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Abstract—Reusing a code fragment through copy/pasting, also
known as code cloning, is a common practice during software
development and maintenance. Most of the existing studies on
code clones ignore micro-clones where the size of a micro-clone
fragment can be 1 to 4 LOC. In this paper we compare the
bug-proneness of micro-clones with that of regular code clones.
From thousands of revisions of six diverse open-source subject
systems written in three languages (C, C#, and Java), we identify
and investigate both regular and micro-clones that are associated
with reported bugs.

Our experiment reveals that percentage of changed code
fragments due to bug-fix commits is significantly higher in micro-
clones than regular clones. The number of consistent changes
due to bug-fix commits is significantly higher in micro-clones
than regular clones. We also observe that significantly higher
percentage of files get affected by bug-fix commits in micro-clones
than regular clones. Finally, we found that percentage of severe
bugs is significantly higher in micro-clones than regular clones.
We perform Mann-Whitney-Wilcoxon (MWW) test to evaluate
the statistical significance level of our experimental results. Our
findings imply that micro-clones should be emphasized during
clone management and software maintenance.

Index Terms—Code Clones, Micro-Clones, Software Bugs

I. INTRODUCTION

Recurrent activities of copy-pasting code fragments is very
common in everyday life of software development cycle. The
act of copying a piece of code and then pasting it without any
modification (exactly similar) or with modifications (nearly
similar) is known as code cloning [1], [2]. A group of similar
code fragments constructs a clone class. Code clones are
mainly created because of the frequent copy/paste activities of
programmers during software development and maintenance.
Beside copy/paste activities there can be various other reasons
behind creating clone code [3]. Whatever may be reasons
behind cloning, code clones are significantly important from
the perspectives of software maintenance and evolution [1].

A good number of studies [4]-[21] have been conducted on
discovering the impact of cloning on software maintenance.
This is a big dilemma in clone code research for the last
two decades regarding whether clone code is good or bad.
Reusing code can save software development time as well
as costs and efforts of development. A number of studies
[4], [7], [8], [10]-[13] have revealed some positive sides of
code cloning. On the other hand, if a code fragment contain a
bug, copy/pasting that buggy code fragment can cause severe
code maintenance issue. Code cloning is often referred as ‘bad
smell’ due to its bad impacts on software systems. In literature

there is strong empirical evidence [5], [6], [9], [14]-[17],
[19]-[21] of negative impacts of code clones. These negative
impacts include higher instability [16], late propagation [5],
and unintentional inconsistencies [6]. Existing studies [5], [22]
show that code clones are related to bugs in the code-base.

During the last two decades code clone research was based
on detecting, refactoring, tracking and managing code clones.
Existing studies ignored code clones of small size i.e. 1 to 4
LOC stating that these clones are mostly unpromising. In a
very recent study, Beller et al. [23] investigated these small
code clones and denoted those as micro-clones. Also, Tonder
et al. [24] worked on automatically detecting and removing
micro-clones in large scale. In another study, Mondal et al.
[25] focused on the importance of micro-clones and found that
during software maintenance and evolution 80% of all con-
sistent updates occur in micro-clones. They have shown that
the number of micro-clones is very high in software systems
than regular clones. However, they did not investigate bug-
proneness of micro-clones. This motivates us to investigate the
buggy code in both micro and regular code clones. In order to
explore the effects of bugs in micro-clones and regular code
clones we perform a comparative study. To the best of our
knowledge, our research is the first comparative study on bug-
proneness in between micro-clones and regular code clones.

We consider thousands of revisions of six diverse open
source software systems written in three languages, Java, C#
and C. For detecting code clones from each of the revisions
of a subject system we use the NiCad clone detector [26]. We
analyze the evolution history of both micro and regular code
clones, and investigate whether they contain bugs and to what
extent.

To investigate bug-proneness of regular and micro-clones,
we observe bug-fix commits reported by the developers from
thousands of commits in open source projects. The major
findings of our research is as follows.

e The percentage of bug-fix changes occurring in micro-
clones is significantly higher than the percentage of bug-
fix changes in regular code clones.

e The number of consistent bug-fix changes is considerably
higher in micro-clones than regular code clones. We
found that total number of consistent bug-fix changes in
micro-clones (4,118) is almost 6 times higher than regular
code clones (728).

e Percentage of affected files due to bug-fix changes is
significantly higher in micro-clones than regular clones.



TABLE I
RESEARCH QUESTIONS

TABLE 11
SUBJECT SYSTEMS

SL Research Question Systems Lang. | Domains LLR | Revisions

RQ 1 | Do micro-clones contain more bug-fix changes than regular Ctags C Code Def. Generator 33,270 774
code clones? Brlcad C Solid Modeling CAD 39,309 735

RQ 2 | Are the bug-fix changes consistent in micro and regular code MonoOSC C# | Formats and Protocols 18.991 355
clones? )

RQ 3 | What percentage of files get affected for fixing bugs in micro Freecol Java | Game 91,626 1930
and regular clones? Carol Java | Game 25,091 1700

RQ 4 | Do micro-clones contain more severe bugs compared to regular Jabref Java | Reference Management 45515 1545
code clones? LLR = LOC in the Last Revision

For micro-clones this percentage is 39.15%, whereas for
regular clones the percentage is only 8.02%.

e Micro-clones can contain a significantly higher percent-
age of severe bugs compared to regular clones. From our
inspection we found that micro-clones contain 16.98%
more severe bugs than the regular code clones.

