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Abstract. Big-data analytics or systems developed with parallel dis-
tributed processing frameworks (e.g., Hadoop and Spark) are becoming
popular for finding important insights from a huge amount of heteroge-
neous data (e.g., image, text and sensor data). These systems o↵er a wide
range of tools and connect them to form workflows for processing Big
Data. Independent schemes from di↵erent studies for managing programs
and data of workflows have been already proposed by many researchers
and most of the systems have been presented with data or metadata
management. However, to the best of our knowledge, no study partic-
ularly discusses the performance implications of utilizing intermediate
states of data and programs generated at various execution steps of a
workflow in distributed platforms. In order to address the shortcomings,
we propose a scheme of Big-data management for micro-level modular
computation-intensive programs in a Spark and Hadoop based platform.
In this paper, we investigate whether management of the intermediate
states can speed up the execution of an image processing pipeline consist-
ing of various image processing tools/APIs in Hadoop Distributed File
System (HDFS) while ensuring appropriate reusability and error mon-
itoring. From our experiments, we obtained prominent results, e.g., we
have reported that with the intermediate data management, we can gain
up to 87% computation time for an image processing job.

Keywords: Data management · Modular programming · Computation-
intensive program · Big data · Distributed environment · Intermediate
state.

1 Introduction

With the rapid advancement of Big Data platforms, software systems [2], [3],
[5], [9], [16] are being developed to provide an interactive environment for large-
scale data analysis to the end users in the area of scientific research, business,
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government, and journalism. Big Data platforms such as Hadoop, Spark, Google
Data-flow, and so on provide us a high-level abstract interface for implementing
distributed-cluster processing of data. Recently, many researchers [4], [5], [6], [7]
have focused on developing architectures and frameworks for large-scale data
analysis tools utilizing these platforms. Most of these architectural frameworks
are adopting workows or pipelines [8], [9], [12] for data analysis to provide flexible
job creation environment. Workflows, in general, connect a sequence of interop-
erating tools to accomplish a task. For example, in order to find features from
images of a large crop field, di↵erent image processing tools such as image regis-
tration, stitching, segmentation, clustering and feature finding tools are needed
to be connected in order to form a workflow. In such workflow management
systems, modularization is important to support scalability and heterogeneity.
Thus, a wide range of tools is incorporated where each tool is treated as an in-
dependent process or module or service and can be implemented using di↵erent
programming languages. Traditionally, researchers and data analysts require to
run same workflows frequently with di↵erent algorithms and models that causes
overwhelming e↵orts even with the moderate size of data by running all of the
modules in the workflows. Utilization dimensions of those modules can be in-
creased by storing their outcomes as intermediate states in such systems. In
other words the possibility to use the transformed data in later stages to reduce
computation time, to enhance reusability and to ensure error recovery can be
increased by a proper data management.

Modular programming is a software design approach that draws attention to
uncoupling the functionalities of a script towards independent, interchangeable,
reusable units [30]. On the other hand, data modularity is always anticipated
for quick and flexible access to a dataset. In this paper, the intermediate states
of data are being recognized as modular data which are outcomes of modular
programs. The dynamic management of datasets is another ground to have in-
termediate states for a huge amount of data [25]. Some other common benefits of
intermediate data are sustainability, scalability, quick construction and cost sav-
ings [25], [26], [27], [28]. In many circumstances of a data-intensive distributed
application, image processing is an inevitable part where contemporary tech-
nologies of image analysis are pertinent for processing a large set of image data.
However, special care is needed for both image data and program to process
a huge amount of data with such emerging technologies. To make users’ tasks
more realistic in real time for Big Data analytics in image processing, inter-
mediate modular data states can be an appreciable settlement to design and
observe pipelines or workflows. In image-based tasks, the common execution op-
erations (such as pre-processing, transformation, model fitting, and analysis) can
be wrapped up as modules, and their outputs can be used for both observation
and post-processing. Another important aspect of Big Data analytics is to store
lots of data in a way that can be accessed in a low-cost [17], thus data manage-
ment with the reusable intermediate data and program states might be a great
deal to restore program state by reflecting the lower cost.
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A distributed image processing system requires huge storage and data pro-
cessing time for high-resolution large files. For such a system, stored interme-
diate states can be fruitful rather than transmitting raw files for a paralleled
task. Spark itself generates some intermediate states of data in its processing
engine to reduce IO cost [18]. Hence, in our modular programming paradigm, if
we introduce a mechanism of storing intermediate states and manage them, we
can reuse our data from various modules without computation which eventually
minimizes total cost of processing. Many researchers and organizations are now
pointing up on long time data processing with distributed parallel environments
for low cost and convenient system to handle a large amount of data [19]. Fol-
lowing the trends, a machine/deep learning-based algorithm with heterogeneous
data is another emerging practice to analyze a large amount of data for agricul-
tural and other data-intensive tasks [20]. Considering the current technologies
and trends, our scheme would be a contemporary package to analyze a large
amount of image data.

