
Comparing Bug Replication in Regular and Micro
Code Clones

Judith F. Islam Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Department of Computer Science, University of Saskatchewan, Canada
{judith.islam, mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

Abstract—Copying and pasting source code during software
development is known as code cloning. Clone fragments with a
minimum size of 5 LOC were usually considered in previous
studies. In recent studies, clone fragments which are less than 5
LOC are referred as micro-clones. It has been established by the
literature that code clones are closely related with software bugs
as well as bug replication. None of the previous studies have been
conducted on bug-replication of micro-clones. In this paper we
investigate and compare bug-replication in between regular and
micro-clones. For the purpose of our investigation, we analyze
the evolutionary history of our subject systems and identify
occurrences of similarity preserving co-changes (SPCOs) in both
regular and micro-clones where they experienced bug-fixes. From
our experiment on thousands of revisions of six diverse subject
systems written in three different programming languages, C,
C# and Java we find that the percentage of clone fragments
that take part in bug-replication is often higher in micro-clones
than in regular code clones. The percentage of bugs that get
replicated in micro-clones is almost the same as the percentage
in regular clones. Finally, both regular and micro-clones have
similar tendencies of replicating severe bugs according to our
experiment. Thus, micro-clones in a code-base should not be
ignored. We should rather consider these equally important as
of the regular clones when making clone management decisions.

Index Terms—Code Clones, Micro-clones, Replicated Bugs,
Severe Bugs

I. INTRODUCTION

Recurrent activities of copy-pasting code fragments is very
common in everyday life of software development cycle. The
act of copying a piece of code and then pasting it without any
modification (exactly similar) or with modifications (nearly
similar) is known as code cloning [1], [2]. A group of similar
code fragments constructs a clone class. Code clones are
mainly created because of the frequent copy/paste activities of
programmers during software development and maintenance.
Beside copy/paste activities there can be various other reasons
behind creating clone code [3]. Whatever may be the reasons
behind cloning, code clones are significantly important from
the perspectives of software maintenance and evolution [1].

A good number of studies [4]–[21] have been conducted on
discovering the impact of cloning on software maintenance.
This is a big dilemma in clone code research for the last
two decades regarding whether clone code is good or bad.
Reusing code can save software development time as well
as costs and efforts of development. A number of studies
[4], [7], [8], [10]–[13] have revealed some positive sides of

code cloning. On the other hand, if a code fragment contain a
bug, copy/pasting that buggy code fragment can cause severe
code maintenance issue. Code cloning is often referred as ‘bad
smell’ due to its bad impacts on software systems. In literature
there is strong empirical evidence [5], [6], [9], [14]–[17],
[19]–[21] of negative impacts of code clones. These negative
impacts include higher instability [16], late propagation [5],
and unintentional inconsistencies [6]. Existing studies [5], [22]
show that code clones are related to bugs in the code-base.

During the last two decades code clone research was based
on detecting, refactoring, tracking and managing code clones.
Existing studies ignored code clones of small size i.e. 1 to
4 LOC stating that these clones are mostly unpromising.
In a very recent study, Beller et al. [23] investigated these
small code clones and denoted those as micro-clones. Also,
Tonder et al. [24] worked on automatically detecting and
removing micro-clones in large scale. In another study, Mon-
dal et al. [25] focused on the importance of micro-clones
and found that during software maintenance and evolution
80% of all consistent updates occur in micro-clones. They
have shown that the number of micro-clones is very high
in software systems than regular clones. Recently, Islam et
al. [26] performed a comparative study on the bug-proneness
between regular and micro-clones. They found that micro-
clones are more bug-prone than regular clones. Moreover, the
amount of severe bugs in micro-clones is comparatively higher
than in regular clones. However, they did not investigate bug
replication of micro-clones. This motivates us to investigate
the bug replication in both micro and regular code clones. In
order to explore the effects of bug replication in micro-clones
and regular code clones we perform a comparative study. To
the best of our knowledge, our research is the first comparative
study on bug replication in between micro-clones and regular
code clones.

We consider thousands of revisions of six diverse open
source software systems written in three languages, Java, C#
and C. For detecting code clones from each of the revisions
of a subject system we use the NiCad clone detector [27]. We
analyze the evolution history of both micro and regular code
clones, and investigate whether they contain replicated bugs
and to what extent.

In our experiment, the minimum and maximum size of a
micro-clone fragment can be 1 LOC and 4 LOC respectively.
We consider those micro-clones that are not parts of regular



TABLE I
RESEARCH QUESTIONS

SL Research Question
RQ 1 What percentage of the clone fragments in Regular and Micro-

clones takes part in bug-replication?
RQ 2 What is the extent of bug-replication in the buggy clone classes

of Regular code clones and Micro-clones?
RQ 3 What percentage of bugs experienced by regular and micro-

clones are replicated bugs?
RQ 4 Are the replicated bugs in micro-clones more likely to be

severe than the replicated bugs in regular clones?

clones. We detect regular code clones of at least 5 LOC be-
cause Wang et al. [28] reported this size as the best minimum
threshold for detecting regular clones.

To investigate bug replication in regular and micro-clones,
we observe bug-fix commits reported by the developers from
thousands of commits in our candidate open source projects.
We observe the intensity of bug-replication in both micro-
clones and regular code clones and answer four important
research questions listed in Table I. The major findings from
our research are as follows.

• The percentage of clone fragments that experienced bug-
replication in micro-clones is often higher than that of
regular code clones.

• The percentage of bugs that get replicated in micro-clones
is almost the same as of the percentage of bugs that get
replicated in regular code clones.

• The replicated bugs in both regular and micro-clones have
similar tendencies of being severe.

From these findings we see that micro-clones are equally
important as regular code clones. Thus, we should also con-
sider micro-clones when making clone management decisions.

The rest of the paper is organized as follows. Section II con-
tains the terminology, Section III discusses the experimental
steps, Section IV answers our research questions by presenting
and analyzing the experimental results. Section V discusses the
related work and compares our study with the existing ones,
Section VI discusses possible threats to validity, and Section
VII concludes the paper and discusses possible future work.

II. TERMINOLOGY

A. Types of Clones

We conduct our analysis considering both exact (Type 1)
and near-miss clones (Type 2 and Type 3 clones) [1], [2]. The
clone-types are defined below.