From these findings we can state that micro-clones draw our
attention for clone management purpose, because they exhibit
a high bug-proneness during evolution. In order to get rid of
the negative impacts of micro-clones, we should track them
for updating consistently. However, the existing clone trackers
only consider regular code clones for tracking. Thus, it is
important to investigate these clone trackers with a goal of
making them capable of tracking micro-clones.

The rest of the paper is organized as follows. Section II
contains the terminology, Section III discusses the experi-
mental steps, Section IV answers our research questions by
presenting and analyzing the experimental results, Section V
describes a rigorous manual analysis on micro-clones. Section
VI discusses the related work and compares with our study,
Section VII discusses possible threats to validity, and Section
VIII concludes the paper and discusses possible future work.

II. TERMINOLOGY
A. Types of Clones

We conduct our analysis considering both exact (Type 1)
and near-miss clones (Type 2 and Type 3 clones) [1], [2]. The
clone-types are defined below.

Type 1 Clones. If two or more code fragments in a
particular code-base are exactly the same disregarding the
comments and indentations, these code fragments are called
exact clones or Type 1 clones of one another.

Type 2 Clones. Type 2 clones are syntactically similar code
fragments in a code-base. In general, Type 2 clones are created
from Type 1 clones because of renaming of identifiers and/or
changing of data types.

Type 3 Clones. Type 3 clones are mainly created because
of additions, deletions, or modifications of lines in Type 1 or
Type 2 clones. Type 3 clones are also known as gapped clones.

B. Micro Clones

Micro-clones are smaller in size than the clone size of
regular code clones. According to the literature [23]-[25],

micro-clones can be of 4 LOC at most. The minimum size
of a micro-clone fragment can be 1 LOC. In this paper we
ignore those micro-clones which are part of regular clones.
Thus we consider only true or pure micro-clones.

C. Bug-fix Commits

In the version control systems (e.g., SVN or Git) developers
perform commits to keep track of the changes that they made
in the code base. Developers often identify reported bugs in the
software systems and fix them. The commits that occur to fix
reported bugs are known as bug-fix commits. To fix these bugs,
changes may occur in regular code clones or micro-clones.
We observe these changes in regular clone and micro-clone to
contrast between them in terms of their bug-proneness.

D. Severe Bugs

Severe bugs are the software defects which can make
negative impact on the quality of software. This negative
impact varies from critical to trivial level. Developers can
define level of bug severity depending on the criteria of bugs
while reporting a bug in open source projects.

III. EXPERIMENT STEPS

We conduct our research on six subject systems (two C,
one C# and three Java systems). We consider these six subject
systems since these systems have variations in application
domains, sizes, and revisions. These subject systems are listed
in Table II which were downloaded from the SourceForge
online SVN repository [27]. In this table, the total number
of revisions of each subject system is given along with the
lines of code (LOC) in the last revision. Figure 1 shows the
simple flow diagram of our work procedure for this study.

A. Preliminary Steps

We perform the following steps for detecting fixed bugs: (1)
Extraction of all revisions (as stated in Table II) of each of the
subject systems from the online SVN repository; (2) Detection
and extraction of code clones from each revision by applying
NiCad [26] clone detector; (3) Detection of changes between
every two consecutive revisions using diff; (4) Locating these
changes to the already detected clones of the corresponding
revisions; and (5) Detection of bug-fix commit operations. For
completing the first four steps we use the tool SPCP-Miner
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Fig. 1. The execution flow diagram of the experimental steps in detecting bug-fix commits in Regular and Micro clones. The rectangles demonstrate the

steps.

[28]. We perform steps 1 to 5 for both regular and micro-
clones. We will describe the detection of bug-fix commits later
in this section. In Section IV we will describe how we detect
bug-fix changes in regular code clones and micro-clones.

We use NiCad [26] for detecting clones since it can detect
code clones with high precision and recall [29], [30]. Using
NiCad, we detect block clones (both exact and near-miss)
of at least 10 lines with 20% dissimilarity threshold and
blind renaming of identifiers. For micro-clones using NiCad
we detect block clones of a minimum size of 1 LOC and
maximum size of 4 LOC with 20% dissimilarity threshold
and blind renaming of identifiers as was detected by Mondal
et al. [25]. For different settings of a clone detector the clone
detection results can be different and thus, the findings on
bugs in code clones can also be different. Hence, selection of
appropriate settings (i.e., detection parameters) is important.
We used the mentioned settings in our research for detecting
regular clones, because Svajlenko and Roy [31] show that
these settings provide us with better clone detection results
in terms of both precision and recall.

B. Bug-proneness Detection Technique

For each subject system, we first retrieve the commit
messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically infer the commit messages using
the heuristic proposed by Mockus and Votta [32] in order to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)

was necessary for fixing the corresponding bug. In other
words, the clone fragment(s) are related to the bug. In this
way we examine the commit operations of a candidate system,
analyze the commit messages to retrieve the bug-fix commits,
and identify those clone fragments that are related to the bug-
fix. We also determine the number of changes that occurred
to such a clone fragment in a bug-fix commit using the UNIX
diff command.