Although a few studies [25], [26], [27], [28], [31] focused on propagated results
in the intermediate states in Big Data management, to the best of our knowl-
edge none reflected the performance implications of reusability of intermediate
data and model in distributed platforms. Moreover, these studies do not show
how the intermediate states across various image processing workflows can be
reused. To fill the gap, in this paper we investigated whether the intermedi-
ates states generated from modular programs can speed up the overall execution
time of workflows in Hadoop/Spark based distributed processing units by as-
suring enhanced reusability and error recovery. Here our idea was that loading
intermediate states from HDFS (Hadoop Distributed File System) might take
longer than generating them in memory during the execution of a workflow. In
order to figure out the actual situations, we developed a web-based interactive
environment where users can easily access intermediate states and associated
them across various workflows, e.g., some outcomes of the image segmentation
pipeline are reusable to the image clustering and registration pipelines. We found
that even though it takes some time to load intermediate states from an HDFS
based storage, a workflow can be executed faster in a system of handled inter-
mediate states in persistent memory than a system of no intermediate states in
persistent memory. Our finding is described in Figure 5 for various workflows.
In the figure, we illustrate if we can skip some modules with the help of stored
intermediate states, we can get better performance than the case of without stor-
ing intermediate states. Details of the performance and re-usability have been
discussed in the section 5. The rest of the paper is organized as follows. Section
2 discusses the related work, Section 3 presents our proposed scheme of inter-
mediate data management, Section 4 describes our experiment setup, Section 5
compares our proposed scheme with the usual technique of intermediate data
handling by using various image progressing pipelines, Section 6 describes some
valuable findings towards data management for modular programming, and fi-
nally, Section 7 concludes the paper.
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2 Related Work

A number of studies [1], [5], [7], [15] have investigated recent techniques of filesys-
tem to process Big Data and some studies [6], [10], [12], [13], [14] were presented
with application of data or image processing in such file systems with meta-
data management. Similarly, various databases, algorithms, tools, technologies,
and storage systems are acknowledged in a number of studies while solving the
problem of big data processing for image analysis and plant-based research in
distributed environments. Studies related to phenotyping, image processing and
intermediate states in distributed environments are considered to compare with
our work, and some of them are presented below in three subsections.

2.1 Study on file systems of Big Data processing

Blomer [1] investigates various file systems of computer systems and compared
them with parallel distributed file systems. Benefits of both distributed and core
file systems of computer systems are discussed. As well as, a distributed file sys-
tem as a layer of the main file system has been addressed with common facilities
and problems. In their work, data and metadata managements key points are
also discussed for map-reduce based problems and fault tolerance concept. Luyen
et al. [5] experiment on di↵erent data storage systems with a large amount of
data for phenotyping investigation. Their work on a number of heterogeneous
database systems and technologies such as MongoDB, RDF, SPARQL, and so on.
explores possibilities of interoperability and performance. Similar to the above
studies, Donvito et al. [15] discuss and compare various popular distributed stor-
age technologies such as HDFS, Ceph, and GlusterFS. Wang et al. [7] propose
a technique of metadata replication in Hadoop based parallel distributed frame-
work for failure recovery. By emphasizing metadata replications in slave nodes
for reliable data access in big data ecosystem, the proposed metadata replication
technique works in three stages such as initialization, replication and failover re-
covery. Similarly, Li et al. [10] propose a log-based metadata replication and
recovery model for metadata management in a distributed environment for high
performance, balanced load, reliability, and scalability. In their work, caching
and prefetching technologies are used for the metadata to enhance performance.
While above studies focus on metadata management in various file systems, our
study is fundamentally di↵erent with an investigation of a scheme of intermedi-
ate data management for distributed file systems considering reusability, error
recovery and execution at a lower cost.