Type 1 Clones. If two or more code fragments in a
particular code-base are exactly the same disregarding the
comments and indentations, these code fragments are called
exact clones or Type 1 clones of one another.

Type 2 Clones. Type 2 clones are syntactically similar code
fragments in a code-base. In general, Type 2 clones are created

TABLE II
SUBJECT SYSTEMS

Systems Lang. Domains LLR Revisions
Ctags C Code Def. Generator 33,270 774
Brlcad C Solid Modeling CAD 39,309 735
MonoOSC C# Formats and Protocols 18,991 355
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
LLR = LOC in the Last Revision

from Type 1 clones because of renaming identifiers and/or
changing data types.

Type 3 Clones. Type 3 clones are mainly created because
of additions, deletions, or modifications of lines in Type 1 or
Type 2 clones. Type 3 clones are also known as gapped clones.

B. Micro Clones

Micro-clones are smaller in size than the minimum size
of regular code clones. According to the literature [23]–[25],
micro-clones can be of 4 LOC at most. The minimum size of
a micro-clone fragment can be 1 LOC. In this paper we ignore
those micro-clones which are part of regular clones. Thus we
consider only true or pure micro-clones.

C. Similarity Preserving Co-change (SPCO) of two or more
clone fragments

Let us consider two code fragments, CF1 and CF2, which
are clones of each other in revision R of a subject system.
A commit operation was applied on revision R and both of
these two fragments were changed (i.e., the clone fragments
co-changed) in such a way that they were again considered
as clones of each other in the next revision R+1 (i.e., created
because of the commit). In other words, the clone fragments
preserved their similarity even after experiencing changes in
the commit operation. Thus, we call this co-change of clone
fragments (i.e., change of more than one clone fragment
together) a Similarity Preserving Co-change (SPCO).

D. Bug-fix Commits

In the version control systems (e.g. SVN or Git) developers
perform commits to keep track of the changes that they made
in the code base. Developers often identify reported bugs in
the software systems and fix them. The commits that occur to
fix reported bugs are known as bug-fix commits. To fix these
bugs, changes may occur in regular code clones or micro-
clones. We observe these changes in regular clone and micro-
clone to contrast between them in terms of their tendencies of
replicating bugs.



Fig. 1. The execution flow diagram of the experimental steps in detecting replicated bug-fix commits in Regular and Micro clones. The rectangles demonstrate
the steps.

III. EXPERIMENT STEPS

We conduct our research on six subject systems (two C,
one C# and three Java systems). We consider these six subject
systems since these systems have variations in application
domains, sizes, and revisions. These subject systems are listed
in Table II which were downloaded from the SourceForge
online SVN repository [29]. In this table, the total number
of revisions of each subject system is given along with the
lines of code (LOC) in the last revision. Figure 1 shows the
simple flow diagram of our work procedure for this study.

A. Preliminary Steps

We perform the following steps for detecting fixed bugs: (1)
Extraction of all revisions (as stated in Table II) of each of the
subject systems from the online SVN repository; (2) Detection
and extraction of code clones from each revision by applying
NiCad [27] clone detector; (3) Detection of changes between
every two consecutive revisions using diff; (4) Locating these
changes to the already detected clones of the corresponding
revisions; and (5) Detection of bug-fix commit operations. For
completing the first four steps we use the tool SPCP-Miner
[30]. We perform steps 1 to 5 for both regular and micro-
clones. We will describe the detection of bug-fix commits later
in this section. In Section IV we will describe how we detect
bug-fix changes in regular code clones and micro-clones.

We use NiCad [27] for detecting clones since it can detect
code clones with high precision and recall [31], [32]. Using
NiCad, we detect block clones (both exact and near-miss)
of at least 5 lines with 30% dissimilarity threshold and
blind renaming of identifiers. For micro-clones using NiCad
we detect block clones of a minimum size of 1 LOC and
maximum size of 4 LOC with 30% dissimilarity threshold
and blind renaming of identifiers as was detected by Mondal
et al. [25]. NiCad settings for detecting both micro and regular
code clones are shown in Table III.

TABLE III
NICAD SETTINGS FOR DETECTING REGULAR AND MICRO-CLONES

Clones Clone
Granu-
larity

Min
Line

Max
Line

Identifier
Renaming

Dissimilarity
Threshold

Regular
Clones

Block 5 500 Blind
Rename

30%

Micro
Clones

Block 1 4 Blind
Rename

30%

For different settings of a clone detector the clone detection
results can be different and thus, the findings on bugs in code
clones can also be different. Hence, selection of appropriate
settings (i.e., detection parameters) is important. We used the
mentioned settings in our research for detecting regular clones,
because Svajlenko and Roy [33] show that these settings
provide us with better clone detection results in terms of both
precision and recall.

B. Bug-proneness Detection Technique

For each subject system, we first retrieve the commit
messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically infer the commit messages using
the heuristic proposed by Mockus and Votta [34] in order to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other
words, the clone fragment(s) are related to the bug. In this
way we examine the commit operations of a candidate system,
analyze the commit messages to retrieve the bug-fix commits,
and identify those clone fragments that are related to the bug-



fix. We also determine the number of changes that occurred
to such a clone fragment in a bug-fix commit using the UNIX
diff command.

The procedure that we follow to detect the bug-fix commits
was also previously followed by Barbour et al. [5]. Barbour
et al. [5] detected bug-fix commits in order to investigate
whether late propagation in clones is related to bugs. They at
first identified the occurrences of late propagations and then
analyzed whether the clone fragments that experienced late
propagations are related to a bug-fix. In our study we detect
bug-fix commits in the same way as they detected, however,
our study is different in the sense that we investigate the
replicated bugs in regular and micro-clones.

C. Identifying replicated bugs in code clones

In Section II we defined the Similarity Preserving Co-
change (SPCO) of two or more clone fragments from same
clone class. To identify replicated bugs in code clones we
analyze clone evolution history of a software system. We
perform following two steps for the identification of bug-
replication.

Step 1: First we detect all the bug-fix commit operations of
a subject system. The detail procedure of this step is described
in Section III-B.

Step 2: For each of the bug-fix commits found in step 1, we
check if any of the clone fragments experienced a Similarity
Preserving Co-change (SPCO) in this commit. Suppose a bug-
fix commit BFC was applied on revision R of a candidate
system. If two or more clone fragments from a clone class in
revision R experienced an SPCO in the commit BFC, then we
consider it as the case of fixing a replicated bug. In an SPCO
the participating clone fragments are likely to be changed
consistently (i.e. in the same way) [35]. To detect SPCOs of
clone fragments in regular code clones and micro-clones we
use SPCP-Miner [30] tool.