The procedure that we follow to detect the bug-fix commits
was also previously followed by Barbour et al. [5]. Barbour
et al. [5] detected bug-fix commits in order to investigate
whether late propagation in clones is related to bugs. They at
first identified the occurrences of late propagations and then
analyzed whether the clone fragments that experienced late
propagations are related to a bug-fix. In our study we detect
bug-fix commits in the same way as they detected, however,
our study is different in the sense that we investigate the bugs
of regular and micro-clones. Figure 1 summarizes all the steps
of our experiment.

IV. EXPERIMENT RESULTS AND ANALYSIS

Our research questions are listed in Table I. We represent
answers to these research questions and analyze our experi-
mental results in this section.

A. Answering the first research question (RQ 1)

RQ 1: Do micro-clones contain more bug-fix changes than
regular code clones?

Motivation. Finding the number of changes due to fixing a
bug in code clone is an important parameter for comparison
between regular and micro-clones. Intuitively, micro-clones
might have higher number of bug-fix changes than regular
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Fig. 2. Percentage of bug-fix commits that have changed clone fragments in regular and micro-clones.

clones since the number of micro-clones is higher in every
system. If code clones of a particular type (micro or regular)
contain more bug-fix changes then we should be more careful
for that kind of clone while performing software maintenance
tasks.

Methodology. To answer this research question we automat-
ically count the number of bug-fix commits for both regular
and micro-clones. We found the result as we expected i.e.
number of bug-fix commits is higher in micro-clones than
regular clones. Table III shows the experimental result for our
first research question. While finding the bug-fix changes in
micro-clones, we restrain the minimum number of characters
per clone line. We refer it as Minimum number of Characters
per clone line or MC in this paper. We choose four different
threshold values for MC i.e. MC = 1, 10, 20, and 30. We
predicted that number of bug-fix commits would increase with
a decrease in MC value. We found the result as we have
expected. This is obvious because when we choose MC>= 1,
all the changes will be included. When we choose MC>= 30,
only clone lines containing more than 29 characters will be
counted. For regular code clones we choose the default value
of MC>= 1. Our goal is to observe that even if we restrict
the minimum number of characters per clone line for micro-
clones, if there is any chance to get less number of bug-fix
changes in micro-clones than regular code clones.

Figure 2 shows the percentages of bug-fix commits that
have changed clone fragments in regular and micro-clones for
six subject systems. We observe that for every subject system
percentage of bug-fix commits is higher in micro-clones than
regular clones. Also, if we increase the threshold of minimum
characters per clone line (MC), the percentage decreases. This

proves that even if we limit the minimum number of characters
per clone line to equal or greater than 30 (MC>= 30), still
the number of bug-fix changes is higher in micro-clones than
regular code clones. Overall, we can see that percentages of
bug-fix commits is much lower in regular clones than micro-
clones.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 1. To
check the statistical significance of our experiment results we
perform Mann-Whitney-Wilcoxon (MWW) test [33], [34]. We
want to observe whether the percentage of commits that have
changes due to fixing a bug is significantly higher in micro-
clones than regular clones. MWW test is a non-parametric
and does not require normal distribution of data. We consider
significance level of 5% for the test. We investigate six subject
systems and for each of them we calculate percentage of reg-
ular clones and micro-clones. For micro-clones we calculate
four percentages of bug-fix commits considering four micro-
clone sizes i.e. MC>=1, 10, 20, and 30, where MC refers to
the minimum number of characters per clone line. Thus, we
compare the percentage from each set of micro-clones with
that of regular clones. We found that percentages of bug-fix
changes in micro-clones is significantly higher than regular
clones. Table IV shows that for different MC values p-values
are less than 0.05 i.e. the significance level that we consider
for our tests. From the data we can see that the critical value of
U is 7 and for each case our value of U is less than or equal
to 7. This data prevails strongly that the number of bug-fix
commits is significantly higher in micro-clones than in regular
code clones.



TABLE III
NUMBER OF BUG-FIX COMMITS THAT HAVE CHANGED CLONE
FRAGMENTS IN MICRO-CLONES AND REGULAR CLONES

Subject Regular Micro-clones
Systems Clones 1 10 20 30
Ctags 53 433 362 237 118
Brlcad 29 214 182 126 78
MonoOSC 26 463 459 447 399
Freecol 358 3783 | 3692 | 3497 | 2888
Carol 450 745 715 648 503
Jabref 112 255 244 194 135
MC = Minimum number of Characters per clone line
Here, we set MC = 1, 10, 20, 30

TABLE IV
MANN-WHITNEY-WILCOXON TEST RESULT FOR RQ1

Micro-Clones | p-value U value
MC>=1 0.01539 4
MC>= 10 0.01539 4
MC>= 20 0.03288 6
MC>= 30 0.04648 7
Considering level of significance is 5%.