2.2 Big Data in terms of Image Processing

Minervini et al. [2] discuss di↵erent challenges in phenotyping by addressing
the current limitations in image processing technologies, where collaboration is
emphasized from diverse research group to overcome the challenges. Although
collaboration is an important part of a scientific workflow management system
(SWfMS) and we are proposing a scheme for a SWfMS, but the main focus
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in this study is consideration of intermediate states with micro-level modular
computational-intensive programs while managing workflows in a distributed
environment for increasing e�ciency. Some other studies on phenotyping con-
centrate on the costs of processing and appropriate usage of current technologies
to reduce the costs such as Minervini et al. [11] propose a context-aware based
capturing technique for JPEG images that will be processed by distributed re-
ceivers in a Phenotyping environment. Singh et al. [20] provide a comprehensive
study on ML tools in phenotyping area for appropriate and correct application
of them in plant research. Coppens et al. [14] emphasize data management for
automated phenotyping and explore the image metadata potentiality for syn-
ergism (Usage of metadata with main features). Sensor’s metadata of imaging
technique could be used by appropriate filtering for the synergism is also ad-
dressed in their work. Smith et al. [6] address the importance of metadata in
Big Data ecosystems to migrate and share data or code from one environment
to another. Data consolidation, analysis, discovery, error, and integration also
have been scrutinized from metadata usage perspective in the Big Data envi-
ronment. Pineda-Morales et al. [13] emphasize on both file metadata and task
metadata to propose a model for filtering hot metadata. After categorizing and
analyzing both hot and cold metadata, they recommend for distributing hot
metadata (frequently accessed) and centralizing cold metadata in a system of
data management. Although the above works show the behavior and direction
of metadata, none of them analyze the processed data or intermediate data as
metadata for e�cient management. In our work, modular outcomes of computa-
tional intensive programs are analyzed, and a scheme is proposed to store those
intermediate outcomes for e�ciency in a SWfMS.

2.3 Study on Intermediate-data

Becker et al. [25] survey on current Big Data usage and emphasize on intermedi-
ate data behavior for iterative analysis at every stage of processing to minimize
the overall response time with an algorithmic perspective. Besides, intermedi-
ate data can be saved in persistent storage at checkpoints was considered for
error recovery. Same as Heit et al. [31] explained the nature of intermediate
data while giving a statistical model for Big Data as well as intermediate data
should be independent was reported in their work. Intermediate data manage-
ment is considered by Tudoran et al. [26], where they pointed out storing of
intermediate-data for rollback purposes from the application level. Intermediate
data for checkpoints analysis are also considered by Mistrik and Bahsoon in their
work [27]. Likewise, how intermediate data are dispatched in parallel distributed
systems such as Spark, Hadoop is discussed by Han and Hong [28] in their book
by bringing together and analyzing various areas of Big Data processing.

Although, some of the above works were discussed with the fault-tolerant
concept using intermediate states, none of them discussed the possibility and
necessity of storing intermediate data for Big data analytics in a distributed
environment. Reviewing the above works, we realized that in a distributed envi-
ronment e�cient data access mechanism is a big concern and time implications
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for both data storing and loading are needed to be observed in a distributed
environment. Focusing these, we investigate the possibility of a data manage-
ment mechanism by storing intermediate states with the help of modularized
programs for enhancing processing time, reusability and error recovery.