We identify all cases of fixing replicated bugs for both
regular code clones and micro-clones by analyzing the clone
evolution history of each of our subject systems listed in Table
II. Figure 1 summarizes all the steps of our experiment.

IV. EXPERIMENT RESULTS AND ANALYSIS

Our research questions are listed in Table I. In this section,
we analyze our experiment results for six subject systems and
answer the research questions from our analysis.

A. Answering the first research question (RQ 1)

RQ 1: What percentage of the clone fragments in Regular
and Micro-clones takes part in bug-replication?

Motivation. Measuring the percentage of clone fragments
which take part in bug replication is an important way to
contrast between micro and regular code clones. If a particular
category of code clones (regular clones or micro-clones) con-
tains more replicated bugs, we should be more careful about

that category while making clone management decisions. The
software bug that replicates through clone code have a ripple
effect in the whole system. Thus answering this research
question has an important impact on clone research since code
clones that gravitate to replicate bugs should be emphasized
during software maintenance.

Methodology. To answer this research question we identify
bug-replication in code clones by mining the clone evolution
history of each of our subject systems. Detail procedure
of detecting replicated bugs in regular and micro-clones is
elaborated in section III-C. We automatically detect the bug-fix
commits and then identify the similarity preserving co-changes
(SPCOs) of clones in these bug-fix commits. If an SPCO of
two or more clone fragments occurs in a bug-fix commit, then
it is an indication of fixing of a replicated bug.

We use the following two measures to calculate the percent-
age of clone fragments containing replicated bugs.

CFRB: The number of clone fragments that experienced
similarity preserving co-change (SPCO) i.e. clone fragments
which contain replicated bugs.

BFCR: The number of distinct bug-fix commits where
regular and/or micro-clones experienced similarity preserving
co-changes (SPCOs).

To determine the percentage of clone fragments that takes
part in bug-replication we use Equation 1.

PCFRB =
100× CFRB

BFCR
(1)

Here, PCFRB is the percentage of clone fragments con-
taining replicated bugs per revision. We compute the over-
all percentage of the clone fragments that experienced bug-
replication for both regular and micro-clones using the fol-
lowing equation.

OPCFRB =
100×

∑
all systems CFRB∑

all systems BFCR
(2)

Table IV shows the number of distinct clone code fragments
which took part in bug-replication in both regular and micro-
clone code for six subject systems. From this table we observe
that the number of distinct clone fragments is higher in
micro-clones for three subject systems i.e. for Brlcad, Freecol
and Jabref. For other three subject systems i.e. for Ctags,
MonoOSC and Carol number of replicated clone fragments is
higher in regular code clones than that of micro-clones. Figure
2 shows the percentage of distinct clone fragments which
are related to bug-replication in regular and micro-clones. In
overall, percentage of clone fragments that experienced bug-
replication is slightly higher in micro-clones than the regular
code clones.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 1. We
perform Mann-Whitney-Wilcoxon (MWW) test [36], [37] to
check the statistical significance of the result. We are interested



Ctags Brlcad MonoOSC Freecol Carol Jabref Overall
0

2

4

6

8

10

Percentage of distinct clone fragments related to bug-replication in Regular
Clones

Percentage of distinct clone fragments related to bug-replication in Micro-
clones

Fig. 2. Percentage of clone fragments that related to bug-replication in regular
and micro-clones.

TABLE IV
NUMBER OF CLONE FRAGMENTS THAT EXPERIENCED BUG-REPLICATION

IN REGULAR AND MICRO-CLONES

Subject
Systems

Regular
Clones
(CFRB)

Micro
Clones
(CFRB)

Revisions
(BFCR)

Ctags 50 30 19
Brlcad 33 36 20
MonoOSC 15 10 9
Freecol 547 806 98
Carol 455 309 48
Jabref 121 200 70

to know that if the percentage of the clone fragments that takes
part in bug-replication in micro-clones is significantly higher
than in regular clones. MWW test is non-parametric and does
not require normal distribution of data. The significance level
of our MWW test is 5% i.e. if the p-value is less than 0.05
and the U-value is less than or equal to critical U-value then
the difference will be significant. We found that the p-value is
0.93624 which is much greater than the significance level 0.05.
Also, the U-value is 17 and the critical value of U at p<0.05
is 5. So the U-value is greater than the critical U-value. This
MWW test result prevails that the difference between the two
percentages of clone fragments containing replicated bugs in
regular and micro-clones is insignificant.

Answer to RQ 1. The percentage of the clone frag-
ments in micro-clones that takes part in bug-replication
(5.27%) is slightly higher than the percentage of the
clone fragments in regular clones that takes part in bug-
replication (4.63%).

From our above experimental results we can state that the

difference between two overall percentages (regular and micro-
clones) is not prominent. This implies that micro-clones are as
important as regular code clones. Thus, we can not disregard
micro-clones during software maintenance. Developers should
equally emphasize on both micro-clones and regular code
clones while performing clone management.

B. Answering the second research question (RQ 2)

RQ 2: What is the extent of bug-replication in the buggy
clone classes of Regular code clones and Micro-clones?

Motivation. After knowing the percentage of clone frag-
ments containing replicated bugs in both regular and micro-
clones, we still need to understand the extent of bug-replication
in the clone classes which contains bugs for regular and micro-
clones. Instinctively, the code clone that contains higher extent
of bug-replication expected to be more harmful for the system.
To answer this research question we perform the following
procedures.

Methodology. Following the procedure of Section III-B,
we first detect the bug-fix commits. For each of the bug-
fix commits we detect whether a clone class was affected
in that commit. This means whether one or more clone
fragments from the clone class were changed for fixing a bug
in that commit. Suppose a bug-fix commit was applied on
the revision R of a subject system. Let us consider a clone
class CC which was affected by BFC. If two or more clone
fragments from CC are experienced a similarity preserving co-
change (SPCO) in BFC then we select this clone class as an
Eligible Clone Class (ECC). In other words, an ECC contains
replicated bug. We discard all the clone classes which did not
experienced similarity preserving co-change (SPCO) despite
of being affected by BFC.