For 5% one-tailed level, Critical value of U is 7

Answer to RQ 1. From our investigation and analysis
we found that percentage of bug-fix commits containing
changed clone fragments is significantly higher in micro-
clones (from 4.52% to 7.48%) than regular clones (1.30%)
in software systems.

From the above results of our first research question we can
state that micro-clones experience changes in a significantly
higher number of bug-fix commits compared to regular clones.
This reveals that we should emphasize on micro-clones during
code clone management and software maintenance.

B. Answering the second research question (RQ 2)

RQ 2: Are the bug-fix changes consistent in micro and
regular code clones?

Motivation. From our first research question, we have found
that the bug-fix commits occur more in micro-clones than
regular clones in systems. However, we do not know whether
these bug-fix commits are committing consistent changes or
inconsistent changes in clone fragments. Consistent bug-fix
change means more than one clone fragment from the same
group experienced the same bug-fix. If the same bug-fix
change need to be propagated to different clone fragments in
the same group, then it indicates that the bug was replicated in
different clone fragments. Replication of bug [35] is a severe
negative impact of code cloning. In RQ 2, we investigate
whether the intensity of consistent bug-fix changes is higher
in micro-clones or in regular code clones.

Methodology. In our first research question we find all
the changes that occurred due to fixing a bug i.e. number of
bug-fix commits in both regular clones and micro-clones. To
answer our second research question, we find out consistent
bug-fix changes in regular and micro-clones. When similar
changes occur in two or more clone fragments from the same
clone class, we consider those changes as consistent changes.
For instance, suppose CF1 and CF2 are two clone fragments
in revision R. After the commit operation on revision R i.e.
in revision R+1, the clone fragments CF1 and CF2 changes
to CF1’ and CF2’ respectively. If the changes between clone
fragments CF1 and CF1’ are similar to the changes between
clone fragments CF2 and CF2’, then we can consider the
changes to be consistent. Figure 3 shows an example of
consistent changes in micro-clones. Here, we can see that a
single line micro-clone has been changed consistently. This
example has been mined from our subject system Carol written
in Java. In the commit operation on revision 153, a similar
change occurred in revision 154 for both code fragments.

Table V shows the data of consistent changes of clones
found in regular and micro-clones for six subject systems.
Here, we can see that the total number of consistent bug-fix
changes is higher in micro-clones than regular code clones for
every subject system.

Figure 4 shows the percentage of consistently changed bug-
fix commits in regular and micro-clones for six subject systems
along with overall values. Here, we observe that for three
systems, Ctags, MonoOSC, Freecol, percentage of consistent
changes is higher in micro-clones than regular code clones.
On the other hand, for rest of the systems, i.e. Brlcad, Carol,
Jabref, percentage of consistent changes is higher in regular
code clones than micro-clones. Overall, the percentage of
consistent changes is approximately equal in both regular
and mirco-clones. Though the result shows that there is no
significant difference in the percentage of consistent changes,
we believe that the actual number of consistent bug-fix changes
is more important. All the bugs need to be fixed for ensuring
consistency of the software system. We found that the total
number of consistent bug-fix changes in regular clones is 728.
On the other hand, the total number of consistent changes due
to bug-fix commits in micro-clones is 4,118. For the purpose
of clone refactoring or clone tracking, we have to deal with
the actual number of clones. Thus, we need to emphasize on
micro-clones which have higher number of clones as well
as consistent changes of bug-fix commits. To evaluate the
significance of the difference between regular and micro-
clones, we do the MWW statistical test.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 2. To
investigate statistical significance we perform Mann-Whitney-
Wilcoxon test [33], [34] on the results. We found that for
two-tailed, 5% significant level and critical value of U is 35,
the difference between two percentages of consistent bug-
fix changes in regular and micro-clones is not statistically
significant. The MWW test shows that the p-value is 0.93624
which is greater than 0.05 and the value of U found 17 which
is greater than the critical value of U i.e. 5. Though the result



Code Fragment 1 Revision 153

public static ClusterRegistryKiller start(int port)
throws RemoteException {
if (Trace.CREG)

Trace.out("CREG: starting on port " + port);
ClusterRegistrylmpl creg = new ClusterRegistrylmpl();
ClusterRegistry stub =

(ClusterRegistry) LowerOrb.exportRegistry(creg, port);
ClusterRegistryKiller k = new ClusterRegistryKiller(creg, port);
return k;

Code Fragment 2 Revision 153

public Remote lookup(String n) throws NotBoundException,
RemoteException {
Object obj;
synchronized (Ireg) {
obj = Ireg.get(n);

if ((obj != null) && (obj != clusterobj)) {
if (Trace.CREG)
Trace.out("CREG: local lookup of " + n);
return (Remote) obyj;

}

Change

Consistent changes in single line micro-clone fragments

Change

Code Fragment 1 Revision 154

public static ClusterRegistryKiller start(int port)
throws RemoteException {
if (TraceCarol.isDebugCmiRegistry())
TraceCarol.debugCmiRegistry("registry starting on port " + port);
ClusterRegistrylmpl creg = new ClusterRegistrylmpl();
ClusterRegistry stub =
(ClusterRegistry) LowerOrb.exportRegistry(creg, port);
ClusterRegistryKiller k = new ClusterRegistryKiller(creg, port);
return k;