3 Proposed Method

Modular programming for computation-intensive tasks is already a proven tech-
nology for reusability of code [21], [22], [23], [24], but for large raw data transac-
tion and loading from distributed systems, we cannot fully use the proficiency of
modularity. On the other hand, processed data require less memory, transaction
and loading time. Having both these knowledge, we store processed intermediate
data with other program data and want to explore three research questions in a
SWfMS, such as

– RQ1: Does the system support data reusability that ultimately reduces time
and e↵orts?

– RQ2: Does it have any error recovery mechanism that could construct work-
flows quicker if errors occur?

– RQ3: and How the system is supporting fast processing for frequently used
workflows?

Answers to these three research questions have been presented in the section
5. To use both of these intermediate data and modular programs, and explore
the usability of modular outcomes in our full system a modularized data access
mechanism is introduced. We have an interactive web interface, which is used for
accessing datasets of various modules input and output. A dedicated distributed
data server where images and intermediate data are stored was used in our sys-
tem for parallel processing. From the web interface, image processing workflows
can be built, and modules of the workflows can be submitted to a distributed
processing master node as jobs, by this way distributed image data are processed
with specified modules from the workflows.

Two major types of metadata of image processing environment are file-
structure-metadata and result-metadata [13]. In our system, we managed both
kinds of metadata using APIs that retrieve and store information on a dedicated
Hadoop server. This dedicated server is designed to facilitate various parallel
processing from di↵erent modules of pipelines or workflows. When a SHIPPIs
(Spark High-throughput Image Processing Pipeline) module needed to be exe-
cuted for a task, available data or intermediate data states are suggested from
a web interface with the help of the metadata and HDFS APIs (e.g., Figure 1).
SHIPPI is our designed library that provides cloud-based APIs for the modular
functionality of image processing [30]. Details of the SHIPPI has been described
in the experimental setup section, i.e., Section 4. Our system at first tries to find
suitable datasets for a modular task with task information and information from
the metadata server, suggested datasets are presented on a web interface to be
selected for a particular task from our distributed storage system, i.e., HDFS.
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Fig. 1. Proposed data management scheme.

Suggested datasets can be an intermediate or raw data, but the intermediate
states will always have a higher priority to be selected if available. Another im-
portant task of our system is to keep track of metadata and intermediate data.
After every execution, there are a few outputs from a single module such as
analysis results, intermediate data, and so on. Intermediate data are stored in
a distributed file system with actual data, and analysis results are stored in a
server as metadata for future use.

How the proposed scheme of data management by modular programs and
intermediate data can introduce reusability, error recovery and faster processing
in a Scientific Workflow Management System (SWfMS) is described with simple
workflows (Figure 2). In the figure, four workflows are illustrated with modules
and intermediate data. All black and grey marked processes (Ps) and intermedi-
ated data (IDs) represent more than the one-time existence of them in the four
workflows and possibility to be reused of them. This reusability of them means
they are likely to be reused later in either for the same workflow with di↵er-
ent tools or the other workflows in a SWfMS. Di↵erent intensities of black and
grey colours represent the same modules or intermediate states from di↵erent
workflows in di↵erent groups. A particular group is formed for the same opera-
tions on the same dataset or for the intermediate states that are being generated
for the same operation of module sequences on them with same input dataset.
In workflow 1, we have four modules (P1, P3, P5, and P7). These modules
perform operations sequentially on dataset D1 and produce three intermediate
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Fig. 2. Reusable intermediate data in workflows.