For each eligible clone class (ECC) we calculate following
two measures:

CF: The total number of clone fragments in the eligible
clone class i.e. in the ECC.

CFRB: The number of clone fragments that experienced
similarity preserving co-change (SPCO) i.e. clone fragments
which contain replicated bugs (same as illustrated in Section
IV-A).

From these two measures of an eligible clone class (ECC),
we calculate the extent of bug-replication in that ECC using
the following equation.

EBR =
100× CFRB

CF
(3)

Here, EBR stands for the extent of bug-replication for a
particular ECC. We get the percentage of the extent of bug-
replication (PEBR) by considering all the ECCs of regular or
micro-clones from all the replicated bugs with respect to all
bugs of a subject system. We use Equation 4 for finding the
value of PEBR.



PEBR =
100×

∑
all CFRB∑

all CF
(4)

The overall percentage of the extent of bug-replication for
all subject systems is calculated using following equation.

OPEBR =
100×

∑
all systems CFRB∑

all systems CF
(5)

In Equation 5, OPEBR refers to the overall percentage of the
extent of bug-replication with respect to all bugs. The OPEBR
is calculated for both regular and micro-clones.

Table V shows the extent of bug-replication experienced
by both regular and micro-clones. Figure 3 depicts the extent
of replicated bugs in the buggy clone classes for regular and
micro-clones. From Table V and Figure 3 we observe that the
extent of bug-replication is a bit higher in regular code clones
than that of micro-clones for each of the subject systems. The
highest extent (97.06%) of replicated bugs found in Brlcad
for regular code clones which is nearly 100%. Second highest
extent (88.24%) of the bug-replication found in MonoOSC for
regular clone code. Other than these two cases, for rest of the
cases, extent of bug-replication for regular clones varies from
5% to 17% and for micro-clones it varies from 0.25% to 2%.

In this research question we did not perform the MWW
test since we believe that the actual number of extension
of replicated bugs is more important than the percentage of
extension. This is because we found that the number of clone
fragments is very high in micro-clones compared with regular
clones. For instance, from Table V we see that in Freecol,
total number of clone fragments in eligible clone classes is
207765 in micro-clones whereas in regular clones it is only
10507 which is almost 20 times. However, the number of clone
fragments experienced bug-replication is only 806 and 547 in
micro clones and regular clones respectively. For the purpose
of clone refactoring or clone tracking, we have to deal with
the actual number of clone fragments (all the bugs need to
be fixed) rather than percentages. Thus, though the extent of
bug-replication in the buggy clone classes is higher in regular
clones than micro-clones, we should not neglect micro-clones
because of its characteristic of having higher number of clone
fragments compared to regular clones.

Answer to RQ 2. The extent of bug replication in the
buggy clone classes of regular code clones is higher than
the extent in micro-clones. The overall extent of replicated
bugs in regular clones is 8.21% and in micro-clones the
overall extent of bug-replication is 0.43%.

Clone classes containing replicated bugs are considered
more harmful. While refactoring clone classes of code clones,
developers should focus on clone classes that have replicated
bugs. In this research question, our findings show that both reg-

TABLE V
EXTENT OF REPLICATED BUGS THAT EXPERIENCED BY CODE CLONES IN

REGULAR AND MICRO-CLONES

Subject Regular Clones Micro Clones
Systems CFRB CF CFRB CF
Ctags 50 795 30 1745
Brlcad 33 34 36 6189
MonoOSC 15 17 10 517
Freecol 547 10507 806 207765
Carol 455 2784 309 29907
Jabref 121 742 200 79019
Total 1221 14879 1391 325142

Ctags Brlcad MonoOSC Freecol Carol Jabref Overall
0

5

10

15

Extent of bug-replication in the buggy clone classes for Regular Clones

Extent of bug-replication in the buggy clone classes for Micro-clones

Fig. 3. Extent of bug-replication in the buggy clone classes for regular and
micro-clones.

ular code clones and micro-clones have replicated bugs in their
clone classes. Hence, both regular and micro-clones should be
equally considered carefully while clone management (such
as refactoring).

C. Answering the third research question (RQ 3)

RQ 3: What percentage of bugs experienced by regular and
micro-clones are replicated bugs?

Motivation. We are interested to identify whether most of
the bugs in clone code are replicated bugs or not. Finding the
answer of this research question will help us to understand that
if bug-replication is a recurrent event in software development.
Intuitively, if almost all bugs are found to be replicated bugs
then developers should be more concerned about copy/pasting
source code without containing any bugs.

Methodology. To answer this research question, we calcu-
late the total number of bugs and also the total number of bugs
that got replicated respectively for each of the subject systems.
We calculate these numbers for both regular and micro-clones.
We use following two counters to demonstrate our methods.



NBC (The number of bugs experience by the code
clones): Suppose a bug-fix commit is denoted by BFC and
it was applied on the revision R of a candidate system. We
increase the counter NBC by one if one or more clone classes
residing in this revision R were affected by the commit BFC.

NBRC (The number of bugs that were replicated in the
code clones): Suppose a bug-fix commit was applied on the
revision R of a subject system and one or more clone classes
in this revision were affected by this commit. We increase the
counter NBRC by one if any of these affected clone classes
experienced a similarity preserving co-change (SPCO) in this
commit. According to our previous discussion in Section III-C
experiencing a similarity preserving co-change (SPCO) in a
bug-fix commit operation is an evidence of the existence of
replicated bugs in the code clones.

The percentage of replicated bugs with respect to all bugs
found in code clones for both regular and micro-clones of a
subject system is calculated by Equation 6.

PNBRC =
100×NBRC

NBC
(6)

We calculate overall percentage of replicated bugs with
respect to all bugs for six subject systems using following
equation.

OPNBRC =
100×

∑
all systems NBRC∑

all systems NBC
(7)

Table VI shows the number of replicated bugs with respect
to all bugs for both regular and micro-clones for each of the
subject systems. Here, we observe that for three subject system
i.e. Ctags, Brlcad and Carol in regular code clones all of the
bugs are replicated bugs. In case of micro-clones this scenario
is true for MonoOSC. For the rest of the subject systems,
in both regular and micro-clones majority number of bugs are
found to be replicated bugs. Figure 2 depicts the percentage of
replicated bugs in regular and micro-clones. In this figure we
see that for all of the subject systems, percentage of replicated
bugs is slightly higher in regular clones than in micro-clones
except for the MonoOSC. The overall percentage of replicated
bugs in regular code clones is 96.53% and in micro-clones it
is 91.87%. To better understand the difference of these two
percentages we perform following MWW test.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 3. We
want to know whether the difference between two percentages
of replicated bugs with respect to all bugs in regular and
micro-clones is significant or not. To investigate statistical
significance we perform Mann-Whitney-Wilcoxon (MWW)
test [36], [37] on the results. We found that for two-tailed, 5%
significance level the p-value is 0.20054 and critical U-value
is 5. Here, p-value is greater than the significance level 0.05.
Also, we found that the U-value is 9.5 which is greater than
the critical U-value 5. Hence, the MWW test result reveals
that the difference of percentages is not significant.