Code Fragment 2 Revision 154

public Remote lookup(String n) throws NotBoundException,
RemoteException {
Object obj;
synchronized (Ireg) {
obj = Ireg.get(n);

if (obj 1= null) {
if (TraceCarol.isDebugCmiRegistry())
TraceCarol.debugCmiRegistry("local lookup of " + n);
return (Remote) obj;

}

Fig. 3. This is an example of consistent changes in micro-clones. Code Fragment 1 and Code Fragment 2 contain a pair of single line micro-clone from
our subject system Carol. Consistent changes in single line micro-clone are shown in between revision 153 and revision 154. We highlight the single line
micro-clone in both code fragments and for both revisions. Here, similar changes occur at the commit operation on revision 153. We also observe that the
surrounding code of one micro-clone fragment is not similar to that of the other micro-clone fragment.

TABLE V
NUMBER OF CONSISTENT CHANGES IN REGULAR AND MICRO-CLONES

Subject Regular Consistent | Micro Consistent

Systems Clones Regular Clones Micro
Clones Clones

Ctags 53 21 433 184

Brlcad 29 16 214 114

MonoOSC | 26 15 463 357

Freecol 358 252 3783 2835

Carol 450 355 745 532

Jabref 112 69 255 96

shows that there is no significant difference in the percentage
of consistent changes, we should emphasize on the number
of consistent bug-fix changes as we stated above. In terms
of consistency, we have to observe the number of clones
rather than percentages. We found that the average number
of consistently changed bug-fix commits is 121.33 for regular
clones and for micro-clones it is 686.33. Hence, the number
of consistent changes in micro-clones is higher than that of
regular code clones.

Answer to RQ 2. After investigating the bug-fix
changes in clones we found that number of consistent
bug-fix changes is significantly higher in micro-clones
than in regular clones. The difference between two av-
erage numbers is 565.

D [ Percentage of bug-fix commits that have Changed Consistently in
Regular Clones
I H Percentage of bug-fix commits that have Changed Consistently in
Micro-clones
100 . . . .
80 |- — -
60 |- - ] M
40 -
20 |- -
0 T T T T T T

Ctags Brlcad MonoOSC Freecol Carol Jabref  Overall

Fig. 4. Percentage of bug-fix commits that have consistent changes of clones
in regular and micro-clones.

From the above observation we can state that number of
consistent bug-fix changes are more in micro-clones than
regular clones. This finding is important for refactoring and
tracking of code clones.



TABLE VI
NUMBER OF FILES THAT CHANGES IN REGULAR AND MICRO-CLONES

Subject Total Regular Micro
Systems Number Clones Clones
of Files

Ctags 116 9 41
Brlcad 153 3 36
MonoOSC 132 5 32
Freecol 310 52 269
Carol 367 49 186
Jabref 377 17 54

C. Answering the third research question (RQ 3)

RQ 3: What percentage of files get affected for fixing bugs
in micro and regular clones?

Motivation. It is important to answer this research question
because the impact of bug-fix commits on micro and regular
clones is revealed through this answer. Intuitively, a higher
percentage of affected files indicates a higher number of
changes in the system. More attention is needed when more
changes occur. Answer to this research question implies which
type of code clones (regular or micro clone) are affecting
the system more. Knowing the information we can emphasize
on that particular type of code clone while maintaining and
managing code clones.

Methodology. To answer our third research question first
we find out total number of files those have been changed
after a bug-fix commit during software evolution. Then we
find the total number of files which get affected due to fixing a
bug in regular clones and micro-clones respectively. Thus, we
calculate the percentage of files that get affected due to bug-
fix commits. Table VI shows the result of our investigation on
RQ3. Here, we can see that number of affected files due to
bug-fix commits is higher in micro-clones than regular code
clones. Figure 5 illustrates the percentage of files that get
affected due to bug-fix commits for six subject systems. In
this figure we can see that for each subject system, percentage
of affected files is higher in micro-clones than regular clones.
The difference in percentage between micro and regular clones
is the highest in Freecol subject system. Overall, percentage of
affected files due to bug-fix commit in regular clone is 8.02%
and for micro-clone the percentage is 39.15%. To understand
the statistical significance of the difference between regular
and micro-clones, we perform following MWW test for this
research question.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 3. We
perform MWW test [33], [34] to observe the statistical signif-
icance level of our experimental result. For a two tailed and
significance level 0.05, we get the critical value of U is 5.
MWW test results show that our value of U is 1 which is less
than 5. Also, we found the p-value is 0.0083 which is much
less than significance level 0.05. Thus, we find that percentage
of files that get affected by bug-fix commits is significantly
higher in micro-clones than regular code clones.

|:| [ Percentage of affected files due to bug-fix commits in Regular Clones

I H Percentage of affected files due to bug-fix commits in Micro-clones

Ctags Brlcad MonoOSC Freecol Carol Jabref ~ Overall

Fig. 5. Percentage of files that get affected by bug-fix commits in regular
and micro-clones.