datasets (ID1, ID2, and ID3), where the last outcome is desired output (O/P).
All workflows have some processing modules to perform operations on specific
datasets or intermediate datasets for generating desired intermediate outcomes
or final results. The intermediate states are usually used by intermediate mod-
ules sequentially (N. B. For simplicity we are considering only sequential module
processing in workflows) in workflows. Workflow 2 has three modules (P1, P3,
and P4) that generate two intermediate datasets (ID1 and ID2). Workflow 3 and
4 have five and four processing modules with four and three intermediate stages
respectively. Last three workflows in the figure are working on the same dataset
D2, and a few modules such as P1, P2, and P3 are frequently used for building
those workflows. This scenario opens the possibility of reusability of intermediate
states, as it is common in a SWfMS that same modules can be used in di↵erent
workflows. As well as, the same sequence of operations on the same or di↵erent
dataset can be occurred in various workflows by supporting the possibility of
program reusability. In the workflow 2, an operation by module P1 is performed
on dataset D2 and generates intermediate dataset ID1. This operation and the
outcome (ID1) are the same in the other three workflows for the same module
sequence and same dataset. Same sequence P1 ! P2 ! P3 in workflow 3 also
occurs in workflow 4 with the same input data set D2. Thus, ID3 (intermedi-
ate dataset) from workflow 3 can be directly used in workflow 4 for skipping
the first three module operation to analyze with only last module or increase
the performance. To introduce this type of e�ciency and performance enhance-
ment in a system of workflow management, modules outcome is needed to be
stored with appropriate access mechanism. Furthermore, if failures occur in any
workflow, stored intermediate states (IDs) can be used to recover the workflow
by addressing the issues only in faulty modules. In a distributed environment,
data are partitioned and replicated on di↵erent nodes, and the transition time
of data is not as simple as it is a single file system. Data transfer time from slave
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nodes to master nodes is needed to be considered for both storing and retrieving.
So, for storing and retrieving intermediate data from such distributed systems,
experiments are necessary regarding transition and computation time. Our ex-
perimental section (Section 5) is designed in that way to investigate the actual
scenario of I/O operation and computation time for the micro level modular
computation-intensive programs in a distributed environment and explore the
possibility of reusability.

4 Experimental Setup

In our experiments, for evaluating a full system performance with the proposed
scheme, a web platform is used, a web interface is designed with current web
technologies and Flask (A Python micro-framework) web framework. From the
web interface, SHIPPIs APIs are called to execute a job in an OpenStack based
Spark-Hadoop cluster (e.g., five-node, 40 cores, and total 210 GB RAM). It
provides cloud-based APIs for the modular functionality of image-processing
pipeline and automatically parallelizes di↵erent modules of a program. Each
API call is modularized into four sections such as conversion, estimation, model-
fitting, analysis-transform. Figure 4, shows the block diagram of SHIPPI, which
represents the relation among di↵erent libraries and modules of the framework.
In our testing environment, HDFS is used to store our image data for parallel
processing. To store intermediate states, we used the Pickle library of Python,
and we designed three image processing pipelines - Segmentation, Clustering and
Leaves Recognition following our proposed model discussed in Section 3. Every
pipeline was tested at least five times and an average of their execution time
was recorded. For testing purposes, we mainly used three datasets - Flavia [29],
2KCanola, 4KCanola. Each of those datasets has more than 2000 images, where
Flavia is a known dataset used for leaves recognition system, and 2KCanola and
4KCanola datasets are from the P2IRC (Plant Phenotyping and Imaging Re-
search Centre) project of University of Saskatchewan used for various purposes
of image analysis. The three pipelines are illustrated in Figure 3, where a single

Fig. 3. Pipeline building with image processing tools.
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job such as leaves recognition, segmentation or clustering is built by their re-
spective modularized parts. The first module (Leaves Description) of the leaves
recognition pipelines extracts features and prepares data for the next module
leaves matching. The next module (Leaves Matching), which is the final mod-
ule in the leaves recognition pipelines does the job of comparing those features
and reports a classification result of leaves. Similarly, image segmentation and
clustering pipelines are modularized by four common modules such as trans-
formation, estimation, model fitting, and analysis. Transformation is used for
mainly colour conversion, estimation is used for feature extraction, model fitting
is used for training an algorithm and setting parameters, and the final module
analysis is used for testing and result preparation. Pipelines can be built by se-
lecting modules and parameters for submitting a desired task in the distributed
environment on the web interface, where each module works as a job in the dis-
tributed environment and their outcomes are gathered from a master node and
distributed file system for further analysis.

