined using Eq. 6.

100 x NBRC

NBC ©

% of replicated bugs =

In Table VI we show the two measures: NBC and NBRC
for each clone-type of each subject system. We also show the
percentage of replicated bugs for three clone-types of each
system in Fig. 6. We see that this percentage is considerable
for most of the cases. From Table VI and Fig. 6 we realize that
all the eight bugs experienced by the Type 2 clones of Carol
were replicated bugs. Fig. 6 also shows the overall percentage
of replicated bugs in the three clone-types considering all
subject systems. This overall percentage was calculated using
an equation similar to Eq. 2. For Type 1, Type 2, and Type
3 clones the overall percentages are respectively 30.65%,
55.26%, and 46.3%. While the overall percentage of replicated
bugs is the highest in Type 2 clones, this percentage is the
lowest in Type 1 clones.

TABLE VI NUMBER OF BUGS THAT WERE REPLICATED IN CLONES

Type 1 Type 2 Type 3
Systems NBC | NBRC | NBC | NBRC | NBC | NBRC
Ctags 3 1 4 0 11 0
Camellia 1 1 0 0 5 3
jEdit 37 5 10 5 42 15
Freecol 7 6 10 4 46 23
Carol 8 5 8 8 22 14
Jabref 6 1 6 4 23 14

NBC = Number of Bugs experienced by Clones
= The number of bug-fix commits experienced by the
code clones of a particular clone type.

NBRC = Number of Bugs that were Replicated in Clones
= The number of bug-fix commits having SPCOs
experienced by the code clones of a particular clone-type

D [Percentage of replicated bugs in Type 1 clones
D [Percentage of replicated bugs in Type 2 clones

I H Percentage of replicated bugs in Type 3 clones

100 | | | | |

60 |- -

40

20 |- =

: I I

T T T T T T
Ctags Camellia jEdit

Freecol Carol Jabref Overall

Fig. 6. Percentage of replicated bugs in different types of code clones.

Answering RQ 3. A considerable percentage of the
bugs experienced by the code clones of each clone-type
can be replicated bugs. This percentage can sometimes
be very high (i.e., up to 100%). The overall percentage
of replicated bugs in both Type 2 and Type 3 clones are
higher compared to Type 1 clones.

Replication of bugs can cause increased maintenance effort
and cost for software systems. Thus, it is important to inves-
tigate which code statements in the clone fragments primarily
contain replicated bugs. We perform such an investigation in
RQ 4.

D. Answering the fourth research question (RQ 4)

RQ 4: Which code statements are highly related to bug-
replication?

Motivation. In RQ 4 we investigate which code statements
in the clone fragments have high possibilities of containing
replicated bugs. Programmers might need to be careful while
copying code fragments containing those statements. The clone
classes containing such statements (i.e., that contain replicated

TABLE VIIL MOST FREQUENT CHANGE-TYPES DURING FIXING

REPLICATED BUGS IN CODE CLONES

B S o
Change Types O|o| B | £ o} =S | e
1 [Addition of if-else blocks 412 17 12 17 7 159
2 | Modification of if Condition 21 14 9 2 |46
3 | Deletion of if-else blocks 9 5 4 1 19
4 | Modification of Parameters in the |2 |2 | 23 8 26 7 |68
Called Method
5 | Addition of Method Call 17 9 7 10 |43
6 | Replacement of Old Method Call by 12 7 14 33
New Method Call
7 | Deletion of Method Call 5 2 1 2 |10

bugs) could be given higher priorities for refactoring and
tracking. The existing studies did not investigate the bug-
replication possibilities of clone fragments. Such an investi-
gation can provide us helpful insights regarding minimizing
bug-replication. We perform our investigation for answering
RQ 4 in the following way.

Methodology. As we did before we detect the bug-fix
commits and then identify cases where the bugs replicated in
the clone fragments were fixed. Fixing of replicated bugs were
identified by detecting the similarity preserving co-changes
(SPCOs) of clone fragments in the bug-fix commits. We should
again note that if two or more clone fragments from a particular
clone class undergo an SPCO in a particular commit operation,
then it is very much likely that those clone fragments were
changed consistently (i.e., each of the clone fragments was
changed in the same way) in that commit.