TABLE VII
MANN-WHITNEY-WILCOXON TEST RESULT FOR RQ2, RQ3 AND RQ4

Research p-value U value | Critical
Question No. Value of U
RQ2 0.93624 17 5

RQ3 0.0083 1 5

RQ4 0.04846 11 11
Considering level of significance is 5%.

For RQ3 and RQ4, U value <= Critical value of U

Answer to RQ 3. According to our investigation we
found that percentage of files that get affected due to
fixing a bug in the software systems is significantly higher
in micro-clones than regular code clones.

During software maintenance it is important to manage
clones intelligently. For this purpose finding which type of
code clones are important is a crucial issue. From our above
experiment we can state that micro-clones are more important
than regular clones while managing code clones in software
systems.

D. Answering the fourth research question (RQ 4)

RQ 4: Do micro-clones contain more severe bugs compared
to regular code clones?

Motivation. From our previous research questions we tried
to find out percentage of changes, consistent changes and
affected files due to fixing a bug during software evolution.
Still we need to understand which type of clone is a severe
threat in our systems while software maintenance. Severe bugs
can be more harmful than non-severe bugs. Fixing a severe bug



TABLE VIII
NUMBER OF SEVERE BUGS IN REGULAR AND MICRO-CLONES

Subject Regular Severe Micro Severe
Systems Clones Bugs in Clones Bugs in
Regular Micro
Clones Clones
Ctags 53 12 433 113
Brlcad 29 0 214 9
MonoOSC | 26 0 463 394
Freecol 358 65 3783 607
Carol 450 46 745 91
Jabref 112 9 255 44

is an emergency task compared to fixing a non-severe bug. For
this purpose we observe and compare the severity of bugs in
both regular and micro-clones.

Methodology. To distinguish between severe and non-
severe bugs in regular and micro-clones we automatically
perform a heuristic search in bug-fix commit messages of
regular and micro clone code. Lamkanfi et al. [36] proposed
a list of keywords which identify severe and non-severe
bugs from textual information. We search these keywords in
bug fixing commit messages to mine the severe bug-fixing
revisions. There are different levels or categories of severity in
a bug report. However, we consider only two levels of severity
i.e. true or false for the simplicity of our experiment. Table
VIII shows the result of our heuristic search. Here, we can see
that number of severe bugs is low in regular clones compared
with micro-clones. In fact, two subject systems, Brlcad and
MonoOSC contain no severe bugs in their system for regular
code clones. Highest number of severe bug-fixing commit
found in Freecol where the number of micro-clones is also
very high. Figure 6 depicts the percentage of severe bugs in six
subject systems for both regular and micro-clones. For each
of the subject systems percentage of severe bugs is high in
micro-clones than regular clones except for Freecol. Overall,
micro-clones contain 26.82% of severe bugs and regular clones
contain 9.84% of severe bugs.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 4. To
understand whether the difference between two percentages
is significant or not we perform MWW test [33], [34]. For
significance level of 5% and one-tailed MWW test, we find
the critical value of U is 11. After performing MWW test
on our data set of severe bugs for regular and micro-clones, it
shows that U value is 11 which is equal to the critical value of
U i.e. 11. Also, the p-value of our data set is 0.04846 which
is less than 0.05 i.e. significance level. This proves that the
percentage of severe bug-fix commits is significantly higher in
micro-clones than regular clones. Table VII shows the MWW
test results for our second, third and fourth research questions.

Answer to RQ 4. After observing the severity of
the bug-fix commits in both regular and micro-clones,
we found that percentage of severe bugs is significantly
higher in micro-clones than regular clones.

|:| [ Percentage of severe bugs in Regular Clones

I H Percentage of severe bugs in Micro-clones

i1l IHLD]J[

Ctags Brlcad MonoOSC Freecol Carol Jabref ~ Overall

Fig. 6. Percentage of severe bugs in bug-fix commits in regular and micro-
clones.

Since severe bugs need to be fixed immediately, it is a vital
issue for fixing a severe bug during software maintenance.
From the above investigation, we can state that micro-clones
contain more severe bugs than regular clones for which we
have to deal micro-clones carefully than regular clones while
software maintenance.

V. MANUAL ANALYSIS

We manually investigate the types of bug-fix changes that
occurred in micro-clones. Knowing this information is helpful
for programmers so that he or she can be more careful
while copying the code fragments containing those statements.
The result of our manual investigation will be helpful for
preventing bug-proneness in code bases in advance. Since,
manually investigating all the bug-fix changes is not feasible,
we inspect first 50 distinct changes from each of our subject
systems. Thus we observe 50 X 6 = 300 distinct changes
in total. For each change observation the average time is 10
minutes. Hence, for six subject systems and first fifty distinct
changes from each of them, we spent approximately (50 X 6
X 10) = 3000 minutes = 50 hours. Moreover, there were some
cases which implies one bug-fix change falls into more than
one change types. In this case, we choose most appropriate
one. We categorize the bug-fix changes and then count them
for each category. In total we define 37 categories of bugs. To
visualize the changes in bug-fixing micro-clones instantly, we
use online difference checker in code [37].