Fig. 4. Block diagram of components of SHIPPI.

5 Results and Evaluation

We developed a Spark High-throughput Image Processing Pipeline framework
known as SHIPPI, which is an image processing pipeline library to abstract map
reduce, data loading, and low-level complexity of image operations. SHIPPI was
written in Python 2.7 and Spark 2.0.1, four modules of our modular program
paradigm of a pipeline using SHIPPI can be modified based on image process-
ing operations concerning the desired purpose. Furthermore, these modules are
parallel with the help of PySpark library, and each output of a module is used
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in the next module. In a spark-based solution all data are in main memory, so
to reuse those processed data, we store them as intermediate states in Hadoop
distributed file system from those modules that give reusable data. This system
not only designed for reusability but also for error recovery (for the higher failure
rate of a long-running program or pipeline with a huge amount of data). Thus,
if we store intermediate data, there is a chance for us to recover a system at low
cost.

Table 1. Time gain for the reusable intermediate data

Pipeline Tool Step 1 Step 2 Gain
Leaves Description 1163.7 sec + 35.7 sec - -
Leaves Matching Can be skipped 175.9 sec 1199.5 sec

Total eight distinct modules of the three image processing pipelines have
been implemented with current technologies, and all of them are designed for
both without intermediate and with intermediate data concept. Both transfor-
mation and estimation modules in the pipelines use the same technology, and
they are similar in the last two pipelines. Figure 5 is the execution-time com-
parison graph of both of the concepts for the three pipelines in distributed and
ubuntu file systems. Although saving intermediate states is a memory overhead
task for all of the pipelines in the figure, but there are possibilities to use stored
data and skip some processing steps for executing a pipeline at low cost. Skipping
procedure eventually increases the flexibility and reusability to analyze fractions
of pipelines in low cost. Pipelines with skipped modules by using intermediate
data are presented with the improved performance in the figure. Another ma-
jor concern of our investigation was to explore the trade-o↵ scenario between
computation time and data loading/storing time of modules in distributed sys-
tems. For investigating this, previously we assumed that a data and metadata
transition time among slave and master nodes would be more than a module
computation time in a distributed environment. But the experimental results
for the pipelines of skipped modules show improved performance and contradict
with our assumption regarding time implication of data transfer. Hence, a system
of workflow management with distributed processing unit is capable of handling
intermediate states, and a scheme is possible to introduce in such systems for
reusability, error recovery and performance enhancement. We organize our ex-
periment into three sections to answer the research questions of our system’s
usability. All of the three pipelines of image processing are considered in each
section for their respective illustrations. Below are the three main subsections of
our experiments.

5.1 Experiment for reusability

A collaborative SWfMS is used for design and job submission of the image pro-
cessing pipelines to a distributed parallel processing system. Figure 6 and 7 show
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Fig. 5. Performance comparison of workflows with-intermediate and without-
intermediate data

Fig. 6. Image description module in our interactive workflow composition environment.
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Fig. 7. Image matching module in our interactive workflow composition environment.

the configuration interface for the image recognition pipelines, which is imple-
mented with SHIPPIs four-phase modular architecture where only two modules
are considered for simplicity. Intermediate state from the first module of this
pipeline can be reusable to image matching modules. So, an outcome of the im-
age description stage is important for an image matching technique and needed
to be stored for reuse. In Figure 7 of the image matching technique, there is
an option to use intermediate states for the reuse. Possibility to use intermedi-
ate states is the reusability model we are using in our system, an outcome of
a module can be used in other modules if available and appropriate for those
modules. Consider another situation, when image files are huge in size for high
resolution; then pipelines take a large portion of total execution time for only
data transferring and loading in a distributed parallel processing system. Thus,
stored features or descriptors as intermediate states can help to reduce the trans-
fer time up to a certain level. From table 1, we can see that module at step 1
(Image Descriptor) required more than 1199.4 seconds to accomplish the fea-
ture extraction part. In a pipeline design, we can skip this step if we can use
intermediate states and can gain up to 1199.4 seconds.