Ctags Brlcad MonoOSC Freecol Carol Jabref Overall
0

20

40

60

80

100

Percentage of replicated bugs in Regular Clones

Percentage of replicated bugs in Micro-clones

Fig. 4. Percentage of replicated bugs in regular and micro-clones.

TABLE VI
NUMBER OF REPLICATED BUGS THAT EXPERIENCED BY CODE CLONES IN

REGULAR AND MICRO-CLONES

Subject Regular Clones Micro Clones
Systems NBRC NBC NBRC NBC
Ctags 15 15 9 10
Brlcad 11 11 13 14
MonoOSC 7 9 4 4
Freecol 64 66 80 89
Carol 31 31 36 38
Jabref 39 41 50 64

Answer to RQ 3. A substantial number of bugs in
both regular code clones and micro-clones are found to
be replicated bugs. The overall percentage of replicated
bugs is higher by 4.66% in regular clones than micro-
clones.

Since the difference of the two percentages (regular and
micro-clones) is insignificant, we can say that both micro-
clones and regular clones contain a high percentage (over 90%)
of replicated bugs in code bases. Hence, both micro-clones and
regular code clones carry equivalent importance in software
maintenance.

D. Answering the fourth research question (RQ 4)

RQ 4: Are the replicated bugs in micro-clones more likely
to be severe than the replicated bugs in regular clones?

Motivation. Finding the severity of replicated bugs is an
important criterion to compare between regular and micro
code clones. Answering this research question will let us know
which code clone requires more attention than the other during
fixing a bug. Since severe bugs need to be fixed immediately,



if severe replicated bugs occur more in a certain type (regular
or micro-clones) then developers can be more careful about
that type of clone in advance during software maintenance.

Methodology. To find the severe replicated bugs we auto-
matically perform a heuristic search in bug-fix commit mes-
sages of regular and micro-clones for the six subject systems.
According to Lamkanfi’s [38] proposal, a list of keywords can
identify severe and non-severe bugs from textual information.
We use these keywords to identify severe bugs in replicated
bug-fixing commit messages of our candidate systems.

NSBRC (The number of severe bugs that were repli-
cated in the code clones): We denote the number of severe
replicated bugs of a subject system by NSBRC. We increase
the value of NSBRC by one if a replicated bug found in code
clones is severe.

We calculate the percentage of severe replicated bugs with
respect to all replicated bugs in regular code clones and micro-
clones using Equation 8. Here, NBRC is the number of bugs
that were replicated in code clones as defined in previous
Section IV-C.

PNSBRC =
100×NSBRC

NBRC
(8)

We also calculate overall percentage of severe replicated
bugs with respect to all replicated bugs in regular and micro-
clones using the following way.

OPNSBRC =
100×

∑
all systems NSBRC∑

all systems NBRC
(9)

Here, OPNSBRC refers to overall percentage of severe bugs
which are related to bug-replication with respect to all bugs
related to bug-replication in regular and micro-clones.

Table VII shows the number of severe bugs that experienced
bug-replication in code clones for both regular and micro-
clones in six subject systems. Figure 5 shows the percentage
of severe replicated bugs with respect to all replicated bugs
for regular and micro-clones. For subject system MonoOSC
and Carol percentage of severe replicated bugs is higher (i.e.
25% and 16.67% respectively) in micro-clones than that (i.e.
14.29% and 3.23% respectively) of regular code clones. For
the rest of the subject systems percentage of severe replicated
bugs is higher in regular code clones than the micro-clones. In
overall, percentage of severe replicated bugs is slightly higher
in regular code clones than micro-clones.

Mann-Whitney-Wilcoxon (MWW) Test for RQ 4. To
understand that if the difference between the percentages of
severe replicated bugs in regular and micro-clones is signifi-
cant or not, we conduct MWW test [36], [37] on RQ4’s result.
For significance level of 5% and two-tailed MWW test we find
the critical value of U is 5. Our MWW test result shows that
the p-value is 1 which is far greater than the significance level
0.05 and U-value is 17.5 which is greater than critical U-value

Ctags Brlcad MonoOSC Freecol Carol Jabref Overall
0

20

40

60

Percentage of severe replicated bugs in Regular Clones

Percentage of severe replicated bugs in Micro-clones

Fig. 5. Percentage of severe replicated bugs in regular and micro-clones.

TABLE VII
NUMBER OF SEVERE REPLICATED BUGS THAT EXPERIENCED BY CODE

CLONES IN REGULAR AND MICRO-CLONES

Subject Regular Clones Micro Clones
Systems NBRC NSBRC NBRC NSBRC
Ctags 15 9 9 4
Brlcad 11 3 13 3
MonoOSC 7 1 4 1
Freecol 64 15 80 16
Carol 31 1 36 6
Jabref 39 9 50 9

5. This proves that the percentage of severe replicated bugs in
regular and micro-clones is nearly equal. Table VIII shows all
the result of MWW tests for three research questions. Here, we
can see that for all RQs p-values are greater than significance
level 0.05 and U-values are greater than critical U-value.

Answer to RQ 4. Replicated bugs in regular code
clones are more severe than the replicated bugs in micro-
clones. The overall percentage of severe replicated bugs
for regular clones is 22.75% and for micro-clones it is
20.31%.

Since the difference between the percentage of severe repli-
cated bugs in regular and micro-clones is minor i.e. 2.44%,
we can say that both regular and micro-clones should be
taken care of during clone management from the bug severity
perspective.

For all research questions, we perform manual analysis to
check our implementation is correct. For all subject systems,
we investigated at least first 50 clone fragments and/or revi-
sions manually to confirm our analysis.