Table IX shows the list of most frequent change types in
bug-fix changes in micro-clones. Here, we can see that “Dele-
tion of Statement” is the highest in number i.e. 70 in total and
for subject system MonoOSC has the highest number of this
type of change i.e. 23. Second and third frequent changes are
“Addition of Statement” and “Modification of Statement” i.e.



TABLE IX
MOST FREQUENT CHANGE-TYPES DURING FIXING BUGS IN MICRO
CLONES
Change Types ?3” % Og § 3 2 ‘g
1 | Deletion of Statement 15|17 123 ] 6 10 9 70
2 | Addition of Statement 3 1 21 7 5 1 38
3 | Modification of Statement 5 6 1 7 5 10 | 34
4 | Modification of Function 8 8 2 3 1 2 24
Parameter
5 | Modification of 4 6 1 1 3 2 17
if-condition
Deletion of Function Call 3 0 0 4 2 6 15
7 | Modification of Function 3 5 0 1 3 0 12
Call

38 and 34 respectively. Again, MonoOSC contains the highest
number of “Addition of Statement” types i.e. 21. The other
frequent changes are “Modification of Function Parameter”,
“Modification of if-condition”, “Deletion of Function Call”
and “Modification of Function Call”. We found that most of
the change types in MonoOSC is “Addition of Statement” or
“Deletion of Statement”.

Finding the type of bugs or code construction for micro-
clones is important because more frequent type of bug should
be considered more carefully during software development.
Since, from our manual analysis we found that most change
type is “Deletion of Statement”, so when a developer deletes
any statement she should be more cautious for not creating
any bugs. The other frequent change types during bug-fixes
in micro-clones are “Addition of Statement”, “Modification of
Statement”, and “Modification of Function Parameter”.

VI. RELATED WORK

Micro-clone is a recent concern of code clone research
area. The term micro-clones was first introduced by Beller
et al. [23]. They have identified and statistically proved that
majority of software bugs in micro-clones occur in the last line
or statement of micro-clones. Tonder et al. [24] agreed with
them and proposed detection and removal of micro-clones in
large scale. Both Beller’s and Tonder’s paper used PVS-Studio
[38] static analysis tool to detect faulty micro-clones. Also,
Tonder et al. [24] used Boa [39] software mining infrastructure
which contains parsed ASTs for all Java files in 380,125
Java repositories on GitHub and a domain-specific language
(DSL). They [24] found that 95% of their pull requests from
active GitHub repositories merged quickly and 76% of their
accepted patches are removing (REM category) micro-clones.
In contrast with these two papers [23], [24], Mondal et al. [25]
investigated the importance of micro-clones during software
evolution. They showed that micro-clones have a very high
tendency of getting updated consistently.

Bug-proneness of code clones has been investigated by a
number of existing studies. Li and Ernst [19] performed an em-

pirical study on the bug-proneness of clones by investigating
four software systems and developed a tool called CBCD on
the basis of their findings. CBCD can detect clones of a given
piece of buggy code. Li et al. [40] developed a tool called
CP-Miner which is capable of detecting bugs related to incon-
sistencies in copy-paste activities. Steidl and Gode [20] inves-
tigated finding instances of incompletely fixed bugs in near-
miss code clones by investigating a broad range of features of
such clones involving machine learning. Gdde and Koschke [6]
investigated the occurrences of unintentional inconsistencies to
the code clones of three mature software systems and found
that around 14.8% of all changes that occurred to the code
clones were unintentionally inconsistent. Chatterji et al. [41]
performed a user study to investigate how clone information
can help programmers localize bugs in software systems.
Jiang et al. [21] performed a study on the context based
inconsistencies related to clones. They developed an algorithm
to mine such inconsistencies for the purpose of locating bugs.
Using their algorithm they could detect previously unknown
bugs from two open-source subject systems. Inoue et al. [42]
developed a tool called ‘Clonelnspector’ in order to identify
bugs related to inconsistent changes to the identifiers in the
clone fragments. They applied their tool on a mobile software
system and found a number of instances of such bugs. Xie
et al. [43] investigated fault-proneness of Type 3 clones in
three open-source software systems. They investigated two
evolutionary phenomena on clones: (1) mutation of the type of
a clone fragment during evolution, and (2) migration of clone
fragments across repositories and found that mutation of clone
fragments to Type 2 or Type 3 clones is risky.

None of the studies discussed above investigated bugs in
micro-clones and regular code clones simultaneously. Mondal
et al. [22] investigated bug-proneness of code clones. While
the primary target of that study was to compare the bug-
proneness of three clone-types (Type 1, Type 2, and Type 3),
our target is to compare the bug-proneness of micro-clones
and regular code clones. Mondal et al. [22] did not investigate
the bug-proneness of micro-clone code in their study. Higo et
al. [44] proposed a method to distinguish problematic code
clones from non-problematic code clones. They have stated
that not all clones are problematic for the systems. Thus, it
is important to find and fix the problematic code clones. As
a result of their study, they have found 22 problematic code
clones.