5.2 Experiment for error recovery

While a pipeline is running in a cluster, it is common that all the steps/modules
may not be succeeded and the pipeline may fail to produce the desired out-
put. But in a system of workflow management stored intermediate states can be
helpful to recover a workflow execution by applying appropriate module configu-
ration. If we store intermediate data and necessary parameters for modules and
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if there is an error in a module operation; still, data and configuration up to the
previous module can be used for stored intermediate data and parameters. So,
configuring the failed module with the stored parameters and intermediate data,
next run of the pipeline will only take time for the failed modules. For example,
in our case (Figure 8), image recognition pipeline is divided into two modules
using SHIPPI library, the second stage sometimes fails for too many compar-
isons and I/O operations, but using intermediate states we can quickly re-run
the second stage by only reconsidering the error issues in that module. Similarly,
both segmentation and clustering pipelines are error-prone at the model fitting
stage for lots of computation, in that case, up to two stages of computation
can be saved if we can reuse stored data with appropriate parameters, and this
is possible from our web interface. Besides, in a distributed environment when
computation and data are enormous, the failure rate is high for various tasks of
a job due to memory overhead and access limitations of di↵erent libraries. So,
our proposed approach can be a feasible solution in such type of computation-
intensive tasks to avoid errors or failures.

Fig. 8. Common error occurrences in workflow execution.

5.3 Experiment for fast processing

Both distributed and ubuntu file systems are considered for the execution time
experiments of our scheme, where pipeline design is considered with both with-
intermediate and without-intermediate data. Table 1, Figure 5 and Figure 9 are
presented with those execution time experiments. Examining the table, we can
say that for the intermediate states, possibilities of skipping execution steps can
make pipeline execution time shorter than the normal execution. The Figure
5 illustrates the execution time comparisons and performances for the three
image processing pipelines in our SWfMS. These image processing pipelines are
categorized by three techniques of workflow building for two file systems. The
techniques are - execution of workflows by storing intermediate data, by not
storing intermediate data and by skipping some module operations. So, there
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are nine experiments in each file system that makes total eighteen execution
scenarios in our system for both file systems. Short forms of the above techniques
are given below.

– Leaves Recognition workflow without storing intermediate data (LRWoI)
– Leaves Recognition workflow with storing intermediate data (LRWtI)
– Leaves Recognition workflow by skipping descriptor operation (LRSD)
– Segmentation workflow without storing intermediate data (SWoI)
– Segmentation workflow with storing intermediate data (SWtI)
– Segmentation workflow by skipping transformation and analysis (SSTA)
– Clustering workflow without storing intermediate data (CWoI)
– Clustering workflow with storing intermediate data (CWtI)
– Clustering workflow by skipping transformation and analysis (CSTA)

The grided dark-grey, grey, and white bars in the Figure 5 representing leaves
recognition system performance in two di↵erent file systems. If we skip the de-
scriptor calculation part using intermediate state, it performs better, the grided
white bars in the figure presents skip of the descriptor part and performances.
Same goes for the clustering and segmentation pipelines, dotted and lined bars
in the figure represent segmentation and clustering algorithms performances re-
spectively, and white bars of these patterns represent the skipping of modules
and improved performance. Furthermore, from the Figure 5, we can have an
idea of quantitative values of performance for three di↵erent pipelines where
grey colours represent all modules computation time of pipelines with or with-
out intermediate states, and white colours represent the computation time of
the pipelines that can skip some modules operation for the availability of in-
termediate states. So, it can be interpreted from the chart that, if we can skip
some module operations for the intermediate states, system or pipeline can be
executed at a low cost in both of the file systems. However, there are some delays
to store data in a storage system, but for the reusability, a system can really
work fast for already processed data. In a SWfMS, amount of data is increased
frequently for processing of various workflows. So, without proper data manage-
ment, volume and velocity of big data cannot be addressed e�ciently. As well as,
di↵erent types of data exist in a SWfMS without proper annotation and associ-
ation variety of big data processing cannot be granted. All of the three Vs of big
data can be appropriately handled in a system of scientific workflow manage-
ment by using a data-centric component management. Data-centric component
development for large-scale data analysis is a current trend to reduce error rates
and increase usability, and our system can provide such kind of facilities using
stored intermediate data.