TABLE VIII
MANN-WHITNEY-WILCOXON TEST RESULT FOR RQ1, RQ3 AND RQ4

Research
Question No.

p-value U-value Critical
Value of U

RQ1 0.93624 17 5
RQ3 0.20054 9.5 5
RQ4 1 17.5 5
Considering level of significance is 5%.
For all RQs, U-value > Critical value of U

V. RELATED WORK

Micro-clone is a recent concern of code clone research area.
The term micro-clones was first introduced by Beller et al.
[23]. They have identified and statistically proved that majority
of software bugs in micro-clones occur in the last line or
statement of micro-clones. On the other hand, in our study
we consider all lines of a micro-clone fragment. Tonder et al.
[24] agreed with Beller and proposed detection and removal
of micro-clones in large scale. Both Beller’s and Tonder’s
paper used PVS-Studio [39] static analysis tool to detect faulty
micro-clones. They [24] found that 95% of their pull requests
from active GitHub repositories merged quickly and 76% of
their accepted patches are removing (REM category) micro-
clones. In contrast with these two papers [23], [24], Mondal
et al. [25] investigated the importance of micro-clones during
software evolution. They showed that micro-clones have a very
high tendency of getting updated consistently. None of these
three studies on micro-clones [23]–[25] showed any compar-
ison between micro-clones and non-micro clones or regular
clones. Recently, Islam et al. [26] performed a comparative
study on bug-proneness in between regular and micro-clones
and showed that micro-clones are more bug-prone than regular
clones. However, they did not compare the bug-replication in
micro-clones and regular clones. In a previous study Islam et
al. [40] investigated bug-replication on three types of regular
clones (i.e. Type 1, Type 2 and Type 3) and found that bug-
replication is a common phenomena in code cloning. They
did not consider micro-clones in their study. Whereas in our
paper, we compare bug-replication between regular clones and
micro clones.

Bug-proneness of code clones has been investigated by a
number of existing studies. Li and Ernst [19] performed an
empirical study on the bug-proneness of clones by investigat-
ing four software systems and developed a tool called CBCD
on the basis of their findings. CBCD can detect clones of a
given piece of buggy code. Li et al. [41] developed a tool
called CP-Miner which is capable of detecting bugs related
to inconsistencies in copy-paste activities. Steidl and Göde
[20] investigated finding instances of incompletely fixed bugs
in near-miss code clones by investigating a broad range of
features of such clones involving machine learning. Göde
and Koschke [6] investigated the occurrences of unintentional
inconsistencies to the code clones of three mature software

systems and found that around 14.8% of all changes that
occurred to the code clones were unintentionally inconsistent.
Chatterji et al. [42] performed a user study to investigate
how clone information can help programmers localize bugs
in software systems. Jiang et al. [21] performed a study on
the context based inconsistencies related to clones. They devel-
oped an algorithm to mine such inconsistencies for the purpose
of locating bugs. Using their algorithm they could detect pre-
viously unknown bugs from two open-source subject systems.
Inoue et al. [43] developed a tool called ‘CloneInspector’ in
order to identify bugs related to inconsistent changes to the
identifiers in the clone fragments. They applied their tool on
a mobile software system and found a number of instances of
such bugs. Xie et al. [44] investigated fault-proneness of Type
3 clones in three open-source software systems. They found
that mutation of clone fragments to Type 2 or Type 3 clones
is risky.

None of the studies discussed above investigated bugs in
micro-clones and regular code clones simultaneously. Mondal
et al. [22] investigated bug-proneness of code clones. While
the primary target of that study was to compare the bug-
proneness of three clone-types (Type 1, Type 2, and Type 3),
our target is to compare the bug-replication of micro-clones
and regular code clones. Mondal et al. [22] did not investigate
the bug-replication of micro-clone code in their study. Higo
et al. [45] proposed a method to distinguish problematic code
clones from non-problematic code clones. They have stated
that not all clones are problematic for the systems. Thus, it
is important to find and fix the problematic code clones. As
a result of their study, they have found 22 problematic code
clones.

Rahman et al. [46] found that bug-proneness of cloned
code is less than that of non-cloned code on the basis of
their investigation on the evolution history of four subject
systems using DECKARD [47] clone detector. However, they
considered monthly snap-shots (i.e., revisions) of their systems
and thus, they have the possibility of missing buggy commits.
In our study, we consider all the snap-shots/revisions (i.e.,
without discarding any revisions) of a subject system from the
beginning one. Thus, we believe that we are not missing any
bug-fix commits. Moreover, our goal in this study is different.
We investigate and compare the impacts of bug-replication on
regular and micro-clones whereas they only focused on the
bug-proneness of regular clones.

Selim et al. [48] used Cox hazard models in order to assess
the impacts of cloned code on software defects. They found
that defect-proneness of code clones is system dependent.
However, they considered only method clones in their study.
We consider block clones in our study. While they investigated
only two subject systems, we consider six diverse subject
systems in our investigation. Also, we investigate the bug-
replication possibilities of regular and micro-clones. Selim et
al. [48] did not perform such an investigation.

A number of studies have also been done on the late



propagation in clones and its relationships with bugs. Aversano
et al. [4] investigated clone evolution in two subject systems
and reported that late propagation in clones is directly related
to bugs. Barbour et al. [5] investigated eight different patterns
of late propagation considering Type 1 and Type 2 clones of
three subject systems and identified those patterns that are
likely to introduce bugs and inconsistencies to the code-base.
However, we emphasized on bug-replication rather than late
propagation in our study.

A new aspect has been discussed in a recent study [49]
showing that bug-proneness is related with how recently the
clone has been changed on a subject system. The more
recent the changes happened the more possibility of occurring
bugs. In another study, Mondal et al. [50] investigated bug
propagation in code cloning and found that 33% of bug-fixing
code clones contain propagated bugs. However, Mondal et
al. [49], [50] did not investigate bug-replication of micro-
clones. Another study [51] compared software bugs in clone
and non-clone code and found that clone code is more bug-
prone than non-clone code. In contrast with this study, we
compare software bugs in micro and regular code clones.