We manually check each of the bug-fix commits where the
clone fragments experienced SPCOs. We identify the changes
in the SPCOs that occurred in a bug-fix commit, and then
categorize these changes. In Table VI we have already reported
the number of bug-fix commits having SPCOs for each clone-
type of each subject system. The column named ‘NBRC’in this
table reports this number. Table IV shows the number of SPCO
cases for each clone-type of a subject system. There can be
more than one SPCO in a bug-fix commit. In other words, more
than one clone classes can experience similarity preserving co-
change in a bug-fix commit. The frequent change categories
that we observed during our manual analysis of the SPCO
cases are shown in Table VII. A particular clone fragment can
experience changes of more than one of these categories during
fixing replicated bugs.

From Table VII we realize that the most frequent change
experienced by the clone fragments during fixing replicated
bugs is ‘Modification of Parameters in the Called Method’.
We suggest programmers to be more careful when copying
code fragments containing method-calls. Before copying the
programmers should ensure that the code fragment she is going
to copy is bug-free. We should also prioritize refactoring of
clone fragments that contain method-calls. Intuitively, a change
in the name or in the parameters of a particular method will
affect all the code fragments that call that particular method.
Refactoring of clone fragments containing the same method
calls can considerably minimize future software maintenance
effort and cost. We suggest that clone fragments containing if-
conditions should also be given a high priority for refactoring,
because we observe a high frequency of the occurrence of
modifying if-conditions.

The other frequent change-types according to Table VII
are: addition of if-else blocks, addition of method calls, and
replacement of an old method call by a new method call.
We suggest that clone fragments with the possibilities of
experiencing such types of changes should also be considered
for management. If such clone fragments are not suitable for
refactoring, then they should be tracked. We also observed
a number of infrequent change-types during our investigation.
These change-types include: replacement of C preprocessor by
method call, addition, deletion or modification of loops, and
modification of try-catch blocks.

Answer to RQ 4. According to our manual investiga-
tion it seems that clone fragments having method calls
and if-conditions have high possibilities of containing
replicated bugs. We suggest that such clone fragments
should be considered for maintenance (i.e., refactoring or
tracking) with high priorities.

We should note that as Type 1 clones are exactly the
same code fragments, refactoring is possibly the best option
for maintaining such clones. Tracking is the most suitable
maintenance technique for the other two types (Type 2, and
Type 3) of code clones.

VI. RELATED WORK

Bug-proneness of code clones has been investigated by a
number of existing studies. Li and Ernst [23] performed an
empirical study on the bug-proneness of clones by investigat-
ing four software systems and developed a tool called CBCD
on the basis of their findings. CBCD can detect clones of a
given piece of buggy code. Li et al. [24] developed a tool
called CP-Miner which is capable of detecting bugs related
to inconsistencies in copy-paste activities. Steidl and Gode
[51] investigated on finding instances of incompletely fixed
bugs in near-miss code clones by investigating a broad range
of features of such clones involving machine learning. Gode
and Koschke [10] investigated the occurrences of unintentional
inconsistencies to the code clones of three mature software
systems and found that around 14.8% of all changes occurred
to the code clones are unintentionally inconsistent. Chatterji
et al. [5] performed a user study to investigate how clone
information can help programmers localize bugs in software
systems. Jiang et al. [14] performed a study on the context
based inconsistencies related to clones. They developed an
algorithm to mine such inconsistencies for the purpose of lo-
cating bugs. Using their algorithm they could detect previously
unknown bugs from two open-source subject systems. Inoue
et al. [13] developed a tool called ‘Clonelnspector’ in order to
identify bugs related to inconsistent changes to the identifiers
in the clone fragments. They applied their tool on a mobile
software system and found a number of instances of such bugs.
Xie et al. [56] investigated fault-proneness of Type 3 clones
in three open-source software systems. They investigated two
evolutionary phenomena on clones: (1) mutation of the type of
a clone fragment during evolution, and (2) migration of clone
fragments across repositories and found that mutation of clone
fragments to Type 2 or Type 3 clones is risky.

We see that none of the studies discussed above investi-

gated bug-replication in code clones. In a previous study [39]
we investigated and compared the bug-proneness of three types
of code clones. However, that study does not focus on the bug-
replication tendencies of code clones.