Rahman et al. [45] found that bug-proneness of cloned code
is less than that of non-cloned code on the basis of their inves-
tigation on the evolution history of four subject systems using
DECKARD [46] clone detector. Authors choose DECKARD
[46] as clone detection tool over CCFinder [47] and CP-Miner
[40] since they found the performance of DECKARD is better
than CCFinder and CP-Miner in their experiment. However,
they considered monthly snap-shots (i.e., revisions) of their
systems and thus, they have the possibility of missing buggy
commits. They have calculated and found that on an average
3.3% of bugs have late propagation fixing with different
staging snapshots. In our study, we consider all the snap-



shots/revisions (i.e., without discarding any revisions) of a
subject system from the beginning one. Thus, we believe that
we are not missing any bug-fix commits. Moreover, our goal in
this study is different. We investigate and compare the impacts
of bug-fix commits on regular and micro-clones whereas they
only focused on the bug-proneness of regular clones.

Selim et al. [48] used Cox hazard models in order to assess
the impacts of cloned code on software defects. They found
that defect-proneness of code clones is system dependent.
However, they considered only method clones in their study.
We consider block clones in our study. While they investigated
only two subject systems, we consider six diverse subject
systems in our investigation. Also, we investigate the bug-fix
possibilities of regular and micro-clones. Selim et al. [48] did
not perform a type (regular and micro) centric analysis in their
study.

A new aspect has been discussed in a recent study [49]
showing that bug-proneness is related with how recently the
clone has been changed on a subject system. The more
recent the changes happened the more possibility of occurring
bugs. In another study, Mondal et al. [50] investigated bug
propagation in code cloning and found that 33% of bug-fixing
code clones contain propagated bugs. They have suggested
to prioritize these clones for refactoring and tracking. It is
noticeable in their research that near-miss code clones contain
more propagated bugs than identical code clones. However,
Mondal et al. [49], [50] did not investigate bug-proneness of
micro-clones.

On the other hand, from a different perspective Rahman
and Roy [51] show the relation between stability and bug-
proneness of code clones. They have investigated five open
source diverse subject systems written in Java. They have
found statistically significant relation between stability and
bug-proneness of code clones. Also, buggy clones have the
tendency of changes more often than non-buggy clones.
Moreover, Type 2 and Type 3 clones have stronger relation
likelihood with their stability compared to Type 1 clones.
They have also investigated in the fine-grained change types
perspective and found low to medium significance influence
by the changes on the relation between stability and bug-
proneness of code clones. However, they did not investigate
bug-proneness of micro-clones in their study. We investigate
bug-proneness of micro-clones in our study.

Rakibul and Zibran [52] perform a comparative investi-
gation in between buggy and non-buggy clone code. They
have studied on three open source software systems written in
Java containing 2,077 revisions in total. Using SourceMeter
[53] they have observed 29 source code quality metrics to
characterize the buggy clone code. Their approach to finding
bugs in code clones is similar to other studies like [45],
[49]. They have found that buggy clones have significantly
higher complexity and lower maintainability than non-buggy
clone code. Also, size of the method of buggy clone is
higher than non-buggy clone method. While Rakibul and
Zibran investigated regular code clones, we investigate the
bug-proneness of micro-clones in our study.

We see that a number of studies have been conducted
on the bug-proneness of regular code clones. However, bug-
proneness of micro-clones have been ignored. Focusing on
this we perform an in-depth investigation on bug’s impacts in
micro code clones and regular code clones in our research.
Our experimental results are promising and provide useful
implications for better understanding of the bug-proneness of
micro-clone and regular clone code.

VII. THREATS TO VALIDITY

We used the NiCad clone detector [26] for detecting both
micro and regular clones. While all clone detection tools
suffer from the confounding configuration choice problem [54]
and might give different results for different settings of the
tools, the setting that we used for NiCad for this experiment
are considered standard [55] and with these settings NiCad
can detect clones with high precision and recall [29]-[31].
Thus, we believe that our findings on the bug-proneness of
micro code clones and regular code clones are of significant
importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
proposed by Mocus and Votta [32] and also used by Barbour
et al. [56]. The technique proposed by Mocus and Votta
[32] can sometimes select a non-bug-fix commit as a bug-fix
commit mistakenly. However, Barbour et al. [56] showed that
this probability is very low. According to their investigation,
the technique has an accuracy of 87% in detecting bug-fix
commits.

The number of total subject systems is not enough in
our research to be able to generalize our findings regarding
the comparative bug-proneness of micro and regular clones.
However, our candidate systems were of diverse variety in
terms of application domains, sizes and revisions. Thus, we
believe that our findings are important from the perspectives
of managing code clones.

VIII. CONCLUSION

In this paper, we investigate and compare the bug-proneness
and their characteristics in between regular and micro-clones.
From our investigation on six diverse subject systems, we
found that micro-clones need to be handled more carefully
than regular clones during software maintenance. We have
found that changes to clone fragments due to fixing a bug
occur more in micro-clones than regular clones. Moreover,
total number of consistent changes due to bug-fix commits is
higher in micro-clones than regular clones. Also, percentage
of files those get affected due to bug-fix changes is higher
in micro-clones than regular clones. Additionally, we found
that percentage of severe bugs is higher in micro-clones
than regular code clones. We believe that these findings are
important for clone management specifically for managing
micro-clones. Considering the findings of this study, in our
future research we would like to investigate replicated bugs in
micro-clones.
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