On the other hand, from a different perspective Rahman
and Roy [52] show the relation between stability and bug-
proneness of code clones. They have investigated five open
source diverse subject systems written in Java. They have
found statistically significant relation between stability and
bug-proneness of code clones. Also, buggy clones have the
tendency of changes more often than non-buggy clones. How-
ever, they did not investigate bug-replication of micro-clones in
their study. We investigate bug-replication of micro-clones in
our study. Rakibul and Zibran [53] perform a comparative in-
vestigation in between buggy and non-buggy clone code. They
have studied on three open source software systems written in
Java containing 2,077 revisions in total. Using SourceMeter
[54] they have observed 29 source code quality metrics to
characterize the buggy clone code. They have found that
buggy clones have significantly higher complexity and lower
maintainability than non-buggy clone code. While Rakibul and
Zibran investigated regular code clones, we investigate the
bug-replication of micro-clones in our study.

We see that a number of studies have been conducted on the
bug-proneness of regular code clones. However, bug-proneness
of micro-clones have been ignored. Focusing on this we
perform an in-depth investigation on replicated bug’s impacts
in micro code clones and regular code clones in our research.
Our experimental results are promising and provide useful
implications for better understanding of the bug-replication of
micro-clone and regular clone code.

VI. THREATS TO VALIDITY

We used the NiCad clone detector [27] for detecting both
micro and regular clones. While all clone detection tools
suffer from the confounding configuration choice problem [28]
and might give different results for different settings of the

tools, the setting that we used for NiCad for this experiment
are considered standard [55] and with these settings NiCad
can detect clones with high precision and recall [31]–[33].
Thus, we believe that our findings on the bug-replication of
micro code clones and regular code clones are of significant
importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
proposed by Mocus and Votta [34] and also used by Barbour
et al. [56]. The technique proposed by Mocus and Votta
[34] can sometimes select a non-bug-fix commit as a bug-fix
commit mistakenly. However, Barbour et al. [56] showed that
this probability is very low. According to their investigation,
the technique has an accuracy of 87% in detecting bug-fix
commits.

The number of total subject systems is not enough in
our research to be able to generalize our findings regarding
the comparative bug-replication of micro and regular clones.
However, our candidate systems were of diverse variety in
terms of application domains, sizes and revisions. Thus, we
believe that our findings are important from the perspectives
of managing code clones.

VII. CONCLUSION

In this paper, we investigate and compare the aspects of bug-
replication in between regular code clones and micro-clones.
After investigating on six diverse subject systems, we found
that micro-clones are as equally important as regular code
clones. We have found that the percentage of clone fragments
which are related with bug-replication is some times higher in
micro-clones than that of regular code clones. Moreover, the
percentage of replicated bugs in micro-clones is almost the
same as the percentage in regular clones. Additionally, both
regular code clones and micro code clones have the similar
tendencies of replicating severe bugs. We believe that these
findings are important from the clone management perspective.
Both micro-clones and regular clones should be considered
for software evaluation and maintenance. Since only a limited
number of studies have been performed on micro-clones, more
research is needed to elaborate micro-clone more profoundly.
In future we would like to explore micro-clones for more
number of systems of various programming languages so that
we can perform a language centric empirical study on bug-
proneness of micro-clones.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by
two Canada First Research Excellence Fund (CFREF) grants
coordinated by the Global Institute for Food Security (GIFS)
and the Global Institute for Water Security (GIWS).



REFERENCES

[1] C. K. Roy, M. F. Zibran, and R. Koschke, “The Vision of Software
Clone Management: Past, Present, and Future (Keynote paper),” in Proc.
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), 2014, pp. 18–33.

[2] C. K. Roy, “Detection and analysis of near-miss software clones,” in
Proc. IEEE International Conference on Software Maintenance (ICSM),
2009, pp. 447–450.

[3] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” Technical Report 2007-541, pp. 1 – 115, 2007.

[4] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study,” in Proc. 11th European Conference on Software
Maintenance and Reengineering (CSMR), 2007, pp. 81–90.

[5] L. Barbour, F. Khomh, and Y. Zou, “Late Propagation in Software
Clones,” in Proc. IEEE International Conference on Software Main-
tenance (ICSM), 2011, pp. 273–282.

[6] N. Göde and R. Koschke, “Frequency and risks of changes to clones,” in
Proc. 33rd International Conference on Software Engineering (ICSE),
2011, pp. 311–320.

[7] N. Göde and J. Harder, “Clone Stability,” in Proc. 15th European
Conference on Software Maintenance and Reengineering (CSMR), 2011,
pp. 65–74.

[8] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software,” in Proc. ERCIM
Workshop on Software Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE), 2010, pp. 73–82.

[9] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do Code
Clones Matter?” in Proc. 31st International Conference on Software
Engineering (ICSE), 2009, pp. 485–495.

[10] C. Kapser and M. W. Godfrey, ““Cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13(6): 645 - 692, 2008.

[11] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in Proc. 14th Working Conference on Reverse Engineering
(WCRE), 2007, pp. 170–178.

[12] J. Krinke, “Is cloned code more stable than non-cloned code?” in Proc.
Eighth IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2008, pp. 57–66.

[13] J. Krinke, “Is Cloned Code older than Non-Cloned Code?” in Proc. 5th
International Workshop on Software Clones (IWSC), 2011, pp. 28–33.

[14] A. Lozano and M. Wermelinger, “Tracking clones’ imprint,” in Proc. 4th
International Workshop on Software Clones (IWSC), 2010, pp. 65–72.

[15] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in Proc. IEEE International Conference on Software
Maintenance (ICSM), 2008, pp. 227–236.

[16] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider, “Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study,” in Proc. 27th Annual ACM Symposium on Applied
Computing (SAC), 2012, pp. 1227–1234.

[17] M. Mondal, C. K. Roy, and K. A. Schneider, “An Empirical Study on
Clone Stability,” ACM SIGAPP Applied Computing Review, vol. 12(3):
20-36, 2012.

[18] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, vol. 15(1): 1-34, 2009.

[19] J. Li and M. D. Ernst, “CBCD: Cloned Buggy Code Detector,” in Proc.
34th International Conference on Software Engineering (ICSE), 2012,
pp. 310–320.

[20] D. Steidl and N. Göde, “Feature-Based Detection of Bugs in Clones,”
in Proc. 7th International Workshop on Software Clones (IWSC), 2013,
pp. 76–82.

[21] L. Jiang, Z. Su, and E. Chiu, “Context-Based Detection of Clone-Related
Bugs,” in Proc. 6th European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering
(ESEC-FSE), 2007, pp. 55–64.