Rahman et al. [42] found that bug-proneness of cloned
code is less than that of non-cloned code on the basis of
their investigation on the evolution history of four subject
systems using DECKARD [15] clone detector. However, they
considered monthly snap-shots (i.e., revisions) of their systems
and thus, they have the possibility of missing buggy commits.
In our study, we consider all the snap-shots/revisions (i.e.,
without discarding any revisions) of a subject system from the
beginning one. Thus, we believe that we are not missing any
bug-fix commits. Moreover, our goal in this study is different.
We investigate and compare the bug-replication tendencies of
different types of code clones whereas they only focused on
the bug-proneness of clones.

Selim et al. [50] used Cox hazard models in order to assess
the impacts of cloned code on software defects. They found
that defect-proneness of code clones is system dependent.
However, they considered only method clones in their study.
We consider block clones in our study. While they investigated
only two subject systems, we consider six diverse subject
systems in our investigation. Also, we investigate the bug-
replication possibilities of different types of clones. Selim et
al. [50] did not perform a type centric analysis in their study.

A number of studies have also been done on the late
propagation in clones and its relationships with bugs. Aversano
et al. [1] investigated clone evolution in two subject systems
and reported that late propagation in clones is directly related
to bugs. Barbour et al. [2] investigated eight different patterns
of late propagation considering Type 1 and Type 2 clones of
three subject systems and identified those patterns that are
likely to introduce bugs and inconsistencies to the code-base.

We see that a number of studies have been conducted on the
bug-proneness of code clones. However, none of these studies
focus on the bug replication tendencies of different clone-
types. We believe that without studying bug-replication in
code clones we cannot realize their actual impact on software
maintenance and evolution. Focusing on this we perform an
in-depth investigation on bug-replication in code clones in this
research. Our experimental results are promising and provide
useful implications for better maintenance of software systems
through minimizing bug-replications.

VII. THREATS TO VALIDITY

We used the NiCad clone detector [6] for detecting clones.
While all clone detections tools suffer from the confounding
configuration choice problem [55] and might give different
results for different settings of the tools, the setting that we
used for NiCad for this experiment are considered standard
[46] and with these settings NiCad can detect clones with high
precision and recall [47], [48], [52]. Thus, we believe that our
findings on the bug-proneness of code clones are of significant
importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
followed by Barbour et al. [3]. Such a technique proposed

by Mocus and Votta [30] can sometimes select a non-bug-fix
commit as a bug-fix commit mistakenly. However, Barbour et
al. [3] showed that this probability is very low. According to
their investigation, the technique has an accuracy of 87% in
detecting bug-fix commits.

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the comparative
bug-proneness of different types of clones. However, our can-
didate systems were of diverse variety in terms of application
domains, sizes and revisions. Thus, we believe that our findings
are important from the perspectives of clone management and
can help us in better ranking of code clones for refactoring
and tracking.

VIII. CONCLUSION

In this paper we present our empirical study on bug-
replication in the major three types of code clones: Type 1,
Type 2, and Type 3. Although a number of existing studies
have investigated bug-proneness of code clones, none of these
studies focus on analyzing the bug-replication tendencies of
different clone-types. Without studying bug-replication tenden-
cies of code clones we cannot understand the real impact of
cloning on software maintenance and evolution. Focusing on
this we conduct an in-depth empirical study on the three types
of code clones residing in thousands of revisions of six diverse
subject systems to investigate whether and to what extent bug-
replication occurs in different clone-types.

According to our investigation, bug replication through
code cloning is a common phenomenon during software main-
tenance and evolution. Around 55% of the bugs occurred in
code clones can be replicated bugs. Also, up to 10% of the
code clones can contain replicated bugs. Tendencies of bug-
replication is higher in Type 2 and Type 3 clones than in Type 1
clones. It implies that code clones of Type 2 and Type 3 should
be considered for management (such as refactoring or tracking)
with high priorities. From our manual analysis we observe that
method-calls and if-conditions residing in the clone fragments
exhibit high tendencies of being related to bug-replication.
From this we suggest that clone fragments containing method-
calls and/or if-conditions should be prioritized for refactoring
and tracking to minimize bug-replication. We finally believe
that the outcomes of our bug-replication study are important
for better management of code clones as well as for better
maintenance of software systems. In future we would like to
investigate ranking of code clones for management considering
their bug-replication tendencies.