6 Discussion and Lesson Learned

From our experimental studies, we figured out that although loading intermedi-
ate states from HDFS takes some extra time, the solution and possibility of using
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intermediate states shows better performance than loading raw large image files
for the execution of image processing workflows. In Figure 9, normal execution
to modules skipping performances have been illustrated for all of the three im-
age processing pipelines. For each pipeline, gain by skipping modules is directly
proportional to their normal execution time, as much as the computation time
increases, the gain is increased for the time too. This increment directly portraits
that the proposed scheme is more e↵ective for computationally intensive tasks
than the average workload of pipelines.

We also experienced that discovering data reusability across various image
processing tasks are challenging, and significant analysis is required in this re-
gard. In this situation, breaking up an image processing task into micro-level
tasks and o↵ering APIs for each task with the micro-level modular programming
concept is a viable solution. We learned in a system of modular programming a
user has more control over a task configuration such as if a user wishes, certain
steps can be used, or some can be skipped with respect to the required function-
alities and data availability. Some other common benefits of modular program
design that we experienced are - easy bug detection, less computation error, easy
program handling, and modular testing. Although we noticed this kind of mod-
ularity hampers performance, with the appropriate reusability of intermediates
states, it is possible to recover the loss. In order to figure out matching inter-
mediate states across various image processing tasks, applying machine learning
algorithms might be another solution. In this case, we need to tag intermediate
states with metadata to associate them with the tasks they might be used. A
system should automatically suggest users for using intermediate states during
compositions of workflows.

While we are working in our cluster, we gathered some valuable knowledge
of a distributed processing framework such as for parallel processing the cores of
di↵erent nodes are busy with di↵erent tasks of a specific job. So, if anyone wants
to store any processed data, it needs to happen on a master node. To store any
states, some data transition time from di↵erent nodes will be added to the stor-
ing procedure, which eventually increases a program’s execution time. Another
common problem of a distributed system is memory overhead exception. If a
master node does not have enough main memory, programs cannot execute op-
erations on a large dataset. For example, in our case, 30GB RAM of the master
node could not process 4K images, later which was increased to 90GB and then
4K images were processed with a clustering algorithm. Another problem of a
Spark based distributed system is, for rapid file system access program it throws
IO exceptions or SSH library file loading exceptions. Although there are various
challenges to process a large dataset in a distributed environment but to facili-
tate the real-time experience for Big Data, distributed processing environments
are inevitable.
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7 Conclusion

We devised a data management scheme for our image processing pipeline frame-
work, where we considered to store intermediate data and program state to reuse
processed data and recover a pipeline failure with the data. When a dataset has
a large number of images and associate programs need long computational time,
there is a chance of high error rate. In spite of that, existing models have not
concentrated on an organization of intermediate states except raw data and
metadata. Considering the above statements, we proposed a model of intermedi-
ate state and showed that using intermediate state, it is easy to recover failures
quicker and increase reusability in a SWfMS. In addition, intermediate states can
be used in other pipelines to reduce the time cost, which eventually increases
data reusability. To provide end users an interactive environment for processing
Big Data in a parallel distributed framework and at the same time give them
reusability with more control is a challenging job. Only a modularization of a
program or task might not be a feasible solution in many cases. So, our model
with data modularization or intermediate data state at every stage of a modular
program will give a user more control of usability. Above all, our study con-
tributes to Volume, Velocity and Variety creation in Big image processing. In
the current practice of workflow or pipeline design, high computation capability
resources may not facilitate users if users do not have more control over data us-
ability. Hence, using the proposed model of intermediate states of data, resource
utilization can be increased up to a certain level. Our experimental results were
presented with such utilization, which makes possible the practical use of our
system.
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