[22] M. Mondal, C. K. Roy, and K. A. Schneider, “A Comparative Study
on the Bug-Proneness of Different Types of Code Clones,” in Proc.
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 91–100.

[23] M. Beller, A. Zaidman, and A. Karpov, “The Last Line Effect,” in Proc.
23rd International Conference on Program Comprehension (ICPC),
Florence, Italy, 2015, pp. 240–243.

[24] R. van Tonder and C. L. Goues, “Defending against the attack of
the micro-clones,” in Proc. 24th International Conference on Program
Comprehension (ICPC), Austin, TX, USA, 2016, pp. 1–4.

[25] M. Mondal, C. K. Roy, and K. A. Schneider, “Micro-clones in Evolving
Software,” in Proc. 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2018, pp. 50–60.

[26] J. F. Islam, M. Mondal, and C. K. Roy, “A Comparative Study of
Software Bugs in Micro-clones and Regular Code Clones,” in Proc.
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, 2019, pp. 73–83.

[27] J. R. Cordy and C. K. Roy, “The NiCad Clone Detector,” in Proc.
19th International Conference on Program Comprehension (ICPC) Tool
Demo, 2011, pp. 219–220.

[28] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation,” in Proc.
12th European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/SIGSOFT
FSE), 2013, pp. 455–465.

[29] SVN repository. [Online]. Available: http://sourceforge.net/
[30] M. Mondal, C. K. Roy, and K. A. Schneider, “SPCP-Miner: A Tool for

Mining Code Clones that are Important for Refactoring or Tracking,”
in Proc. 22nd International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2015, pp. 484–488.

[31] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Science of Computer Programming, vol. 74 (2009): 470-495, 2009.

[32] C. K. Roy and J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools,” in Proc. In-
ternational Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), 2009, pp. 157–166.

[33] J. Svajlenko and C. K. Roy, “Evaluating Modern Clone Detection Tools,”
in Proc. IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014, pp. 321–330.

[34] A. Mockus and L. G. Votta, “Identifying Reasons for Software Changes
using Historic Databases,” in Proc. IEEE International Conference on
Software Maintenance (ICSM), 2000, pp. 120–130.

[35] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic Ranking of
Clones for Refactoring through Mining Association Rules,” in Proc.
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), 2014, pp. 114–123.

[36] Mann-Whitney U Test. [Online]. Available: https://en.wikipedia.org/
wiki/Mann%E2%80%93Whitney U test

[37] Mann-Whitney U Test. [Online]. Available: http://www.socscistatistics.
com/tests/mannwhitney/Default2.aspx

[38] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
Severity of a Reported Bug,” in Proc. 7th IEEE Working Conference on
Mining Software Repositories (MSR), 2010, pp. 1–10.

[39] PVS-Studio Analyzer. [Online]. Available: https://www.viva64.com/en/
pvs-studio/

[40] J. F. Islam, M. Mondal, and C. K. Roy, “Bug Replication in Code
Clones: An Empirical Study,” in Proc. 23rd International Conference
on Software Analysis, Evolution and Reengineering (SANER), Japan,
2016, pp. 68–78.

[41] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code,” in Proc. 6th
conference on Symposium on Opearting Systems Design Implementation
(OSDI), 2004, pp. 20–20.

[42] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, and N. A. Kraft,
“Measuring the Efficacy of Code Clone Information in a Bug Local-
ization task: An Empirical Study,” in Proc. International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2011, pp.
20–29.

[43] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park,
and E. Lee, “Experience of Finding Inconsistently-changed Bugs in
Code Clones of Mobile Software,” in Proc. 6th International Workshop
on Software Clones (IWSC), 2012, pp. 94–95.

[44] S. Xie, F. Khomh, and Y. Zou, “An Empirical Study of the Fault-
proneness of Clone Mutation and Clone Migration,” in Proc. 10th IEEE
Working Conference on Mining Software Repositories (MSR), 2013, pp.
149–158.

[45] Y. Higo, K. Sawa, and S. Kusumoto, “Problematic code clones iden-
tification using multiple detection results,” in Proc. 16th Asia-Pacific
Software Engineering Conference (APSEC), 2009, pp. 365–372.



[46] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that Smell?” in
Proc. 7th IEEE Working Conference on Mining Software Repositories
(MSR), 2010, pp. 72–81.

[47] L. Jiang, G. Misherghi, and S. G. Z. Su, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proc. 29th International
Conference on Software Engineering (ICSE), 2007, pp. 96–105.

[48] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and
Y. Zou, “Studying the Impact of Clones on Software Defects,” in Proc.
17th Working Conference on Reverse Engineering (WCRE), 2010, pp.
13–21.

[49] M. Mondal, C. K. Roy, and K. A. Schneider, “Identifying Code
Clones having High Possibilities of Containing Bugs,” in Proc. 25th
International Conference on Program Comprehension (ICPC), Buenos
Aires-Argentina, May 2017, pp. 99–109.

[50] ——, “Bug Propagation through Code Cloning: An Empirical Study,”
in Proc. IEEE International Conference on Software Maintenance and
Evolution (ICSME), Shanghai, China, September 2017, pp. 227–237.

[51] J. F. Islam, M. Mondal, C. K. Roy, and K. A. Schneider, “A Comparative
Study of Software Bugs in Clone and Non-Clone code,” in Proc.
29th International Conference on Software Engineering and Knowledge
Engineering (SEKE), USA, 2017, pp. 436–443.

[52] M. S. Rahman and C. K. Roy, “On the Relationships between Stability
and Bug-proneness of Code Clones: An Empirical Study,” in Proc. 17th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2017, pp. 131–140.

[53] M. R. Islam and M. F. Zibran, “On the Characteristics of Buggy
Code Clones: A Code Quality Perspective,” in Proc. 12th International
Workshop on Software Clones (IWSC), Campobasso, Italy, 2018, pp.
23–29.

[54] SourceMeter: Static source code analysis solution for Java, C/C++, C,
Python and RPG. [Online]. Available: https://www.sourcemeter.com

[55] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-miss
Intentional Clones Using Flexible Pretty-printing and Code Normaliza-
tion,” in Proc. 16th International Conference on Program Comprehen-
sion (ICPC), 2008, pp. 172–181.

[56] L. Barbour, F. Khomh, and Y. Zou, “An empirical study of faults in
late propagation clone genealogies,” Journal of Software: Evolution and
Process, vol. 25(11):1139-1165, 2013.