REFERENCES

[1] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study”, Proc. CSMR, 2007, pp. 81 — 90.

[2] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 — 282.

[3] L. Barbour, F. Khomh, Y. Zou, “An empirical study of faults in late
propagation clone genealogies”, Journal of Software: Evolution and
Process, 2013, 25(11):1139 — 1165.

[4] 1. D. Baxter, M. Conradt, J. R. Cordy, R. Koschke, “Software clone

management towards industrial application (dagstuhl seminar 12071)”,
Dagstuhl Reports, 2012, 2(2):21 — 57.

[3]

(6]

(71
(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, N. A. Kraft, “Measuring
the Efficacy of Code Clone Information in a Bug Localization Task: An
Empirical Study”, Proc. ESEM, 2011, pp. 20 — 29.

J. R. Cordy, C. K. Roy, “The NiCad Clone Detector”, Proc. ICPC Tool
Demo, 2011, pp. 219 — 220.

CTAGS: http://ctags.sourceforge.net/

E. Duala-Ekoko, M. P. Robillard, “CloneTracker: Tool Support for Code
Clone Management”, Proc. ICSE, 2008, pp. 843 — 846.

E. Duala-Ekoko, M. P. Robillard, “Tracking Code Clones in Evolving
Software”, Proc. ICSE, 2007, pp. 158 — 167.

N. Gode, Rainer Koschke, “Frequency and risks of changes to clones”,
Proc. ICSE, 2011, pp. 311 — 320.

N. Gode, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65 — 74.

K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software”, Proc. EVOL/IWPSE,
2010, pp. 73 — 82.

K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W.
Park, E. Lee, “Experience of Finding Inconsistently-Changed Bugs in
Code Clones of Mobile Software”, Proc. IWSC, 2012, pp. 94 — 95.

L. Jiang, Z. Su, E. Chiu, “Context-Based Detection of Clone-Related
Bugs”, Proc. ESEC-FSE, 2007, pp. 55 — 64.

L. Jiang, G. Misherghi, Z. Su, S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones”, Proc. ICSE, 2007, pp.
96 - 105.

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?”, Proc. ICSE, 2009, pp. 485 — 495.

P. Jablonski, D. Hou, “CReN: A tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE”, Proc. Eclipse
Technology Exchange at OOPSLA, 2007.

C. Kapser, M. W. Godfrey, ““Cloning considered harmful” considered
harmful: patterns of cloning in software”, Empirical Software Engineer-
ing, 2008, 13(6): 645 — 692.

M. Kim, V. Sazawal, D. Notkin, G. C. Murphy, “An empirical study of
code clone genealogies”, Proc. ESEC-FSE, 2005, pp. 187 — 196.

J. Krinke, “A study of consistent and inconsistent changes to code
clones”, Proc. WCRE, 2007, pp. 170 — 178.

J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57 — 66.

J. Krinke, “Is Cloned Code older than Non-Cloned Code?”, Proc. IWSC,
2011, pp. 28 — 33 .

J. Li, M. D. Ernst, “CBCD: Cloned Buggy Code Detector”, Proc. ICSE,
2012, pp. 310 — 320.

Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code”, Proc. OSDI,
2004, pp. 20 — 20.

A. Lozano, M. Wermelinger, “Tracking clones’ imprint”, Proc. IWSC,
2010, pp. 65 - 72.

A. Lozano, M. Wermelinger, “Assessing the effect of clones on change-
ability”, Proc. ICSM, 2008, pp. 227 — 236.

Mann-Whitney-Wilcoxon Test.
E2%80%93Whitney_U_test

Mann-Whitney-Wilcoxon Test
~leon/stats/utest.cgi

http://en.wikipedia.org/wiki/Mann%

Online. http://elegans.som.vcu.edu/

R. C. Miller, B. A. Myers. “Interactive simultaneous editing of multiple
text regions.”, Proc. USENIX 2001 Annual Technical Conference, 2001,
pp.- 161 — 174.

A. Mockus, L. G. Votta, “Identifying Reasons for Software Changes
using Historic Databases”, Proc. ICSM, 2000, pp. 120 — 130.

M. Mondal, C. K. Roy, K. A. Schneider, “SPCP-Miner: A Tool for
Mining Code Clones that are Important for Refactoring or Tracking”,
Proc. SANER, 2015, pp. 484 — 488.

M. Mondal, C. K. Roy, K. A. Schneider, “Late Propagation in Near-
Miss Clones: An Empirical Study”, Electronic Communications of the
EASST, 63(2014):1 — 17.

M. Mondal, C. K. Roy, K. A. Schneider, “Connectivity of Co-changed

Method Groups: A Case Study on Open Source Systems”, Proc. CAS-
CON, 2012, pp. 205 - 219.

M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Ranking of Clones
for Refactoring through Mining Association Rules”, Proc. CSMR-WCRE,
2014, pp. 114 — 123.

M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of
Important Clones for Refactoring and Tracking”, Proc. SCAM, 2014, pp.
11 - 20.

M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study”, Proc. SAC, 2012, pp. 1227 — 1234.

M. Mondal, C. K. Roy, K. A. Schneider, “An Empirical Study on Clone
Stability”, ACM SIGAPP Applied Computing Review, 2012, 12(3): 20 —
36.

M. Mondal, C. K. Roy, K. A. Schneider, “Prediction and Ranking of
Co-change Candidates for Clones”, Proc. MSR, 2014, pp. 32 — 41.

M. Mondal, C. K. Roy, K. A. Schneider, “A Comparative Study on the
Bug-Proneness of Different Types of Code Clones”, Proc. ICSME, 2015,
pp. 91 — 100.

Nonparametric Tests. http://sphweb.bumc.bu.edu/otlt/MPH-Modules/
BS/BS704_Nonparametric/mobile_pages/BS704_Nonparametric4.html

Online SVN repository: http://sourceforge.net/

F. Rahman, C. Bird, P. Devanbu, “Clones: What is that Smell?”, Proc.
MSR, 2010, pp. 72 — 81.

D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A System-
atic Review”, Information and Software Technology, 2013, 55(7): 1165
- 1199.

C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone
Management: Past, Present, and Future (Keynote paper)”, Proc. CSMR-
WCRE, 2014, pp. 18 - 33.

C. K. Roy, “Detection and analysis of near-miss software clones”, Proc.
ICSM, 2009, pp. 447 — 450.

C. K. Roy, J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion”, Proc. ICPC, 2008, pp. 172 — 181.

C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74 (2009): 470 — 495.

C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. Mutation,
2009, pp. 157 — 166.

C. K. Roy, J. R. Cordy, “A Survey on Software Clone Detection
Research”, Technical Report 2007-541, 2007, School of Computing,
Queen’s University, 115 pp.

G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, Y.
Zou, “Studying the Impact of Clones on Software Defects”, Proc. WCRE,
2010, pp. 13 - 21.

D. Steidl, N. Gode, “Feature-Based Detection of Bugs in Clones”, Proc.
IWSC, 2013, pp. 76 — 82.

J. Svajlenko, C. K. Roy, “Evaluating Modern Clone Detection Tools”,
Proc. ICSME, 2014, pp. 321 — 330.

S. Thummalapenta, L. Cerulo, L. Aversano, M. D. Penta, “An empirical
study on the maintenance of source code clones”, Empirical Software
Engineering, 2009, 15(1): 1 — 34.

M. Toomim, A. Begel, S. L. Graham. “Managing duplicated code with
linked editing”, Proc. IEEE Symposium on Visual Languages and Human
Centric Computing, 2004, pp. 173 — 180.

T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455 — 465.

S. Xie, F. Khomh, Y. Zou, “An Empirical Study of the Fault-Proneness
of Clone Mutation and Clone Migration”, Proc. MSR, 2013, pp. 149 —
158.

M. F. Zibran, C. K. Roy, “Conflict-aware Optimal Scheduling of Code
Clone Refactoring”, IET Software, 2013, 7(3): 167 — 186.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

(571

